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TWO-STEP INERTIAL BREGMAN PROJECTION ITERATIVE ALGORITHM FOR SOLVING
THE SPLIT FEASIBILITY PROBLEM
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ABSTRACT. In this paper, we propose a new two-step inertial Bregman projection iterative algorithm
by Halphern iterative method to solve the split feasibility problem in real Hilbert spaces. We give two
selection strategies of stepsizes and prove that the proposed iterative sequence convergents strongly to
solution of the split feasibility problem. Our results extend and improve the corresponding results.
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1. INTRODUCTION

The split feasibility problem (SFP) was firstly introduced by Censor and Elfving [5] for modelling
some inverse problems. Since then, it has played an important role in many real-world application
problems, such as signal processing, image reconstruction [4] and radiation therapy [6, 7]. Let H;
and Hy be real Hilbert spaces and let A : Hy; — Hj be a bounded linear operator. The SFP can
mathematically be formulated as the problem of finding a point ¢ with the property

b€ C and Ad € Q, (1.1)

where C' and () are nonempty closed convex subsets of H; and Ho, respectively. In particular, when
@ = {b}, the SFP (1.1) becomes the following convex constrained linear inverse problem:

<Z>€C and A¢E:b.

For solving the SFP (1.1), Byrne [4] introduced the following well-known CQ algorithm which gen-
erates iterative sequence {¢,,} by

Pmi1 = Po(l — oA (1 — PQ)A)¢ma (1.2)

where o, € (0, %) with o being the spectral radius of the operator A* A, Pc and Py are the projections
onto C' and @), respectively.

We assume that the SFP (1.1) is consistent(i.e., problem (1.1) at least has a solution) and use © to
denote the solution set of the SFP (1.1), i.e.,

O={pecC:AdecQ}.

We know that © is nonempty, closed and convex subset. And qg € O if and only if g% is the solution of
the following fixed point equation:

¢ = Po(I — 0 A*(I — Pg)A)d,
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where o > 0. This implies that we can use fixed point algorithms (see [1, 8, 11, 21, 22]) to solve the SFP
(1.1).

Let C be a nonempty closed convex subsets of H and let f : C' — C be a contractive mapping.
In [19], Moudafi proposed the following viscous iterative algorithm to solve the fixed point of the
nonexpansive operator:

¢m+1 == tmf((bm) + (1 - tm)T¢m7 (1~3)

where T' : C' — C is a nonexpansive operator and {t,,} C [0,1]. Moreover, we got the strong
convergence result of the algorithm (1.3).

It is observed that, in the CQ algorithm (1.2), the stepsize o,,, depends on the bounded linear operator
(matrix) norm || A|| (or the largest eigenvalue of A* A). It is not always easy in practice to compute the
matrix norm of A. To avoid this difficulty, there have been many self-adaptive algorithms where the
stepsize dose not depend on the norm of the bounded linear operator A. In [16], Lopez et al. improved
CQ algorithm (1.2) by selecting the following stepsize:

o Pult(dm)
VA2

where inf,, ppm (4 — pm) > 0and h(¢) = 3[/(I — Po)Ag|>

In optimization theory, the inertial technique is an important method to speed up the convergence
rate. In [10], Dang proposed the inertial relaxed CQ algorithm for solving the SFP (1.1) in Hilbert spaces,
which is formulated as

Om = Om + T (Pm — dm-1),
Pmi1 = Pe,, (pm — omA* (I — PQm)ASOM)a

where o, € (0, %) for all m > 1 and o is the spectral radius of the operator A*A4, 0 < w,, < @y,
and,

@y, = min{w

1
T e e ey
In [15], Wang et al. gave the adaptive inertial relaxed CQ algorithm for solving the problem the SFP
(1.1) in Hilbert spaces, which is generated as follows:

{som = Om + @b — dm-1),
Omi1 = P, (om — omA*(I — Py, )Apm),
where
Crn = {u € Hy : (o) + (O, u = o) + 5 = o[> < 0O},

~ B
Qm = {U € Hy: Q(A‘Pm) + (M, v — A90m> + 5”” - A‘P?ﬂ”2 < 0}7

and ¥, € 9c(pm), Mm € 0q(Apy,). Besides, ¢ : Hi — R and q : Hy — R are convex and lower
semi-continuous functions, 0 < w,,, < @, Wy, is chosen by

. O
o = 4 T e S e P # O
w, otherwise.

