APPLICABLE NONLINEAR ANALYSIS
Volume 1 (2024), No. 2, 110-159
https://doi.org/10.69829/apna-024-0102-ta01 Tulipa Opera Scholarum

CAUCHY-SZEGO PROJECTIONS AND RELATED TOPICS

DER-CHEN CHANG!"2, XINFENG WU>* AND JEN-CHIH YAO*®

! Department of Mathematics and Statistics, Georgetown University, Washington DC, 20057, USA
2 Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University,
New Taipei City 242, Taiwan, ROC
3 Department of Mathematics, China University of Mining and Technology, Beijing 100083, P. R. China
4 China Medical University, Taichung, 406040, Taiwan, ROC
5Academy of Romanian Scientists, 50044 Bucharest, Romania

ABSTRACT. In this survey article, we give a comprehensive review of Calderon-Zygmund operators from
the point of view of Cauchy-Szeg6 projections and the sharp estimates of the operators in Hardy spaces.
Cauchy-Szegd projections is closed related to the Hilbert transform which is a typical example of the so-
called “first generation” of singular integral operators and has been studied by mathematicians for many
years, We started with the case in unit disk D' in C* and then move to the unbounded unit ball B" ™ in
C™*!. Analysis on R"” and H,, are quite different. We try to explain the idea behind it carefully.
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1. INTRODUCTION

The theory of singular integrals operators (CZO) introduced by Calderén and Zygmund [3] as part
of the theory of elliptic partial differential equations, has seen many extensions to different settings.
Remaining within R" as the ambient space, the variations introduced involve the following aspects,
possibly also combined together:

(a) replace the standard dilations, i.e., scalar multiplications, with non-isotropic ones, which will be
explained in Section 6;

(b) distinguish between a “global” theory and a “local” one, which will be explained in Section 10;
(c) allow multi-parameter dilations. This will be explained in a forthcoming paper.

The basic property that is common to all these types of singular integral operators is LP-boundedness
for 1 < p < oo and failure of LP-boundedness, in general, for other values of p.

Hardy spaces H? enter into this picture as the natural substitutes of L” with 0 < p < 1, allowing
positive results about H? — H? and H? — LP boundedness of singular integrals for these values of
p. The point is that each of the classes of CZO mentioned above admits its own Hardy spaces, so that,
whenever a new class of CZO is introduced, it is natural to ask what are its Hardy spaces.

In this paper, we study the Cauchy-Szegd projections and the sharp estimates of the operators in
Hardy spaces. Cauchy-Szegd projections is closed related to the Hilbert transform which is a typi-
cal example of the so-called “first generation” of singular integral operators and has been studied by
mathematicians for many years, We started with the case in unit disk D' in C! and then move to the
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unbounded unit ball B"*! in C"*!. The boundary of B"*! can be identified as the Heisenberg group
H,, which is the simplest noncommutative nilpotent group. In this case, the dilation structure is dif-
ferent which is sort of “second generation” of singular integral operators. Hence, the geometry on H,,
has significant different with R". Hence, analysis on H,, is much more delicate. Let us start with the
upper half plane Ri.

2. THE CAUCHY-SZEGO PROJECTION IN A REASONABLE DomaIN IN C!

The Cauchy-Szeg6 projection is one of the canonical integrals arising in several complex variables
in C**! with reproducing property. This is even happened in the case n = 0, the complex plane. Let us
give a quick review this case [16]. Let (2 be a bounded smooth domain in the complex plane C! and  is
an arbitrary smooth function on the boundary 02. The Cauchy kernel defines a holomorphic functions

U on Q by

Ulw) = — U2 {Ndo(z),  we, 2.1)

211 J,ep0 2 — W

or more briefly
K(u)(w) = U(w) = K(w, z)u(z) dz, w e Q. (2.2)
z€082

Here dz = £(z) do(z), z = £(s) is the arc length parametrization of 9€2, and do is the linear measure
(arc length) on 0f.

