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Abstract. In this paper we analyze a differential variational-hemivariational inequality which consists
of an evolution equation of first order and a time-dependent constrained variational-hemivariational in-
equality. First, we present a new stability result for the solution set with respect to a control parameter.
Then, we derive an existence result for a general optimal control problem for the differential variational-
hemivariational inequality. We provide an appliction of the results to a weak formulation of a quasistatic
frictional elastic contact problem. A stability result of a set of weak solutions with respect to the densities
of volume forces, tractions and heat sources, and the initial conditions for the temperature is examined.
Finally, an existence of solutions for an optimal control problem for the contact model is discussed.
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1. Introduction

In this paper we study a differential variational-hemivariational inequality. The problem consists
of the system of a Cauchy problem for an evolution equation of first order and a time-dependent
variational-hemivariational inequality with a constraint set.

Problem 1.1. Find w : I → E and u : I → V such that{
w′(t) +A(t, w(t)) = f(λ, t, w(t)) +G(t)u(t) a.e. t ∈ I,

w(0) = w0(λ),
(1.1)

and for a.e. t ∈ I , u(t) ∈ K satisfies the inequality

⟨B(t, w(t), u(t))− g(λ, t), v − u(t)⟩+ J0(t, δw(t), γu(t); γ(v − u(t)))

+φ(t, δw(t), v)− φ(t, δw(t), u(t)) ≥ 0 for all v ∈ K. (1.2)

In Problem 1.1, I = [0, T ] is a finite time interval, (E,H,E∗) is an evolution triple of spaces with
compact embeddings, X and Z are Banach spaces, V is a separable, reflexive Banach space, K is a
closed convex subsets of V , λ ∈ Λ represents a control parameter, A : I × E → E∗ is a monotone
coercive map, f : Λ × I × H → H is a nonlinear mapping, G(t) : V → H is a linear bounded map,
B : I ×H × V → V ∗ is a nonlinear operator, J0 is the generalized directional derivative of a locally
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E-mail addresses: stanislaw.migorski@uj.edu.pl (S. Migórski), yunrubai@163.com (Y. Bai), and sylwia.dudek@pk.edu.pl

(S. Dudek)
2020 Mathematics Subject Classification: 35J87, 35M86, 47J20, 35R45, 74M15
Accepted: April 17, 2024.

44

https://tulipa-os.com/apna/024-0101.php
https://doi.org/10.69829/apna-024-0101-ta03
https://tulipa-os.com/


DIFFERENTIAL CONSTRAINED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES 45

Lipschitz function J : I×Z×X → R, φ : I×Z×V → R is a convex, lower semicontinuous function,
and δ : E → Z and γ : V → X are prescribed linear bounded operators.

The paper is a continuation of [14]. There, an existence result for Problem 1.1 is established. The
purpose and novelties of the current paper are three-fold. First, we present a new stability result for
the solution set of a differential variational inequality. To this aim we study the upper semicontinuity
of the set-valued solution map Λ ∋ λ 7→ S(λ) ∈ 2W×L2(I;V ) \ {∅}, where

S(λ) = {(w, u) ∈ W× L2(I;V ) | (w, u) is a solution to (1.1), (1.2) corresponding to λ} (1.3)

denotes the set of solutions to Problem 1.1. Second, we derive an existence result for a general optimal
control problem for the differential variational-hemivariational inequality. The optimal control under
consideration reads as follows: Find λ∗ ∈ Λad such that

m(λ∗) = inf{m(λ) | λ ∈ Λad} with m(λ) := inf{F(λ,w, u) | (w, u) ∈ S(λ)},

where Λad ⊂ Λ represents an admissible set of control parameters in a metric space Λ, and F denotes
a cost functional. Third, we turn to an appliction and examine a quasistatic frictional contact problem
in thermoelasticity. We provide a stability result a set of weak solutions to the contact problem with
respect to the densities of volume forces, tractions and heat sources, the heat flux between the body
surface and the foundation, and the initial conditions for the temperature. Finally, we are concerned
with an optimal control problem for a contact model and discuss the issue of its solvability. To the
best of the authors’ knowledge, none of the problems studied in this paper have been treated in the
literature up to now.

Differential variational inequalities have been investigated for the first time in [22] in finite dimen-
sion. The evolution equation supplemented by a variational inequality was treated in [11], and supple-
mented by a variational-hemivariational inequality was studied in [9, 12, 28]. In all these papers the
solution of (1.1) is coupled with (1.2) through only the operator B. Moreover, in these papers the no-
tion of measure of noncompactness and a fixed point theorem for condensing multivalued maps have
been used. The Rothe method for related differential hemivariational inequalities was used in [5, 21].
Results on optimal control problems for various variational-hemivariational inequalities can be found
in [3, 15, 25, 31]. Other closely related interesting results in this area can be found in [4, 6, 7, 14, 16, 17, 18]
and the references therein.

Notation and preliminaries. In this article we use the concepts from nonlinear analysis which we
shortly recall below. Let Yτ be a Hausdorff topological space and {Cn} ⊂ 2Y \ {∅} for n ∈ N. We
define the sequential Kuratowski lower and upper limits by

K(Yτ )– lim inf Cn = { y ∈ Y | y = τ - lim yn, yn ∈ Cn, n ∈ N },

K(Yτ )– lim supCn = { y ∈ Y | y = τ - lim ynk
, ynk

∈ Cnk
, n1 < n2 < . . . < nk < . . . }.

If K(Yτ )– lim inf Cn = K(Yτ )– lim supCn = C , then we write C = K(Yτ )– limCn to denote the
τ -Kuratowski limit of Cn in Yτ . Let Yw and Y denote the weak and strong topologies, respectively, on
a real Banach space Y .

LetX be a Banach space. An operatorA : X → X∗ is said to be monotone, if for all u, v ∈ X , it holds
⟨Au−Av, u− v⟩ ≥ 0. Operator A is bounded, if A maps bounded sets of X into bounded sets of X∗.
OperatorA is called pseudomonotone, if it is bounded and un ⇀ u inX with lim sup⟨Aun, un−u⟩ ≤ 0
imply ⟨Au, u − v⟩ ≤ lim inf⟨Aun, un − v⟩ for all v ∈ X . It is known that if X is a reflexive Banach
space, then A : X → X∗ is pseudomonotone, if and only if it is bounded and un ⇀ u in X with
lim sup ⟨Aun, un − u⟩ ≤ 0 imply lim ⟨Aun, un − u⟩ = 0 and Aun ⇀ Au in X∗.



46 S. MIGÓRSKI, Y. BAI, AND S. DUDEK

Let h : X → R be a locally Lipschitz function. The generalized (Clarke) directional derivative of h
at the point x ∈ X in the direction v ∈ X is defined by

h0(x; v) = lim sup
λ↓0, w→x

h(w + λv)− h(w)

λ
.

The generalized subgradient of h : X → R at x ∈ X is given by

∂h(x) = {x∗ ∈ X∗ | h0(x; v) ≥ ⟨x∗, v⟩X∗×X for all v ∈ X }.

The function h is (Clarke) regular, if for all x, v ∈ X , the directional derivative

h′(x; v) = lim
λ↓0

h(x+ λv)− h(x)

λ

exists and h′(x, v) = h0(x; v).

2. Main stability result

Let (E,H,E∗) be an evolution triple of spaces, that is,E is a separable, reflexive Banach space andH
is a separable Hilbert space such that the embeddingE ⊂ H is continuous and dense, and, additionally,
compact. The duality brackets ⟨·, ·⟩E for the pair (E∗, E) and the inner product ⟨·, ·⟩H on H coincide
on H × E. In what follows we denote by ∥ · ∥E the norm in E. Let

W = {w ∈ L2(I;E) | w′ ∈ L2(I;E∗) },

where the time derivative w′ is understood in the distributional sense. It is known that W endowed
with the norm ∥w∥W = ∥w∥L2(I;E) + ∥w′∥L2(I;E∗) is a separable reflexive Banach space.

Let X and Z be Banach spaces, V be a separable, reflexive Banach space, and Λ be a metric space.
The duality pairing between X∗ and X is denoted by ⟨·, ·⟩X .