The o,,, can be selected as follows:

Sm _
0’ (I - PQm)ASOTTL = 0)
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where Y00 1 ¢, = 00, > o0_; 62, < 00,
As we all know, the SFP (1.1) can be converted to the variational inequality problem. The variational
inequality problem (VIP) is to find a point ¢ € C such that

<F(]A5, z— czAS) >0, VzeC, (1.4)

where C' is a nonempty closed and convex subset of H and F' : C' — H is an operator. Indeed, let

1
W) = 31 ~ Po)Ad?.
Then for the following convex minimization problem

min h(®),

the objective function h is differentiable and its gradient
Vh(p) = A*(I — Pg)A¢.
So, the SFP (1.1) becomes the following VIP:
(A*(I — Pg)A¢,z — ¢) >0, Yz € C.

It is known that the application of the Bregman distance is more flexibility than selection of projec-
tions. Many authors introduced Bregman projection methods to solve optimization problems. Let the
function e : H — R be a-strongly convex, Fréchet differentiable and bounded on bounded subsets of
H. In [20], Sunthrayuth et al. proposed the following Bregman projection algorithm for solving the
VIP (1.4):

¥m = Hi(ve)il(ve(qu) —omFom),
Sm+1 = (V&) (Ve(pm) — om(Fpm — Fom)),
where F' : H — H is pseudo-monotone, IIZ.(¢) is the Bregman projection with respect to e of ¢ €

int(dom €), om41 is chosen by

3 | $m —@m I+l Pm+1—@ml? : _ _
Ol = { mln{ﬂ 2(F $rm—F pm bt 1—m) 70'm}a if <F¢m F@ma‘bm—l—l SOm> > 0,

Om, otherwise

and i € (0, «). In [14], Sunthrayuth et al. proposed the following Bregman projection relaxed inertial
subgradient extragradient algorithm for solving the VIP (1.4):

um = (Ve)* (Ve(dm) + @m(Ve(dm—1) — Ve(dm))),

om = HE(Ve) (Ve(um) — omFum),

T ={¢ € H: (Ve(um) — omFum — Ve(om),d — om) < 0},
zm =105, (Ve)*(Ve(um) — omFum),

Om+1 = (Ve)* (knVe(d1) + (1 — k) (Ve(zm)),

where m > 1, {kp,} € (0,1), 0 < @y, < @y, and,

T = { min{®, oz e if Vel$m-1) # Ve(dn),

(

w, otherwise.
Besides, 0,,, = 71°™, with s,, is the smallest nonnegative integer satisfying

T [ Fty, — Foom || < pllum — @mll,
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and F' : H — H is pseudo-monotone and uniformly continuous on H.

In [13], Hao and Zhao proposed the following Bregman projection algorithm for solving the SFP
(1.1):

Omr1 =5(Ve) " (Ve(dm) — omA*(I — Po)Admm), (1.5)
where 0, > 0. If0 < liminf,;, 00 0y, < limsup,,, o Om < Hiﬁ’ then the sequence {¢,, } generated
by algorithm (1.5) converges weakly to a solution of the SFP (1.1).

In this paper, two-step inertial Bregman projection iterative algorithms are given to solve the split
feasibility problem. The paper is organized as follows. Some definitions and notions are presented in
Section 2. New two-step inertial Bregman projection iterative algorithms are proposed in Section 3
and Section 4. Two selection strategies of stepsizes are constructed and the convergence results are
obtained.

2. PRELIMINARIES

Let H be areal Hilbert space, C' be a nonempty closed convex subset of H. Throughout this paper,
(+,-) denotes the inner product and || - || denotes the norm. — and — denote the strong convergence
and weak convergence, respectively. wy, (¢, ) denotes the weak limit set of {¢,, }. For each ¢ € H, the
projection Po¢ from H on to C' is the unique point in C' such that

Po¢ = argmin{|[¢ — ¢ : p € C}.
Lemma 2.1. Given ¢ € H and z € C. Then z = Po¢ if and only if, forall p € C
(¢ —z,p—2) <0. (2.1)

Definition 2.2. An operator 7' : H — H is said to be
(i) nonexpansive if
IT¢ =Tl <llé = ¢ll,
forall ¢, ¢ € H;
(ii) firmly nonexpansive if 21" — I is nonexpansive or, equivalently,
(=@, To—Tep) > ||Té - Tl
forall ¢, ¢ € H.

It is well known that both Po and I — P are firmly nonexpansive.

Definition 2.3. The Bregman bifunction B, : dom e X int(dom e) — [0,00) corresponding to the
convex and differentiable function e with its gradient Ve is defined by

Be(d,¢) = e(9) — e(p) — (Velp), ¢ — ).

