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DIRECTIONAL DIFFERENTIABILITY OF THE METRIC PROJECTION IN BOCHNER
SPACES

JINLU L1**
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ABSTRACT. In this paper, we consider the Gateaux directional differentiability of metric projection op-
erator and its properties in uniformly convex and uniformly smooth Bochner space L, (S; X), in which
(S, A, p) is a positive measure space and X is a uniformly convex and uniformly smooth Banach space.
Let (arbitrary) A € A with ;1(A) > 0 and define a subspace Ly, (A; X) of L,,(S; X), which is considered
as a closed and convex subset of L,(S; X). We first study the properties of the normalized duality map-
ping in L, (S; X) and in L, (A; X). For any ¢ € L,(A; X) and r > 0, we define a closed ball B (c; )
in Ly(A; X) and a cylinder C's(c;r) in L,(S; X) with base Ba(c;r). Then, we investigate some op-
timal properties of the corresponding metric projections Pr,(a;x), PB 4 (c;r) @nd Po , (¢;r) that include
the inverse images, the Gateaux directional differentiability and the precise solutions of their Gateaux
directional derivatives.
Keywords. Bochner space, normalized duality mapping, metric projection operator, Gateaux direc-

tional differentiability of metric projection operator
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1. INTRODUCTION

In this paper, we always, otherwise stated, consider the (standard) metric projection in uniformly
convex and uniformly smooth Banach spaces (see [1, 8, 12, 16, 23]. Let ( Z, || - || ) be a real uniformly con-
vex and uniformly smooth Banach space with topological dual space (Z*, || - ||+). Let C' be a nonempty
closed and convex subset of Z. Let Pc : Z — (' denote the (standard) metric projection operator,
which is a well defined single-valued mapping, such that, for any x € Z, we have Pox € C satisfying

,forall z € C.

P is called the metric projection of point x onto C. Pox is considered as the best approximation
of = by elements of C, which is the closest point from x to C. For any y € C, the inverse image of y
by the metric projection P¢ in Z is defined by

|l — Pox| < |z - 2

Pil(y) ={r € X : Po(z) = y} .
In particular, if Z is a Hilbert space, then P has the following properties:
(i) The basic variational principle: for any z € Z and u € C,

u=Pex < (r—u,u—2z)>0foralzeC.

(ii) Pc is nonexpansive:

\|Pcx — Poyl| < ||z — yl|, for any z,y € Z.
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With help of the above properties, the directional differentiability of P in Hilbert spaces have been
studied by many authors (see [11, 13, 14, 18, 21, 24]).

However, the metric projection P¢ in a uniformly convex and uniformly smooth Banach space Z
does not enjoy the above simple basic variational principle (i) and the nonexpansive property (ii), in
general. Let Jz : Z — Z* be the normalized duality mapping in this uniformly convex and uniformly
smooth Banach space Z, which is a well-defined single-valued mapping (see [1, 29]). With the help of
Jz in uniformly convex and uniformly smooth Banach space Z, Pc has the basic variational principle:
foranyz € Zand u € C,

u=Pox < (J(z—u),u—z)>0forallzeC.

Since Jz is not a linear operator, it substantially increases the difficulty in studying the directional
differentiability of P¢ in uniformly convex and uniformly smooth Banach spaces. In [2, 6, 17, 25, 26, 30],
some types of directional differentiability are studied for some projection operators in Banach spaces,
which has been applied to approximation theory, convex program problems, optimal control problems,
and so forth (see [3, 4, 19, 20]).

Since Bochner spaces can be considered as special cases of Banach spaces, in this paper, we con-
centrate to study the directional differentiability of the metric projection in uniformly convex and uni-
formly smooth Bochner spaces. The definition of the directional differentiability follows that in [17].
We have more colorful properties of the directional differentiability of the metric projection in Bochner
spaces, which are extension of the results studied in [17] in uniformly convex and uniformly smooth
Banach spaces.

This paper is organized as follows. First, we review some concepts and properties of uniformly
convex and uniformly smooth Bochner spaces. Then, we study the properties and the representations
of the normalized duality mapping in some subspaces of Bochner spaces, which will be used to study the
properties of the metric projection in Bochner spaces (see [7, 15]). Let C be a closed and convex subset
of a uniformly convex and uniformly smooth Bochner space. In section 4, we will investigate some
properties and solutions of Pc. In section 5, following the definition in [17], we give the definition
of the directional differentiability of the metric projection operator and investigate some properties.
Then we find the precise representations of the directional derivatives of Pc. In sections 4 and 5, we
especially consider some special cases of C' : proper subspaces, closed balls and closed cylinders of
uniformly convex and uniformly smooth Bochner spaces. As applications of the results obtained in
sections 4 and 5, in section 6, we study the properties and solutions of the directional derivatives of P¢
in Hilbert spaces.

2. PRELIMINARIES

2.1. Uniformly convex and uniformly smooth Bochner spaces. In this section, we review some
concepts and properties of uniformly convex and uniformly smooth Bochner spaces (see [5, 7, 9, 10, 15,
22, 24, 28, 27, 31, 32]). Let (S, A, 1) be a positive measure space. Let (X, || - || x ) be a real uniformly
convex and uniformly smooth Banach space with topological dual space (X*, || - || x+). Let (-, -) denote
the real canonical evaluation pairing between X* and X. Forany A € Aand xz € X, let 1 4 ® x denote
the X -valued simple function on S defined by

(Lion) e =mss={ ¢ 105y

where 14 denotes the characteristic function of A on the space S. For an arbitrary given positive

integer n, let { Ay, As, ... A, } be a finite collection of mutually disjoint subsets in A with 0 < u (4;) <

oo, foralli = 1,2,...n. Let{x1,z9,...2,} C X andlet{ay,aq,...a,} beasetof real numbers. Then,
> ai (1a; ® ;) is called a pi-simple function from S to X (See Definition 1.1.13 in [15]).

forany s € S
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Throughout this paper, we take positive numbers p and ¢, with 1 < p, ¢ < oo satisfying % + % =1
Let (L,y(S; X), ]| - ||L,,(S;X)) be the Lebesgue-Bochner function space that is called the Bochner space
based on the measure space S and the Banach space X, which is a real uniformly convex and uniformly
smooth Banach space. More precisely speaking, L,(S; X) is the Banach space of yi-equivalent classes
of strongly measurable functions f : S — X with norm:

1l = < /S IIf(S)H?(du(S)> < o0 forl < p < o,

The dual space of (L, (S; X), || - [|1,(s:x)) i (Lq (S5 X*), || - ||, (85x+)) - In this paper, welet (-, -) 1,
denote the real canonical evaluation pairing between the uniformly convex and uniformly smooth
Bochner spaces L, (5; X*) and L,,(S; X). For easy referee, we list some properties of Bochner integrals
and Bochner spaces below.

®B1). || [s fdu| x < [s|Ifllxdp, for every f & Ly(S, X);

(B2). Every ¢ € L, (S, X*) defines a bounded linear functional ¢ € (L,(S; X))" by the formula

(: f)r, = /S (p(w), f())du(w), for every f € L,(S, X).

It satisfies

lll(z,(s:x)) = @/, (s;x+), for any ¢ € Lg (S, X™).
(Bs). L2(S; X) is a Hilbert space < X is a Hilbert space.
(B4). For an arbitrary A € A with 0 < u(A) < oo and for any z,y € X, we have

1

T (la®z) € Ly(S; X); (i)

n(A)»
1 1 .
T (la®a)+ T (la®y) = llz +yllx; (i)

p(A)» p(A)r Ly(S;X)
The mapping = — ! - (14 ® ) (isometrically) embeds X into L,(S; X). (iii)
p(A)»

See [5, 9, 15, 22, 28] for more properties and more concepts of Bochner spaces.
For the considered uniformly convex and uniformly smooth Banach space X, the normalized duality
mapping Jx : X — X" is a single-valued mapping satisfying

(Jxz, @) = |Txz]x- [lz]x = |k = | x|} . forany & € X.