We need the following hypotheses on the data of Problem 1.1.
H(A) : A : I × E → E∗ is such that

(a) for all v ∈ E, t 7→ A(t, v) is measurable,
(b) for a.e. t ∈ I , v 7→ A(t, v) is hemicontinuous and monotone,
(c) for all v ∈ E, a.e. t ∈ I , ∥A(t, v)∥E∗ ≤ a0(t) + c0∥v∥E with a0 ∈ L2(I), c0 > 0,
(d) for all v ∈ E, a.e. t ∈ I , ⟨A(t, v), v⟩ ≥ a2∥v∥2E − a1(t) with a1 ∈ L1(I), a2 > 0.
H(f) : f : Λ× I ×H → H is such that

(a) for all v ∈ H , λ ∈ Λ, t 7→ f(λ, t, v) is measurable,
(b) for all v ∈ H , a.e. t ∈ I , λ 7→ f(λ, t, v) is continuous,
(c) for v1, v2 ∈ H , λ ∈ Λ, a.e. t ∈ I , ∥f(λ, t, v1)− f(λ, t, v2)∥H ≤ k(t)∥v1 − v2∥H ,

where k ∈ L∞(I)+,
(d) for all v ∈ H , λ ∈ Λ, a.e. t ∈ I , ∥f(λ, t, v)∥H ≤ a4(t)(1 + ∥v∥H) with a4 ∈ L2(I)+.
H(B) : B : I ×H × V → V ∗ is such that

(a) for a.e. t ∈ I , all η ∈ H , v 7→ B(t, η, v) is pseudomonotone,
(b) there exist u0 ∈ K , α > 0, β ≥ 0 and b ∈ L∞(I) such that for a.e. t ∈ I ,

all η ∈ H , z ∈ Z , v ∈ V , we have
⟨B(t, η, v), v − u0⟩+ infξ∈∂J(t,z,γv)⟨ξ, γ(v − u0)⟩X∗×X ≥ α∥v∥2 − β∥v∥ − b(t),

(c) for a.e. t ∈ I , all η ∈ H , z ∈ Z , v 7→ B(t, η, v) + γ∗∂J(t, z, γv) is monotone,
(d) (t, η, v) 7→ B(t, η, v) is continuous,
(e) for a.e. t ∈ I , all η ∈ H , v ∈ V , ∥B(t, η, v)∥V ∗ ≤ c0(t) + c1∥η∥H + c2∥v∥

with c0 ∈ L2(I), c0, c1, c2 > 0.
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H(G) : G ∈ L∞(I;L(V,H)).
H(δ, γ) : γ ∈ L(V,X) is compact, δ ∈ L(E,Z) and its Nemitsky operator δ̃ : W → L2(I;Z)

is compact.
H(J) : J : I × Z ×X → R is such that

(a) for all z ∈ Z , v ∈ X , t 7→ J(t, z, v) is measurable,
(b) for a.e. t ∈ I , all z ∈ Z , v 7→ J(t, z, v) is a locally Lipschitz function,
(c) for all z ∈ Z , v ∈ X , a.e. t ∈ I , ∥∂J(t, z, v)∥X∗ ≤ dJ (1 + ∥z∥Z + ∥v∥X) with dJ ≥ 0,
(d) for all {tn} ⊂ I , tn → t, {zn} ⊂ Z , zn → z in Z , {vn} ⊂ X , vn → v in X , all x ∈ X ,

we have lim sup J0(tn, zn, x; vn) ≤ J0(t, z, x; v).
(e) for all z ∈ L2(I;V ), {ζn} ⊂ L2(I;Z), ζn → ζ in L2(I;Z), {un} ⊂ L2(I;V ),

un ⇀ u in L2(I;V ), we have

lim sup

∫
I
J0(t, ζn(t), γz(t); γ(z(t)− un(t))) dt ≤

∫
I
J0(t, ζ(t), γz(t); γ(z(t)− u(t))) dt.

H(K): K is a nonvoid, closed and convex subset of V .
H(φ) : φ : I × Z × V → R is such that

(a) for all v ∈ V , z ∈ Z , t 7→ φ(t, z, v) is measurable,
(b) for a.e. t ∈ I , all z ∈ Z , v 7→ φ(t, z, v) is convex and lower semicontinuous,
(c) there exists cφ ∈ L∞(I)+ such that |φ(t, z, u0)| ≤ cφ(t) for a.e. t ∈ I , all z ∈ Z ,

where u0 ∈ K is as in H(B)(b),
(d) there are a3 ∈ L∞(I) and b3 > −α such that φ(t, z, v) ≥ a3(t) + b3 ∥v∥2

for all z ∈ Z , v ∈ V , a.e. t ∈ I ,
(e) for all {tn} ⊂ I , tn → t, {zn} ⊂ Z , zn → z in Z , {un} ⊂ V , un ⇀ u in V , all v ∈ V , we have

lim sup(φ(tn, zn, v)− φ(tn, zn, un)) ≤ φ(t, z, v)− φ(t, z, u).

(f) for all z ∈ L2(I;V ), {ζn} ⊂ L2(I;Z), ζn → ζ in L2(I;Z), {un} ⊂ L2(I;V ),
un ⇀ u in L2(I;V ), we have

lim sup

∫
I

(
φ(t, ζn(t), z(t))− φ(t, ζn(t), un(t))

)
dt ≤

∫
I

(
φ(t, ζ(t), z(t))− φ(t, ζ(t), u(t))

)
dt.

H(g, w0) : g : Λ× I → V ∗, g(·, t) is continuous for a.e. t ∈ I , w0 : Λ → H is continuous,
there is c1 > 0 such that for all λ ∈ Λ, a.e. t ∈ I , ∥g(λ, t)∥V ∗ ≤ c1, ∥w0(λ)∥H ≤ c1.

Recall that in the hypothesisH(δ, γ), the Nemitsky (superposition) operator δ̃ : L2(I;E) → L2(I;Z)

is defined by (δ̃η)(t) := δ(η(t)) for η ∈ L2(I;E) and a.e. t ∈ I , see, e.g., [20, (2.2)].
We begin with the following two auxiliary results for the Cauchy problem for evolution equation,

and the variational-hemivariational inequality, respectively.

Lemma 2.1. Under the hypothesesH(A), H(f), h ∈ L2(I;H), fixed λ ∈ Λ, and w0(λ) ∈ H , there is a
unique w ∈ W solution to the problem{

w′(t) +A(t, w(t)) = f(λ, t, w(t)) + h(t) a.e. t ∈ I,

w(0) = w0(λ).
(2.1)

The solution satisfies the following estimate

∥w∥W ≤ c (1 + ∥h∥L2(I;H) + ∥w0(λ)∥H) with c > 0. (2.2)

Moreover, the solution map p : H × L2(I,H) → W ⊂ C(I;H) defined by p(w0, h) = w, where w ∈ W
is the unique solution to (2.1) has the property: if {wn

0 } ⊂ H , wn
0 → w0 in Hw, {hn} ⊂ L2(I;H),

hn → h in L2(I;H)w, then p(wn
0 , hn) → p(w0, h) inWw and strongly in C(I;H).

Proof. It is an easy modification of [14, Lemma 3] and is omitted. □
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Lemma 2.2. Assume the hypotheses H(B), H(J), H(K), H(φ), H(δ, γ), and H(g, w0). Let λ ∈ Λ,
g(λ) ∈ L∞(I;V ∗) and (w, z) ∈ L2(I;H)×L2(I;Z) be fixed. Then, the following two formulations are
equivalent.

Find u ∈ L2(I;V ), u(t) ∈ K for a.e. t ∈ I such that
⟨B(t, w(t), u(t))− g(λ, t), v − u(t)⟩+ J0(t, z(t), γu(t); γ(v − u(t)))

+φ(t, z(t), v)− φ(t, z(t), u(t)) ≥ 0 for all v ∈ K, a.e. t ∈ I,

(2.3)



find u ∈ L2(I;V ), u(t) ∈ K for a.e. t ∈ I such that∫
I

(
⟨B(t, w(t), η(t))− g(λ, t), η(t)− u(t)⟩+ J0(t, z(t), γη(t); γ(η(t)− u(t)))

+φ(t, z(t), η(t))− φ(t, z(t), u(t))
)
dt ≥ 0

for all η ∈ L2(I;V ), η(t) ∈ K a.e. t ∈ I.

(2.4)

Proof. Let λ ∈ Λ, g(λ) ∈ L∞(I;V ∗) and (w, z) ∈ L2(I;H)×L2(I;Z). We apply [14, Proposition 10]
to get that the problem (2.3) is equivalent to its Minty formulation

find u ∈ L2(I;V ), u(t) ∈ K for a.e. t ∈ I such that
⟨B(t, w(t), v)− g(λ, t), v − u(t)⟩+ J0(t, z(t), γv; γ(v − u(t)))

+φ(t, z(t), v)− φ(t, z(t), u(t)) ≥ 0 for all v ∈ K, a.e. t ∈ I,

(2.5)

In what follows, we will prove that the formulations (2.4) and (2.5) are equivalent.
Let u ∈ L2(I;V ), u(t) ∈ K for a.e. t ∈ I be a solution to the inequality (2.5). Let η ∈ L2(I;V ) with

η(t) ∈ K for a.e. t ∈ I . We test (2.5) with v = η(t) ∈ K and get

⟨B(t, w(t), η(t))− g(λ, t), η(t)− u(t)⟩+ J0(t, z(t), γη(t); γ(η(t)− u(t)))

+φ(t, z(t), η(t))− φ(t, z(t), u(t)) ≥ 0 for a.e. t ∈ I.

Integrating the last inequality over I , we infer that u ∈ L2(I;V ) with u(t) ∈ K for a.e. t ∈ I is a
solution to (2.4).