The Bregman distance has the following important property called the three-point identity: for any
¢ € dom e and @, z € int(dom e)

Be(¢,¢) = Be(9, 2) — Be(p, 2) + (Ve(z) — Ve(p), ¢ — ). (2:2)
The Bregman projection with respect to e of ¢ € int(dom e) is denoted by IIS(¢) and

II5(¢) = argmin{B, (¢, ¢) : ¢ € C}.
Moreover, II¢ has the following property ([14]): for each ¢ € H,

Be(¢, g () 4+ Be(TIE(0), ) < Be(9, ), Vo € C. (2.3)
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Definition 2.4. The conjugate function of e is the function e* on H defined by

e (¢") = ;gg{w*,@ —e(@)}, V(o,¢") € H x H.

Definition 2.5. Let e : H — R be a Legendre function. Let G. : H x H — [0, 00) associated with e
be defined by

Ge(9,¢") :=e(¢) = (07, 0) +€7(¢7), ¥(9,¢7) € H X H.
We know the following properties (see [18]):

(1) Ge is nonnegative and convex in the second variable;
(2) Ge(¢, ¢*) = Be(, Ve™ (¢7)), V(¢,0") € H x H;
(3) Ge(9, ") + (¢, Ve (¢*) — ¢) < Ge(d™ + ¢, ¢), V(¢,¢") € H x H and o™ € H.

Since (G, is convex in the second variable, it follows that, for all z € H,
Be(z, Ve (Z11:Ve(:) < B/t Be(2, 1), (2.4)
where {¢;}Y, € Hand {;}Y, c [0,1] with "N ¢, = 1.

Lemma 2.6. ([3]) For each ¢ € H, z = I1S(¢) if and only if, for all p € C,
(Ve(z) — Ve(d),p — 2) > 0. (2.5)

Definition 2.7. A convex and differentiable function e is said to be a-strongly convex if there exists a
constant o > 0 such that

e(9) 2 e(i) + (Ve(p). 0 — o) + Sl — ¢l

for any ¢ € dom e and ¢ € int(dom e).

If the function e is a-strongly convex, from the definition of the Bregman distance, we get the fol-
lowing inequality:

Be(9,9) = Sllé— oIl (26)

Moreover, if e is assumed to be «a-strongly convex, Fréchet differentiable and bounded on bounded
subsets of H, then for any two sequences {¢,, } and {¢,,} in H, we have

Jim Be(bm, om) = 0= 1 {lgm —pml| =0= lim [[Ve(dn) = Ve(pn)| =0 (27)

Definition 2.8. An operator 7' : H — H is said to be demiclosed at origin if, for any sequence { ¢y, }
which weakly converges to ¢, the sequence {T'¢, } strongly converges to 0, then T'¢ = 0.

Lemma 2.9. Let E be a uniformly convex Banach space, K be a nonempty closed convex subset of E' and
T : K — K be a nonexpansive mapping. Then I — T is demiclosed at origin.

Lemma 2.10. ([17]) Let {a,, } be a nonnegative real sequence such that there exists a subsequence {n;}
of {n} such that a,, < an,+1 foralli € N, Then, there exists an increasing sequence {my} C N such
thatlimy_,oo my = 0o and the following properties are satisfied by all (sufficiently large) numbers k € N:

Ky, S Kmg+1 and RE S Rmg+1-

In fact, m = max{j < k:a; <aj1}.
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Lemma 2.11. ([9]) Let {an}, {Tm}, {0m} and {t,,} be nonnegative real sequences such that T, C
[0,1/2], im sup,,, o0 Sm < 0, 3507, 0m < 00, 22 tm = 00 and, for each m > no, (where ng is a
positive integer,

Am+1 < (1 —tm — 7-m)am + TmQm—1 + tmSm + 5m

Then, lim,;,—00 @ = 0.

3. MaiN Resurts: TWO-STEP INERTIAL BREGMAN PROJECTION ITERATIVE ALGORITHM

In this paper, the following assumptions are holds:

(A1) The function e : H; — R is a-strongly convex, Legendre, uniformly Fréchet differentiable, and
bounded on bounded of Hi;

(A2) Bounded linear operator A # 0;

(A3) The solution set O of the SFP (1.1) is nonempty.

Algorithm 3.1. (two-step inertial Bregman projection iterative algorithm for solving the SFP (1.1))
Choose two sequences {rkm } C (0,1) and {¥,,} C (0,400), where{V,,} and {rn,} satisfy

o o
E Um < 00, lim Ky =0, E Km = 00 (3.1)
m—r0o0
m=1 m=1

and
Um

lim — =0.
m—00 Ky,

Given w € [0, 1/2]. Select arbitrary starting points ¢o, 1, ¢p2 € H;.