The normalized duality mapping Jx in uniformly convex and uniformly smooth Banach space X
has many useful properties (see [1, 29] for more details). For example,

(i) Jx : X — X is one to one and onto;

(ii) Jx is a continuous;

(iii) Jx is a homogeneous operator;

(iv) Jx is uniformly continuous on each bounded subset of X.

In particular, for the real Banach space I, and L,(S), with 1 < p < oo, the normalized duality
mapping holds the following analytic representations.

(@) For any x = (t1,t1,...) € I, with z # 6,

p—1 p—2
(le.%') _ ’«Tn’ Slg:g (»rn) _ ‘xn‘ 725571’ forn=1,2,...
T el ol
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(b) For any h € L,(S) with h # 6,

_ I(s)I5 " sign(h(s)) _ [[h(s)I5 h(s)

—2 -2
1872 1nl 2

The normalized duality mappings in the uniformly convex and uniformly smooth Bochner space
L,(S; X) is denoted by J L,(5,x), Which is abbreviated as J, if there is no confusion caused. Then,
by the properties of normalized duality mappings, both Jx and J, are single valued, one to one and

(JLP(S)h) (s) Jforalls € S

onto continuous maps. The normalized duality mappings in the dual spaces X* and L, (S; X*) are
respectively denoted by Jx+ and J, if there is no confusion caused. They have the following properties
and analytic representations, which are proved in [7].

Corollary. (3.2 in [7]) Let A € A with 0 < u(A) < oo. Then, for any x € X with x # 0, we have

Jp(la®@x)(s) = (14 ® Jxx) (s), foralls € S.

It is equivalent to

1 1
JIp (1(1A®ZL‘)> (s) = T (la®Jxz)(s), forallse S
pu(A)r (A)a

Corollary. (3.3 in [7]) J, maps every p-simple function in L, (.S; X) to p-simple function in L, (S; X*)
with respect to the same partition in S. Moreover, for any given y-simple function - | (14, ® ;) in
L,(S;X), we have

n 1 n B
Ip (Z (14, ® J:Z)> (s) = — Z [EZ]E 2 (14, ® Jxx;) (s), foralls € S.

=1

(Z}Ll H%’H?{M(Aj))q Pi=1

Corollary. (3.4in [7])Forany f € L,(S; X), let { f,,} be a sequence of i-simple functions in L, (.S; X))
satisfying

fn— f,in L,(S; X),as n — oo.
Then {J, f } is a sequence of y-simple functions in L, (S; X*) such that

Ipfn = Jpf,in Ly (S; X™),as n — oo.

2.2. The function of smoothness of uniformly convex and uniformly smooth of Banach spaces.
For a uniformly convex and uniformly smooth Banach space (X, || -||) with topological dual space ( X*,
|| - ||« ), let S(X) be the unit sphere of X, that is, S(X) = {x € X : ||z|| = 1}. Then, it is well-known
that X is uniformly smooth if and only if the limit

e o] — |
t}0 t
exists uniformly for all (z,v) € S(X) x S(X). Then, in [17], we introduced the following definition.

Definition. (2.11in [17]) Let X be a uniformly convex and uniformly smooth Banach space. Define ¢ x

. S(X) x S(X) — Rby
P e e 1

i ; , for any (z,v) € S(X) x S(X). (2.1)
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1x is called the function of smoothness of this Banach space X. Since X is uniformly convex and
uniformly smooth, then, the limit (2.1) is attained to ¥ x (z,v) uniformly for (z,v) € S(X) x S(X)
(see Takahashi [31]).

For the convenience and simplicity, we extend the concept of function of smoothness of uniformly
smooth Banach space X from S(X) x S(X) to X x (X\{0}).

Definition 2.1. Let X be a uniformly convex and uniformly smooth Banach space. Define Uy :

X x (X\{0}) > Rby

t —
U (0,)  tig 12+ 201~ D]

i . , for any (z,v) € X x (X\{0}). (2.2)

W x is called the (extended) function of smoothness of this Banach space X. Next, we show that Uy is
indeed an extension of ¢ x defined in (2.1) from S(X) x S(X) to X x (X\{6}).

Lemma 2.2. Let X be a uniformly convex and uniformly smooth Banach space. Then, for any (z,v) €
X x (X\{0}), we have

Wy () = o]l forz =0, 23)
x(z,v .
[vllvx (ﬁ W) , foraz #0.
and
_ oy et =2l (J(=), )
Ux(x,v) —lgf(r)l " = Tl forx # 0.
In particular,
\I/X(x,l') -

Proof. If x = 0, then it is clear to have

\I/)((Q,U) =
For any (z,v) € (X\{0}) x (X\{0}), we have

t _
o) i I+ 2l = ]
t10 t
I (] g + Yot = )
. Tel + TelTo &l
t}0 t
t
ol Il (‘ o+ et - ‘ Tl D
a0 1z el

[E3]

= lex (o)

Since in the last section of this paper, we will study the properties of the metric projection in Hilbert
spaces, so, in next lemma, we consider the function of smoothness of Hilbert spaces, which are consid-
ered as special cases of uniformly convex and uniformly smooth Banach spaces.

g



84 J.LI

Lemma 2.3. Let (H, ||-||) be a Hilbert space with inner product (-, -). Then, forany (x,v) € Hx(H\{0}),
we have

v, ifr=20
EROES LT 24)
W<x7 U>, lfl' 7& 0
Proof. The proof of this lemma is straight forward and it is omitted here. g

Notations: Let L, (S; X) be a uniformly convex and uniformly smooth Bochner space with 1 <
p < oo. For the simplicity of notations, the function of smoothness of this uniformly smooth Bochner
space L, (S; X) is rewritten as:

Y, sx) = ¥Yp

3. THE NORMALIZED DUALITY MAPPING IN SUBSPACES OF BOCHNER SPACES

Definition 3.1. Let L,(S; X) be a uniformly convex and uniformly smooth Bochner space with 1 <
p < oo. For an arbitrary A € A with pu(A) > 0 and for f € L,(S; X), if f satisfies

f(s) = 0, for u-almost every s € S\ A,

then, f is said to be supported in A. We denote the collection of all functionals in L, (.S; X') supported
in A as follows

L,(A; X)={fe€Ly(S;X): f(s) =0, for u-almost every s € S\ A}.
We similarly define

Ly (A; X7) ={p € Ly(S; X") : ¢(s) =0, for p-almost every s € S\A}.

Lemma 3.2. L,(A; X) has the following properties:
(a) L,(A; X) is a subspace of Lp(S; X);
(b) If u(S\A) > 0, then L,(A; X) is a proper subspace of Lp(S; X);
(¢) L,(A; X) is a uniformly convex and uniformly smooth Bochner space with the measure space

(A, Al 4, 1| 4) such that
(Lp(A; X))" = Lq (4 X7).
Proof. The proof of this lemma is straight forward and it is omitted here. g

Let A € Awith p(A) > 0. For f € L,(S; X), we write

no =1t

Lemma 3.3. Let L,(S; X) be a uniformly convex and uniformly smooth Bochner space with1 < p < oc.
Let A € A with u(A) > 0. For any f € L,(S; X), we have

(@) fa € Lp(A; X);

(b) (ANf)a = Afa, forany X € R;

() (f +9)a = fa+ga forany f,g € Ly(5; X).