Conversely, let u ∈ L2(I;V ) with u(t) ∈ K for a.e. t ∈ I be a solution to the inequality (2.4). We
have ∫ T

0

(
⟨B(t, w(t), η(t))− g(λ, t), η(t)− u(t)⟩+ J0(t, z(t), γη(t); γ(η(t)− u(t)))

+φ(t, z(t), η(t))− φ(t, z(t), u(t))
)
dt ≥ 0 (2.6)

for all η ∈ L2(I;V ) with η(t) ∈ K for a.e. t ∈ I . We will establish (2.5). By contradiction, we suppose
(2.5) does not hold. Hence

∃O ⊂ I with |O| > 0, ∃ η0 ∈ K such that
⟨B(t, w(t), η0)− g(λ, t), η0 − u(t)⟩+ J0(t, z(t), γη0; γ(η0 − u(t)))

+φ(t, z(t), η0)− φ(t, z(t), u(t)) < 0 for all t ∈ O.

From the last condition, we have∫
O

(
⟨B(t, w(t), η0)− g(λ, t), η0 − u(t)⟩+ J0(t, z(t), γη0; γ(η0 − u(t)))

+φ(t, z(t), η0)− φ(t, z(t), u(t))
)
dt < 0.
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Next, we choose a suitable test function in (2.6). Let η(t) := η0 if t ∈ O, and η(t) := u(t) if t /∈ O.
Since η0 ∈ K and u ∈ L2(I;V ) with u(t) ∈ K for a.e. t ∈ I , we have η ∈ L2(I;V ) with η(t) ∈ K for
a.e. t ∈ I . Using this test function η ∈ L2(I;V ) in (2.6), we obtain

0 ≤
∫
I

(
⟨B(t, w(t), η(t))− g(λ, t), η(t)− u(t)⟩+ J0(t, z(t), γη(t); γ(η(t)− u(t)))

+φ(t, z(t), η(t))− φ(t, z(t), u(t))
)
dt

=

∫
O

(
⟨B(t, w(t), η0)− g(λ, t), η0 − u(t)⟩+ J0(t, z(t), γη0; γ(η0 − u(t)))

+φ(t, z(t), η0)− φ(t, z(t), u(t))
)
dt

+

∫
I\O

(
⟨B(t, w(t), u(t))− g(λ, t), u(t)− u(t)⟩+ J0(t, z(t), γu(t); γ(u(t)− u(t)))

+φ(t, z(t), u(t))− φ(t, z(t), u(t))
)
dt < 0,

which is a contradiction. Hence u ∈ L2(I;V )with u(t) ∈ K for a.e. t ∈ I is a solution to problem (2.5).
This completes the proof of the lemma. □

Now we are in the position to state the main result of this section on the stability of the solution set.

Theorem2.3. Under hypothesesH(A),H(f),H(B),H(G),H(J),H(K),H(φ),H(δ, γ) andH(g, w0),
the solution set S(λ) of Problem 1.1 is a nonempty and compact subset ofWw ×L2(I;V )w for each fixed
λ ∈ Λ, and

K(Ww × L2(I;V )w)– lim sup S(λn) ⊂ S(λ) for all λn → λ in Λ. (2.7)

Proof. The proof of nonemptiness of S(λ) for each fixed λ can be found in [14, Theorem 10].
Now, we will show the following estimate: there are positive constants r1, r2 such that for all λ ∈ Λ,

all (w, u) ∈ S(λ), we have
∥w∥W ≤ r1, ∥u∥L2(I;V ) ≤ r2.

We have {
w′(t) +A(t, w(t)) = f(λ, t, w(t)) +G(t)u(t) a.e. t ∈ I,

w(0) = w0(λ),
(2.8)

and for a.e. t ∈ I , u(t) ∈ K satisfies the inequality

⟨B(t, w(t), u(t))− g(λ, t), v − u(t)⟩+ J0(t, δw(t), γu(t); γ(v − u(t)))

+φ(t, δw(t), v)− φ(t, δw(t), u(t)) ≥ 0 for all v ∈ K. (2.9)

We test (2.9) with v = u0 ∈ K as in H(B)(b). From [19, Proposition 3.23 (iii)] we can find ξ =
ξt,w(t),u(t) ∈ ∂J(t, δw(t), γu(t)) such that

J0(t, δw(t), γu(t); γ(u0 − u(t))) = ⟨ξ, γ(u0 − u(t))⟩.

Hence

⟨B(t, w(t), u(t)), u(t)− u0⟩+ ⟨ξ, γ(u(t)− u0)⟩X∗×X

≤ ⟨g(λ, t), u(t)− u0⟩+ φ(t, δw(t), u0)− φ(t, δw(t), u(t)).

We exploit H(B)(b) and H(φ)(c) to get

(α+ b3) ∥u(t)∥2 ≤ (β + ∥g(λ, t)∥V ∗)∥u(t)∥+ ∥g(λ, t)∥V ∗∥u0∥+ b(t) + cφ(t)− a3(t)
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for a.e. t ∈ I . We use the elementary property: for all a, b, x ≥ 0, if x2 ≤ ax + b, then x2 ≤ a2 + 2b.
We obtain ∥u(t)∥ ≤ c (1 + ∥g(λ, t)∥V ∗ + cφ(t)) for a.e. t ∈ I with c > 0, and subsequently

∥u∥L2(I;V ) ≤ c (1 + ∥g(λ, ·)∥L2(I;V ∗) + ∥cφ∥L2(I)).

From H(g, w0), there is c1 > 0 such that for all λ ∈ Λ, ∥g(λ, ·)∥L2(I;V ∗) ≤ c1. Hence, we infer
∥u∥L2(I;V ) ≤ r2 with some r2 > 0.

Next, from Lemma 2.1 applied to h(·) = G(·)u(·), and H(g, w0), we immediately get

∥w∥W ≤ c (1 + ∥G(·)u(·)∥L2(I;H) + ∥w0(λ)∥H) ≤ c (1 + ∥u∥L2(I;V ) + ∥w0(λ)∥H) ≤ r1

with r1 > 0. This proves the desired estimate. Hence, the solution set S(λ) remains in a bounded subset
of W× L2(I;V ). From the reflexivity of this space, we deduce that, for any λ ∈ Λ, the solution set of
Problem 1.1 is a compact subset of Ww × L2(I;V )w.

We will show the inclusion (2.7). Let λn → λ in Λ and

(w, u) ∈ K(Ww × L2(I;V )w)– lim sup S(λn).

Then we can find a subsequence of {n}, denoted in the same way, and (wn, un) ∈ S(λn) such that

(wn, un) → (w, u) in Ww × L2(I;V )w. (2.10)

We have wn ∈ W, un ∈ L2(I;V ) with un(t) ∈ K for a.e. t ∈ I and{
w′
n(t) +A(t, wn(t)) = f(λn, t, wn(t)) +G(t)un(t) a.e. t ∈ I,

wn(0) = w0(λn),
(2.11)

and for a.e. t ∈ I , it holds

⟨B(t, wn(t), un(t))− g(λn, t), v − un(t)⟩+ J0(t, δwn(t), γun(t); γ(v − un(t)))

+φ(t, δwn(t), v)− φ(t, δwn(t), un(t)) ≥ 0 for all v ∈ K. (2.12)

Next, we pass to the limit in (2.11) and (2.12). First, we establish the convergence of solution to
(2.11) to a limit problem. Consider G : L2(I;V ) → L2(I;H) the Nemitsky operator corresponding to
G defined by (Gv)(t) := G(t)v(t) for v ∈ L2(I;V ), a.e. t ∈ I . The operator G is linear and bounded,
by H(G), and G(·)v(·) ∈ L2(I;H) for any v ∈ L2(I;V ). Hence, G preserves the weak convergences,
which means that un → u in L2(I;V )w entails

Gun → Gu in L2(I;H)w. (2.13)

On the other hand, let hn : I → H be defined by

hn(t) := f(λn, t, wn(t)) +G(t)un(t) for a.e. t ∈ I.

We claim that hn → h in L2(I;H)w with h(t) := f(λ, t, w(t)) +G(t)u(t). Indeed, from the compact
embedding of W into L2(I;H), we have wn → w in L2(I;H). We use the inequality

|
∫
I
⟨hn(t)− h(t), η(t)⟩ dt| ≤

∫
I
∥f(λn, t, wn(t))− f(λn, t, w(t))∥H ∥η(t)∥H dt

+

∫
I
∥f(λn, t, w(t))− f(λ, t, w(t))∥H ∥η(t)∥H dt+

∫
I
⟨G(t)(un(t)− u(t)), η(t)⟩ dt

≤
∫
I
k(t)∥wn(t)− w(t)∥H∥η(t)∥H dt+

∫
I
∥f(λn, t, w(t))− f(λ, t, w(t))∥H ∥η(t)∥H dt

+

∫
I
⟨G(t)(un(t)− u(t)), η(t)⟩ dt

for all η ∈ L2(I;H), hypothesis H(f)(b), (c), Hölder’s inequality, and (2.13) to deduce the claim.
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Next, we use H(g, w0) and apply Lemma 2.1 to deduce that w ∈ W is the unique solution of the
problem {

w′(t) +A(t, w(t)) = f(λ, t, w(t)) +G(t)u(t) a.e. t ∈ I,

w(0) = w0(λ),
(2.14)

corresponding to λ, w0 and u.
Second, we pass to the limit in the inequality (2.12). The problem (2.12) by Lemma 2.2 is equivalent

to the following inequality: Find un ∈ L2(I;V ) with un(t) ∈ K for a.e. t ∈ I such that∫
I

(
⟨B(t, wn(t), η(t))− g(λn, t), η(t)− un(t)⟩+ J0(t, δwn(t), γη(t); γ(η(t)− un(t)))

+φ(t, δwn(t), η(t))− φ(t, δwn(t), un(t))
)
dt ≥ 0 (2.15)

for all η ∈ L2(I;V ), η(t) ∈ K for a.e. t ∈ I .
Let us fix η ∈ L2(I;V ) and define the operator Bη : I ×H → V ∗ by

Bη(t, v) := B(t, v, η(t)) for v ∈ H, a.e. t ∈ I.

