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Abstract. In this paper we deal with the existence of generalized solutions for the Cauchy problem
associated with a second-order differential inclusion, both in explicit and in implicit form. We firstly prove
an existence result for an inclusion of the type u′′ ∈ F (t, u, u′), where F : [0, T ]×Rn×Rn → 2R

n

is a
given closed-valued multifunction. The main peculiarity of this latter result is as follows: our assumptions
do not imply any kind of semicontinuity for the multifunction F (t, · , · ). That is, a multifunction F can
satisfy all the assumptions and, at the same time, for every t ∈ [0, T ] the multifunction F (t, · , · ) can
be neither upper nor lower semicontinuous even at each point (x, z) ∈ Rn × Rn. A viable version of
this result is also proved. Furtherly, as an application, an analogous result is proved for an inclusion of
the type u′′ ∈ Q(t, u, u′) + S(t, u, u′), where Q : [0, T ] × Rn × Rn → Rn has convex values, and
S : [0, T ] × Rn × Rn → Rn has closed values. Again, our assumptions do not imply any kind of
semicontinuity for the multifunctions Q(t, · , · ) and S(t, · , · ). Then we consider an application to the
implicit differential inclusion ψ(u′′) ∈ F (t, u, u′) + G(t, u, u′), where F is convex-valued and G is
closed-valued. As regards the function ψ, we only assume that it is continuous and locally nonconstant.
Finally, we present a further application to the Cauchy problem associated with a Sturm-Liouville type
differential inclusion.

Keywords. Cauchy problem, differential inclusions, discontinuous selections, lower semicontinuity.
© Applicable Nonlinear Analysis

1. Introduction

Let T > 0, n ∈ N, and let F : [0, T ] × Rn × Rn → 2R
n be a multifunction. In this paper we

are mainly interested in the existence of generalized solutions in [0, T ] for the second-order Cauchy
problem {

u′′ ∈ F (t, u, u′)

u(0) = u′(0) = 0Rn .
(1.1)

As usual, a generalized solution of problem (1.1) in [0, T ] is a function u ∈ C1([0, T ]),Rn) such that
u′ is absolutely continuous in [0, T ], u(0) = u′(0) = 0Rn , and

u′′(t) ∈ F (t, u(t), u′(t)) for a.e. t ∈ [0, T ].

In the paper [4], some existence results were proved for problem (1.1), which ensure the existence
of solutions belonging to the space W 2,∞([0, T ],Rn). Such results require, in particular, that F is
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bounded, jointly measurable, closed valued, and that for each t ∈ [0, T ] the multifunction F (t, ·, ·) is
lower semicontinuous (Theorems 1.2 and Theorem 3.1 of [4]).

Recently, by means of the results of [4] and of a selection theorem (Theorem 3.2 of [10]), some
existence results has been proved in [2] for the more general Cauchy problem{

u′′ ∈ Q(t, u, u′) + S(t, u, u′)

u(0) = u′(0) = 0Rn ,
(1.2)

where Q has nonempty convex values and S has nonempty closed values.
It is worth noticing that, in the main result of [2] (see Theorem 2.1 of [2]), the assumptions on the

multifunctions Q : [0, T ]×Rn ×Rn → 2R
n and S : [0, T ]×Rn ×Rn → 2R

n are as follows:
(a1) for every t ∈ [0, T ], the multifuntions Q(t, ·, · ) and S(t, ·, · ) are lower semicontinuous on

Rn ×Rn.
(a2) Q and S are jointly weakly-measurable with respect to the product σ-algebra L([0, T ]) ⊗

B(Rn × Rn), where L([0, T ]) is the family of all Lebesgue-measurable subsets of [0, T ], and
B(Rn ×Rn) is the Borel family of Rn ×Rn;

(a3) the multifunction Q+ S is bounded.
Of course, assumption (a3) implies that both Q and S are bounded. Furtherly, in the paper [2], the

authors study the implicit Cauchy problem{
ψ(u′′) ∈ F (t, u, u′) +G(t, u, u′)

u(0) = u′(0) = 0Rn ,
(1.3)

where F : [0, T ]×Rn ×Rn → 2R has nonempty convex values and G : [0, T ]×Rn ×Rn → 2R has
nonempty closed values. Again, it is worth noticing that the following basic assumptions are made on
F and G (see Theorem 3.1 of [2]):
(b1) for every t ∈ T , the multifuntionsF (t, ·, · ) andG(t, ·, · ) are lower semicontinuous onRn×Rn.
(b2) F and G are jointly weakly-measurable with respect to the product σ-algebra L([0, T ]) ⊗

B(Rn ×Rn) ;
As regards the real function ψ, it is required to be continuous and locally non constant on a compact,

connected and locally connected set Y ⊆ Rn. Again, we observe that the assumptions on F , G and ψ
made in Theorem 3.1 of [2] imply, in particular, that both F and G are bounded.

The aim of this paper is to prove some existence results for problems (1.1), (1.2) and (1.3) where, with
respect to the results of [2] and [4], the lower semicontinuity assumption on the involved multifunctions
Q, S, F andG is drastically weakened. As a matter of fact, a multifunction which satisfies our assump-
tions could be neither lower nor upper semicontinuous, with respect to the variable (x, z) ∈ Rn×Rn,
even at all points (x, z) ∈ Rn ×Rn. On the other side, we pay such a generality by requiring that the
ranges of the multifunctions F and Q+ S, and the set Y in problems (1.1), (1.2) and (1.3), respectively,
are (roughly speaking) ”well localized” in Rn. We also point out that no requirement of boundedness
is made neither on the multifunctions Q, S, F and G, nor on the set Y . As regards the function ψ in
problem (1.3), we only assume that it is continuous and locally nonconstant on a closed, connected and
locally connected (possibly unbounded) set Y ⊆ Rn.

Finally, an application to the Cauchy problem associated with a Sturm-Liouville-type differential
inclusion is given, where the involved multifunction H : [0, T ]×Rn ×Rn → 2R does not need to be
lower semicontinuous with respect to the variable (x, z) ∈ Rn ×Rn.

We shall give all the accurate definitions and also some examples in the following sections. Here,
just in order to show the nature of our results, we only point out the following very special case of our
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Theorem 4.1 below, concerning problem (1.2) (for the definitions and notations not explicitly recalled
before, we refer to the next Section 2).

Theorem 1.1. Let a, T be positive real numbers, p ∈ [1,+∞], and let Q : [0, T ] × R × R → 2R and
S : [0, T ] ×R ×R → 2R be two multifunctions. Assume that there exist a Lebesgue measurable set
V , with null Lebesgue measure, and a positive function β ∈ Lp([0, T ]) such that:

(i) for a.e. t ∈ [0, T ], the multifunction Q(t, · , · )|(R\V )×(R\V ) is lower semicontinuous with
nonempty convex values;

(ii) for a.e. t ∈ [0, T ], the multifunction S(t, · , · )|(R\V )×(R\V ) is lower semicontinuous with
nonempty closed values;

(iii) the multifunctions Q|[0,T ]×(R\V )×(R\V ) and S|[0,T ]×(R\V )×(R\V ) are L([0, T ])⊗ B(R \ V )⊗
B(R \ V ) - weakly measurable;

(iv) for a.e. t ∈ [0, T ], one has

Q( t, (R \ V )× (R \ V )) + S( t, (R \ V )× (R \ V )) ⊆ [a, β(t)];

Then, there exists a function u ∈W 2,p([0, T ]) such that
(u(t), u′(t)) ∈ (R \ V )× (R \ V ) for a.e. t ∈ [0, T ],

u′′(t) ∈ Q(t, u(t), u′(t)) + S(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0.

It is immediate to check that the assumptions of Theorem 1.1 do not imply the lower semicontinuity
of the multifunctionsQ(t, ·, ·) and S(t, ·, ·). To see this, one can consider the following simple example.

Example 1.1. Let T > 0, and letQ denote the set of all rational real numbers. LetQ : [0, T ]×R×R →
2R and S : [0, T ]×R×R → 2R be the multifunctions defined by putting

Q(t, x, z) =

{
]2, 4[ if t ∈ [0, T ] and (x, z) ∈ (R \Q)× (R \Q)

{arctan(t+ x+ z)} otherwise,

S(t, x, z) =

{
{10 + cos2(x+ z), 20 + sin2 z} if t ∈ [0, T ] and (x, z) ∈ (R \Q)× (R \Q)

{0} otherwise.
It is routine matter to check that all the assumptions of Theorem 1.1 are satisfied with n = 1, V = Q,
p = +∞, a = 12 and β(t) ≡ 25. In particular, the lower semicontinuity of the multifunction
Q(t, · , · )|(R\Q)×(R\Q)is trivial, while the lower semicontinuity of the multifunctionS(t, · , · )|(R\Q)×(R\Q)

follows by Theorem 7.3.8 of [11]. Hence, since both Q|[0,T ]×(R\Q)×(R\Q) and S|[0,T ]×(R\Q)×(R\Q) do
not depend on t explicitly, they are L([0, T ]) ⊗ B(R \ Q) ⊗ B(R \ Q) - weakly measurable. Con-
sequently, all the assumptions of Theorem 1.1 are satisfied, as claimed. However, it is easy to check
that, for each t ∈ [0, T ], the multifunctions Q(t, · , · ) and S(t, · , · ) are neither lower semicontinuous
nor upper semicontinuous at each point (x, z) ∈ R × R. It is also worth noticing that, for every
(t, x, z) ∈ [0, T ]× (R \Q)× (R \Q), the set Q(t, x, z) + S(t, x, z) is neither closed nor convex.

The paper is organized as follows: firstly, in Section 2, we give some notations and definitions, and
we prove some preliminary results. Then, in Section 3, we prove our main result (Theorem 3.1) con-
cerning problem (1.1), as well as an application to the viable case. In the same section, we discuss and
characterize the class of multifunctions that we are considering, and provide some counter-example to
possible improvements of our results. In Section 4, we present some applications of the results of Sec-
tion 3. More specifically, by means of a selection result, we first prove an existence theorem concerning
problem (1.2). Then, we consider further applications to the implicit Cauchy problem (1.3), and to a
Sturm-Liouville type differential inclusion.
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2. Preliminaries

For each k ∈ N, we denote by mk the k-dimensional Lebesgue measure in Rk. In what follows, a
measurable set (resp., a measurable function) will mean a Lebeasgue measurable set (resp., a Lebesgue
measurable function).