Proof. The proof of this lemma is straight forward and it is omitted here. g
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Lemma 3.4. Let L,(S; X) be a uniformly convex and uniformly smooth Bochner space with1 < p < oc.
For A € A with u(A) > 0 and for f € L,(S; X), we have
(@) Jpfa € Ly (A; X*) and

(‘]pfA)A = prA

(b) Furthermore,

feLly(A;X)= Jpf € Ly (A; X7)
That is, Jp : L,(A; X) — Ly (A; X*);
(¢) Moreover, for any f € L,(S; X) with f4 # 0, we have

HfAHLp A;X)

(pr) prA

-
More precisely, for s € A.

f Lp(S;X)
(Jpf) (s) = ﬂiﬁi&%%nM@

12
(d) In general, if u(S\A) > 0, then

(pr)A 7£ prA-
Proof. Proof of (a). We calculate

<prA, fA>Lp
:L«%nnwﬂm»ww>

=/«%MM%M&MM@+/ (Upfa) (5), £4(5)) dia(s)

A S\A

ZA«%MM%MQWM@

z/«%MMW%M®MM®+/ (U fa) 4 (9). £4(5)) dps)
A S\A

=A«%MM®%$DW@

= <(UpfA)A ) fA>Lp .
By the definition of Jj, this implies

I Tpfallp,s:x 1Al (s
= (Jpfa, fa)p,
= <(prA)A ) fA>Lp
< oL all s 1allz,es:x) - (3.1)
It follows that
1 Tpfallp,sxy < NTpfa)all, sixe):
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It is clear to see
[(Tpfa) all sy < 1 fallp, (sixy
This implies

H(prA)AHLq(S;X*) = HprAHLq(s;X*)* (3.2)
By (3.1), we have

<(prA)Ava>Lp = H(‘]pfA)AHLq(S;X*) 1fall L, (s:x) (3.3)
On the other hand, by (3.2), we have

HfAHLp(S;X) = HprAHLq(S;X*) = HprA>A HLq(s;X*)* (3.4)
(3.3) and (3.4) imply
(prA)A = prA-
Hence, J,fa € Lp(A; X).
It is clear that part (b) follows from part (a) immediately. Moreover, we give a directly proof for part
(b) by using the representations of .J,. By Proposition 3.1 in [7], for any f € L,(S; X) with f4 # 0,
we have

I£4() 1% % Tx (fa(s))

(Jpfa)(s) = , foralls € S
HfAHLp 5;X)
2
M, forall s € A,
= HfA“L p(A;X) (35)
0, for all s € S\ A.

This implies J,fa € Lg(A; X™*). Next, we prove (c). For any f € L,(S;X) with f4 # 6, by
Proposition 3.1 in [7], we have

1F ()52 Tx (£ (5))

(Jpf) (s) = Jforall s € S.
”fHLp 5;X)
In particular, for all s € A, we have
P—2J
(pr)(s)zllf()\\ x(f(s ))7
A1 2
_ ”fA”pr;X) Lfa)I5 2 Tx (Fa(s))
Hpr_2 HfA”L,, (5:X)
||fAHL (S;X)
710 (Jpfa) (s), forall s € A. (3.6)
1712 %

This proves (c). In case, if ;1(S\A) > 0, then, we can choose f € L,(S5; X) such that || f[|1,(s.x) #
HfAHLp(A;X)- For sucha f € L,(S; X), by (3.5) and (3.6), we have

(Jpf) (s) # (Jpfa) (s), forall s € A, at which f(s) # 6.

From this, part (d) follows immediately. O
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Definition 3.5. Let (5, A, 1) be a measure space. Let N be the set of all positive integers and M a
nonempty subset of N. Let {A,, € A:n € M} be a family of subsets of S satisfying y (A,) > 0, for
every n € M. If the following conditions are satisfied

ApnNAy, =0, forn#mand Upepr A = S,
then, {A,, € A:n € M} is called a strong partition of S.

Proposition 3.6. Let L,(S; X) be a uniformly convex and uniformly smooth Bochner space with 1 <
p<oo. Let{A, € A:nec M} bea strongpartition of S. Forany f € L,(S; X)) with f # 0, then

pr Z ||fA ”p (An X)JfA

HfHLp 5.X) ned
Proof. Let f € L,(S; X) with f # 6. Define
My ={neM:|fallg, a0 # 0}

Since {A,, € A :n € M} is a strong partition of S, by the representation of .J,, given in Proposition
3.1in [7], for all s € S, we have

1F ()11 *Tx (£ (5))

Iof =
D)) ="
_ = a5 Ix (fau(s))
D
o a6l 2 gy (fa.(5))
n;wf IF1E s
1 HfA HLp S;X)
HfHL,,sx gwf 1, 15 sy I 2 (fa, (5))
1A, (B Tx (fa,(5))
1 fa iy
Hf”Lp S:X) n;\:/[f 4 Ly SX) ||fA ”L,,(SX)
HfHL Z GZM | fa., IILPSX)( Upfa,) (s)
»( n f
= Y 14l Coxy (Fpfan) (), foralls € S.
Ly( SX neM
This implies

Jpf = Z ”fAnHLPA :X) Ipfa,

HfHLp 5:X) neM
O

Corollary 3.7. Let L,(S; X) be a uniformly convex and uniformly smooth Bochner space with1 < p <
oo. Forany A € A with u(A) > 0 and 1(S\A) > 0, let L,,(A; X) be the proper subspace of L, (S; X)
given in Definition 3.1. For any f € L,(S; X) with f # 0, we have

1

Ipf = m (HfAHLp A;X) Jpfa+ HfS\AHZ(QS\A;X) prS\A)
P(
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4. THE METRIC PROJECTION IN UNIFORMLY CONVEX AND UNIFORMLY SMOOTH BOCHNER SPACES

4.1. The metric projection onto closed subspaces of uniformly convex and uniformly smooth
Bochner spaces. Recall that, for A € A with u(A) > 0, (Ly(A4; X), | - |1, (4.x)) is a subspace of
L,(S;X) given in Definition 3.1. The topological dual space of L, (A; X) is L, (A; X*). If the given
subset A of S satisfies p(S\ A) > 0, then L, (A; X) is a proper subspace of L,,(.S; X ). In this subsection,
we study the metric projection from L,(S; X) onto L,(A; X). It helps us to study the directional
differentiability of the metric projection in next section.

Lemma 4.1. Let A € A with 1i(A) > 0 and u(S\A) > 0. Forany f € L,(S; X), we have
(@) Prax)(f) = fa;
(b) P, a;x)(Af) = Afa, forany X € R;

Proof. Proof of (a). For any g € L,(A; X), we calculate

<Jp (f_fA)7fA—g>Lp
- /S Uy (f = £4) (). Fa(s) — g(s)) du(s)
- / Uy (F — £4) (), Fals) — g(s)) dus) + / Uy (f — f1) <s>,fA<s>—g<s>>du<s>
A S\A
- / (U, (84) . fa(s) — g(s)) dpu(s) + / U(f)(s),60) du(s)
A S\A
- / (64 £4(5) — g(s)) du(s) + / Up(£)(s),6) du(s)
A S\A

=0, for every g € L,(A; X).

By the basic variational principle of P (.x), this proves (a) of this lemma. Then (b) of this lemma
follows from part (a) of this lemma and part (b) of Lemma 3.3. O

Corollary 4.2. Let A € A with u(A) > 0 and j1(S\A) > 0. Then, we have,

Pra;x)(f) = 0a, forany f € Lp(S\4; X). @)
Py ax) (04) = Ly(S\4; X) (i)

For any h € L,(A; X), P_ (h) is a closed and convex cone in L, (S; X') with vertex at h and
LPAX()—h—i-L(S\AX) (iii)

Proof. Parts (i) and (ii) of this corollary follow from Lemma 4.1 immediately. We only show part (iii).
For any h € L,(A; X), by part (a) in Lemma 4.1, we have

P[;(AX( )={f€eLy(S;X): fa=h}
e {f € LS X) : fa=6a)
—h+P_(AX)(0A)
=h+ L,(S\4; X).
O

It is well-known that, in general, the metric projection operator in uniformly convex and uniformly
smooth Banach spaces is not nonexpansive. However, in particular, in uniformly convex and uniformly
smooth Bochner spaces, when the considered closed and convex subset C'is a proper subspace defined
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in Definition 3.1, the metric projection operator is nonexpansive, which can be proved by using Lemma
4.1 as follows.