From hypotheses H(B)(d),(e), we know that: for all v ∈ H , t 7→ Bη(t, v) is measurable; for a.e.
t ∈ I , v 7→ Bη(t, v) is continuous, and for all (t, v) ∈ I ×H , ∥Bη(t, v)∥V ∗ ≤ α(t) + c ∥v∥H , where
α ∈ L2(I) and c > 0. Because V ∗ is a separable Banach space, we use [23, Proposition 1.1.28(a)]
to deduce that the Nemitsky operator Bη : L

2(I;H) → L2(I;V ∗) corresponding to Bη defined by
(Bηv)(t) := Bη(t, v(t)) for v ∈ L2(I;H) is continuous and bounded from L2(I;H) to L2(I;V ∗).
Hence, for any sequence vn → v in L2(I;H), we have

Bηvn → Bηv in L2(I;V ∗) for any fixed η ∈ L2(I;V ). (2.16)

Next, we will pass to the limit in the problem (2.15). Since un ∈ L2(I;K) with un → u in L2(I;V )w
and the set L2(I;K) is weakly closed in L2(I;V ), it is obvious that u ∈ L2(I;K). Let γ̃ : L2(I;V ) →
L2(I;X) be the Nemitsky operator corresponding to γ. Since γ̃ is linear and bounded, we have γ̃un ⇀
γ̃u in L2(I;X). On the other hand, by the compact embedding W ⊂ L2(I;H), we have ηn → η in
L2(I;H). We use the compactness of the operator δ̃ : W → L2(I, Z), see hypothesis H(δ, γ), and
obtain δ̃ηn → δ̃η in L2(I;Z). From H(J)(e), we infer that

lim sup

∫
I
J0(t, δwn(t), γη(t); γ(η(t)− un(t))) dt (2.17)

≤
∫
I
J0(t, δw(t), γη(t); γ(η(t)− u(t))) dt

for all η ∈ L2(I;V ). From hypothesis H(φ)(f), we have

lim sup

∫
I
φ(t, δwn(t), η(t))− φ(t, δwn(t), un(t)) dt ≤

∫
I
φ(t, δw(t), η(t))− φ(t, δw(t), u(t)) dt

(2.18)
for all η ∈ L2(I;V ).
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We use the convergences δ̃ηn → δ̃η inL2(I;Z), un → u inL2(I;V )w, (2.16), (2.17), (2.18),H(g, w0)
and pass to the upper limit in (2.15) to get

0 ≤ lim sup

∫
I
⟨B(t, wn(t), η(t))− g(λn, t), η(t)− un(t)⟩ dt

+ lim sup

∫
I
J0(t, δwn(t), γη(t); γ(η(t)− un(t))) dt

+ lim sup

∫
I
φ(t, δwn(t), η(t))− φ(t, δwn(t), un(t)) dt

≤
∫
I

(
⟨B(t, w(t), η(t))− g(λ, t), η(t)− u(t)⟩ dt+ J0(t, δw(t), γη(t); γ(η(t)− u(t))) dt

+φ(t, δw(t), η(t))− φ(t, δw(t), u(t))
)
dt

for all η ∈ L2(I;K). By applying Lemma 2.2 again, we conclude that u ∈ L2(I;K) is a solution to
(1.2) corresponding to w ∈ W. Thus, (w, u) ∈ S(λ) which completes the proof of (2.7). □

Remark 2.4. Note that if the function X ∋ v 7→ J(t, z, v) ∈ R is convex for all z ∈ Z , a.e. t ∈ I , then
the variational-hemivariational inequality (1.2) reduces to the following variational inequality: Find
u ∈ L2(I;V ), u(t) ∈ K for a.e. t ∈ I such that

⟨B(t, w(t), u(t))− g(λ, t), v − u(t)⟩+ α(t, δw(t), v)− α(t, δw(t), u(t)) ≥ 0

for all v ∈ K, for a.e. t ∈ I,

where the potential function α : I ×Z × V → R is defined by α(t, z, v) := J(t, z, γv) + φ(t, z, v) for
z ∈ Z , v ∈ V , a.e. t ∈ I . In this case, Problem 1.1 reduces to the corresponding differential variational
inequality.

3. Optimal control problem

In this section we apply the stability result of the previous section to study an optimal control prob-
lem for the differential variational-hemivariational inequality formulated in Problem 1.1.

Let S(λ), for λ ∈ Λ, denote the solution set to Problem 1.1 defined by (1.3). Consider the following
optimization problem: Find λ∗ ∈ Λad such that

m(λ∗) = inf{m(λ) | λ ∈ Λad} with m(λ) := inf{F(λ,w, u) | (w, u) ∈ S(λ)}. (3.1)
We need the additional hypotheses on the cost functional and the admissible set of control parameters.
H(F): The functional F : Λ×W× L2(I;V ) → R is bounded from below and

lower semicontinuous on Λ×Ww × L2(I;V )w,
H(Λad): The set Λad is a compact subset of a metric space Λ.

Theorem 3.1. Under the hypotheses of Theorem 2.3 and H(F), for any λ ∈ Λ, the problem m(λ) :=
inf{F(λ,w, u) | (w, u) ∈ S(λ)} has a solution.

Proof. Let λ ∈ Λ be fixed. Let {(wn, un)} ⊂ S(λ) be a minimizing sequence, that is, m(λ) =
limF(λ,wn, un). From the compactness of the set S(λ) in Ww × L2(I;V )w, guaranteed by Theo-
rem 2.3, we can find a subsequence of {(wn, un)} denoted in the same way such that (wn, un) → (w, u)
in Ww × L2(I;V )w with (w, u) ∈ S(λ). From H(F) we obtain

F(λ,w, u) ≤ lim inf F(λ,wn, un) = limF(λ,wn, un) = m(λ) ≤ F(λ,w, u),

i.e., F(λ,w, u) = m(λ). This completes the proof of the theorem. □

Theorem 3.2. Under the hypotheses of Theorem 2.3 and H(F), the value function m : Λ → R is lower
semicontinuous on Λ.
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Proof. It is sufficient to prove that m(λ) ≤ lim infm(λn) for all λn → λ in Λ. Let λn → λ in Λ with
some λ ∈ Λ. For every n ∈ N, from Theorem 3.1, we are able to find (w∗

n, u
∗
n) ∈ S(λn) such that

F(λn, w
∗
n, u

∗
n) = m(λn). From Theorem 2.3 to deduce that (w∗

n, u
∗
n) ∈ S(λn) is uniformly bounded in

W× L2(I;V ). From the reflexivity of the latter, we may assume, at least for a subsequence, that
(w∗

n, u
∗
n) → (w∗, u∗) in Ww × L2(I;V )w with some (w∗, u∗) ∈ W× L2(I;V ).

From the inclusion (2.7), we have (w∗, u∗) ∈ S(λ) which impliesm(λ) ≤ F(λ,w∗, u∗). Finally, we use
H(F) to get

m(λ) ≤ F(λ,w∗, u∗) ≤ lim inf F(λn, w
∗
n, u

∗
n) = lim infm(λn).

We deduce that m is lower semicontinuous on Λ which completes the proof. □

Using the hypothesis H(Λad) and Theorem 3.2, it is immediate to obtain the following result.

Theorem3.3. Under the hypotheses ofTheorem 2.3,H(F), andH(Λad), the problemm(λ∗) = inf{m(λ) |
λ ∈ Λad} has a solution.

We will comment on an example of the cost functional which satisfies H(F). Let F : Λ × W ×
L2(I;V ) → R be defined by

F(λ,w, u) = l1(λ) + l2(w(T0)) +

∫
I
L(t, w(t), u(t)) dt (3.2)

for λ ∈ Λ, w ∈ W, u ∈ L2(I;V ), where T0 is any time moment in (0, T ]. We need the following
hypotheses on the cost.
H(l, L) : F : Λ×W× L2(I;V ) → R is such that

(a) l1 : Λ → R is lower semicontinuous, and l2 : H → R is weakly lower semicontinuous,
(b) L(t, ·, ·) is lower semicontinuous on H × V , a.e. t ∈ I ,
(c) L(t, w, ·) is convex on V , for all w ∈ H , a.e. t ∈ I ,
(d) there exists M > 0 and ψ ∈ L1(I) such that for all w ∈ H , v ∈ V , a.e. t ∈ I , we have

L(t, w, v) ≥ ψ(t)−M(∥w∥H + ∥v∥V ).