Let n ∈ N. For each i ∈ {1, . . . , n}, we denote by Pn,i : R
n → R the projection over the i-th axis.

Moreover, we denote byFn the family of all subsetsV ⊆ Rn such that there exist setsV1, . . . , Vn ⊆ Rn,
withm1(Pn,i(Vi)) = 0 for all i =, 1 . . . , n, such that V =

⋃n
i=1 Vi. Of course, any set V ∈ Fn satisfies

mn(V ) = 0. If U ⊆ Rn, we denote by conv (U) the closed convex hull of the set U . Moreover, we
denote by Gn the family of all subsets U ⊆ Rn such that, for every i = 1, . . . , n, the supremum and
the infimum of the projection of conv (U) on the i-th axis are both positive or both negative.

We denote by ∥ · ∥n the Euclidean norm of Rn. Moreover, we denote by ∥ · ∥∗n the norm

∥(x1, . . . , , xn)∥∗n = max
i=,1...,n

|xi|

of Rn. If x = (x1, . . . , , xn) ∈ Rn and r > 0, we shall denote by Bn(x, r) (resp., B∗
n(x, r)) the closed

ball in Rn centered at x with radius r, with respect to the norm ∥ · ∥n (resp., to the norm ∥ · ∥∗n).
If X is a topological space, we denote by B(X) the Borel family of X . Moreover, if A ⊆ Y ⊆ X ,

we denote by intY (A) the interior of A in Y . The interior of A in the whole space X will be denoted
by int(A). If S is a Polish space (that is, a separable complete metric space) endowed with a positive
regular Borel measure µ, we shall denote by Sµ the completion of the σ-algebra B(S) with respect to
the measure µ. For the definition of Souslin spaces, Souslin sets and their properties, we refer to [1].

Let T > 0, k ∈ N and p ∈ [1,+∞]. As usual, we denote by W k,p([0, T ],Rn) the space of
all functions u ∈ Ck−1([0, T ],Rn) such that u(k−1) is absolutely continuous in [0, T ] and u(k) ∈
Lp([0, T ],Rn). The space Lp([0, T ],Rn) is endowed with the norm

∥u∥Lp([0,T ],Rn) =


(∫

[0,T ]
∥u(t)∥pn dt

)1/p
if p < +∞,

ess supt∈[0,T ] ∥u(t)∥n if p = +∞.

As usual, we put Lp([0, T ]) := Lp([0, T ],R) and W k,p([0, T ]) :=W k,p([0, T ],R).
For the basic definitions and properties on multifunctions, we refer to [6] and [11]. We only recall

that, if (X,A) is a measurable space and Y is a topological space, a multifunction F : X → 2Y is said
to be A-measurable (resp., A-weakly measurable) if for every closed (resp., open) set Ω ⊆ Y one has

F−(Ω) := {x ∈ X : F (x) ∩ Ω ̸= ∅ } ∈ A.

For what concerns measurable multifunctions, we also refer to the paper [9].
IfZ is a separable Banach space, we shall consider in the sequel the familyD(Z) of nonempty convex

subsets of Z defined at p. 372 of the seminal paper [12]. We recall that, in particular, the family D(Z)
contains all nonempty convex subsets of Z which are either finite-dimensional, or closed, or have an
interior point.

The following selection result will be useful in the sequel.

Theorem 2.1. Let S and X be Polish spaces, and let µ be a finite positive regular Borel measure over S.
Let Z be a separable Banach space, W ⊆ X a Souslin set, and let F : S ×W → 2Z be a multifunction
whose values belongs to the family D(Z). Assume that:

(i) the multifunction F is Sµ ⊗ B(W )-weakly measurable;
(ii) for every t ∈ S, the multifunction F (t, · ) is lower semicontinuous.

Then, there exist a function ϕ : S ×W → Z such that:
(a) ϕ(t, x) ∈ F (t, x) for all (t, x) ∈ S ×W ;
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(b) for all x ∈W , the function ϕ( · , x) is Sµ-measurable over S;
(c) for every t ∈ S, the function ϕ(t, · ) is continuous.

We do not think that Theorem 2.1 is unknown. However, we were not able to find an appropriate
reference. For instance, it can be checked that the results of [7] cannot be applied since the multifunction
F must be defined and non-empty valued on the whole space S ×X (with X complete). Similarly, in
Theorem 3.2 of [10] (which is, in turn, Theorem 5.2 of [2]), even if the multifunction F is allowed to
have some empty values, the lower semicontinuity of F (t, ·) is required on the whole spaceX (which is
assumed to be complete). Hence, this latter results cannot be applied for our purposes. Consequently,
we now provide a short proof of Theorem 2.1. In order to do this, we firstly recall the following lemma.

Lemma 2.2. (Lemma 2.3 of [5]) Let S,X be two Polish spaces, and let µ be a finite positive regular Borel
measure on S. Let W ⊆ X be a Souslin set, E ⊆ W another set. Let Z be a separable metric space,
and let F : S ×W → 2Z be a multifunction with nonempty values. Assume that:

(i) F is Sµ ⊗ B(W )- weakly measurable;
(ii) for all t ∈ S, one has

{x ∈W : F (t, ·) is not lower semicontinuous at x} ⊆ E.

Then, for each ε > 0 there exists a compact set K ⊆ S such that µ(S \K) ≤ ε and the multifunction
F |K×W is lower semicontinuous at each point (t, x) ∈ K × (W \ E).

Proof ofTheorem 2.1. By Lemma 2.2, for each n ∈ N there exists a compact setKn ⊆ S such that
µ(S\Kn) ≤ 1

n and the multifunction F |Kn×W is lower semicontinuous at each point (t, x) ∈ Kn×W .
Let us put D1 := K1, Dn := Kn \

⋃n−1
j=1 Kj , n ≥ 2. Of course, the sets {Dn} are pairwise

disjoint and one has
⋃

n∈NKn =
⋃

n∈NDn. Moreover, for every n ∈ N the multifunction F |Dn×W is
lower semicontinuous at each point (t, x) ∈ Dn ×W . Let

C := S \
⋃
n∈N

Dn.

Of course, we have C ∈ B(S). Moreover, for every j ∈ N one has

µ(C) = µ
(
S \

⋃
n∈N

Dn

)
= µ

(
S \

⋃
n∈N

Kn

)
= µ

( ⋂
n∈N

(S \Kn)
)
≤ µ(S \Kj) ≤

1

j
,

hence µ(C) = 0. By Theorem 3.1′′′ of [12], for each n ∈ N there exists a continuous function gn :
Dn ×W → Z such that

gn(t, x) ∈ F (t, x) ∀ (t, x) ∈ Dn ×W.

Moreover, again by Theorem 3.1′′′ of [12], for each t ∈ C there exists a continuous function ht :W → Z
such that

ht(x) ∈ F (t, x) for all x ∈W.

Now, let ϕ : S ×W → Z be defined by

ϕ(t, x) =

{
gn(t, x) if t ∈ Dn

ht(x) if t ∈ C .

By construction, we immediately have that ϕ(t, x) ∈ F (t, x) for all (t, x) ∈ S × W and, for every
t ∈ S, the function ϕ(t, ·) is continuous.

Finally, if we fix x ∈W , we have that for all n ∈ N the function ϕ(·, x)|Dn = gn(· , x) is continuous,
hence it is B(Dn)-measurable. Since µ(C) = 0, it follows at once that the function ϕ( · , x) is Sµ-
measurable over S. □

For the sake of a better reading, we now explicitly recall two results that will be fundamental in the
sequel. Firstly, we recall the following selection result.
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Theorem 2.3. (Theorem 2.1 of [5]). Let S and X1, X2, . . . Xk be complete separable metric spaces, with
k ∈ N, and let X :=

∏k
j=1Xj (endowed with the product topology). Let µ, ψ1, . . . , ψk be positive

regular Borel measures over S,X1, X2, . . . Xk, respectively, with µ finite and ψ1, . . . , ψk σ-finite.
Let Z be a separable metric space,W ⊆ X a Souslin set, and let F : S×W → 2Z be a multifunction

with nonempty complete values. Let E ⊆ W be a given set. Finally, for all i ∈ {1, . . . , k}, let P∗,i :
X → Xi be the projection over Xi. Assume that:

(i) the multifunction F is Sµ ⊗ B(W )-weakly measurable;
(ii) for a.e. t ∈ S, one has{

x = (x1, . . . , xk) ∈W : F (t, · ) is not lower semicontinuous at x
}
⊆ E.

Then, there exist setsQ1, . . . , Qk, withQi ∈ B(Xi) and ψi(Qi) = 0 for all i = 1, . . . , k, and a function
ϕ : S ×W → Z such that:

(a) ϕ(t, x) ∈ F (t, x) for all (t, x) ∈ S ×W ;
(b) for all x := (x1, x2, . . . , xk) ∈ W \

[(⋃k
i=1 P

−1
∗,i (Qi)

)
∪ E

]
, the function ϕ( · , x) is Sµ-

measurable over S;
(c) for a.e. t ∈ S, one has{

x = (x1, x2, . . . , xk) ∈W : ϕ( t, · ) is discontinuous at x
}
⊆

⊆ E ∪
[
W ∩

( k⋃
i=1

P−1
∗,i (Qi)

)]
.

Finally, we recall the following proposition.

Proposition 2.4. (Proposition 2.4 of [3]) Let A ⊆ Rn be a measurable set, φ : A×Rh → Rk be a given
function, H∗ ⊆ Rh a Lebesgue measurable set, with mh(H

∗) = 0, and let D∗ be a countable dense
subset of Rh, with D∗ ∩H∗ = ∅. Assume that:

(i) for all x ∈ A, the function φ(x, · ) is bounded;
(ii) for all z ∈ D∗, the function φ( · , z) is measurable.

Let G : A×Rh → 2R
k be the multifunction defined by setting, for each (x, z) ∈ A×Rh,

G(x, z) :=
⋂

m∈N
conv

( ⋃
v∈D∗

∥v−z∥h≤ 1
m

{φ(x, y)}
)
.