Corollary 4.3. Let A € A with ji(A) > 0 and j1(S\A) > 0. Then, P, (4, x) is nonexpansive.
Proof. For any f,g € Lp(S; X), by Lemma 4.1, we have

Prax)(f) = faand Pr_a.x)(9) = ga.
This implies

HPLp(A;X)<f) - PLp(A;X) (g)HLp(S;X)
=||Pr a0 () = Proax) (@), ax)
=1fa = 9allp,ax)

<If = 9lz,s:x).
O

4.2. The metric projection onto closed balls in subspaces of uniformly convex and uniformly
smooth Bochner spaces. Forany r > 0and v € L,(A; X), we define the closed, open balls (open in
L,(A; X)) and the sphere in L,(A; X ) with radius 7 and with center at v, respectively, by

Ba(v,r) = {f € 1) ([ 1£6) = olo) Bedn(s) ) < }
BY(v,r) = {f € L(A: X) ( [ s —v(S)!!’;’(dM(S)>p < }

Salv,r) = {f e 1) ([ 1£6) = o) Ben(s) ) = } |

We note that B4 (v, r) is a nonempty closed, bounded and convex subset in L, (S; X). If u(S\A) >
0, then B4(v, ) is not a (closed) ball in L,(S; X) and B9(v,r) is not open in L,(S; X ). However,
B9 (v,r) and S4(v, r ) form a partition of B4(v,r). In particular, if v = 6, then Bo(0, 1), B4(0,7)
and S4 (60, ) are denoted by B(r), B9 (r) and S4(r), respectively. In this subsection, we consider the
properties of the metric projection onto closed balls B4 (7). All results about B4(7) can be analogously
extended to B4 (v, ). For r > 0, based on B4(r), we define the following subsets in L, (5; X) :

Ca(r) ={f € Lp(S; X) : fa € Ba(r)},
Calr) ={f € Lp(S; X) : fa € B4(r)}.

Ca(r) and C9(r) are called cylinders in L, (S; X) with bases B (r) and B4 (r) in L,(A; X), respec-
tively. If 1(S\A) > 0, then C'4(r) is a closed, unbounded and convex subset in L,(S; X') and C9(r)
is an open, unbounded and convex subset in L, (.S; X). In particular, if u(S\A) = 0, then L,(A4; X)
coincides with L,(S; X) and, in this case, B4 (v, r), B4 (v,7), Sa(v,7), Ca(r) and C9(r) are respec-
tively denoted by B(v,r), B°(v,r),S(v,r),C(r) and C°(r). Moreover, in the case that ;(S\A) = 0,
we have

C(r) = B(r) and C°(r) = B(r).

Next, we calculate the values of the metric projection from L, (S; X) onto B (r).
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Theorem 4.4. Forr > 0 and g € L,(S;X), we have
(@) Pp,(r)(9) = g forg € Ba(r);
(b) Pp () (9) = mg,forg € Lp(A; X)\Ba(r);
(©) P, (1) (9) = 9, for g € Ca(r)\Lp(4; X);

(d) P,y (9) = ga, forg € Ly(S; X)\ (Ca(r) U Ly(4; X)).

HQA”LI,(A;X)

Proof. Part (a) is clear. We prove part (b). For any given g € L,(A; X)\Ba(r),g must satisfies
l9llz,(s:x) = 9|2, (a;x) > 7. Then, for any f € Ba(r), we have

r
Jp | 9 — g—f
HQHLP S,X) HQHLP (S;X)
1-— Jp(g —f
||9||Lp(A :X) ||9||Lp(A X)

(rllgllz,ax) — (Jo(9), )

HQHLP

||g||L( o) 1ol = ol 1711, )
P

[

( Tolly o
|

(-

1- ) ("”HQHLP ;%) = 1o 1, a3 HfHLp(A;X))

= (lgllz,caxy —7) (r = 1f 2, ca:x))

>0, forall f € Ba(r).

Since g € Sa(r), by the basic variational principle of Pg, (), this implies

g:

T
Hg”Lp(A;X)

Pp,n(9) = 77—
2a(7)(9) 90l 2, ca:x)
Proof of (c). Since g € Ca(r)\Lp(A; X), then g4 € Ba(r) and g ¢ L,(A; X). It follows that

r
”g”Lp(S;X)

L g forg e Ly(A; X)\Ba(r)

l9allp,a;x) <7 and  lgallp ax) < l9llz,s:%)
Then, for any f € Ba(r) C L,(A; X), we have
(Jp(9—94).94—f)
= [ (=92 (5):94(2) = £(5)) d(e

_ /A Uy (9= 94) (5):9a(5) = £) ) + [ (9= 9) (). 9a() = £(5)) dCs)

S\A

- / (U, (84) .9a(s) — F(5)) du(s) + / Uy (g — 9.4) (5). 8) dpu(s)
A S\A

- / (6a,94(5) — £(5)) diu(s) + / Uy (g — 94) (5).8) dpu(s)
A S\A
=0, for every f € Ba(r) C Ly(4; X).

Since g4 € B(r), by the basic variational principle of Pg, (,, this implies
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P, (9) = ga, for g € Ca(r)Ly(A; X).

The proof of part (d) is similar to the proof of part (b). For g € L,(.S; X)\ (Ca(r) U Ly(A4; X)), g ¢
Ca(r)ULy(A; X), then ga ¢ Ba(r). By g ¢ Ly(A; X), it follows that

HQAHL,,(A;X) >r and HQAHL,,(A;X) < gllz,s:3)-
Then, f € B4(r) implies ga — f € Ly(A; X). By Lemma 3.4 and Corollary 3.7, we have

o r
llga HLP(S;X)

T T
Ip\9— 94 794~ [
HgA”Lp(S;X) ”gAHLp(S;X)
r r
= goat|\1l————)9a|, 77— 94— f
<p ( \ ( ”gA’Lp(A;X)> ) HgAHLp(S;X) >

r T
=|1- | (h(ga), 94— f
l9allz, ;%) l9allz, ;%)

- (1 r) (T 19allz,(a.x) = (Jp (94) 7f>>

HgAHLp(A;X)

> (gallyax) = 7) (r = 11, cax)
>0, forall f € Ba(r).

ga € B(r), by the basic variational

By ”gAHLp(A;X) > r, we have ga

r — r
”gAHLp(S;X) HQA”LP(A;X)

principle of Pp, (), this implies

r

Pg,r(9) ga, for g € Lp(S; X)\ (Ca(r) U Lp(4; X)) .

a HQAHLP(S;X)

Notice that if ;1(S\A) = 0, then L, (A; X) coincides with L, (.S; X). In this case, we have

Ba(v,r) = B(v,r) and Cx(r) = B(r).
Then, by Theorem 4.4, we have

Corollary 4.5. Forr > 0 and g € L,(S; X), we have
(a) Pp(ry(9) = g, for g € B(r);
(b) Ppr)(9) g, for g € Lp(S; X)\B(r).

— r
”gHLp(S;X)
By applying Theorem 4.4 to simple functions in L,(.S; X'), we have the following results.

Corollary 4.6. Let A € A with u(A) =1 andx € X. Forr > 0, we have
@) Pp,ry(la®z) =1a®uw, if|z|x <7
(0) Pp,yry la®z) = i (la ® 2), if |2

— T
[

|x >r.

Proof. By 1(A) = 1, we calculate

114 @ 2llp, 5.x) = llllx-

Then, this corollary follows from Corollary 4.5 immediately. O
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4.3. The metric projection onto closed cylinders in uniformly convex and uniformly smooth
Bochner spaces. In next theorem, we calculate the values of the metric projection from L,(S; X)
onto a closed and convex cylinder Cy(r) in L,(S; X).