Example 3.4. Under hypotheses H(l, L), the cost functional defined by (3.2) satisfies H(F).

Proof. From [1, Theorem 2.1] we obtain that the functional Φ(w, u) =
∫
I L(t, w(t), u(t)) dt is lower

semicontinuous on L1(I;H)× L1(I;V )w. Hence, using the compact embedding of W into L2(I;H),
we infer that Φ is lower semicontinuous on Ww × L2(I;V )w. Next, by [19, Lemma 2.55(ii)], we know
that wn, w ∈ W and wn → w in Ww imply wn(t) → w(t) in Hw for all t ∈ I . We combine this fact
with H(l, L)(a) to get H(F). □

4. Application to qasistatic frictional contact problem

In this section we illustrate the results of the previous sections by a quasistatic frictional contact prob-
lem coupled with the heat equation, which, in a weak form, is governed by a differential variational-
hemivariational inequality.

Let Ω ⊂ Rd, d = 2, 3, represent a bounded domain occupied by an elastic body. The boundary
Γ is Lipschitz and is divided into three mutually disjoint measurable parts ΓD , ΓN and ΓC such that
the measure of ΓD is positive. The unit outward normal on Γ is denoted by ν . Let Q := Ω × I with
I := [0, T ]. The part ΓC represents the contact surface between the body and the foundation. The body
is clamped on ΓD , and is subjected to a volume force of density g0(λ) and a heat source ρ1(λ) in Ω.
Surface tractions of density gN (λ) act on the part ΓN and ρ2 stands for the heat flux through ΓC . The
parameter λ ∈ Λ represents the control variable from a metric space Λ. In what follows we often do
not indicate explicitly the dependence of various functions on x and t.
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The classical formulation of the elastic contact model reads as follows.

Problem 4.1. Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd, a temperature θ : Ω → R,
and a heat flux q : Ω → Rd such that

−Divσ(t) = g0(λ, t) in Ω, (4.1)
θ′(t) + div q(t) + ψ(t, θ(t)) + Rε(u(t)) = ρ1(λ, t) in Ω, (4.2)
σ(t) = E(t, ε(u(t))) in Ω, (4.3)
q(t) = −K(t,∇θ(t)) in Ω, (4.4)
u(t) = 0 on ΓD, (4.5)
σ(t)ν = gN (λ, t) on ΓN , (4.6)
θ(t) = 0 on ΓD ∪ ΓN , (4.7)

− ∂θ(t)

∂νK
= ρ2(t) on ΓC , (4.8)

σν(t) = σ1ν(t) + σ2ν(t) on ΓC , (4.9)
− σ1ν(t) ∈ pν(t, θ(t)) ∂j(uν(t)) on ΓC , (4.10){
uν(t) ≤ g, σ2ν(t) + p(t, θ(t)) ≤ 0,

(uν(t)− g)(σ2ν(t) + p(t, θ(t))) = 0
on ΓC , (4.11)

∥στ (t)∥ ≤ µ p(t, θ(t))

−στ (t) = µ p(t, θ(t))
uτ (t)

∥uτ (t)∥
if uτ (t) ̸= 0

on ΓC , (4.12)

θ(0) = θ0(λ) in Ω. (4.13)

The standard notation is used. The normal and tangential components on the boundary of a vector v
are defined by vν = v·ν and vτ = v−vνν , respectively. Given a tensorσ, the symbols σν andστ stand
for its normal and tangential components on the boundary, that is, σν = (σν) ·ν and στ = σν−σνν .
The linearized strain tensor is defined by ε(u) = (εij(u)), εij(u) =

1
2(ui,j + uj,i) in Ω.

The relation (4.1) is the equilibrium equation for the stress. The heat equation (4.2) represents the law
of conservation of energy, where q is the heat flux vector, and the function R describes the influence of
the displacement field on the temperature. It is well known that thermal effects often accompany the
friction phenomena. By Div and div we denote the divergence operators for tensor and vector valued
functions, respectively. The elastic constitutive relation (4.3) involves the elasticity operator E. For the
thermal diffusion, we use the law (4.4) with a nonlinear thermal conductivity operator K which in a
linear case reduces to the Fourier law q(t) = −k(x, t)∇θ(t) in Ω, k = k(x, t) being the conductivity
tensor. Conditions (4.5), (4.6) and (4.7) are the displacement and the traction boundary conditions, and
the thermal boundary condition. Moreover, the conormal derivative ∂θ

∂νK
= K(x, t,∇θ) · ν in condi-

tion (4.8) specifies the heat flux between the body surface ΓC and the foundation. The normal stress
has an additive decomposition in (4.9). One part of the normal stress in (4.10) represents a multivalued
nonmonotone version of the normal compliance condition in which the stiffness coefficient function
pν is temperature dependent, and ∂j stands for the Clarke generalized gradient of a locally Lipschitz
potential, see [19, Section 6.3]. The relation (4.11) represents the frictional Signorini unilateral con-
tact condition with a gap g > 0 for the normal displacement associated to the Coulomb’s law of dry
friction (4.12), where µ is a positive bounded function which describes the coefficient of friction. The
initial temperature θ0 is prescribed in (4.13). For more details on the mathematical modeling of contact
problems, we refer to [19, 24, 26].
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For the weak formulation of Problem 4.1, we introduce the following spaces E = {η ∈ H1(Ω) | η = 0 on ΓD ∪ ΓN}, H = L2(Ω),

V = {v ∈ H1(Ω;Rd) | v = 0 on ΓD}, H = L2(Ω; Sd).
(4.14)

The triplet (E,H,E∗) forms an evolution triple of spaces with dense, continuous and compact embed-
dings. On V we use the norm ∥v∥V = ∥ε(v)∥H for v ∈ V which is, by the Korn inequality equivalent
to the usual norm ∥ · ∥H1(Ω;Rd). Recall that the normal trace operator γ : V → L2(Γ) is linear and
compact, i.e., ∥γ(v)∥L2(Γ) ≤ ∥γ∥∥v∥V for v ∈ V , where ∥γ∥ denotes the operator norm.

We need the following hypotheses on the data to Problem 4.1.
H(E) : The elasticity operator E : Q× Sd → Sd is such that
(1) for all ε ∈ Sd, a.e. t ∈ I , E(·, t, ε) is measurable on Ω,
(2) for a.e. x ∈ Ω, E(x, ·, ·) is continuous on I × Sd.
(3) for all ε ∈ Sd, a.e. (x, t) ∈ Q, ∥E(x, t, ε)∥ ≤ ã0(x, t) + ã2 ∥ε∥

with ã0, ã2 ≥ 0, ã0 ∈ L∞(I;L2(Ω)),
(4) there exists mE > 0 such that (E(x, t, ε1)− E(x, t, ε2)) · (ε1 − ε2) ≥ mE ∥ε1 − ε2∥2

for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q,
(5) for a.e. (x, t) ∈ Q, E(x, t,0) = 0.
H(R) : R : Ω× Sd → R is such that
(1) for all ε ∈ Sd, a.e. x ∈ Ω, R(x, ε) = R(x)ε.
(2) R(x) = (Rij(x)) with Rij ∈ L∞(Ω).
H(K) : The thermal conductivity operator K : Q× Rd → Rd is such that
(1) for all ξ ∈ Rd, K(·, ·, ξ) is measurable on Q,
(2) for a.e. (x, t) ∈ Q, K(x, t, ·) is continuous on Rd,
(3) for all ξ ∈ Rd, a.e. (x, t) ∈ Q, ∥K(x, t, ξ)∥ ≤ k0(x, t) + k1 ∥ξ∥

with k0 ∈ L2(Q), k0 ≥ 0, k1 > 0,
(4) for all ξ1, ξ2 ∈ Rd, a.e. (x, t) ∈ Q, (K(x, t, ξ1)−K(x, t, ξ2)) · (ξ1 − ξ2) ≥ 0,
(5) for all ξ ∈ Rd, a.e. (x, t) ∈ Q, K(x, t, ξ) · ξ ≥ αK ∥ξ∥2 with αK > 0.
H(ψ) : ψ : Q× R → R is such that
(1) for all r ∈ R, (x, t) 7→ ψ(x, t, r) is measurable,
(2) there exists k ∈ L1(I;L∞(Ω))+ such that |ψ(x, t, r1)− ψ(x, t, r2)| ≤ k(x, t)|r1 − r2|

for all r1, r2 ∈ R and a.e. (x, t) ∈ Q,
(3) there are a ∈ L2(Q) and b > 0 such that |ψ(x, t, r)| ≤ a(x, t)+b |r| for all r ∈ R, a.e. (x, t) ∈ Q.
H(pν) : pν : ΓC × I × R → R is such that
(1) pν(·, t, r) is measurable on ΓC for all r ∈ R, t ∈ I .
(2) pν(x, ·, r) is continuous on I for all r ∈ R, a.e. x ∈ ΓC .
(3) there is Lpν > 0 such that |pν(x, t, r1)− pν(x, t, r2)| ≤ Lpν |r1 − r2| for all r1, r2 ∈ R,

a.e. (x, t) ∈ ΓC × I .
(4) there is p∗ν > 0 such that 0 ≤ pν(x, t, r) ≤ p∗ν for r ∈ R, a.e. (x, t) ∈ ΓC × I .
H(p) : p : ΓC × I × R → R is such that
(1) p(·, t, r) is measurable on ΓC for all r ∈ R, a.e. t ∈ I .
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(2) there is Lp > 0 such that |p(x, t1, r1)− p(x, t2, r2)| ≤ Lp (|t1 − t2|+ |r1 − r2|)
for all t1, t2 ∈ I , r1, r2 ∈ R, a.e. x ∈ ΓC .