Iterative step: Form > 2, choose tw,, and 7, such that0 < 7, < wy, < 1,0 < max{w,, Tm} < @n,
where

. Im
mln{w, Hve(d)m—l)*ve(d)m)||+||V€(¢m—2)*ve(¢m—l)H }7 ve(¢m—1) # V€(¢m)

Wm = or Ve(pm-2) # Ve(pm-1), (3:2)
w, otherwise.
Compute
om = (Ve)*(Ve(dm) + @m(Ve(dm-1) — Ve(dm)) + Tm(Ve(dm—2) — Ve(dn-1))),
Um = E(Ve) (Ve(om) — omA™(I — Po)Apm), (3.3)

m+1 = (Ve)* (knVe(o1) + (1 — £m)(Ve(ym))),
where o, > 0.

Remark 3.2. From (3.2), it is easy to see that max{w@,, Tim }([|Ve(dm—1) — Ve(dm)| + [|Ve(pm—2) —
Ve(pm-1)|]) < U, for all m € N. Since limy,, 00 z—: = 0, it follows that

i 25, T} (IVe(m1) = Ve(dm)l] + [Ve(dm) = Velom D) _ 0 Im _ o

m—»00 Km, m—o0 Ky,

[0

Theorem 3.3. If0 < liminf,, o 0 < limsup,, .. om < 124“2, then the sequence {¢.,} generated

[
by Algorithm 3.1 converges strongly to z € ©, where z = 11§ (¢1).
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Proof. First, we show that {¢;,} is bounded. Let € O and from (2.3)we can obtain,
Be(r,tm) =Be(r, IIL(Ve)* (Ve(pm) — omA™(I — PQ)Apm))

<Be(r, (Ve)*(Ve(pom) — omA™ (I — Po)Apm))
— Be(tm, (Ve)* (Ve(om) — omA™ (I — Po)Apm))

=Ge(r, (V)" (Ve(om) — omA*(I — Po)Apm))
— Ge(Ym, (Ve)*(Ve(pm) — omA™(I — Pq)Apm))

=e(r) — e(Ym) — (Ve(pm) — omA™(I — Po)Apm),7)
+ " (Ve(pm) — omA™ (I — Po)Apm)) + (Ve(om) — omA™(I — Po)Apm), ¥m)
—e*(Ve(pm) —omA™ (I — Po)Apm))

=e(r) — (Ve(pm), 1) + om (A" (I — Po)Apm, ) — e(¥m) + (Ve(om), ¥m)
— o (A (I — PQ)Apm, ¥m)

=e(r) — e(Ym) — e(pm) + e(om) — (Ve(om), 7 — om) — (Ve(om), om — ¥m)
+om( AN — PQ)Apm, T — ¢m)

=Be(r,0m) — Be(¥m, om) + om( A (I — PQ) Apm, T — ¥m)

=Be(r,om) — Be(¥m, om) + om( A (I — PQ)Apm, T — om)
+om( AL — PQ)Avm, om — ¢Ym).

(3.4)
Since Ar € @, from (2.1), we have
(Apm — PoApm, Ar — PoApn,) < 0.
So .
om( A (I — PQ)Apm,r — ©m)
=0m((I — PQ)Apm, Ar — App)
3.5
—om{(I — Po) A, Ar — PoAgm) + owm((I — Po)Apm, RoApm — Apm) (3.5)
< —onll(I - Po)Apnl.
For all ;4 > 0, we have
om{ AL — PQ)A¢m; om — ¥m) < om| AL — Po)Aem|l - lom — ¥mll
HOm 2 Om 2 (3.6)
< ——|A*(I — Pp)Ap,, —|lom — Um||”.
< B2 A1 = Po) Al + G2l
Substituting (3.5) and (3.6) into (3.4), the following result is hold:
Be(r,1m) < Be(r,om) — Be(Ym, om) — om|(I — PQ)A‘PmH2
HOm | 4« 2, Im 2
—||A* (I — Pp)Apm — |lom — Ym||*-
+ 1A% Q)<P||+2MH<P Ul
Using (2.6), it is easy to see
o Om 2
Belr ) < Belt ¢m) = Belthms o) = (1 = SIAIIT = Po) A + 522 Bt o)
Om 7
=Be(r, om) — (1 - /Ta)Be(wm’ Pm) = om(l — §||A||2)||(I — Po)Apn|*.
(3.7)

Since 0 < liminf,, 00 0 < limsup,,,_voo om < HZ‘%, we can take > 0 such that

1
—limsupo,, < u < .
O mose S AR
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Then
liminf o (1 — 2[|4]2) > 0 (3.8)
and
lim inf(1 — U—m) >0
1 1. o : (3.9)
From (3.8) and (3.9), we obtain
Be(r,Ym) < Be(r, om). (3.10)