Theorem 4.7. For anyr > 0 and g € L,(S; X), we have
(@) Po,r)(9) = g, forg € Ca(r);
(b) Pe,(ry(9) = ga + gs\as for g € Ly(S; X)\Ca(r).

r
”gAHLp(A;X)

Proof. Part (a) is clear. We prove part (b). For any given g € L, (S; X)\Cx(r), it satisfies

l9all,s:x) = ll9all L, ax) > 7 (4.1)

By part (c) in Lemma 3.3, we notice that

r r
(H [ g“gS\A) ~ Mol ™
IANL,(A:X) 4 19AllLp(a;x)
By (4.1), this implies

T
T 94+ gs\a € Cp(r) (4.2)
HgAHLp(A;X)

It is clear that, for g € L,(S; X), we have the following decomposition

g=9ga+Jgs\a- (4.3)
Then, for any f € Ca(r), by J, (94) € Lq (A; X*) and (4.1), we have

T r
Jpl9— 794t 9sa ]| |, |7 94+95a | — f
HgAHLp(A;X) ”gAHLp(A;X)

T T
=( S| (9a+gsa) —T———9a—9gs\a |, | 94+ 954 | — (fa+ fs\a)
l9allL, a;x) l9allz,a:x)

r T
=|1-———— | (Jp(9a),7————94— fa
HgAHLp(A;X) HgAHLp(A;X)

+ (1 - r) (Jp(94) 95\ = fs\a)

HQAHLP(A;X)
r
1-— Ip(9a) s 94— fa
HQAHL,, (A;X) HQAHL,,(A;X)

T T

1- allZ, ax) = (1= = (Jp(g9a), fa)
( HQAHLp A X ) lgallr, a;x) Lp(4:X) l9allr, (a;x) 8

1-— 794 .x) — 1194 . A ;
Lz )( l9allz, (ace) = 19402y cax) 1Fallz, asx))

v

)
= (l9allz, a0 = 7) (= Wfallzyax))
>0, forall f € Cs(r).

By (4.2) and by the basic variational principle of P, (), this implies
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Pe,(9) ga + gs\a, for g € Lp(S; X)\Ca(r).

- HgAHLp(A;X)
0

Remarks on Corollary 4.5 and Theorem 4.7. As we noticed before Corollary 4.5, if (S\A) = 0,
then L, (A; X) coincides with L, (S; X). In this case, we have C4(r) = B(r) and

gs\a = 0, for g € Ly(S; X).
Then, we can see that Corollary 4.5 can be induced by Theorem 4.7.

5. THE DIRECTIONAL DIFFERENTIABILITY OF THE METRIC PROJECTION IN UNIFORMLY CONVEX AND
UNIFORMLY SMOOTH BOCHNER SPACES

5.1. The directional differentiability of the metric projection in uniformly convex and uni-
formly smooth Banach spaces. In [17], the Gateaux directional differentiability of P¢ in uniformly
convex and uniformly smooth Banach spaces is defined (see Definition 4.1 in [17]). This topic was deeply
studied in Hilbert spaces in [18]. In this section, we recall the definitions and properties obtained in
[17].

In this subsection, let (Z, || - ||) be a real uniformly convex and uniformly smooth Banach space
with topological dual space (Z*, || - ||«). Let C be a nonempty closed and convex subset of Z. For an
arbitrary

x € Z and for a vector v € Z with v # 6, the directional derivative of P¢ at point x along direction v

is defined by

Po(x + tv) — Po(x)
t
provided the existence of this limit. Then, P is said to be (Gateaux) directionally differentiable and
P/l.(z;v) is called the (Géteaux) directional derivative of P at point x along direction v. Vector v is
called a (Gateaux) differentiable direction of P at x. If P¢ is (Gateaux) directionally differentiable at
point x € Z along every direction v € Z with v # 6, then P¢ is said to be (Gateaux) directionally
differentiable at point x € Z, which is denoted by

Ph(z;0) = li
?(@iv) = lim

Po(x)(v) = lim Fela+ m;) Fe()

Pl(z)(v) is called the (Gateaux) directional derivative of Pc at point x along direction v. Let D

be a subset in Z. If P¢ is (Gateaux) directionally differentiable at every point € D, then P¢ is said

to be (Gateaux) directionally differentiable on D C Z. Many properties of the (Gateaux) directional
derivative of P¢ are proved in [17]. We list some of them below for easy reference.

,forv € Z with v #£ 6. (5.1)

(1) The following statements are equivalent

(i) Pc is directionally differentiable on Z such that, for every point z € Z,

Pf(z)(v) = 0, for any v € Z with v # 6;
(ii) Pc is a constant operator; that is, C is a singleton.

(2) For every point z € Z, there is least one differentiable direction of P at .
(3) For x € Z and for v € Z with v # 6, if P¢ is directionally differentiable at x along direction v,
then, for any A > 0, P¢ is directionally differentiable at x along direction A\v such that

P{(z; \v) = APL(z;v), for any A > 0.
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(4) Let y € C. Suppose (PC?1 y))o # (). Then, Pc is directionally differentiable on (Pgl(y))o
such that, for any z € (PCT1 (y))O, we have

Pl(z)(v) = 0, for every v € Z with v # 6.

In particular, if C'is a closed ball, or closed and convex cone (including proper subspace) in Z, then
the exact analytic representations of P/, are provided in [17]. In [18], the authors studied properties of
P/, in Hilbert spaces and Hilbertian Bochner spaces, which are considered as special cases of uniformly
convex and uniformly smooth Banach spaces.

Let S(Z) denote the unit sphere in Z. We define the Fréchet differentiability of the metric projection.

Definition 5.1. Let z € Z. Suppose that P is (Gateaux) directionally differentiable at point x. If the
limit (5.1) is attained uniformly for v € S(Z), then P is said to be Fréchet differentiable at point x. Let
D be a subset of Z. If P is Frechet differentiable at every point x of D, then P¢ is said to be Frechet
differentiable on D.

5.2. The directional differentiability of the metric projection onto closed subspaces in uni-
formly convex and uniformly smooth Bochner spaces. The first theorem in this section proves
the Frechet differentiability of the metric projection operator onto closed subspaces of L, (.S; X).

Theorem 5.2. P (4.x) is Fréchet differentiable on L, (S; X) such that, for any f € L,(S; X), we have,

Py ax)(f)(h) =ha,  foranyh € Ly(S; X) withh # 6
Proof. For any f,h € L,(S; X) with h # 6, by Lemma 4.1 and Lemma 3.3, we have

Prax) (F)(h)

i Prax)(f +th) — Pr,ax)(f)
an) t
t10 t

i fa+tha— fa

=|lim--—
an) t

=ha.

It is clear that the above limit uniformly converge on S (L, (S; X)). O

Remark 5.3. From Theorem 5.2, we see that Pip (4:X) has the following properties.

(a) The directional derivatives Pip( A:X) (f)(h) at point f only depends on the direction h;

(b) For any f,h € L,(S; X) with h # 6, Pip(A;X)(f)(h) =hyg € Ly(A; X);

(©) If u(S\A) = 0, then Ly(A; X) coincides with L, (S; X) and Pp(4,x) coincides with Pr,_(s.x),
which is the identity mapping in L, (S; X). In this case, Theorem 5.2 is trivial.

5.3. The directional differentiability of the metric projection onto closed balls in subspaces.
of uniformly convex and uniformly smooth Bochner spacesIn next theorem, we prove the directional
differentiability of the metric projection operator onto closed balls in L,(A; X).

Theorem 5.4. Forr > 0 and for g, h € L,(S; X) with h # 6, we have,
(a)If g € BY(r), then

/ | h, forh e L,(A; X)
PBA(T)(Q)(h) _{ ha, forh ¢ le)p(A;X)
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(b)If g € Ly(A; X)\Ba(r), then

r __Yy(gh) .
P! B) — lgllz,cax) (h Hg||zp(A;X)g) , forh € Ly(A; X)
BA('I')(g)( ) = ;(h _ Yp(g,ha) ) forh ¢ Ly(A; X)
lgllz,a:x) A ||9HL,,(A;x>g ’ pAS
et (= B ) forh e L, (4; X)
. H_‘]”LP(A;X) ||g||%p<A;X) ) VAR
o _ {Un(g),ha) )
lgllz,a;x) ha ||9p2Lp(A;x)g> , forh & Ly(A; X)

In particular,

PéA(T) (9)(g) =0, forevery g € L,(A; X)\Ba(r)

(€)If g € C4(r)\Ly(A; X), then
Ply (@) (h) = s

(@ Ifg € Lp(S; X)\ (Ca(r) U Ly(A; X)), then

a HQAHLP(A;X HQAHL,,(A;X)

o (hA . <J<g>h>g)
HQAHL,,(A;X) HgAH%p(A;X)

Pp,n(9)(h) T) <hA - w%)

In particular,

P/BA(T)(Q)(Q) =0, forevery g € L,(S; X)\ (Ca(r) U Ly(A; X)).