(3) there is p∗ > 0 such that 0 ≤ p(x, t, r) ≤ p∗ for r ∈ R, a.e. (x, t) ∈ ΓC × I .
H(µ) : µ ∈ L∞(ΓC), 0 ≤ µ(x) ≤ µ∗ a.e. x ∈ ΓC .

H(j) : j : R → R, j(r) =
∫ r
0 ϱ(s) ds for all r ∈ R, where ϱ : R → R is such that

(1) there are constants ϱ0, ϱ1 such that 0 < ϱ0 ≤ ϱ(r) ≤ ϱ1 for all r > 0,
(2) there exists Lϱ > 0 such that |ϱ(r1)− ϱ(r2)| ≤ Lϱ |r1 − r2| for all r1, r2 ∈ R,
(3) ϱ(r) = 0 if and only if r ≤ 0.
(H0) : g0, gN : Λ× I → Rd are such that g0(λ, ·) ∈ L2(Ω;Rd), gN (λ, ·) ∈ L2(ΓN ;Rd),

and there is c1 > 0 such that for all λ ∈ Λ, a.e. t ∈ I , ∥g0(λ, t)∥+ ∥gN (λ, t)∥ ≤ c1,
θ0 ∈ L2(Ω) and ∥θ0(λ)∥H ≤ c1 for some c1 > 0, ρ1(·) ∈ L2(Ω), ρ2(λ, ·) ∈ L2(ΓC)

and ρ2(λn, ·) → ρ2(λ, ·) in L2(ΓC) for λn → λ in Λ.
Next, we derive the variational formulation of Problem 4.1. Let (u,σ, θ) be a triple of smooth func-

tions which satisfies (4.1)–(4.13). Let v ∈ V and t ∈ I . We multiply (4.1) by v−u(t), exploit the Green
formula, see [19, Theorem 2.25], and apply the boundary conditions (4.5)-(4.6) to get∫

Ω
σ(t) ·

(
ε(v)− ε(u(t))

)
dx =

∫
Ω
g0(λ, t) · (v − u(t)) dx

+

∫
ΓN

gN (λ, t) · (v − u(t)) dΓ +

∫
ΓC

σ(t)ν · (v − u(t)) dΓ.

By the decomposition formula σν · v = (σν ν + στ ) · (vν ν + vτ ) = σν vν + στ · vτ , we have
⟨σ(t), ε(v)− ε(u(t))⟩H = ⟨g(t),v − u(t)⟩

+

∫
ΓC

σν(t)(vν − uν(t)) + στ (t) · (vτ − uτ (t)) dΓ, (4.15)

where g ∈ L∞(Λ× I;V ∗) is defined by
⟨g(λ, t),v⟩ = ⟨g0(λ, t),v⟩L2(Ω;Rd) + ⟨gN (λ, t),v⟩L2(ΓN ;Rd) (4.16)

for v ∈ V , t ∈ I . From (4.10) and (4.12), for all v ∈ V , we have
−σ1ν(t)(vν − uν(t)) ≤ pν(t, θ(t)) j

0(uν(t); vν − uν(t)), (4.17)

−στ (t) · (vτ − uτ (t)) ≤ µ p(t, θ(t)) (∥vτ∥ − ∥uτ (t)∥), (4.18)
respectively. Next, we introduce the set K of admissible velocity fields

K = {v ∈ V | vν ≤ g on ΓC }. (4.19)
We use (4.11), and for v ∈ K , we obtain
−σ2ν(t)(vν − uν(t)) = p(t, θ(t))(vν − uν(t))− (σ2ν(t) + p(t, θ(t)))(vν − g)

− (σ2ν(t) + p(t, θ(t)))(g − uν(t)) ≤ p(t, θ(t))(vν − uν(t)). (4.20)
By the constitutive law (4.3), we have

⟨σ(t), ε(v)− ε(u(t))⟩H ≤ ⟨E(t, ε(u(t))), ε(v)− ε(u(t))⟩H (4.21)
for all v ∈ V . We combine (4.13), (4.15), (4.16), (4.17), (4.18), (4.20), and (4.21) to obtain the variational-
hemivariational inequality for the displacement field. Next, we use (4.2), (4.4), (4.7), (4.8) and (4.13) to
derive a variational equation for the temperature. As a result we obtain the following weak formulation
of Problem 4.1.
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Problem 4.2. Find θ : I → E and u : I → K such that θ(0) = θ0(λ), and∫
Ω
θ′(t) η dx+

∫
Ω
K(t,∇θ(t)) · ∇η dx+

∫
ΓC

ρ2(t) η dΓ +

∫
Ω
Rε(u(t)) η dx

+

∫
Ω
ψ(t, θ(t)) η dx =

∫
Ω
ρ1(λ, t) η dx for all η ∈ E, a.e. t ∈ I,∫

Ω
E(t, ε(u(t))) · (ε(v)− ε(u(t))) dx+

∫
ΓC

pν(t, θ(t)) j
0(uν(t); vν − uν(t)) dΓ

+

∫
ΓC

p(t, θ(t))(vν − uν(t)) dΓ +

∫
ΓC

µ p(t, θ(t)) (∥vτ∥ − ∥uτ (t)∥) dΓ

≥ ⟨g(λ, t),v − u(t)⟩ for all v ∈ K, a.e. t ∈ I.

Problem 4.2 couples the parabolic differential equation for the temperature with a time dependent
variational-hemivariational inequality for the displacement field.

Theorem 4.3. Assume hypothesesH(E),H(R),H(K),H(ψ),H(pν),H(p),H(µ),H(j), (H0) and the
smallness conditions

mE > max{Lϱ p
∗
ν ∥γ∥2, 12} (4.22)

Then, for any λ ∈ Λ, Problem 4.2 has a nonempty and compact set of solutions S(λ) inWw × L2(I;V )w
and

K(Ww × L2(I;V )w)– lim sup S(λn) ⊂ S(λ) for all λn → λ in Λ. (4.23)

Proof. We will use the following functional framework: E, V , H and H are defined by (4.14), Z =
X = L2(ΓC) and K is given by (4.19). Let the operators A : I × E → E∗, f : Λ × I × H → H ,
G : I → L(V,H), B : I ×H × V → V ∗ and functions J : I × Z ×X → R, φ : I × Z × V → R be
defined by

⟨A(t, v), η⟩ = ⟨K(x, t,∇v),∇η⟩L2(Ω;Rd) + ⟨ρ2(t), η⟩X for v, η ∈ E, a.e. t ∈ I, (4.24)

f(λ, t, v)(x) = −ψ(x, t, v(x)) + ρ1(λ, t) for v ∈ H, a.e. t ∈ I, (4.25)

G(t)v = −R(ε(v)) for v ∈ V, a.e. t ∈ I, (4.26)

⟨B(t, w,u),v⟩ = ⟨E(t, ε(u)), ε(v)⟩H for w ∈ H,u,v ∈ V, a.e. t ∈ I, (4.27)

J(t, z, v) =

∫
ΓC

pν(t, z) j(v) dΓ for z ∈ Z, v ∈ X, a.e. t ∈ I, (4.28)

φ(t, z,v) =

∫
ΓC

(p(t, z) vν + µ p(t, z) ∥vτ∥) dΓ for z ∈ Z, v ∈ V, a.e. t ∈ I. (4.29)

Moreover, let δ : E → Z and γ : V → X be the trace and the normal trace operators, respectively, i.e.,
δ(θ) = θ for θ ∈ E, and γv = vν for v ∈ V , and ⟨·, ·⟩X denote the inner product in X .

With the above notation, we consider the inequality problem associated with Problem 4.2.

Problem 4.4. Find θ ∈ W and u ∈ L2(I;K) such that

θ′(t) +A(t, θ(t)) = f(λ, t, θ(t)) +G(t)u(t) a.e. t ∈ I,

⟨B(t, θ(t),u(t))− g(λ, t),v − u(t)⟩+ J0(t, δθ(t), γu(t); γ(v − u(t)))

+φ(t, δθ(t),v)− φ(t, δθ(t),u(t)) ≥ 0 for all v ∈ K, a.e. t ∈ I,

θ(0) = θ0(λ).
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We will verify hypotheses H(A), H(f), H(B), H(G), H(J), H(K), H(φ), H(δ, γ) and H(g, w0)
of Theorem 2.3.

For the hypothesesH(A) we follow the lines of the proof in [14, Theorem 15] to deduce thatH(A)(c)
holds with a0(t) = c ∥k0(t, ·)∥H + ∥ρ2(t, ·)∥X , a0 ∈ L2(I) and c, c0 > 0, andH(A)(d) is satisfied with
a2 := αK/2 and a1(t) := (c ∥ρ2(t, ·)∥X)2/(2αK), a1 ∈ L1(I), c > 0.