Then, one has:
(a) G has nonempty closed convex values;
(b) for all z ∈ Rh, the multifunction G( · , z) is L(A)-measurable;
(c) for all x ∈ A, the multifunction G(x, · ) has closed graph;
(d) if x ∈ A, and φ(x, · )|Rh\H∗ is continuous at z ∈ Rh \H∗, then one has

G(x, z) = {φ(x, z)}.

3. The main result

The following is our main result.

Theorem 3.1. Let T > 0, let F : [0, T ] × Rn × Rn → 2R
n be a multifunction, and let p ∈ [1,+∞].

Assume that there exist two sets V,E ∈ Fn and a positive function β ∈ Lp([0, T ]) such that:
(i) for a.e. t ∈ [0, T ], the multifunction F (t, · , · )|(Rn\V )×(Rn\E) is lower semicontinuous with

nonempty closed values;
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(ii) the multifunction F |[0,T ]×(Rn\V )×(Rn\E) is L([0, T ]) ⊗ B(Rn \ V ) ⊗ B(Rn \ E) - weakly
measurable;

(iii) for a.e. t ∈ [0, T ], one has
F ( t, (Rn \ V )× (Rn \ E)) ⊆ Bn(0Rn , β(t));

(iv) there exists U0 ⊆ [0, T ], with m1(U0) = 0, such that
F (([0, T ] \ U0)× (Rn \ V )× (Rn \ E)) ∈ Gn.

Then, there exists u ∈W 2,p([0, T ],Rn) such that
u′′(t) ∈ F (t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0Rn ,

(u(t), u′(t)) ∈ (Rn \ V )× (Rn \ E) for a.e. t ∈ [0, T ].

Proof. Without loss of generality, we can assume that assumptions (i) and (iii) are satisfied for all
t ∈ [0, T ], and that U0 = ∅. It is routine matter to check that it is not restrictive to do this. Put

H := F ([0, T ]× (Rn \ V )× (Rn \ E)).

By the definition of Fn, there exist 2n subsets
V1, . . . , Vn, E1, . . . , En

of Rn such that

V =
n⋃

i=1

Vi, E =
n⋃

i=1

Ei,

and
m1(Pn,i(Vi)) = m1(Pn,i(Ei)) = 0 for all i = 1, . . . , n.

For each i = 1, . . . , n, let Ci, Ui ∈ B(R) be such that
Pn,i(Vi) ⊆ Ci, Pn,i(Ei) ⊆ Ui

and m1(Ci) = m1(Ui) = 0. Let

W :=
n∏

i=1

(R \ Ci)×
n∏

i=1

(R \ Ui).

Of course, we have W ∈ B(R2n) and
W ⊆ (Rn \ V )× (Rn \ E). (3.1)

By assumptions (i) and (ii), taking into account (3.1), we have that F |[0,T ]×W is L([0, T ]) ⊗ B(W )-
weakly measurable, and for all t ∈ [0, T ], the multifunction F (t, · , · )|W is lower semicontinuous in
W with nonempty closed values. Since W ∈ B(R2n), it is a Souslin set by Corollary 6.6.7 of [1]. By
Theorem 2.3, there exists a set Q0 ∈ L([0, T ]) and 2n sets

Q1, . . . , Qn, H1, . . . ,Hn

in B(R), with m1(Q0) = 0 and
m1(Qi) = m1(Hi) = 0 for all i = 1, . . . , n,

and a function ϕ : [0, T ]×W → Rn, such that:
(a) ϕ(t, x, z) ∈ F (t, x, z) for all (t, x, z) ∈ [0, T ]×W (hence, in particular, the function ϕ takes its

values in H);
(b) for all (x, z) ∈ W \ [

⋃n
i=1(P

−1
2n,i(Qi) ∪ P−1

2n,n+i(Hi))], the function ϕ( · , x, z) is L([0, T ])-
measurable;
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(c) for all t ∈ [0, T ] \Q0, one has

{(x, z) ∈W : ϕ(t, · , · ) is discontinuous at (x, z)} ⊆W ∩
[ n⋃
i=1

(P−1
2n,i(Qi) ∪ P−1

2n,n+i(Hi))
]
.

Put

Z :=
n⋃

i=1

(P−1
2n,i(Qi) ∪ P−1

2n,n+i(Hi)),

and let ϕ∗ : [0, T ]×Rn ×Rn → Rn be defined by putting

ϕ∗(t, x, z) =

{
ϕ(t, x, z) if t ∈ [0, T ] and (x, z) ∈W ,
0Rn if t ∈ [0, T ] and (x, z) ∈ (Rn ×Rn) \W .

By (b), for all (x, z) ∈W \Z , the function ϕ∗( ·, x, z) is L([0, T ])-measurable. Moreover, by the above
construction and by assumption (iii), taking into accont (3.1), we have that

∥ϕ∗(t, x, z)∥n ≤ β(t) for all (t, x, z) ∈ [0, T ]×Rn ×Rn. (3.2)

Consequently, for all t ∈ [0, T ], the function ϕ∗(t, ·, ·) is bounded. Now, observe that

W \ Z = (Rn ×Rn) \
[ n⋃
i=1

(P−1
2n,i(Ci ∪Qi) ∪ P−1

2n,n+i(Ui ∪Hi))
]
. (3.3)

Since m2n

(⋃n
i=1(P

−1
2n,i(Ci ∪Qi) ∪ P−1

2n,n+i(Ui ∪Hi))
)
= 0, there exists a countable set D ⊆ W \ Z

such that D is dense in Rn ×Rn.
Let G : [0, T ]×Rn ×Rn → 2R

n be the multifunction defined by setting, for all (t, x, z) ∈ [0, T ]×

Rn ×Rn,

G(t, x, z) =
⋂

m∈N
conv

( ⋃
(v,w)∈D

∥(v,w)−(x,z)∥2n≤ 1
m

{ϕ∗(t, v, w)}
)
=

=
⋂

m∈N
conv

( ⋃
(v,w)∈D

∥(v,w)−(x,z)∥2n≤ 1
m

{ϕ(t, v, w)}
)
.

If we apply Proposition 2.4, with H∗ = R2n \W , we get that:
(a)′ G has nonempty closed convex values;
(b)′ for all (x, z) ∈ Rn ×Rn, the multifunction G( · , x, z) is L([0, T ])-measurable;
(c)′ for all t ∈ [0, T ], the multifunction G( t, · , · ) has closed graph;
(d)′ if t ∈ [0, T ], and the function ϕ∗(t, · , · )|W = ϕ(t, · , · ) is continuous at (x, z) ∈ W , then one

has
G(t, x, z) = {ϕ∗(t, x, z)} = {ϕ(t, x, z)}.

Moreover, observe that by (3.2) and by the above construction we have that

G(t, x, z) ⊆ Bn(0Rn , β(t)) ∩ conv(H) for all (t, x, z) ∈ [0, T ]×Rn ×Rn. (3.4)

Now, let g1 : Lp([0, T ],Rn) →W 1,p([0, T ],Rn) be defined by putting, for all v ∈ Lp([0, T ],Rn),

g1(v)(t) =

∫ t

0
v(s) ds for all t ∈ [0, T ].

Let g2 : Lp([0, T ],Rn) → C1([0, T ],Rn) be defined by putting, for all v ∈ Lp([0, T ],Rn),

g2(v)(t) =

∫ t

0
g1(v)(τ) dτ =

∫ t

0
dτ

∫ τ

0
v(s) ds for all t ∈ [0, T ].
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Let Φ : Lp([0, T ],Rn) →W 1,p([0, T ],Rn ×Rn) be defined by putting, for all v ∈ Lp([0, T ],Rn),

Φ(v) := (g1(v), g2(v)).

Now we want to apply Theorem 1 of [13] to the multifunction G, by choosing s = p, q = 1,
X = Rn ×Rn, Y = Rn, V = Lp([0, T ],Rn), Ψ(v) = v, φ ≡ +∞, r = ∥β∥Lp([0,T ]), and Φ defined as
above. To this aim, we observe what follows.

(a)′′ For every v ∈ Lp([0, T ],Rn), and every sequence {vm} in Lp([0, T ],Rn), with {vm} weakly
converging to v inL1([0, T ],Rn), the sequence {Φ(vm)} converges strongly toΦ(v) inL1([0, T ],Rn×
Rn). To see this, let the sequence {vm} and v in Lp([0, T ],Rn) be fixed, with {vm} weakly convergent
to v in L1([0, T ],Rn). It is routine matter to see that the sequence {g1(vm)} converges pointwise in
[0, T ] to g1(v). That is, one has

lim
m→∞

∥g1(vm)(t)− g1(v)(t)∥n = 0 for all t ∈ [0, T ].

Since {vm} is weakly convergent in L1([0, T ],Rn), it is bounded in L1([0, T ],Rn). Hence, for all
m ∈ N and t ∈ [0, T ] we have

∥g1(vm)(t)− g1(v)(t)∥n ≤ ∥
∫ t

0
v(s) ds∥n + sup

k∈N
∥vk∥L1([0,T ],Rn).

By applying the Dominated Convergence Theorem we have

lim
m→+∞

∫ T

0
∥g1(vm)(t)− g1(v)(t)∥n dt = 0,

hence {g1(vm)} converges strongly to g1(v) in L1([0, T ],Rn). In particular, we get that the sequence
{g1(vm)} also converges weakly to g1(v) inL1([0, T ],Rn). Thus, if we now apply the same argument to
the sequence {g1(vm)}, we have that the sequence {g1(g1((vm))} = {g2(vm)} also converges strongly
to g1(g1(v)) = g2(v) in L1([0, T ],Rn). Hence, the sequence {Φ(vm)} converges strongly to Φ(v) in
L1([0, T ],Rn ×Rn), as desired.

(b)′′ If we consider the function

ω : t ∈ [0, T ] → sup
(x,z)∈Rn×Rn

inf
y∈G(t,x,z)

∥y∥n,

by (3.4) we have that ω(t) ≤ β(t) for all t ∈ [0, T ]. Hence, we have that ω ∈ Lp([0, T ]) and
∥ω∥Lp([0,T ]) ≤ ∥β∥Lp([0,T ]) (as regards the measurability of ω, we refer to p. 262 of [13]).