Proof. We prove (a). Suppose g € BY(r). If h € L,(A; X), then, there is 6 > 0, such that g + th
€ By(r), forallt € (0,9). By part (a) in Theorem 4.4, we have

Py (g () = lim LA = Poa(0) () gy 940G g, Ty,

1
tl0 t t}0,t<6 t t}0,t<s ¢

Ifh € L,(S; X)Ly(A; X), then, thereis A > 0, such that g+th € Cs(r)L,(A; X), forallt € (0, \).
By parts (a, ¢) in Theorem 4.4 and by Lemma 3.3, we have

. P, (g+th)—Pg , () (9) . (g+th) a— . Atha— . th
P, h) = lim —24® A = lim “¥TEATI - i TATI - im BA = py.
B4(r) (9) (1) P10 t toi<n ¢ toi<n ¢ 0, i< A

Proof of (b). Let g € Ly(A; X)\Ba(r). It implies ||g|[z,(a;x) > 7. If h € L,(A; X), then, there is
d > 0, such that g + th € L,(A; X)\Ba(r), forall t € (0, 7). By part (b) in Theorem 4.4, we have
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P, m(9)(h)
i P,y (g +th) — Pg,t)(9)
tl0 t
r o
(g+th)lIL,a.x) (g +th) lgllz,a:x) 9
= lim
t}0,t<6 t
rth r T
~ lim l(g+th)lIL,(ax) + <\|(9+th)||Lp(A;X) o ||g||Lp(A;X)> 9
t}0,t<d t

I rh T r r
= lim im — g
t00,t<8 [[(g + th)|lp,ax)  #ot<s (g +th) o, ax) 9l ca:x)

T T
- h— lim g+th ) — |lg ) g

oo s T o ol 19+ a0 = gl )

T

U,(g,h)g
\gHLp (4:X) HgHLP A:X)
h— qgl.
HgHLp A:X) IIQIIL,,(A X)
If h € Ly( L,(A; X), byg € Lyp(A; X)\Ba(r) with ||gllz,a;x) > 7, there is A > 0, such

that g + th 6 L (S X))\ (Ca(r) U Lp(A; X)), forall t € (0, A). By parts (b, d) in Theorem 4.4 and by
Lemma 3.3, we have

Pg (n(9)(h)
iy DBal) (9 +th) — Pp,(r)(g)
tl0 t
T _ T
— lim l(g+th) all Lp(asx) (g +th)a Tl (A:X) 9
N t}0,t< t
rth A + r . r
. (g+th) all L, (a;x) [(g+th) all L, (a;x) lgllp(A;X) g
T 04 t
rha

lim
t10.6<A [|(g + th)AHLp(A;X)

T
L TPl Bl (g +th) Al (axy = 9l Lya:x)) 9
tL0,t<A t

T '
Uy, (g,ha)g

= ha — —
lolya 1912,

_ r \IIP (97 hA)
S e LAV
19l Lp(a;x) 91z, (a:x)

Then, part (b) is completed proved by using Lemma 2.2.

Proof of (c). Let g € C5(r)\Lp(A; X) with [|gall (a,x) < 7. For h € Ly(S; X) with h # 0, there
is 6 > 0, such that g + th € C9(r)\Ly(A; X), for all t € (0,6). By part (c) in Theorem 4.4 and by
Lemma 3.3, we have
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Pp . n(9)(h)

i Pp,(r)(g +th) — Pg,(9)
= ]111m

tl0 t

_ lim (g+th)a—ga
t10,t<6 t

= lim ——
tlot<s t

=h4.

Proof of (d). Let g € Lp(S; X)\ (Ca(r) U Ly(A; X)) with [|gall, a,x) > 7 For h € Ly(S; X)
with h # 6, there is 6 > 0, such that g +th ¢ L,(A; X)) and ||(g+th)A||Lp(A;X) > r, that is,
g+th e L,(S; X)\ (Ca(r)U Ly(A; X)), forall t € (0,0). By part (d) in Theorem 4.4 and by Lemma
3.3, we have

Py, (9)(h)
iy DBa (9 +th) — P, (1)
t10 t
o - r
~ lim l(g+th) all Lp(a;x) (9 +1th)a lgall Lpca:x) gA
t}0,t<6 t
rtha r _ r
— lim [(g+th) all L, (a;x) + ("(g+th)ALp(A;X) gAHLp(A;X)> ga
- t10,t<6 t
T _ T
. rha ot AT G~ Toally a0 ga
1104<6 [|(g + th)allp a,x)  t0.4<8 t
Sy
HgA”Lp(A;X)
T —
i ST, oo TR AT ) (ga + thallz,ax) = lgallz, a) 94
t10,t<6 t
r r
=i———————ha— ————Y,(9a,ha) ga
HgAHLp(A;X) ”gAHLp(A;X)
r Uy (94, ha
o (hA . p<>gA> |
HgAHLp(A;X) ”gAHLp(A;X)
Then, part (d) is completely proved by using Lemma 2.2. g

Notice again, if ;1(S\ A) = 0, then L,,(A; X) coincides with L,(.S; X). In this case, we have
Ba(r) = B(r) and C4(r) = B(r)

Furthermore, we have
ha = h, forany h € L,(S; X).
Then, by parts (a) and (b) in Theorem 5.4, we have
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Corollary 5.5. Forr > 0 and for g,h € L,(S; X) with h # 6, we have,
(a)Ifg € B°(r), then

fg(r) (9)(h) = h, forany h € L,(S; X) with h # 6;
(b)If g € Ly(S; X)\B(r), then

Ppy(9)(h) d )<h Lp(g,h) g)

a ”g”Lp(S;X HgHLp(S;X)

gl s:x) 2

r <h— <Jp(g)ah> g>,foranyh€Lp(5;X) with h # 6.
HQHLP(A;X)

In particular,

Pfg(r) (g)(g) = 0, for every g € L,(S; X)\B(r).

5.4. The directional differentiability of the metric projection onto closed and convex cylin-
ders in uniformly convex and uniformly smooth Bochner spaces. In the following theorem, we
prove the Frechet differentiability of the metric projection operator onto closed and convex cylinders
in L,(S; X).
Theorem 5.6. Forr > 0, we have,

(a) Pc,(r) is Fréchet differentiable on C (r) satisfying that, for any g € Cq(r),

Py ry(9)(h) = h, for any h € Ly(S; X)\{0};
(b) Pc (v is Frechet differentiable on Ly (S; X)\Ca(r) such that, for g € L, (S; X)\Ca(r),

Uy, (g4, ha)
P (g h):; hy— 222 ga | +h
Catr) (9 ”gAHLp(A;X) HQA”LP(A;X) o
T J, 7h
= (g AL N g forany h € Ly(S: X)\{6).
||9A||L,,(A;X) ”gAHLP(A;X)

In particular,

Pt (9)(9) = gs\a. for every g € Ly(S; X)\Ca(r).

Proof. We prove (a). Let g € C'4(r). Since HgAHL,,(A;X) < r, then, for any h € L,(S; X) with h # 6,
there is § > 0, such that ||(g + th)all; (a,x) < 7. thatis, g+ th € C}(r), forall ¢ € (0,0). By part (a)
in Theorem 4.7, we have

Pon(9)(h)
iy £ (9 +th) — Po,(9)
= 11m

tJ0 t

. g+th—g

= lim

t}0,t<6 t
=h.

. . . . r=ll9allL, a; .
Notice that, for a given g € C’g (r), we can choose a positive § with § < w to satisfy

g+th € C{(r), for all t € (0,d), which is independent from h with lhllz,(s;x) = 1. This implies
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that the above limit is uniformly convergent with respect to h satisfying ||| 1, (s;x) = 1. This implies
the Frechet differentiability of the metric projection operator Pg, ;) onto closed and convex cylinder
Ca(r) in Ly(S; X) at the point g € C9(r).

Proof of (b). Let g € Lp(S; X)\Ca(r). Since ||gallz a,x) > 7. then we can choose a number § with

0<d< M, such that, for any ¢ € (0,4) and any h € Ly(S; X) with [|A[|1(s,x) = 1, we

have
This implies

lgall L, ax) — 7
(g + th)AHLP(A;X) 2 HQAHLP(A;X) - p27 >r

g +th € Lp(S; X)\Ca(r), forany t € (0,0) and any h € Ly(S; X) with [|A[|1 (s,x) = 1.