Next, we will show that the operator f defined by (4.25) satisfies H(f). By the definition of f , we
know that for all v, z ∈ H , λ ∈ Λ, a.e. t ∈ I , we have

⟨f(λ, t, v), z⟩H = −
∫
Ω
(ψ(x, t, v(x)) + ρ1(λ,x, t)) z dx.

By the Fubini theorem t 7→ ⟨f(λ, t, v), z⟩H is measurable for all v, z ∈ H , λ ∈ Λ. In a consequence,
t 7→ f(λ, t, v) is weakly measurable for all v ∈ H . Due to the separability of H , from the Pettis
measurability theorem, the function t 7→ f(λ, t, v) is also measurable for all v ∈ H . Therefore,H(f)(a)
holds. H(f)(b) holds by H0. The conditions H(f)(c) and (d) follow easily from hypotheses H(ψ)(2)
and (3), respectively.

Now, we will verify condition H(B). We choose u0 = 0 ∈ K . By H(E)(4) and (5), we have
E(x, t, ε) · ε ≥ mE ∥ε∥2 for all ε ∈ Sd, a.e. (x, t) ∈ Q. From this condition, we obtain

⟨B(t, η,v),v⟩ ≥ mE∥v∥2 (4.30)

for a.e. t ∈ I , all η ∈ H , v ∈ V . Moreover, we apply [19, Theorem 7.3] to deduce that v 7→ B(t, η, v)
is bounded, strongly monotone and continuous for all η ∈ H , a.e. t ∈ I . Hence, it is pseudomonotone,
see [19, Theorem 3.69]. Thus, H(B)(a) is satisfied.

We will check H(B)(b). From H(j), it follows that j is a C1 function. Thus, j is (Clarke) regular
which implies that ∂j(r) = j′(r) = ϱ(r) for r ∈ R and

j0(r; s) = max{ξs | ξ ∈ ∂j(r)} = ∂j(r)s = ϱ(r) s for all r, s ∈ R.

We are in a position to apply [19, Theorem 3.47(i)-(iii)] to infer that H(J)(b) is satisfied, and since j is
regular, J(t, z, ·) is also regular and

J0(t, z, v;w) =

∫
ΓC

pν(t, z)j
0(v;w) dΓ, ∂J(t, z, v) =

∫
ΓC

pν(t, z)∂j(v) dΓ (4.31)

for all z ∈ Z , v, w ∈ X , a.e. t ∈ I . By [19, Theorem 3.47(v)] for all u∗ ∈ ∂J(t, z, γu), u ∈ V , we can
find ζ : ΓC → R such that ζ(x) ∈ pν(t, z(x))∂j(γu(x)) for a.e. x ∈ ΓC and

⟨u∗, v⟩X∗×X =

∫
ΓC

ζv dΓ for v ∈ X.

Recall that γ : V → X is the normal trace operator defined by γv = vν for v ∈ V . Hence, we deduce
u∗(x) = pν(t, z(x))ϱ(γu(x)) a.e. x ∈ ΓC , and

|⟨u∗, γv⟩X∗×X | ≤ p∗ν ϱ1
√

|ΓC | ∥v∥L2(ΓC ;Rd) ≤ p∗ν ϱ1 c
√

|ΓC | ∥v∥ (4.32)

for all v ∈ V , where c > 0. From (4.30) and (4.32), we have

⟨B(t, η,v),v⟩+ inf
ξ∈∂J(t,z,γv)

⟨ξ, γv⟩X∗×X ≥ mE∥v∥2 − p∗ν ϱ1 c
√
|ΓC | ∥v∥ (4.33)

for a.e. t ∈ I , all η ∈ H , v ∈ V , with c > 0. Hence, we deduce H(B)(b).
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Subsequently, from the strong monotonicity of v → B(t, η,v) and the inequality

|⟨∂J(t, z, γv1)− ∂J(t, z, γv2), γ(v1 − v2)⟩X∗×X |

≤
∫
ΓC

pν(t, z(x))(ϱ(v1ν)− ϱ(v2ν))(v1ν − v2ν) dΓ

≤ p∗νLϱ

∫
ΓC

|v1ν − v2ν |2 dΓ ≤ p∗νLϱ∥γ∥2∥v1 − v2∥2

for all v1, v2 ∈ V , z ∈ Z , a.e. t ∈ I , we have

⟨B(t, η,v1)−B(t, η,v2),v1 − v2⟩+ ⟨γ∗∂J(t, z, γv1)− γ∗∂J(t, z, γv2),v1 − v2⟩

≥ (mE − p∗νLϱ∥γ∥2)∥v1 − v2∥2.

Hence, by (4.22), we obtain H(B)(c).
Next, let (t, η,u) ∈ I ×H × V , {tn} ⊂ I , tn → t, {ηn} ⊂ H , ηn → η in H , {un} ⊂ V , un → u in

V . Then, for any v ∈ V , we have

|⟨B(tn, ηn,un)−B(t, η,u),v⟩| = |⟨E(tn, ε(un))− E(t, ε(u)), ε(v)⟩H|

≤ ∥E(tn, ε(un))− E(t, ε(u))∥H∥ε(v)∥H = ∥E(tn, ε(un))− E(t, ε(u))∥H∥v∥,

which together with H(E)(2) implies

∥B(tn, ηn,un)−B(t, η,u)∥V ∗ ≤ ∥E(tn, ε(un))− E(t, ε(u))∥H → 0.

Hence, since (t, η,u) ∈ I ×H × V is arbitrary, we deduce H(B)(d). Then, from condition H(E)(3),
by the Hölder inequality, it is easy to find that

∥B(t, η,u)∥V ∗ ≤
√
2∥ã0(t, ·)∥H +

√
2ã2∥u∥

for a.e. t ∈ I , all η ∈ H , u ∈ V , Hence, H(B)(e) is verified with c0(t) =
√
2∥ã0(t, ·)∥H , c1 = 0, and

c2 =
√
2ã2.

Subsequently, we use hypothesis H(R) to deduce that

∥G(t)(v)∥2H ≤
∫
Ω
|R(x)ε(v(x))|2 dx ≤ c

∫
Ω
∥ε(v)∥2Sd dx = c ∥ε(v)∥2H = c ∥v∥2

for all v ∈ V , a.e. t ∈ I with a constant c > 0. Thus, it is clear that H(G) holds.
ConditionH(J)(a) is a consequence of the Fubini theorem. Also, similarly as in (4.32), one can easily

obtain H(J)(c) while conditions H(J)(d)-(e) are a consequence of calculations proved in [14, Theorem
15]. It is clear that the set K of unilateral constraints defined by (4.19) satisfies H(K).

We shall verify that the functional φ defined by (4.29) satisfiesH(φ). We can use the Fubini theorem
again to deduce that t 7→ φ(t, z,v) is measurable for all z ∈ Z , v ∈ V , i.e., H(φ)(a) holds. The
condition H(φ)(b) is clearly satisfied. Since φ(t, z,0) = 0 for a.e. t ∈ I , all z ∈ Z , the condition
H(φ)(c) holds. From H(p)(3), H(µ) and Hölder’s inequality, we get

|φ(t, z, v)| ≤ p∗
∫
ΓC

|vν | dΓ + µ∗p∗
∫
ΓC

∥vτ∥ dΓ ≤ p∗
√
|ΓC |∥v∥L2(ΓC) + µ∗p∗

√
|ΓC |∥v∥L2(ΓC).

Moreover, by Young’s inequality, we have

|φ(t, z, v)| ≤ 1
2 |ΓC |

(
p∗∥γ∥(1 + µ∗)

)2
+ 1

2 ∥v∥
2
V .