Therefore, all the assumptions of Theorem 1 of [13] are satisfied. Hence, there exists a function
ṽ ∈ Lp([0, T ],Rn) and a set Ω0 ∈ L([0, T ]), with m1(Ω0) = 0, such that

ṽ(t) ∈ G(t,Φ(ṽ)(t)) for all t ∈ [0, T ] \ Ω0. (3.5)

In particular, by (3.4) we get

ṽ(t) ∈ conv(H) and ∥ṽ(t)∥n ≤ β(t) for all t ∈ [0, T ] \ Ω0. (3.6)

Now, fix i ∈ {1, . . . , n}, and let ṽi denote the i-th component of the function ṽ. Since by assumption
(iv) we have H ∈ Gn, it follows by (3.6) and by the definition of Gn that the function ṽi(t) has constant
sign for all t ∈ [0, T ] \ Ω0. Assume that

ṽi(t) > 0 for all t ∈ [0, T ] \ Ω0

(if, conversely, ṽi(t) < 0 for all t ∈ [0, T ] \ Ω0, then the argument is analogous). We then get

g1(ṽ)
′
i(t) = ṽi(t) > 0 for a.e. t ∈ [0, T ]
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(as before, g1(ṽ)i denotes the i-th component of the function g1(ṽ)). Hence, the absolutely continuous
function g1(ṽ)i is strictly increasing in [0, T ]. By Theorem 2 of [16], the function (g1(ṽ)i)

−1 is absolutely
continuous in [0, g1(ṽ)i(T )]. If we put

Mi := (g1(ṽ)i)
−1((Ui ∪Hi) ∩ [0, g1(ṽ)i(T )]) = {t ∈ [0, T ] : g1(ṽ)i(t) ∈ Ui ∪Hi},

by Theorem 18.25 of [8] we get m1(Mi) = 0.
Now, we have

g2(ṽ)
′
i(t) = g1(ṽ)i(t) for all t ∈ [0, T ],

hence
g2(ṽ)

′
i(t) > 0 for all t ∈ ] 0, T ].

Therefore, the function g2(ṽ)i is strictly increasing in [0, T ]. Again by Theorem 2 of [16], the function
(g2(ṽ)i)

−1 is absolutely continuous in [0, g2(ṽ)i(T )]. If we put

Ni := (g2(ṽ)i)
−1((Ci ∪Qi) ∩ [0, g2(ṽ)i(T )]) = {t ∈ [0, T ] : g2(ṽ)i(t) ∈ Ci ∪Qi},

by Theorem 18.25 of [8] we get m1(Ni) = 0.
Now, let

Ω := Q0 ∪ Ω0 ∪
( n⋃

i=1

(Mi ∪Ni)
)
.

By the above construction we have m1(Ω) = 0. Choose t̂ ∈ [0, T ] \ Ω. Since t̂ ̸∈
⋃n

i=1(Mi ∪Ni), we
have that

Φ(ṽ)(t̂) ̸∈
n⋃

i=1

(P−1
2n,i(Ci ∪Qi) ∪ P−1

2n,n+i(Ui ∪Hi)).

Hence, by (3.3) we get Φ(ṽ)(t̂) ∈W \ Z . In particular, by (3.1), we get

Φ(ṽ)(t̂) ∈ (Rn \ V )× (Rn \ E).

Since t̂ ̸∈ Q0, by (c) we have that ϕ(t̂, · , ·) is continuous at Φ(ṽ)(t̂) = (g2(ṽ)(t̂), g1(ṽ)(t̂)). Hence, by
the property (d)′, we get

G(t̂,Φ(ṽ)(t̂)) =
{
ϕ(t̂,Φ(ṽ)(t̂))

}
.

By (3.5) and by the property (a), we then get

ṽ(t̂) = ϕ(t̂,Φ(ṽ)(t̂)) ∈ F (t̂,Φ(ṽ)(t̂)).

Resuming, we have proved that, for every t ∈ [0, T ] \ Ω, one has

ṽ(t) ∈ F (t,Φ(ṽ)(t)) = F (t, g2(ṽ)(t), g1(ṽ)(t))

and
Φ(ṽ)(t) = (g2(ṽ)(t), g1(ṽ)(t)) ∈ (Rn \ V )× (Rn \ E).

If we take ũ := g2(ṽ), it is immediate to check that the function ũ ∈ W 2,p([0, T ],Rn) satisfies the
conclusion. □

Remark 3.1. It is immediate to check that a multifunction F : [0, T ] × Rn × Rn → 2R
n satisfying

the assumptions of Theorem 3.1 can be neither lower nor upper semicontinuous, with respect to the
variable (x, z) ∈ Rn ×Rn, even at each point (x, z) ∈ Rn ×Rn. To see this, one can take n = 1, and
F : [0, T ]×R×R → 2R defined by

F (t, x, z) =

{
[3, 4] if (t, x, z) ∈ [0, T ]× (R \Q)× (R \Q)

{1} otherwise.
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All the assumptions of Theorem 3.1 are satisfied with V = E = Q, p = +∞, β(t) ≡ 4. However, for
each t ∈ [0, T ] the multifunction F (t, · , · ) is neither lower semicontinuous nor upper semicontinuous
at each point (x, z) ∈ R ×R. In this connection, it is worth noticing that, in Theorem 3.1, the multi-
function F could be defined only over the set [0, T ]× (Rn \ V )× (Rn \E). Indeed, the behaviour of
the multifunction F over the set [0, T ]× ((V ×Rn) ∪ (Rn × E)) plays no role at all.

In addition to the above remark, it is also useful to observe that assumption (i) of Theorem 3.1 can
be formulated in other different equivalent ways, as the following simple proposition shows.

Proposition 3.2. Let T > 0, and let F : [0, T ]×Rn×Rn → 2R
n be a multifunction. Then, the following

conditions are equivalent:
(1) there exist two setsV,E ∈ Fn such that for a.e. t ∈ [0, T ] the multifunctionF (t, · , · )|(Rn\V )×(Rn\E)

is lower semicontinuous with nonempty closed (resp., convex) values;
(2) there exist a set B ∈ B(R), with m1(B) = 0, such that for a.e. t ∈ [0, T ] the multifunction

F (t, · , · )|(R\B)2n is lower semicontinuous with nonempty closed (resp., convex) values;
(3) there exist a set H ∈ F2n such that for a.e. t ∈ [0, T ], the multifunction

F (t, · , · )|(Rn×Rn)\H

is lower semicontinuous with nonempty closed (resp., convex) values.

Proof. (1) ⇒ (2) By the definition of Fn, there exist 2n subsets V1, . . . , Vn, E1, . . . , En of Rn such
that V =

⋃n
i=1 Vi, E =

⋃n
i=1Ei, and

m1(Pn,i(Vi)) = m1(Pn,i(Ei)) = 0 for all i = 1, . . . , n.

Let B ∈ B(R) be such that m1(B) = 0 and
n⋃

i=1

(Pn,i(Vi) ∪ Pn,i(Ei)) ⊆ B.

Since
(R \B)n × (R \B)n ⊆ (Rn \ V )× (Rn \ E),

our claim follows at once.
(2) ⇒ (3) Put

H :=

2n⋃
j=1

P−1
2n,j(B).

Since m1(B) = 0, we have H ∈ F2n. Moreover, we have
(Rn ×Rn) \H = (R \B)2n,

and thus our claim follows.
(3) ⇒ (1) By assumption, there exist 2n subsets H1, . . . ,H2n of R2n such that H =

⋃2n
j=1Hj and

m1(P2n,j(Hj)) = 0 for all j = 1, . . . , 2n. Let C ∈ B(R) be such that m1(C) = 0 and
2n⋃
j=1

P2n,j(Hj) ⊆ C.

It is routine matter to check that
(R \ C)n × (R \ C)n ⊆ (Rn ×Rn) \H.

Put

V ∗ :=
n⋃

i=1

P−1
n,i (C).
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Of course, we have V ∗ ∈ Fn. Moreover, we have

(R \ C)n = (Rn \
n⋃

i=1

P−1
n,i (C)) = Rn \ V ∗,

hence
(Rn \ V ∗)× (Rn \ V ∗) ⊆ (Rn ×Rn) \H.

At this point, the conclusion follows at once by choosing V = E = V ∗. □
By the proof of the above proposition, it is clear that, together with assumption (i), even assumptions

(ii), (iii) and (iv) of Theorem 3.1 can be reformulated in the corresponding equivalent ways, by replacing
the set (Rn \ V )× (Rn \E) by either (R \B)2n or (Rn ×Rn) \H . The same considerations applies
to the other results of this paper. We have chosen to formulate the assumptions in the present form in
order to emphasize the separation between the variables x and z.

Remark 3.2. Theorem 3.1 does not hold without assumption (iv). In order to see this, let T > 0, and let
f : [0, T ]×R → R be defined by putting

f(t, z) =

{
0 if t ∈ [0, T ] and z ̸= 0,
1 if t ∈ [0, T ] and z = 0.

It was proved in Example 1 of [15] that the first-order Cauchy problem{
v′ = f(t, v)

v(0) = 0
(3.7)

has no generalized solutions in [0, T ]. That is, there exists no absolutely continuous function v :
[0, T ] → R such that v(0) = 0 and v′(t) = f(t, v(t)) for a.e. t ∈ [0, T ]. Now, consider the second-order
Cauchy problem {

u′′ ∈ F (t, u, u′)

u(0) = u′(0) = 0,
(3.8)

where the multifunction F : [0, T ]×R×R → 2R is defined by
F (t, x, z) = {f(t, z)}.

It is immediate to see that problem (3.8) admits no generalized solutions. Indeed, assume that exists
a generalized solution u ∈ W 2,1([0, T ]) of problem (3.8). This implies that the absolutely continuous
function v := u′ is a generalized solution of the Cauchy problem (3.7), and this is absurd by what
precedes. However, all the assumptions of Theorem 3.1, with the exception of assumption (iv), are
satisfied by taking n = 1, p = +∞, V = ∅ and E = {0}.

The following result gives a local (viable) version of Theorem 3.1, which will be useful in the sequel.