By part (b) in Theorem 4.7 and Lemma 3.3, we have

Pé'A(r) (9)(h)

i Pe,iy(g +th) — Po,m(9)

- t10 t

L (n(gﬂh)Aan(A;X) (g+th)at(g+ th)s\A) - (ng“,,(A;X)gA + 95\A>
B twl,tnié t

r r o r
TG T AL, oo A T Hhs\a + <(g+th)A||L,,(A;X) ||gA||Lp<A;X>> 94

= lim
t}0,t<d t
r T
r ha+h + 1 <(g+th)A|Lp(A;X) N gA“Lp(A;X)> ga
=1 A A im
”gAHLp(A;X) S\ t10,t<6 t
T
= hA + hS\A
HQAHLP(A;X)
C lm H(9+th)AHLP(A;X)TH(Q—HE}L)AHLP(A;)Q (II(ga +th) allL,a;x) — lgallL,a,x)) 94
t0,t<d t
- ha+hs\a - 2 Wy, (94,ha) ga
”gA”Lp(A;X) HgAHLp(A;X)

— T hA _ \Ilp (gA7 h‘A)
lgall L, (45 X) lgall Zpca;x)

It is clear that the above limit is uniformly convergent with respect to h € L,(S; X) satisfying
||, (s;x) = 1. Then, part (b) is completely proved by using Lemma 2.2.

9A> + hg\a-

g

Remarks on Corollary 5.5 and Theorem 5.6. As we noticed before Corollary 4.5, if 1(S\A) = 0,
then L, (A; X) coincides with L,(.S; X). In this case, we have Cy(r) = B(r) and

ho\a = 6 and ha = h, for h € Ly(S; X).

Then, we see that Corollary 5.5 follows from Theorem 5.6 immediately.
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6. APPLICATIONS TO HILBERT SPACES WITH ORTHONORMAL BASES

6.1. The metric projection onto closed balls in Hilbert spaces. In this section, we study the direc-
tional differentiability of the metric projection in Hilbert spaces, which are considered as special cases
of uniformly convex and uniformly smooth Banach spaces. Or, they can be considered as special cases

of Hilbertian Bochner spaces.
Through this section, as usual, let N denote the set of all positive integers. Let (H, || - ||) be a real
Hilbert space with inner product (-, ). Suppose that H has an orthonormal basis {e; },, .y, in which

N is a subset
of N with cardinality greater than 1 and {en}nE  satisfies that, for m,n € N,

1, ifm=n
(em,en) = .
0, ifm=#n

Every z € H has the following analytic representation

=) (z,en)en suchthat [z]>=> (z,e,)’,
neN neN
and

(@,y) = > (z.en) (y,en) . forany z,y € H.
neN
Let M be a nonempty subset of N. Let Hjs be the closed subspace of H generated by {e,},,c /-
If N\M # (), then H)y is a closed proper subspace of H. Hy is similarly defined to be the closed
subspace of H generated by {en}, ¢ x5/ that satisfies

(Hu)" = Hyim (6.1)
That is, Hys and H |y are orthogonal spaces of each other. For any « € H, we define zpr € Hyy
by

TM = Z <$7€m> €m
meM
For any r > 0, the closed, open balls and the sphere in Hj; with radius r and with center at the

origin are respectively denoted by

By(r)=<x € Hpy: (Z <x,em>2>2 <ryp,

meM

BY(r)=<x € Hy: (Z <x,em>2>2 <ry,

meM

N|=

SM(T’): QJEHMZ<Z <x’em>2> —_

meM

By (r) is a nonempty closed, bounded and convex subset in H. If N\M = (), then By (r) is not a
closed ball in . We define the following subsets in H :

Cy(r)={x € H:xzp € By(r)},
CYy(r)={x € H:xp € Bj;(r)}.
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Ch(r) and Cf;(r) are the convex cylinders in H with bases By () and B, (r) in H ), respectively.
If N\M # (), then Cy(r) is a closed, unbounded and convex subset in H and C'(r) is an open,
unbounded and convex subset in H. In particular, if N\ M = (), then H); coincides with H and, in this
case, Byr(r), BS; (1), Sm(r), Car(r) and CF,(r) are respectively denoted by B(r), B°(r), S(r), C(r)
and C°(r), which satisfy

B(r) = C(r) and B°(r) = C°(r).
Next, we calculate the values of the metric projection from H onto Bj(7).

Theorem 6.1. For anyr > 0 and x € H, we have
(@) Py ) (2) = . for @ € Bu(r);
(b) PB}\/[(T)(:’U) Izllx fOI’.T S HM\B]V[( )
(c) Pg,, r)(l‘ = a1, forz € Cpr(r)\Hps;
(d) PBM r)(

Proof. The proof of Theorem 6.1 is similar to the proof of Theorem 4.4. Part (a) is clear. We prove part
(b). For any given x € H/\ B (r), v must satisfies ||| > r. Then, for any y € B/ (r),

(== )
B <1 - H;H> <$ H:cu‘y>
—(1- ) rlell = )

(Nl = r)r =yl
0, forally € Bys(r).

) = [ forw € H\ (Ca(r) U Hyy).

>
>

By x € Hjs and ||z|| > r, we have e € S (r). By the basic variational principle of Pp,, () in
Hilbert spaces, the above inequality implies

Pp,, () (7) = Tz Hx for any x € Hp\Bu(r).

Proof of (c). For z € Cpr(r)\Hps, we have xpy € Bys(r) and x ¢ Hyy. It follows that

lzall <7 and 0 < ||z < ||z (6.2)
Then, for any y € By (r) C H)ps, we have xp; — y € H)y. By (6.1), we obtain

(x —xp, 20 — YY)
= <1‘N|M7 TM — Z/>
=0, forally € By (r).
By (6.2) and the basic variational principle of Pg,, (), this implies Pg,, () (z
)

The proof of part (d) is similar to the proof of part (b). For z € H\ (Cy (7“
By (r) and x ¢ Hyy, it follows that

) =
U M) we have x); ¢

r < [lzarl] <] (6.3)
Then, for any y € By/(r) C H)s and by (6.1) and (6.3), we have
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T — r :UM—y>
!mMH el

-
(-
L

—_

HrrMH> < Tl y>

) rleall — (s u)

[l arll —7“) (r =1yl
, forally € By (r).

mx M € Su(r). By the basic variational principle of Pg,, (;, this implies

>
>

By ||zas]| > 7, we have

——apy, forx € H\ (Cp(r) U Hyy) .

PBJW(T)( ) = [z

Notice that if N\M = (), then H); coincides with H. In this case, we have

By (r) = B(r) and Cyy(r) = B(r)
Then, by Theorem 6.1, we have

Corollary 6.2. Foranyr > 0 and x € H, we have
(@) Pp(yy(z) = z, forz € B(r);
(b) Pp(ry(z) = Hrllm , forz € H\B(r).

By Theorem 6.1, we can study the directional differentiability of Pp, ().
Theorem 6.3. Foranyr > 0 and x,h € H with h # 0, we have,
(a)Ifx € Bf(r), then

, | h, forhe€ Hy
PBM(T)(J")(h) - { ha, forh §é Hy

(b) Iz € Hpp\Bay(r), then

o _ (=,h)
. by 7T h B x) , forh € Hyy
BM(T‘)(‘T)( )= r (@,har) ’
e (P — ’Q:E), forh & Hyp

ll]

In particular,

P/BM(T)(x)(x) = 9,for anyx € HM\BM(T);
(©) Ifz € C3,(r)\Hnr, then

P m(@)(h) = hy
(d)Ifr € HA(Cy(r)U Hyy), then

Phyi@)(h) = - (g = S04 ).