Hence, φ(t, z, v) ≥ a3(t) + b3∥v∥2V with a3 = −1
2 |ΓC |

(
p∗∥γ∥(1 + µ∗)

)2 and b3 = −1
2 . By the

smallness condition (4.22), we deduce H(φ)(d). To verify H(φ)(e), let {tn} ⊂ I , tn → t, {zn} ⊂ Z ,
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zn → z in Z , {un} ⊂ V , un ⇀ u in V , and v ∈ V . From H(p) and H(µ), we have

lim sup (φ(tn, zn,v)− φ(tn, zn,un)) ≤ Lp lim sup ∥zn − z∥Z(∥v∥X + ∥un∥X)

+ lim sup
(∫

ΓC

p(tn, z)vν dΓ
)
+ lim sup

(
−
∫
ΓC

p(tn, z)unν dΓ
)

+µ∗Lp lim sup ∥zn − z∥Z(∥v∥X + ∥un∥X)

+ lim sup
(∫

ΓC

µp(tn, z)∥vτ∥ dΓ
)
+ lim sup

(
−
∫
ΓC

µp(tn, z)∥unτ∥ dΓ
)

≤ lim supφ(tn, z,v)− lim inf φ(tn, z,un) ≤ φ(t, z,v)− φ(t, z,u),

which entailsH(φ)(e). We will showH(φ)(f). Let z ∈ L2(I;V ), {ηn} ⊂ L2(I;Z), ηn → η inL2(I;Z),
{un} ⊂ L2(I;V ) with un ⇀ u in L2(I;V ). Then, from H(p), H(µ) and Hölder’s inequality, we have

∫ T

0

(
φ(t, ηn(t), z(t))− φ(t, ηn(t),un(t))

)
dt

=

∫ T

0

∫
ΓC

(
[p(t, ηn(t))− p(t, η(t))]zν + p(t, η(t))zν

)
dΓdt

+

∫ T

0

∫
ΓC

[p(t, η(t))− p(t, ηn(t))]unν − p(t, η(t))unν dΓdt

+

∫ T

0

∫
ΓC

(
µ[p(t, ηn(t))− p(t, η(t))]∥zτ (t)∥+ µp(t, η(t))∥zτ (t)∥

)
dΓdt

+

∫ T

0

∫
ΓC

(
µ[p(t, η(t))− p(t, ηn(t))]∥unτ (t)∥ − µp(t, η(t))∥unτ (t)∥

)
dΓdt

≤ Lp

∫ T

0

∫
ΓC

|ηn(t)− η(t)| zν dΓdt+
∫ T

0

∫
ΓC

p(t, η(t))zν dΓdt

+Lp

∫ T

0

∫
ΓC

|ηn(t)− η(t)|unν dΓdt−
∫ T

0

∫
ΓC

p(t, η(t))unν dΓdt

+Lpµ
∗
∫ T

0

∫
ΓC

|ηn(t)− η(t)| ∥zτ (t)∥ dΓdt+
∫ T

0

∫
ΓC

µp(t, η(t))∥zτ (t)∥ dΓdt

+µ∗Lp

∫ T

0

∫
ΓC

|η(t)− ηn(t)|∥unτ (t)∥ dΓdt−
∫ T

0

∫
ΓC

µp(t, η(t))∥unτ (t)∥ dΓdt

≤ Lp∥ηn − η∥L2(I;Z)

(
∥zν∥L2(I;L2(ΓC ;Rd)) + ∥unν∥L2(I;L2(ΓC ;Rd))

)
+Lpµ

∗∥ηn − η∥L2(I;Z)

(
∥z∥L2(I;L2(ΓC ;Rd)) + ∥un∥L2(I;L2(ΓC ;Rd))

)
+Φ(η, z)− Φ(η,un)

≤ c ∥ηn − η∥L2(I;Z) +Φ(η, z)− Φ(η,un),

where c > 0 is a constant and the functional Φ: L2(I;Z)× L2(I;V ) → R is defined by

Φ(z,v) =

∫ T

0
φ(t, z(t),v(t)) dt for (z,v) ∈ L2(I;Z)× L2(I;V ).
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Note that, by Fatou’s lemma, we know that Φ(z, ·) is convex and weakly lower semicontinuous on
L2(I;V ) for all z ∈ L2(I;Z). Using this property and passing to the upper limit, we have

lim sup

∫ T

0

(
φ(t, ηn(t), z(t))− φ(t, ηn(t),un(t))

)
dt

≤
∫ T

0

(
φ(t, η(t), z(t))− φ(t, η(t),u(t))

)
dt

which proves H(φ)(f).
It is clear that the normal trace γ ∈ L(V,X) is a compact operator. We refer to [20, Theorem 2.18,

p.59] for the proof that the Nemitsky operator δ̃ : W → L2(I;Z) corresponding to the trace operator
satisfies H(δ, γ). The condition H(g, w0) is a consequence of definition (4.16) and hypothesis (H0).
Finally, since J(t, z, ·) is Clarke regular for all z ∈ Z , a.e. t ∈ I , see (4.31), we conclude that Problems 4.4
and 4.2 are equivalent. Therefore, invoking Theorem 2.3, we know that Problem 4.2 has a solution
(θ,u) ∈ W× L2(I;K). This completes the proof of the theorem. □

To conclude, we say that a quadruple of functions (u,σ, θ, q) which satisfies (4.3) and (4.4), and the
equation and inequality in Problem 4.2 is called a weak solution to Problem 4.1. Under the hypotheses
of Theorem 4.3, we deduce the following regularity of the solution of Problem 4.1:

u ∈ L2(I;K), σ ∈ L2(I;L2(Ω;Sd)), Divσ ∈ L∞(I;L2(Ω;Rd)),

θ ∈ L2(I;E), θ′ ∈ L2(I;E∗), q ∈ L2(I;L2(Ω;Rd)), div q ∈ L2(I;L2(Ω)).

In what follows we deal with a class of optimal control problems for the differential variational
inequality formulated in Problem 4.2. In the optimal control problem, one seeks to determine the pa-
rameters describing the density of volume force g0(λ), the density of heat sources ρ1(λ) in Ω, the
density of surface tractions gN (λ) on the part ΓN , and the initial temperature θ0(λ) in Ω, in such a
way that a given cost functional is minimized. In this way we are lead to a distributed optimal control,
to a boundary control, and to a control in initial conditions, see the classical monographs [2, 10, 29, 30].

We apply Theorem 3.3 to deduce the following result.

Corollary 4.5. Under the hypotheses of Theorem 4.3, H(F) and H(Λad), the control problem: Find
λ∗ ∈ Λad such that

m(λ∗) = inf{m(λ) | λ ∈ Λad} with m(λ) := inf{F(λ, θ,u) | (θ,u) ∈ S(λ)}, (4.34)

where S(λ) ⊂ W× L2(I;V ), for λ ∈ Λ, denotes the solution set to Problem 4.2, is solvable.

A variety of optimal control problems for the contact model in Problem 4.2 can be formulated as in
(4.34). The cost functionals can be provided based on Example 3.4. We restrict to some particular simple
choices met in applications.

The typical examples of the cost, met in applications, are based on the output least-squares formu-
lation and are the following.

F(λ, θ,u) =

∫
I

(
ρ0

∫
ΓC

|uν(t)− d1(t)|2 dΓ + ρ1

∫
ΓC

|θ(t)− d2(t)|2 dΓ
)
dt,

where elements d1, d2 ∈ L2(I;L2(ΓC)) are prescribed. With this choice of the objective functional,
we look for a parameter λ ∈ Λad such that the corresponding penetration (displacement uν in the
normal direction) of the elastic body over the total time interval is as close as possible to the “desired
penetration” d1 = d1(t), and the temperature θ lies as close as possible to the value d2 = d2(t).

F(λ, θ,u) =

∫
I

(
ρ2

∫
Ω
∥ε(u)∥2Sd dx+ ρ3

∫
ΓN

|gN (λ, t)− d3(t)|2 dΓ
)
dt,
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where d3 ∈ L2(I;L2(ΓN )) is given. The first term corresponds to the minimization of the deformation
of the body over the time interval, while in the second term we require that the surface traction density
gN = gN (λ, t) is close to an available element d3 = d3(t).

F(λ, θ,u) = ρ4

∫
I

∫
Ω
∥u(x, t)− ud∥2Rd dx dt+ ρ5 ∥θ(T )− d4∥2H

where ud ∈ L2(I;L2(Ω;Rd)) is given. With this cost functional we would like to minimize two
components, ud is the desired displacement profile, d4 is the desired temperature one wishes to achieve
at the final time t = T . In the above examples, a compromise policy between the various goals has
to be found and the relative importance of each criterion with respect to the other is expressed by the
choice of the weights ρi ∈ L∞(I)+, i = 0, . . . , 5.

5. Comments on further research

The research of this paper can be continued in several directions. First, we have touched per-
turbations neither in the constraint set nor the differential operators of the differential variational-
hemivariational inequality. It would be interesting to study the stability result and optimal control when
A, B and K depend on the control parameter as well. Second, another open research direction is to
examine the stability with respect to the constraint set to differential quasi-variational-hemivariational
problems, when the constraint set is solution dependent. Third, other optimal control problems which
are of practical importance are worth to be investigated, for instance, time optimal control problems,
maximum stay control problems, etc., see [3] for instance, as well as the variational-hemivariational
inequalities involving history-dependent operators, see [27], and the references therein.

Finally, since the set of measured data in an optimal control problem comes, in general, from the ex-
periments, it naturally fraught with errors and contain perturbations. Therefore, it would be interesting
to study the variational sensitivity of control problems answering the question what happens to the set
of optimal solutions to the control problem when the cost functional, involving noisy or contaminated
data, is subjected to perturbations. For this issue some ideas of [9, 13] can be used.

Statements and Declarations

The authors declare that they have no conflict of interest, and the manuscript has no associated data.

Acknowledgments.

The project is supported by the European Union’s Horizon 2020 Research and Innovation Programme
under the Marie Skłodowska-Curie grant agreement No. 823731 CONMECH, the Ministry of Sci-
ence and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and
440328/PnH2/2019, and the National Science Centre of Poland under Project No. 2021/41/B/ST1/01636.

References
[1] E. J. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functionals, Non-

linear Analysis: Theory, Methods & Applications, 11(12):1399–1404, 1987.
[2] V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishers, London, 1984.
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