Corollary 3.3. Let T, r be positive real numbers, and letX := B
∗
n(0, r). Let F : [0, T ]×X×X → 2R

n

be a multifunction. Assume that there exist two sets V,E ∈ Fn such that:
(i) for a.e. t ∈ [0, T ], the multifunction F (t, · , · )|(X\V )×(X\E) is lower semicontinuous with

nonempty closed values;
(ii) the multifunctionF |[0,T ]×(X\V )×(X\E) isL([0, T ])⊗B(X\V )⊗B(X\E) - weakly measurable;

(iii) there exists M > 0, with M ·max{T, T
2

2 } ≤ r, such that for a.e. t ∈ [0, T ], one has

F ( t, (X \ V )× (X \ E)) ⊆ Bn(0Rn ,M).

(iv) there exists U0 ⊆ [0, T ], with m1(U0) = 0, such that
F (([0, T ] \ U0)× (X \ V )× (X \ E)) ∈ Gn.
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Then, there exists u ∈W 2,∞([0, T ],Rn) such that

(u(t), u′(t)) ∈ (X \ V )× (X \ E) for a.e. t ∈ [0, T ],

and also 
u′′(t) ∈ F (t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0Rn ,

∥u′′(t)∥n ≤M for a.e. t ∈ [0, T ].

Proof. It is not restrictive to assume that assumptions (i) and (iii) are satisfied for every t ∈ [0, T ],
and thatU0 = ∅. Choose any point y∗ ∈ F ([0, T ]×(X\V )×(X\E)). LetF ∗ : [0, T ]×Rn×Rn → 2R

n

be the multifunction defined be setting, for each (t, x, z) ∈ [0, T ]×Rn ×Rn,

F ∗(t, x, z) =

{
F (t, x, z) if (x, z) ∈ X ×X ,
{y∗} if (x, z) ̸∈ X ×X .

Put

H∗ := V ∪ E ∪
( n⋃

i=1

P−1
n,i ({−r, r})

)
, (3.9)

It is immediate to check that H∗ ∈ Fn. We observe what follows.
(a) the multifunction F ∗|[0,T ]×(Rn\H∗)×(Rn\H∗) is L([0, T ])⊗B(Rn \H∗)⊗B(Rn \H∗) - weakly

measurable (it follows at once by assumption (ii));
(b) for every t ∈ [0, T ], the multifunction F ∗(t, · , · )|(Rn\H∗)×(Rn\H∗) is lower semicontinuous with

nonempty closed values. To see this, fix t ∈ [0, T ]. By assumption (i) and by the above construction, it
follow immediately that the multifunction F ∗(t, · , · )|(Rn\H∗)×(Rn\H∗) hash nonempty closed values.
Choose (x0, z0) ∈ (Rn \ H∗) × (Rn \ H∗). In order to prove that F ∗(t, · , · )|(Rn\H∗)×(Rn\H∗) is
lower semicontinuous at (x0, z0), we distinguish two cases. Firstly, we assume that (x0, z0) ∈ X ×
X . Consequently, by the definition of H∗, we get (x0, z0) ∈ int(X × X). By assumption (i), the
multifunction

F ∗(t, · , · )|((X\V )×(X\E))∩int(X×X) = F (t, · , · )|((X\V )×(X\E))∩int(X×X)

is lower semicontinuous. This immediately implies that

F ∗(t, · , · )|((X\H∗)×(X\H∗))∩int(X×X) = F ∗(t, · , · )|((Rn\H∗)×(Rn\H∗))∩int(X×X)

is lower semicontinuous. In particular, the multifunction

F ∗(t, · , · )|((Rn\H∗)×(Rn\H∗))∩int(X×X)

is lower semicontinuous at (x0, z0). Since the set

((Rn \H∗)× (Rn \H∗)) ∩ int(X ×X)

is open in (Rn\H∗)×(Rn\H∗), it follows that the multifunctionF ∗(t, · , · )|(Rn\H∗)×(Rn\H∗) is lower
semicontinuous at (x0, z0), as desired. Conversely, assume that (x0, z0) ∈ (Rn×Rn)\(X×X). Since
F ∗(t, · , · ) is constant in (Rn × Rn) \ (X × X) and the last set is open in Rn × Rn, it follows that
the multifunction F ∗(t, · , · ) is lower semicontinuous at each point (x, z) ∈ (Rn ×Rn) \ (X ×X). In
particular, the multifunction F ∗(t, · , · ) is lower semicontinuous at (x0, z0), hence our claim follows at
once.

(c) for every t ∈ [0, T ], we have

F ∗( t, (Rn \H∗)× (Rn \H∗)) ⊆ Bn(0Rn ,M). (3.10)
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Indeed, fix t ∈ [0, T ] and (x, z) ∈ (Rn \ H∗) × (Rn \ H∗). If (x, z) ∈ X × X , it follows that
(x, z) ∈ (X \ V )× (X \ E), hence by assumption (iii) we get

F ∗(t, x, z) = F (t, x, z) ⊆ Bn(0Rn ,M).

If, conversely, (x, z) ̸∈ X ×X , again by assumption (iii) we get

F ∗(t, x, z) = {y∗} ⊆ Bn(0Rn ,M),

as claimed.
(d) One has

F ∗([0, T ]× (Rn \H∗)× (Rn \H∗)) ∈ Gn.

Indeed, by the definition of F ∗ and H∗ we have

F ∗([0, T ]× (Rn \H∗)× (Rn \H∗)) ⊆ F ([0, T ]× (X \ V )× (X \ E)),

hence our claim follows by assumption (iv).
Hence, all the assumptions of Theorem 3.1 are satisfied with β(t) ≡M and p = +∞. Consequently,

there exists u ∈W 2,∞([0, T ],Rn) such that
u′′(t) ∈ F ∗(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0Rn ,

(u(t), u′(t)) ∈ (Rn \H∗)× (Rn \H∗) for a.e. t ∈ [0, T ].

(3.11)

In particular, by (3.10) and (3.11) we get

∥u′′(t)∥n ≤M for a.e. t ∈ [0, T ]. (3.12)

Now, fix i ∈ {1, . . . , n}, and let ui be the i-th component of the function u. Since u′i is absolutely
continuous in [0, T ], by (3.11), (3.12) and assumption (iii) we have, for all t ∈ [0, T ],

|u′i(t)| =
∣∣∣∣∫ t

0
u′′i (τ) dτ

∣∣∣∣ ≤ ∫ t

0
|u′′i (τ)| dτ ≤Mt ≤MT ≤ r. (3.13)

Analogously, since
ui ∈ C1([0, T ]), by (3.13) and assumption (iii) we have, for all t ∈ [0, T ],

|ui(t)| =
∣∣∣∣∫ t

0
u′i(τ) dτ

∣∣∣∣ ≤ ∫ t

0
|u′i(τ)| dτ ≤

∫ t

0
Mτ dτ =M

t2

2
≤M

T 2

2
≤ r.

Consequently, taking into account (3.9) and (3.11), we have that

(u(t), u′(t)) ∈ (X \ V )× (X \ E) for a.e. t ∈ [0, T ]. (3.14)

In particular, by (3.11) and (3.14), and by the definition of F ∗, we have that

u′′(t) ∈ F (t, u(t), u′(t)) for a.e. t ∈ [0, T ],

and this completes the proof. □

Remark 3.3. As it happens for Theorem 3.1, the assumptions of Corollary 3.3 do not imply any kind of
semicontinuity for the multifunction F with respect to the variable (x, z) ∈ B

∗
(0Rn , r)×B

∗
(0Rn , r).

That is, a multifunction F : [0, T ] × B
∗
(0Rn , r) × B

∗
(0Rn , r) → 2R

n satisfying the assumptions
of Corollary 3.3 could be neither lower nor upper semicontinuous, with respect to the variable (x, z),
even at each point (x, z) ∈ B

∗
(0Rn , r) × B

∗
(0Rn , r). To see this, take n = 1, T = 1, M = r = 2,

V = E = Q, and F : [0, 1]× [−2, 2]× [−2, 2] → 2R defined by

F (t, x, z) =

{
[1, 2] if (t, x, z) ∈ [0, 1]× ([−2, 2] \Q)× ([−2, 2] \Q)

{1
2} otherwise.
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It is immediate to verify that all the assumptions of Corollary 3.3 are satisfied. However, for each
t ∈ [0, 1] the multifunction F (t, · , · ) is neither lower semicontinuous nor upper semicontinuous at
each point (x, z) ∈ [−2, 2]× [−2, 2].

We also observe that Corollary 3.3 does not hold without assumption (iv). To see this, we argue as
in the Remark 3.2. Take T =M = r = 1, and let f : [0, 1]× [−1, 1] → R be defined by

f(t, z) =

{
0 if t ∈ [0, 1] and z ̸= 0,
1 if t ∈ [0, 1] and z = 0.

Let F : [0, 1] × [−1, 1] × [−1, 1] → 2R be defined by F (t, x, z) = {f(t, z)}. All the assumptions of
Corollary 3.3 (with the exception of assumption (iv)), are satisfied by taking n = 1, p = +∞, V = ∅
and E = {0}. However, the Cauchy problem (3.8) admits no generalized solutions in [0, 1]. Indeed,
assume that, with this choiche of F , there exists a generalized solution u ∈ W 2,1([0, 1]) of problem
(3.8). Again, the absolutely continuous function v := u′ is a generalized solution of the Cauchy problem
(3.7) in [0, 1], and this is absurd by Example 1 of [15].

4. Applications

Firstly, we apply Theorem 3.1 to the existence of generalized solutions of the Cauchy problem (1.2).

Theorem 4.1. Let T > 0, p ∈ [1,+∞], and letQ : [0, T ]×Rn×Rn → 2R
n and S : [0, T ]×Rn×Rn →

2R
n be two multifunctions. Assume that there exist sets V,E,U,C ∈ Fn and a positive function

β ∈ Lp([0, T ]) such that:
(i) for a.e. t ∈ [0, T ], the multifunction Q(t, · , · )|(Rn\V )×(Rn\E) is lower semicontinuous with

nonempty convex values;
(ii) the multifunction Q|[0,T ]×(Rn\V )×(Rn\E) is L([0, T ]) ⊗ B(Rn \ V ) ⊗ B(Rn \ E) - weakly

measurable;
(iii) for a.e. t ∈ [0, T ], the multifunction S(t, · , · )|(Rn\U)×(Rn\C) is lower semicontinuous with

nonempty closed values;
(iv) the multifunction S|[0,T ]×(Rn\U)×(Rn\C) is L([0, T ]) ⊗ B(Rn \ U) ⊗ B(Rn \ C) - weakly

measurable;
(v) for a.e. t ∈ [0, T ], one has

Q( t, (Rn \ V )× (Rn \ E)) + S( t, (Rn \ U)× (Rn \ C)) ⊆ Bn(0Rn , β(t));

(vi) there exists Ω ⊆ [0, T ], with m1(Ω) = 0, such that

Q(([0, T ] \ Ω)× (Rn \ V )× (Rn \ E)) + S(([0, T ] \ Ω)× (Rn \ U)× (Rn \ C)) ∈ Gn.