[ arll [z arll
In particular, PJ’BM(T) (x)(z) =0, foranyx € H\ (Cpr(r) U Hypy) .
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Proof. The proof of this theorem is similar to the proof of Theorem 5.4. Proof of (a). Let z € B{,(r). If
h € Hyy, then, there is 6 > 0, such that « + th € By (r), for all t € (0,0). By part (a) in Theorem 6.1,
we have

Py, (n(x+th)— Pg, ( —
Py oy (@)(h) = lim LTI T Eoy () adthoa g th
t}0 t t10,t<6 t t}0t<s T

If h € H\H)y, then, there is A > 0, such that x + th € Cy(r)\Hyy, for all t € (0, \). By parts (a,
c) in Theorem 6.1 and by Lemma 3.3, we have

PlB}w('I‘) (.’E)(h)
— lim Ppy (@ +th) — Ppy, ) (2)
) t
~ lim (x +th)y —x
t10,t< t
. xr 4+ th]\/[ — X
= lim ———
t10,t< t
. thy
= lim —
tlot<x t

= hpr.

Proof of (b). Let x € Hy\Bas(r). It implies ||z|| > r. If h € Hys with h # 0, then, there is § > 0,
such that = + th € Hp/\By(r), for all t € (0, ). Noticing x # 6, by part (b) in Theorem 6.1 and (2.4)
for the solutions of Wy, we have

Ppy (@) ()
— hm PB]\,[(’I’)(‘T + th) - PB]M(’I’)(:LI)

t10 t

_r _ _r

_ oy I E ) T e

t10,6<8 t

rth r _r

_ oy AT (o — )

10,6<8 t

_r __ T

o rh . <Hr+thH H:vll) v
= lim ——+ lim

t10,¢<8 ||z +th|| = tlogt<s t
T hm ey Ul + thll = [lz]])2

Izl t10,6<8 t

T r 1

=—h— —(z, h)x

™ [l [l

= o (= o)

If h € H\Hyy, then because x € Hy/\Bjps(r) with ||z|| > r, there is A > 0, such that = + th €
H\ (Cp(r)U Hyy), for all t € (0, \). Noticing x # 6, by parts (b, d) in Theorem 6.1, Lemma 3.3 and
(2.4), we have
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PJ?%’M(?") (x)<h)
_1 PBAq(T)(x+th) _PBA/I(T)(x)
= 111m

t}0 t

(T +th)p — T

_ T @t —

t10,t< t

r(th)m r _r

I (oM (H(r+th)MH |x||) v
= 1m

t10,t< t
o rhar . <7||<m+th>mw B m) *
= m —- 1

t10,t<A [[(z 4+ th)ar||  tho<x t

T r 1

=——hnm — 7<IL‘,hM>33
] ]| {]]]

= (= ot <)

Proof of (c). Let € C%,(r)\Hp with ||z]] < 7. For h € H with h # 0, there is § > 0, such that
x +th € O (r)\H, for all t € (0,0). By part (c) in Theorem 6.1 and by Lemma 3.3, we have

] . +th)p — xup . thy
P! h) =1 =1 (= = lim —=
B () () (1) o ¢ t00ss t How<s

Proof of (d). Let x € H\ (Cps(r) U Hyy) with ||x|| > [|zas]] > 7. For h € H with h # 0, there is
d > 0, such that ||z + th| > ||[(x + th) || > 7, thatis, x +th € H\ (Cp(r) U Hpy), forall t € (0, 9).
By part (d) in Theorem 6.1 and by Lemma 3.3, we have

= hy.

Pp.m(@)(h)
t10 t
T T
iy TEEERd @ M gty
t10,t<6 t
rth r r
(== (||(x+th>M|| B ||xMH) M
= lim
t}0,t<6 t
( r o ) .
_ 1 rha . [a+thyall ~ Temll ) M
= m ———-——m--
t10,t<s ||(x + th)ar||  tl0t<s t
r r 1

M — (xpr, hae) Tar
[Eaval (77l Ya —

_ <hM _ WMW>
[z ek

If N\M = (), then Hjs coincides with H. In this case, we have

B (r) = Cu(r) = B(r).

Furthermore, we have
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hyr = h,forany h € H.
Then, by Theorem 6.3, we have

Corollary 6.4. Letr > 0. Forx, h € H with h # 6, we have,
(a) Ifx € BO(r), then

Py (@)(h) = h, foranyh € H with h # 0;
(b)Ifr € H A B(r), then

P}B(T) (x)(h) = - <h (. h) > forany h € H with h # 0.

] [l

In particular,
P/B(T) (z)(z) = 0, forany x € H\B(r).
6.2. The metric projection onto closed and convex cylinders in Hilbert spaces. Similar to section

4, in this subsection, we first calculate the values of the metric projection from H onto a closed and
convex cylinder C/(r) in H.

Theorem 6.5. For anyr > 0 and x € H, we have
(a) PC]VI(T)( z) =, form € Cn(r);
(b) Poy,r) () = wa + T\ forw € H\Cpy (7).
Proof. The proof of this theorem is similar to the proof of Theorem 4.7. Part (a) is clear. We prove (b).

For any given z € H\Cy(r), z must satisfies ||| > ||zar|| > 7. Then, for any y € Cjs(r) satistying
lya]| < 7, we have

||$MH

r T
<96' — (xM + UCN\M) YT IM T IN\M y>
[Eavdl lzal

- <1 ) ||:c§4||> < T e~ (o ”N\M)>
_ <1 _ M) (r ]| = (@, )

> ([earll =) (r = llyarl)
>0, forally € Cpr(r).

By x € H and ||| > 7, we have ”x Tea M € Sar(r). Tt implies that H:cTTHa;M € Cp(r). By the
basic variational principle of P, (), the above inequality implies
r
Peyr) (x) = WZEM, for any x € H\Cy(r).
O

Now, we prove the Frechet differentiability and calculate the directional derivatives of the metric
projection operator P onto closed and convex cylinders in H in the following theorem.

Theorem 6.6. For anyr > 0, we have,
(a) Py, (r) is Frechet differentiable on C§,(r) satisfying that, for any x € C,(r),

Pl (@) () = h, for anyh € H\{0};
(b) Pc,,(r) is Frechet differentiable on H\C(r) such that, forx € H\Cp(r),

/ T (zar, haa)

M> + hn\a, forany h € H\{0}.
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In particular,
PéM(T) (z)(w) = xz\ar, for any x € H\Cpr(r).

Proof. Proof of (a). Let z € Cf,(r). Since ||xps]| < 7, then, for any h € H with h # 6, there is § > 0,
such that ||(z + th) || < 7, thatis, x +th € C{,(r), forall t € (0,9). In fact, we can choose a positive

o with 6 < % to satisfy « + th € C{,(r), for all t € (0,6), which is independent from h with
|Ih|| = 1. By part (a) in Theorem 6.5, we have

PCM(T) (z +th) — PCM(?") (z) L W I th _

= lim = lim —
tl0 t t}0,t<6 t t10,t<s ¢

Notice that, for this given z € C{,(r), a positive ¢ is chosen such that it is independent from h
with ||| = 1. This implies that the above limit is uniformly convergent with respect to h satisfying
||h]| = 1. This implies the Frechet differentiability of the metric projection operator P, () onto closed
and convex cylinder C/(r) of H at the point z € Cf(r).

Proof of (b). Let x € H\C)(r). Since |[zpz]| > 7, then, we can choose a number A with 0 < X <
W, such that, for any ¢ € (0, \) and any h € H with

|h|| = 1, we have

x - T
o+ gl > gl - =T

This implies
x +th € H\Cy(r), for any ¢t € (0,\) and any h € H with ||h|| = 1.

By part (b) in Theorem 6.5 and Lemma 3.3, we have

Py (@) (h)
m Pey (@ +th) — Poy, ()
t10 t
; (T (@ + thhar + (@ + th)var ) = (e + 2w
N twl,?i,\ t
r(th) r o
_ Tttt * (i — ) =y + (W)
t}0,t< t
. rha . <||(m+§h)Al“ - \\I7;vf||> M
= 1 - _+h |
HOTE |(x + th)a|] vt HLOEE t
r r 1
= ——hy +hy\vy — ——5 77— (T har) 2
] W ] Tl

r Ty, h
= e (= S )
o larl
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