From (2.4) and (3.3), it follows that

Be(T, QOm) = ( ( 6)*(V€(¢m) + wm(ve(¢m—1) - ve(d)m)) + Tm(ve(¢m—2) - ve<¢m_1)))
= B, ( ( 6)*((1 - wm)ve(¢m) + (wm - Tm)ve(gbmfl) + vae(d)me)))

(1 - wm)Be(ra ¢m) + (wm - Tm)Be(Tv ¢m—1) + TmBe(Ta (z)m—Q)
(3.11)
and so, from (3.10) and (3.11),

Be(r, om+1)
Be(r, (Ve)* (kmVe(or) + (1 = £m)(Ve(ym)))
<kmBe(r,d1) + (1 = K Be(r, 1)
<tmBe(r, 1) + (1 — Ki) Be(r, om)
<kmBe(r,d1) + (1 — E) (1 — @) Be(r, 0m) + (1 — K ) (0 — i) Be (7, dm—1)

( "Qm)Tm (7’, ¢m—2)
<Km e( 7¢1) (1 - /‘fm) max{(l - wm)Be(ra Qsm)a (wm - Tm)Be(Ta qufl)a TmBe(T7 ¢m72)}

<...<max{Bc(r,¢1), Be(r, ¢0)}.
(3.12)
Hence {B.(r, ¢)} is bounded. Applying (2.6), we have {¢,,} is bounded. So, {¢;,} and {¢,} are
bounded. Assume that z = IIg (¢1). From (3.7) and (3.11), we have

Be(z, ¢m+1) =Be(z, (Ve)* (kmVe(d1) + (1 — km)(Ve(dm)))
<tmBe(2, 1) + (1 — k) Be(2, ¥m)

<kmBe(z,61) + (1 = ki) Be(z, ) — (1 = ) (1 %)Bewm, om)

— o1 = k) (1 = SIAP) I = Po) Al
S/‘{mBe(za ¢1) + (1 - /fm)(l - wm)Be(Zy gbm) + (1 - ’Qm)(wm - Tm)Be(za ¢m71)
+ (1= K)o Be(2, bm—2) — (1 — i) (1 — %)Bewm om)

— oL = ko) (1 = SIAIP) (I = Po) A
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So
(1= R (1 — %)Bewm, o)+ om(l = ) (L= SIAIP) (I = Po)Agul

<tmBe(z,¢1) — Be(2, pm+1) + (1 — £m) (1 — @m) Be(2, ¢m) + (1 — ki) (@m — Tin) Be(2, pm-1)
+ (1 = Bm)TmBe(z, om—2)

=tmBe(z,$1) — Be(2, ¢mt1) + (1 — £im) Be(2, ¢m) — (1 — Km)@m Be (2, om)
+ (1 = Em)(@m — Tm) Be(2, dm—1) + (1 — )T Be (2, Om—2)

=Be(z, dm) — Be(2; dm+1) + (1 = £m)@im(Be(2, dm—1) — Be(z, ¢m))

+ (1 - K'm)Tm(Be(Zy ¢m—2) - BB(Z, ¢m—1)) + K'mK7
(3.13)

where K = sup,,>1{|Be(z, ¢1) — Be(2, dm)!}.
Now, two possible cases are considered to prove lim,, o, Be(z, ¢p,) = 0.

Casel. There exists N € N such that Be(z, ¢pp+1) < Be(z, o) for all m > N. Then the sequence
{Be(z, ¢m)} is convergent and

i (Bu(z,6m) — Be(z, dmin))
= m (Belz, 6mt) — Bolz.6m) = I (Belz, 6os) — Belz, b)) = 0.
It follows from (3.13) that limy, 00 Be(¥m, ©m) = liMy, o0 || (I — Pg)Awm || = 0. From (2.7) we have
im[[Ve(ihm) = Ve(om)|| = 0. (3.14)
Note that
IVe(@m1) — Velom)|| < [Ve(dma1) — Ve(om) [ + IVe(¥m) — Ve(om)|
= km|[Ve(dr) — Ve(m)| + [Ve(¥om) — Ve(om) |l
By (3.14), it can be obtained that

lim [[Ve(¢mi1) — Ve(om)| = 0. (3.15)

m—ro0

Since K, € (0,1), so

max{@m, Tm } ([ Ve(dm—1) = Ve(dm)|| + IVe(dm—2) — Ve(dm-1)]))
< max{wm, Tn }([Ve(gm-1) = Ve(dm)|| + [[Ve(dm-2) = Ve(dm-1)[)

Py bl
Rm

which implies that
im max{@n, 7} ([Ve(dm-1) — Ve(dm)ll + [ Ve(bm2) — Ve(@m-1)]) = 0.