The integral is non-singular so long as w € €2, but it ceases to exist as a Lebesgue integral if w € 0€2.
However, K(u) admits a continuous extension up to € (also denoted by K(u)). At the same time the
following limit exists and is finite.

lim K(w,z)u(z)dz =: P.V. K(w, z)u(z) dz (2.3)
e—07F 2€0Q,|z—w|>e z€08Q2
for w € 0N.
Formula (2.2) gets modifies to the Plemelj formula
1
K(u)(w) = iu(w) +PV. K(w, z)u(z) dz, w € Q. (2.9)
2€00
The kernel K (z,w) is the Cauchy kernel:
1 1 .
K - :
() = gz ——(2)

An important point is that the deleted neighborhood around w in (2.3) is symmetric. If it were, e.g.,
proportionately much longer to one side than to the other, then the limit might fail to exist or the
number % in (2.4) might have to be modified.

The restriction of K(u) to 9€2 which we still call it K(u) satisfies L” and Lipschitz estimates

1K)l zr0) < Cpllullzroa), 1 <p < oo (2.5)
Hence, K can be extended to a bounded operator
K: LP(0Q2) — LP(0Q),

which associates to u € LP(0f2) the boundary values of a function holomorphic in §2.

When (Q is the unit disc and p = 2, then K(u) is obtained from u by chopping off the negative
terms in the Fourier series of w, i.e., K(u) is the orthogonal projection of u on the subspace of L?(992)
consisting of boundary values of functions holomorphic in €2. This is true only if 2 is a disc. For any
other €, K is still a projection, i.e, K? = K (because the Cauchy kernel reproduces holomorphic
functions) but it is no longer orthogonal. The purpose of this series of lectures is to explain some basic
idea of the Calderén-Zygmund singular integral operators via the operator K. Once we have the kernel
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K of the operator K, then we may study sharp estimates of the operator K on Hardy spaces H? for
0<p<oc.

3. PoissoN INTEGRALS AND THE HILBERT TRANSFORM

Let us start with the complex plane C! = R2. Suppose that f € LP(R), 1 < p < oo, and consider
the function

F(z):l_/+<><> f()dt z=x+ 1y (3.1)

27 J_o t—
in the upper half plane R% =: {z+iy € R? : y = Im(z) > 0}. Since -, as a function of ¢, belongs to
L4(RY) for every g > 1, the integral is finite by Holder’s inequality and therefore, F(z) is well-defined
and is holomorphic in Ri. In fact, if the support of f is compact, then

Fl) = 1/+N ) 4,

2 J_ny t—z
and
F -F o 1 1
(z 4+ w) (2) _ it [ B dt
w 2 J_ N wlt—z—w t—2=z

1N f(t)
i)y G wi—o™

L, for [t| < N, hence F'(z) = 55 f+N I it exists

BAGD) —2)?

But, as w — 0, the kernel (tizii))(tiz)
and F'(z) is holomorphic in R?.

For general LP function f, we consider the truncations

fN(t):{f(t) if |t <N

0 elsewhere;

. too f N )dt are all holomorphlc and converge to F'(z) uniformly.

then the functions Fiy(z) = 5=
Now, with z = x + iy and y > 0, we decompose the kernel ( 2 into its real and imaginary parts.

Then we can rewrite F'(2) into the following form:

1 400 ; +o00 _
F(z) = QW/ f(t)wadH;W/oo f(t)(xtdt

42 N2 4 2
; oo (azl t) r—1t)2+y (3.2)
L P)@) + L))
where Py (z) = 1 P +y2 is the Poisson kernel in R? , and
1 =

is called the conjugate Poisson kernel in R%r.
The integral

+oo
u(ey) = (FP)@) = 1 [ 10—

is the Poisson integral of f. We may generalize it to R"*1:

Pl(x) = C n+1 = n-%—l) n+1
(14 [a]?) 2 mz (T4 ]zP) 2
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For y > 0, we define