Then, there exists u ∈W 2,p([0, T ],Rn) such that

(u(t), u′(t)) ∈ (Rn \ (V ∪ U))× (Rn \ (E ∪ C)) for a.e. t ∈ [0, T ],

and 
u′′(t) ∈ Q(t, u(t), u′(t)) + S(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0Rn ,

∥u′′(t)∥n ≤ β(t) for a.e. t ∈ [0, T ].

Proof. Without loss of generality we can suppose that assumptions (i), (iii) and (v) are satisfied for
all t ∈ [0, T ], and that Ω = ∅. By the definition of the family Fn, there exist 4n measurable subsets

V1, . . . , Vn, E1, . . . , En,

U1, . . . , Un, C1, . . . , Cn,
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of Rn such that

V =

n⋃
i=1

Vi, E =

n⋃
i=1

Ei, U =

n⋃
i=1

Ui, C =

n⋃
i=1

Ci,

and
m1(Pn,i(Vi)) = m1(Pn,i(Ei)) = m1(Pn,i(Ui)) = m1(Pn,i(Ci)) = 0

for all i = 1, . . . , n. Let B ∈ B(R) be such that m1(B) = 0 and
n⋃

i=1

(
Pn,i(Vi) ∪ Pn,i(Ei) ∪ Pn,i(Ui) ∪ Pn,i(Ci)

)
⊆ B.

Consequently, we have

W := (R \B)2n ⊆ (Rn \ (V ∪ U))× (Rn \ (E ∪ C)). (4.1)

By assumptions (i) and (ii), we have that the multifunction Q|[0,T ]×W is L([0, T ]) ⊗ B(W ) - weakly
measurable, and for all t ∈ [0, T ], the multifunctionQ(t, · , · )|W is lower semicontinuous and its values
belongs to the family D(Rn) (since they are nonempty, convex and finite-dimensional). Since W ∈
B(R2n), it is a Souslin set by Corollary 6.6.7 of [1]. By Theorem 2.1, there exists a function ϕ : [0, T ]×
W → Rn such that:

(a) ϕ(t, x, z) ∈ Q(t, x, z) for all (t, x, z) ∈ [0, T ]×W ;
(b) for all (x, z) ∈W , the function ϕ( · , x, z) is L([0, T ])-measurable;
(c) for every t ∈ [0, T ], the function ϕ(t, · , ·) is continuous over W .

Let ϕ∗ : [0, T ]×Rn ×Rn → Rn be defined by

ϕ∗(t, x, z) =

{
ϕ(t, x, z) if (x, z) ∈W

0Rn if (x, z) ∈ (Rn ×Rn) \W .

Let V ∗ :=
⋃n

i=1 P
−1
n,i (B). Of course, we have V ∗ ∈ Fn and

(Rn \ V ∗)× (Rn \ V ∗) = (R \B)n × (R \B)n =W. (4.2)

Let F : [0, T ]×Rn ×Rn → 2R
n be defined by putting, for each (t, x, z) ∈ [0, T ]×Rn ×Rn,

F (t, x, z) := ϕ∗(t, x, z) + S(t, x, z).

We observe what follows.
(a)′ For every t ∈ [0, T ], the multifunction F (t, · , · )|(Rn\V ∗)×(Rn\V ∗) is lower semicontinuous with

nonempty closed values. This follows at once by property (c), assumption (iii) and Theorem 7.3.15 of
[11], taking into account (4.1) and (4.2).

(b)′ The multifunction F is L([0, T ]) ⊗ B(Rn \ V ∗) ⊗ B(Rn \ V ∗) - weakly measurable. To see
this, observe that by (4.1), by assumptions (iii) and (iv), and by Theorem 3.5 of [9], the multifunction
S|[0,T ]×W is L([0, T ])⊗B(W )-measurable, with nonempty closed values. Moreover, by the properties
(b) and (c), and by Lemma 13.2.3 of [11], the function ϕ∗|[0,T ]×W = ϕ is L([0, T ])×B(W )-measurable.
Let

f : [0, T ]× (Rn \ V ∗)× (Rn \ V ∗)×Rn → Rn

be defined by putting, for each (t, x, z, y) ∈ [0, T ]× (Rn \ V ∗)× (Rn \ V ∗)×Rn,

f(t, x, z, y) := ϕ∗(t, x, z) + y = ϕ(t, x, z) + y.

By Theorem 6.5 of [9], taking into account (4.2), it follows that the multifunction

(t, x, z) ∈ [0, T ]×W → f({(t, x, z)} × S(t, x, z)) = ϕ∗(t, x, z) + S(t, x, z)

is L([0, T ])⊗ B(W )-weakly measurable, that is our claim.
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(c)′ For all t ∈ [0, T ], one has
F ( t, (Rn \ V ∗)× (Rn \ V ∗)) ⊆ Bn(0Rn , β(t)). (4.3)

This follows at once by assumption (v) and property (a), taking into account (4.1) and (4.2).
(d)′ One has

F ([0, T ]× (Rn \ V ∗)× (Rn \ V ∗)) ∈ Gn.

This follows easily by assumption (vi) and property (a), taking into account (4.1), (4.2) and the definition
of the family Gn.

Hence, all the assumptions of Theorem 3.1 are satisfied. Consequently, there exist a function u ∈
W 2,p([0, T ],Rn), and a set K0 ⊆ [0, T ], with m1(K0) = 0, such that u(0) = u′(0) = 0Rn , and also

(u(t), u′(t)) ∈ (Rn \ V ∗)× (Rn \ V ∗) and u′′(t) ∈ F (t, u(t), u′(t)) (4.4)
for all t ∈ [0, T ] \K0. In particular, by (4.3) and (4.4) we get

∥u′′(t)∥n ≤ β(t) for all t ∈ [0, T ] \K0.

Moreover, for every fixed t ∈ [0, T ] \K0, by (4.2), (4.4) and property (a), we get
u′′(t) ∈ F (t, u(t), u′(t)) =

= ϕ∗(t, u(t), u′(t)) + S(t, u(t), u′(t)) =

= ϕ(t, u(t), u′(t)) + S(t, u(t), u′(t)) ∈
∈ Q(t, u(t), u′(t)) + S(t, u(t), u′(t)).

Finally, we observe that by (4.1), (4.2) and (4.4) we have
(u(t), u′(t)) ∈ (Rn \ (V ∪ U))× (Rn \ (E ∪ C)) for all t ∈ [0, T ] \K0.

The proof is now complete. □

Remark 4.1. We observe that Theorem 1.1 is an immediate consequence of Theorem 4.1. Moreover,
we point out that the assumptions of Theorem 4.1 do not imply any kind of semicontinuity for the
multifunctions Q(t, · , · ) and S(t, · , · ), which are defined on the whole Rn × Rn. As a matter of
fact, it may happen that S and Q satisfy all the assumptions of Theorem 4.1, and, for all t ∈ [0, T ],
the multifunctions Q(t, · , · ) and S(t, · , · ) are neither lower nor upper semicontinuous at each point
(x, z) ∈ Rn ×Rn. The Example 1.2 clearly illustrates such a circumstance. At the same time, Example
1.2 shows how, under the assumptions of Theorem 4.1, the multifunction Q+ S may have values that
are neither convex nor closed, even if Q is convex-valued and S is closed-valued.

Remark 4.2. The example in Remark 3.4 shows (taking Q(t, x, z) ≡ {0Rn} and S = F ) that Theorem
4.1 does not hold without assumption (vi).

As a further application of Theorem 3.1, we obtain the following existence results for the generalized
solutions of the implicit Cauchy problem (1.3).

Theorem 4.2. Let Y ∈ Gn be a closed, connected and locally connected subset of Rn, and let T > 0
and p ∈ [1,+∞]. Let ψ : Y → R be a given function, and let F : [0, T ] × Rn × Rn → 2R and
G : [0, T ] × Rn × Rn → 2R be two multifunctions. Moreover, let β ∈ Lp([0, T ]) be a positive
function, and let E, V, U,C ∈ Fn. Assume that:

(i) the function ψ is continuous in Y , and int Y (ψ
−1(r)) = ∅ for every r ∈ intR (ψ(Y )).

(ii) for a.e. t ∈ [0, T ], the multifunction F (t, · , · )|(Rn\V )×(Rn\E) is lower semicontinuous with
nonempty convex values;

(iii) the multifunction F |[0,T ]×(Rn\V )×(Rn\E) is L([0, T ]) ⊗ B(Rn \ V ) ⊗ B(Rn \ E) - weakly
measurable;



EXISTENCE OF SOLUTIONS FOR SECOND-ORDER DIFFERENTIAL INCLUSIONS 37

(iv) for a.e. t ∈ [0, T ], the multifunction G(t, · , · )|(Rn\U)×(Rn\C) is lower semicontinuous with
nonempty closed values;

(v) the multifunction G|[0,T ]×(Rn\U)×(Rn\C) is L([0, T ]) ⊗ B(Rn \ U) ⊗ B(Rn \ C) - weakly
measurable;

(vi) for a.e. t ∈ [0, T ], one has

F (t, (Rn \ E)× (Rn \ V )) +G(t, (Rn \ U)× (Rn \ C)) ⊆ ψ(Y );

(vii) for a.e. t ∈ [0, T ], and for all (x, z) ∈ (Rn \ (V ∪ U))× (Rn \ (E ∪ C)), one has

sup {∥y∥n : y ∈ Y and ψ(y) ∈ F (t, x, z) +G(t, x, z) } ≤ β(t).