Since
IVe(em) — Ve(om)||
<@m|Ve(dm-1) = Ve(dm)|| + mm[[Ve(dm—2) — Ve(dm-1)||
<max{w@wm, Tm }([|Ve(gm-1) — Ve(dn)|l + [[Ve(dm—2) — Ve(dm-1)|),
we have
im [[Ve(pm) = Ve(om)| = 0. (3.16)

It follows from (3.15), (3) and
[Ve(dmr1) = Ve(dm)|| < [Ve(dmir) = Velom)l| + [Ve(om) — Ve(dm)||
that lim,, 00 ||Ve(dmr1) — Ve(dm)|| = 0. We can obtain that
im [mi1 = dm|| = 0. (3.17)
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In fact, wy (¢y) # 0 since the sequence {¢y,} is bounded. Taking ¢ € wy, (¢ ), we know that there
exists a subsequence {¢y, } of {¢,} and ¢, — ¢ € C,

limsup(Ve(¢1) — Ve(z), ¢ — 2) = limsup(Ve(¢1) — Ve(z), o, — 2).

m—00 k—o0

From (3.16), we have ¢,, — (;AS Then Ay, — AQAS as k — oo. We know Fq is nonexpansive, by
Lemma 2.9 and limy, o ||(I — Pg)A@m|| = 0, A¢ is the fixed point of Py, so A¢ € Q and ¢ € ©.
Then, from (2.5), we obtain

limsup(Ve(¢1) — Ve(2), om — 2) = (Ve(dr) — Ve(2),d — 2) < 0.

m—00

It follows from (3.17) that
limsup(Ve(¢1) — Ve(2), dmi1 — 2) < 0. (3.18)

m—ro0

By the properties of G, we get

Be(z, omt1) =Ge(z, imVe(d1) + (1 — km)(Ve(dn)))

<Ge(z, kmVe(P1) + (1 — km)Ve(m) — km(Ve(op1) — Ve(z)))

+ km(Ve(d1) — Ve(z), dmi1 — 2)
=Ge(z,kmVe(2) + (1 = k) (Ve(¥m)) + km(Ve(dr) — Ve(2), dmir — 2)
=Bc(z,(Ve)" (kmVe(z) + (1 = £m)(Ve(¥m))) + km(Ve(d1) — Ve(z), dmi1 — 2)
<kmBe(z,2) + (1 = k) Be(2, ¥m) + km(Ve(d1) — Ve(z), pmi1 — 2)
<(1 = k) (1 — @) Be(z, dm) + (@m — Tm) Be(2, dm—1) + TmBe(2, dm—2))

+ km(Ve(¢1) — Ve(z), dmir — 2)

=1 = km — (1 = k) @m) Be(z, om) + (1 — Km) @mBe(2, pm—1)

)

(1 — Km Tm( (27 ¢m—2) — Be(za ¢m—1>) + /ﬁ:m<V€(¢1) - Ve(z), ¢m+1 — Z>
(3.19)
Using Lemma 2.11, (3.18) and limy;, 00 (Be (2, ¢m—2) — Be(2, dm—1)) = 0, we obtain

lim B.(z,¢m) = 0.

m—r0o0

S0 ¢y — z(M — 00).
Case2. There exists a subsequence {B¢(z, ¢, )} of {Be(z, ¢ )} such that

Be(z, ¢m;) < Be(z, om,;+1), Vi € N.
By Lemma 2.10, we know that there exists an increasing sequence {l } of N such that limy,_,~, lx; = 00,
Be(z,¢1,) < Be(z, ¢pj1) (3.20)
and
Be(z, %) < Be(2, d1,41) (3.21)
hold for all k£ € N. From (3.13), we can obtain that
(1= m)(1 = 28 Belln, 1) + o, (1= m, ) (1= AP ~ Po) A |

<Be(z,é1,) — Be(z, d1,41) + (1 — w1, )1, (Be(2, ¢, —1) — Be(z, 41,.)) (3.22)
+ (1 = k1 )7, (Be(2, b1y —2) — Be(z, dmy—1)) + ki, K,
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where K > 0. By the three-point identity (2.2), we have
| Be(2, d1,—1) — Be(2, ¢,
=| = Be(¢1,—1, ¢1,.) + (2 — ¢1,—1, Ve(gr,) — Ve(dy—1))]
<|{z — d1,—1, Ve(dr,) — Ve(dr,—1))]
<[IVe(¢r,) — Ve(y,—1) || M,
where M = supy>;{[/z — ¢1,—1||}. Then from (3.2), we obtain

Z wlk Z ¢lk 1) €(Z7¢lk))’ < Z wlknve(ﬁblk) - ve(¢lk—1)’|M

l=1 l=1

<Y IVeldr,) — Ve(dy—1) |1 M

=1
< 400.
From (3.24),we have
lim (1 - Klk)wlk( 6(27 gblk_l) - Be(z7 gblk)) =0,

k—o00
similar to (3.23), we have

lim (1 — Hlk)le (Be(Z7 ¢lk72) - Be(Z, (bmk—l)) = 0.

k—o0

Since limy_,o 7, = 0, from (3.22),
klggo Be(hlk7 (plk) = klggo H(I - PQ)AQOZkH =0.

So
lim ||Ve(h, ) — Ve(egy, )| = 0.
k—o0

Similar to Case 1, the following results hold:
Jm [[Ve(¢y41) = Vel(py, )|
—00

= lim [[Ve(gr,) - Ve(éy,)]| = lim [[Ve(d,41) = Ve(dr, )| =0

and
limsup(Ve(¢1) — Ve(z), di+1 — 2) < 0.

k—o0

And, it follows from (3.19) and (3.20) that

BG(Z, ¢lk+1) S(l - Hlk - (1 - K’lk)wlk (Z ¢lk) ( Hlk>wlkBe(z7 (blk*l)

+ (1 = k1, )71, (Be(2, @1y —2) — Be(2, ¢1,-1))
+ k1, (Ve(p1) — Ve(2), ¢ 41 — 2)
(1 - K’lk) ( ¢lk) + Ky, <V€(¢)1) ( )v ¢lk+1 - Z>

_(1 - K“lk) e(Z, ¢lk+1) + K, <V€(¢1> - €(Z>7 ¢lk+1 - z>

By ki, > 0 and (3.21), we have
Be(z,¢1) < Be(z,¢1,41) < (Ve(¢1) — Ve(z), by, 41 — 2).

Combining (3.26) and (3.27),
lim sup Be(2, ¢5) < 0

k—00

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

holds, which implies that lim sup;,_, ., Be(2, ¢x) = 0 and ¢, — z(k — 00). Combing Case 1 and Case

2, the sequence {¢, } converges strongly to z = IIg (¢1).
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Remark 3.4. If 7,,, = 0, Algorithm 3.1 becomes the following inertial Bregman projection iterative
algorithm for solving the SFP (1.1):

om = (Ve)* (Ve(dm) + mm(Ve(dm-1) — Ve(dm))),
Ym = g(Ve) (Velpm) — omA* (I — Pg) Apm),
Pm+1 = (Ve) (kmVe(o1) + (1 — km)(Ve(dm))),

where 0 < liminf,, o oy < limsup,,, oo om < Hiﬁ and 0 < w,, < @y, @y is chosen by the
following way:

T = { min{e, oz e i Ve(@n1) # Ve(dm),

w, otherwise.

4. Main Resurts: TWO-STEP INERTIAL BREGMAN PROJECTION ADAPTIVE ITERATIVE
ALGORITHM

In this section, we take self-adaptive stepsize to modify two-step inertial Bregman projection
iterative algorithm.

Algorithm 4.1. (two-step inertial Bregman projection adaptive iterative algorithm for solving the SFP

(1.1))

Choose two sequences {rm } C (0,1) and {¥,,} C (0,400), where{V,,} and {rn,} satisfy

oo oo
g Y, < 00, lim Ky, =0, g Km = 00
m—00
m=1 m=1

and

Given w € [0, 1/2]. Select arbitrary starting points ¢o, 1, ¢p2 € H;.

Iterative step: Form > 2, choose w,, and 7, such that0 < 7, < wy, < 1,0 < max{w,, Tm} < @mn,
where

. ﬂm
Wi, [5G, Ve Vet@n - Ve@m NV E(dm—1) # Ve(dm)

o = or Ve(dm-2) # Ve(én1), (41)
w, otherwise.
Compute
om = (Ve)"(Ve(dm) + @m(Ve(dm-1) — Ve(dm)) + Tm(Ve(dm—2) — Ve(dn-1))),
m = 1IE(Ve)* (Ve(pm) — omA*(I — Pg)Apm), (4.2)

Pmi1 = (Ve) (kmVe(1) + (1 = km)(Ve(Pm))),
where o, is chosen by
o g pallI=Pg,, ) Apm)|?
Om = mln{ ﬁ,A*(I_PZm)Aim)HZ ! Um—l} (I - PQm)A(pm 7é 07
@, (I = P, )Apm =0

(4.3)
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pall(I—Pg,) Aga |

with oy = HA*(]_PQQ)ASWHQ’

0<p<2

Lemma 4.2. o, defined by (4.3) is well-defined.