Then, there exists u ∈W 2,p([0, T ],Rn) such that

u′′(t) ∈ Y and (u(t), u′(t)) ∈ (Rn \ (V ∪ U))× (Rn \ (E ∪ C))

for a.e. t ∈ [0, T ], and
ψ(u′′(t)) ∈ F (t, u(t), u′(t)) +G(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0Rn ,

∥u′′(t)∥n ≤ β(t) for a.e. t ∈ [0, T ].

Proof. Without loss of generality, we can assume that assumptions (ii), (iv), (vi) and (vii) are satisfied
for all t ∈ [0, T ]. The first part of the proof follows a construction similar to the beginning of the proof
of Theorem 4.1. By assumption, we have that V,E,U,C ∈ Fn. Therefore, reasoning exactly as in the
first part of the proof of Theorem 4.1, it is easily seen that there exists a setN ∈ B(R), withm1(N) = 0,
such that

W := (R \N)n × (R \N)n ⊆ [Rn \ (U ∪ V )]× [Rn \ (E ∪ C)]. (4.5)
By assumption (iii), we have that F |[0,T ]×W is L([0, T ]) ⊗ B(W ) - weakly measurable. Moreover,
by assumption (ii), for every t ∈ [0, T ] the multifunction F (t, · , · )|W is lower semicontinuous with
nonempty convex values. SinceW ∈ B(Rn×Rn), it is a Souslin set by Corollary 6.6.7 of [1]. Therefore,
By Theorem 2.1, there exists function f : [0, T ]×W → Rn such that:

(a) f(t, x, z) ∈ F (t, x, z) for all (t, x, z) ∈ T ×W ;
(b) for all (x, z) ∈W , the function f( · , x, z) is L([0, T ])-measurable;
(c) for every t ∈ [0, T ], the function f(t, · , · ) is continuous in W .

We observe that the two following properties hold.
(a)′ For every t ∈ [0, T ], the multifunction

(x, z) ∈W → f(t, x, z) +G(t, x, z)

is lower semicontinuous in W with nonempty closed values. This follows at once by (c), assumption
(iv) and Theorem 7.3.15 of [11], taking into account (4.5).

(b)′ The multifunction

(t, x, z) ∈ [0, T ]×W → f(t, x, z) +G(t, x, z)

is L([0, T ])⊗B(W ) - weakly measurable. To see this, observe that by (4.5), by assumptions (iv) and (v),
and by Theorem 3.5 of [9], the multifunctionG|[0,T ]×W isL([0, T ])⊗B(W )-measurable, with nonempty
closed values. By (b), (c), and Lemma 13.2.3 of [11], the function f is L([0, T ]) × B(W )-measurable.
Let

h : [0, T ]× (R \N)n × (R \N)n ×Rn → Rn

be defined by setting, for each (t, x, z, y) ∈ [0, T ]× (R \N)n × (R \N)n ×Rn,

h(t, x, z, y) := f(t, x, z) + y.
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By Theorem 6.5 of [9], taking into account (4.5), it follows that the multifunction

(t, x, z) ∈ [0, T ]×W → h({(t, x, z)} ×G(t, x, z)) = f(t, x, z) +G(t, x, z)

is L([0, T ])⊗ B(W )-weakly measurable, that is our claim.
Now, observe that, by assumption (i) and Theorem 2.4 of [14], there exists a set X ⊆ Y such that

ψ(X) = ψ(Y ) and the function ψ|X : X → ψ(Y ) is open (it maps open subsets of X onto open
subsets of ψ(Y ) = ψ(X)). Hence, it follows easily that the multifunction Φ : ψ(Y ) → 2X defined by
setting, for each t ∈ ψ(Y ),

Φ(t) := ψ−1(t) ∩X,
is lower semicontinuous in ψ(Y ) with nonempty values. Let M : [0, T ]×W → 2R

n be the multifunc-
tion defined by putting, for each (t, x, z) ∈ [0, T ]×W ,

M(t, x, z) = Φ(f(t, x, z) +G(t, x, z)) = ψ−1(f(t, x, z) +G(t, x, z)) ∩X.

By property (a), assumption (vi) and (4.5), we have that the multifunction M is well-defined and has
nonempty values. Moreover, by the property (a)′ and by the lower semicontinuity of Φ, taking into
account Theorem 7.3.11 of [11], for each t ∈ [0, T ] the multifunctionM(t, · , · ) is lower semicontinuous
in W (with nonempty values). Finally, by the lower semicontinuity of Φ, by the property (b)′ and by
Theorem 7.1.7 of [11], we have that M is L([0, T ])⊗B(W ) - weakly measurable (see also Proposition
2.5 of [9]).

Now, let M : [0, T ] × W → 2R
n be the multifunction defined by putting, for each (t, x, z) ∈

[0, T ]×W ,
M(t, x, z) :=M(t, x, z).

By Proposition 2.6 of [9], the multifunctionM is L([0, T ])⊗B(W ) - weakly measurable. Moreover, by
Proposition 7.3.3 of [11], for each fixed t ∈ [0, T ] the multifunction M(t, · , · ) is lower semicontinuous
in W , with nonempty closed (in Rn) values.

Let H : [0, T ] × Rn × Rn → 2R
n be the multifunction defined by putting, for each (t, x, z) ∈

[0, T ]×Rn ×Rn,

H(t, x, z) =

{
M(t, x, z) if t ∈ [0, T ] and (x, z) ∈W ,
{0Rn} if t ∈ [0, T ] and (x, z) ∈ (Rn ×Rn) \W .

Of course, by what precedes, we have that the multifunction H|[0,T ]×W is L([0, T ])⊗ B(W ) - weakly
measurable, and for each fixed t ∈ [0, T ] the multifunctionH(t, ·, · )|W is lower semicontinuous inW ,
with nonempty closed (in Rn) values.

Now, observe that

W = (Rn \
n⋃

i=1

P−1
n,i (N))× (Rn \

n⋃
i=1

P−1
n,i (N))

and
⋃n

i=1 P
−1
n,i (N) ∈ Fn. Moreover, by assumption (vii), taking into account (4.5) and property (a), for

every (t, x, z) ∈ [0, T ]×W we have

H(t, x, z) = (ψ−1(f(t, x, z) +G(t, x, z)) ∩X) ⊆ B(0Rn , β(t)). (4.6)

Finally, for every (t, x, z) ∈ [0, T ]×W we have

H(t, x, z) = (ψ−1(f(t, x, z) +G(t, x, z)) ∩X) ⊆ Y.

Since Y ∈ Gn, by the definition of Gn we immediately get that H([0, T ]×W ) ∈ Gn.
Therefore, all the assumptions of Theorem 3.1 are satisfied. Thus, there exist u ∈ W 2,p([0, T ],Rn)

and a set K0 ⊆ [0, T ], with m1(K0) = 0, such that u(0) = u′(0) = 0Rn , and

u′′(t) ∈ H(t, u(t), u′(t)) and (u(t), u′(t)) ∈W for all t ∈ [0, T ] \K0. (4.7)
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By (4.6) and (4.7) we get
∥u′′(t)∥n ≤ β(t) for all t ∈ [0, T ] \K0.

Moreover, by (4.5) and (4.7) we immediately have

(u(t), u′(t)) ∈ (Rn \ (V ∪ U))× (Rn \ (E ∪ C)) for all t ∈ [0, T ] \K0.

Since, by the above construction, the multifunction H|[0,T ]×W = M takes its values in Y , by (4.7) we
also get

u′′(t) ∈ Y for all t ∈ [0, T ] \K0.

Now, fix t ∈ [0, T ] \ K0. By (4.7), by the continuity of ψ, and by the closedness of the sets Y and
G(t, u(t), u′(t)) , we get

u′′(t) ∈ H(t, u(t), u′(t)) =

=M(t, u(t), u′(t)) =

= (ψ−1(f(t, u(t), u′(t)) +G(t, u(t), u′(t))) ∩X) ⊆

⊆ ψ−1(f(t, u(t), u′(t)) +G(t, u(t), u′(t))) =

= ψ−1(f(t, u(t), u′(t)) +G(t, u(t), u′(t))).

Hence, taking into account (4.7) and the property (a), we have

ψ(u′′(t)) ∈ f(t, u(t), u′(t)) +G(t, u(t), u′(t)) ⊆ F (t, u(t), u′(t)) +G(t, u(t), u′(t)).

Thus, the function u satisfies the conclusion. □

Remark 4.3. As in the preceding results, it is immediately seen that the assumption on F and G in
Theorem 4.2 do not imply any kind of semicontinuity for the multifunctions F (t, · , · ) and G(t, · , · )
(which are defined on the whole Rn×Rn). That is, it may happen that two multifunctions F : [0, T ]×
Rn × Rn → 2R

n and G : [0, T ] × Rn × Rn → 2R
n satisfy the assumptions of Theorem 4.2, and,

simultaneously, for each t ∈ [0, T ] the multifunctions F (t, · , · ) and G(t, · , · ) are neither upper nor
lower semicontinuous at each point (x, z) ∈ Rn ×Rn. The Example 1.2 and the Remark 3.2 illustrate
such a circumstance. Moreover, the example in Remark 3.4 shows that Theorem 4.2 does not hold
without the assumption Y ∈ Gn.

We now present an example of application of Theorem 4.2.

Example 4.4. Let T > 0, and let F : [0, T ]×R×R → 2R and G : [0, T ]×R×R → 2R be defined
as the multifunctions Q and S of Example 1.2, respectively. That is, we put

F (t, x, z) =

{
]2, 4[ if t ∈ [0, T ] and (x, z) ∈ (R \Q)× (R \Q),

{arctan(t+ x+ z)} otherwise,

G(t, x, z) =

{
{10 + cos2(x+ z), 20 + sin2 z} if t ∈ [0, T ] and (x, z) ∈ (R \Q)× (R \Q),

{0} otherwise

(as in what precedes, Q denotes the set of all rational real numbers). We have already checked in
Example 1.2 that:

(a) for every t ∈ [0, T ], the multifunctions F (t, · , · )|(R\Q)×(R\Q) and G(t, · , · )|(R\Q)×(R\Q) are
lower semicontinuous;

(b) the multifunctions F |[0,T ]×(R\Q)×(R\Q) and G|[0,T ]×(R\Q)×(R\Q) are L([0, T ])⊗B(R \Q)⊗
B(R \Q) - weakly measurable;
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(c) for every t ∈ [0, T ], one has
F (t, (R \Q)× (R \Q)) +G(t, (R \Q)× (R \Q)) ⊆ [12, 25].