Proof. Takingy € ©,ie.,y € C, Ay € Q, since I — Py is firmly nonexpansive, we have
|A*(I = PQ)Awm| - [lom — yll 2(A™(I — PQ)Apm, om — y)
=((I = PQ)Apm, Apm — Ay)
>|(I - Po)Apm|*.
For ||(I — Pg)Apm|| # 0, we have ||A*(I — Pg)Apm]|| > 0, so o, is well-defined. O

Theorem 4.3. Let the sequence {¢,,} is generated by Algorithm 4.1. Then {¢,,} converges strongly to
z € ©, where z = IIg (¢41).

Proof. First, the sequence {¢;,} is bounded. As proved in Theorem 3.3, for 1z > 0, we can deduce that
Be(ra @Z’m) < Be(r, ‘Pm) - Be(@bma ‘Pm) - UmH(I - PQ)A‘Pm||2

e o (4.4)
+ =AM = Po)Apml® + = lom — tml>.
2 21
Using (2.6), we have
Be(ra ¢m)
[—Po)Apml*  py  om?2
<B - B oA — Po) A 2L =P ACm]" oy om 2
< Be(7, om) e(Vm, om) — om || A*( Q) ©Oml| (HA*(I—P )ASDmH2 2)+ 2% e(Vm, om)
Q
Om . o, (I = Po)Apml|®>  p
=B - (1-—)B — AY(I — Pp)A - =).
E(T’ gpm) ( IUOé) 6(77Z)m730m) Jm” ( Q) Som” (HA*(I_PQ)ASOmHQ 2)
(4.5)
: 2(|(I—Pg) Apm|? 2 : 2(|(I—Pg) Apm|? 2 o
Since TA*(I=Po) Apm]? > A > 0, then inf,, A (T=Po) Apm [P > TAT2 > 0. By the definition of o,

and 0 < p < 2 we have

I — Py)Agy|)? 2([(I — Pp)Apy|?
< o MU= PAARI 200~ Pl
2 [[A4*(T = Po)Agu[? ~ #m [A*(T = Po) Ay

m
(67

Since {0y, } is non-increasing and o, > ﬁ, we have lim,,, oo 0y, €xists, so

1. L2l = Po)Aeml)?
i om < I T B AP
Take p with élimm_mo Om < p < liminf,, %. Then,
.. Om
lgrl)lonof(l — M—a) >0 (4.6)
and
A*(I — Pp)A 2
liminf(1 — AT = PR Al 4.7)

m—00 2(|(I = Po)Agm|?
From (4.6) and (4.7), we obtain
Be(T7 @Z)m) < Be(r7 @m)'

Similar to Theorem 3.3, we can get that {B.(r, ¢»,)} is bounded. Applying (2.6), we have {¢,,} is
bounded and consequently {¢,, } and {1),,} are bounded. Let z = IIg(¢1). From (3.10) and (3.11), we
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have

Be(z, pmi1) =Be(z, (Ve) (kmVe(d1) 4 (1 — £m ) (Ve(ihm)))
SﬂmBe(Zv (bl) + (1 - ’im)Be(vam)
gKmBe(zv ¢1) + (1 - "{m)Be(zv @m)
pl(I = Po)Agm|?® 1 (48)
AT~ Py Agn ) P o)

L ) 2 I = Po)Agm|® g
(1 = &m)pa| (1 PQ)A@mH(||A*(I—PQ)Ag0mH2 2)’

—(1—rm)(1

This implies that
pll(1 = Po)Apml* 1

- - Be wmﬂom
[4° (T = Po) AP 1 eV #m)

I = Po)Apm|® 1
+ (1= km)pal|(I — Po)Apm|? -5 4.9
( m)peel|( Q) Oml| (||A*(I* PQ)ASOmHZ 2) (4.9)
SBe(Za ¢m) - Be(Z7 ¢m+l) + (1 - /fm)wm(Be(zu Qbm—l) - Be(Z7 Qbm))
+ (1 - Hm)Tm(Be(zy ¢m—2) - Be(Z7 ¢m—1)) + /imK7
where K = sup,,,>1{|Be(2, #1) — Be(z, om)|}.

Using the same arguments as in the proof of Case 1 and Case 2 of Theorem 3.3, we can show that
the sequence {¢,, } converges strongly to z = IIg (¢1). This completes the proof. O

(1 —km)(1

Remark 4.4. If 7, = 0, Algorithm 3.1 becomes the following inertial Bregman projection iterative
algorithm for solving the SFP (1.1):

om = (Ve) (Ve(dm) + mm(Ve(dm-1) — Ve(dn))),
Ym = g(Ve) (Velpm) — omA™ (I — Pg) Apm),
mt1 = (Ve) (kmVe(r) + (1 = km) (Ve(vm))),
where o, is chosen by (4.3) and 0 < w,;, < @, Wy, is chosen by the following way:

T = { min{e, oz ey i Ve(@n1) # Ve(dm),

w, otherwise.
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