Now, let α > 0 and γ ∈ R be fixed, and let ψ : R → R be the function
ψ(y) = αy − γ sin y.

Since limy→0+ ψ(y) = 0, there exists y∗ > 0 such that ψ(y∗) < 12. Moreover, since limy→+∞ ψ(y) =
+∞, there exists y∗∗ > y∗ such that ψ(y∗∗) > 25. Now we apply Theorem 4.2, with n = 1, Y =
[y∗, y∗∗], p = +∞, β(t) ≡ y∗∗, and E = V = U = C = Q. To this aim, observe that Y ∈
G1, and assumptions (ii)–(v) of Theorem 4.2 are satified by properties (a) and (b). Moreover, observe
that assumption (i) of Theorem 4.2 is satified since the derivative ψ′(y) = α − γ cos y never vanishes
identically over an interval. As regards assumption (vi), observe that, by the above construction and by
(c), for every t ∈ [0, T ] we have

F (t, (R \Q)× (R \Q)) +G(t, (R \Q)× (R \Q)) ⊆ [12, 25] ⊆ ψ([y∗, y∗∗]).

Finally, assumption (vii) of Theorem 4.2 is trivially satified.
Thus, all the assumptions of Theorem 4.2 are satisfied. Hence, there exists u ∈ W 2,+∞([0, T ]) such

that u′′(t) ∈ [y∗, y∗∗] for a.e. t ∈ [0, T ], and
αu′′(t)− γ sin(u′′(t)) ∈ F (t, u(t), u′(t)) +G(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0,

(u(t), u′(t)) ∈ (R \Q)× (R \Q) for a.e. t ∈ [0, T ].

We have already pointed out in the Example 1.2 that, for each t ∈ [0, T ], the multifunctions F (t, · , · )
andG(t, · , · ) are neither lower semicontinuous nor upper semicontinuous at each point (x, z) ∈ R×R.

We finally present an application to the Cauchy problem associated with a Sturm-Liouville type
differential inclusion.

Theorem 4.3. Let T, b, λ be positive real numbers, and let X := [−b, b]. Let H : [0, T ]×X ×X → 2R

be a given multifunction. Assume that there exist two sets V,E ∈ L(X), with m1(V ) = m1(E) = 0,
such that:

(i) the multifunctionH|[0,T ]×(X\V )×(X\E) isL([0, T ])⊗B(X\V )⊗B(X\E) - weakly measurable;
(ii) for every t ∈ [0, T ], the multifunction H(t, · , · )|(X\V )×(X\E) is lower semicontinuous with

nonempty closed values.
Let φ ∈ L∞([0, T ]) and ψ ∈ W 1,∞([0, T ]) be two given functions, with ψ(t) > 0 for all t ∈ [0, T ].

Assume that there exists three constants M1,M2, α > 0, with

M1 +M2 ≤
b

max
{
T,

T 2

2

}
and

M1

λ
· max
s∈[0,T ]

ψ(s) < α <
M2

λ
· min
s∈[0,T ]

ψ(s), (4.8)

such that:
(iii) for a.e. t ∈ [0, T ], one has

|ψ′(t)|
ψ(t)

+
|φ(t)|
ψ(t)

≤ M1

b
. (4.9)

(iv) for a.e. t ∈ [0, T ], one has

H(t, (X \ V )× (X \ E)) ⊆ [ α,
M2

λ
· min
s∈[0,T ]

ψ(s) ]. (4.10)
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Then, there exists u ∈W 2,∞([0, T ]) such that

(u(t), u′(t)) ∈ (X \ V )× (X \ E) for a.e. t ∈ [0, T ],

and 
−(ψ(t)u′(t))′ + φ(t)u(t) ∈ λH(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0,

|u′′(t)| ≤M1 +M2 for a.e. t ∈ [0, T ].

Proof. LetK1 ⊆ [0, T ] be such thatm1(K1) = 0, and, for every t ∈ [0, T ]\K1, the derivative ψ′(t)
exists and (4.9) and (4.10) hold.

Let F : [0, T ]×X ×X → 2R be the multifunction defined by putting, for each (t, x, z) ∈ [0, T ]×
X ×X ,

F (t, x, z) =


φ(t)

ψ(t)
x− ψ′(t)

ψ(t)
z − λ

ψ(t)
H(t, x, z) if t ∈ [0, T ] \K1,

{0} if t ∈ K1.
We claim that the multifunction F |[0,T ]×(X\V )×(X\E) is L([0, T ]) ⊗ B(X \ V ) ⊗ B(X \ E) - weakly
measurable. Indeed, by Lemma 13.2.3 of [11], the function g : [0, T ]× (X \V )× (X \E) → R defined
by

g(t, x, z) :=


φ(t)

ψ(t)
x− ψ′(t)

ψ(t)
z if t ∈ [0, T ] \K1 and (x, z) ∈ (X \ V )× (X \ E),

0 if t ∈ K1 and (x, z) ∈ (X \ V )× (X \ E)

isL([0, T ])⊗B(X\V )⊗B(X\E) - measurable. By Theorem 3.5 of [9], the multifunctionH|[0,T ]×(X\V )×(X\E)

is L([0, T ])⊗ B(X \ V )⊗ B(X \E) - measurable (with nonempty closed values). Let h : [0, T ] → R
be defined by

h(t) :=

− λ

ψ(t)
if t ∈ [0, T ] \K1,

0 if t ∈ K1.
Of course, h is measurable in [0, T ]. Let j : [0, T ]× (X \ V )× (X \ E)×R → R be defined by

j(t, x, z, y) := g(t, x, z) + h(t) · y.

By Theorem 6.5 of [9], the multifunction
(t, x, z) ∈ [0, T ]× (X \ V )× (X \ E) → j({(t, x, z)} ×H(t, x, z)) =

= g(t, x, z) + h(t) ·H(t, x, z) =

=


φ(t)

ψ(t)
x− ψ′(t)

ψ(t)
z − λ

ψ(t)
H(t, x, z) if t ∈ [0, T ] \K1,

{0} if t ∈ K1.

is L([0, T ])⊗ B(X \ V )⊗ B(X \ E) - weakly measurable, that is our claim.
Now, observe that for every t ∈ [0, T ], the multifunction

F (t, · , · )|(X\V )×(X\E)
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is lower semicontinuous with nonempty closed values. Indeed, by assumption (ii) and by Theorem
7.3.11 of [11], for every t ∈ [0, T ] the multifunction(

h(t) ·H(t, · , · )
)
|(X\V )×(X\E)

is lower semicontinuous with nonempty closed values. Hence, by Theorem 7.3.15 of [11], for every
t ∈ [0, T ] the multifunction

(x, z) ∈ (X \ V )× (X \ E) → g(t, x, z) + h(t) ·H(t, x, z)

is lower semicontinuous in (X \ V )× (X \ E) with nonempty closed values, that is our claim.
Now, put

γ :=M1 − α
λ

maxs∈[0,T ] ψ(s)
. (4.11)

Assumption (4.8) imply γ < 0. Let t ∈ [0, T ] \K1 and (x, z) ∈ (X \ V ) × (X \ E) be fixed, and let
v ∈ H(t, x, z). By (4.9) and (4.10) we get∣∣∣∣φ(t)ψ(t)

x− ψ′(t)

ψ(t)
z − λ

ψ(t)
v

∣∣∣∣ ≤ |φ(t)|
ψ(t)

b+
|ψ′(t)|
ψ(t)

b+
λ

ψ(t)
|v| ≤M1 +M2.

Moreover, by (4.9), (4.10) and (4.11) we have
φ(t)

ψ(t)
x− ψ′(t)

ψ(t)
z − λ

ψ(t)
v ≤

∣∣∣∣φ(t)ψ(t)
x

∣∣∣∣+ ∣∣∣∣ψ′(t)

ψ(t)
z

∣∣∣∣− λ

ψ(t)
α ≤ γ,

hence F (t, x, z) ⊆ [−(M1 +M2), γ]. This implies that
F (([0, T ] \K1)× (X \ V )× (X \ E)) ⊆ [−(M1 +M2), γ],

hence
F (([0, T ] \K1)× (X \ V )× (X \ E)) ∈ G1.

Therefore, all the assumptions of Corollary 3.3 are satisfied. Consequently, there existsu ∈W 2,∞([0, T ])
such that

(u(t), u′(t)) ∈ (X \ V )× (X \ E) for a.e. t ∈ [0, T ],

and 
u′′(t) ∈ F (t, u(t), u′(t)) for a.e. t ∈ [0, T ],

u(0) = u′(0) = 0,

|u′′(t)| ≤M1 +M2 for a.e. t ∈ [0, T ].

It is routine matter to check that the function u satisfies the conclusion. □

Remark 4.5. It can be easily checked that the assumptions of Theorem 4.3 do not imply any kind of
semicontinuity for the multifunctionH(t, · , · ) (which is defined on the whole [−b, b]× [−b, b]). Indeed,
it is enough to modify slightly the preceding examples, in order to construct a multifunction H :
[0, T ] × [−b, b] × [−b, b] → 2R (for fixed b > 0) such that H satisfies assumptions (i) and (ii) of
Theorem 4.3, and, simultaneously, for each t ∈ [0, T ] the multifunction H(t, · , · ) is neither upper nor
lower semicontinuous at each point (x, z) ∈ [−b, b]× [−b, b].

Remark 4.6. Theorem 4.3 can be usefully compared with Theorem 4.1 of [2]. In this latter result, the mul-
tifunctionH cannot depend on t explicitly, and it is assumed, in particular, to be lower semicontinuous
in [−b, b] × [−b, b], with nonempty closed convex values. Moreover, it is assumed that φ ∈ C([0, T ])
and ψ ∈ C1([0, T ]).

In Theorem 4.3, conversely, in addition to the weaker regularity discussed in Remark 4.8, the mul-
tifunction H can depend on t explicitly, and the convexity of its values is not required. Moreover, a
weaker regularity is required on φ and ψ. That is, we only assume that φ ∈ L∞([0, T ]) and ψ ∈
W 1,∞([0, T ]).
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We also point out that the two results are formally independent.
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