F n+1 y
P,@) = Play) — )
v

2 (P 2?) 2

oo 2 [ dr 2 (3
der = — — == dg = 1.
L ARy

do

cos20°

It follows that

Changing variable 7 = tan 6 implies that 1 + tan?§ = @ and dr =

Theorem 3.1. Let f(x) be an LP function on R™ for some 1 < p < oo, and let u(z,y) = f * Py(z) be
its Poisson integral for (x,y) € R, Then we have

ot o

Au(z,y) = Y —5+75 =0
= ﬁxj oy

and lim,_,o+ u(z,y) = f(x) for almost allz € R™. In addiiton,

sup ‘u(m,y)’ < Mpyr(f)(x) for every x € R".
y>0

Here M1, (f)(x) is the Hardy-Littlewood maximal function of the function f.

Furthermore, we also have LP norm convergence of u(z,y) to f(z) if f € LP(R") and 1 < p < 0.

It can be shown that (f * Py)(x) — f(z) for almost every z, as z = x 4+ iy — z non-tangentially,
even if f € L. Under the hypothesis that f is real valued,

u(z,y) = Re[F(2)].
Here F'(z) is defined in (3.1). We now consider the integral

1 [T Tz —t

o) = (Fx Q) = [ sl

——dt 34
r—t)2+y2 7 (3.4

which is called the conjugate Poisson integral of f and we have the following theorem.

Theorem 3.2. Forany f € LP(R), 1 < p < oo, and almost every x, the conjugate Poisson integral of f
tends, as z — x non-tangentially, to a finite limit.

The Hilbert transform is a typical example of the so-called “first generation” Calderon-Zygmund

“+oo
Hf(z) = / 1) 4, (3.5)

T) oo T—Y
Let us look at the definition of the Hilbert transform (3.5). From the very beginning, there is a
problem. The above integral need not converge absolutely, so H f(x) need not be defined. Indeed if f
is continuous at xg and f(zg) # 0, then

[, .,

—00 "TO - y’

operators. On R set

However, the kernel K(z) = 11 is odd. If we assume that f € C{(R) and interpret the possibly

divergent integral as a principal-valued integral:
1 1
Hf(z) = —lim ) dy = —p.v. ) dy.

T e—0 le—y|>e T — Y s r—y

(3.6)
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Fix a € > 0, we may write the integral as follows:

1 1 1
/ f(y) dy :/ f(y) dy+/ f(y) dy
T Jg—y|>e T — Y T Je<lz—yl<1 £ — Y T Jlg—y|>1 L — Y

=11 + I.

/ f(y) dy
lz—y|>1 L — Y

since the support of f is compact. We may rewrite term /; as follows:

/ 1@ 4, :/ 1) =),
e<lz—yl<1 ¥ — Y e<|z—y|<1 =Yy

1
/ dy = 0.
e<le—y|l<1 T — Y

By the smoothness assumption on f,

For term I, we certainly have

< 00,

since

[f(y) = f(=2)]
|z =yl
is uniformly bounded and hence
[ s,
lz—y|<1 lz —yl
Therefore,
/ f(y)—f(x)dy _/ f(y)—f(a?)dy_/ f(y)—f(x)dy
e<lz—yl<t XY lz—yl<t T Y lp—yl<e T Y
[ 0t
z—yl<1 XY

Then the limit exists uniformly as € — 0.

If the kernel ﬁ were replaced by its absolute value in (3.5) then the principal-value limit would
fail to exist whenever f(x) # 0. The key point here is that the very definition of the Hilbert transform
depends on cancelation in the integral. Indeed such cancelation lies at the heart of the entire theory of
singular integral operators.

Differentiability of f is not really required for this limiting procedure; it would suffice for instance
to have a Holder condition, i.e.,

1f(z) = f(y)| <C- |z —y|° forsome &> 0.
Then

()| =

1 /¢ 1 [
:/ +/ =L+ 1
™ Jo T Je

and, by the Hoélder condition,

/oof(CUth)—f(CU—t)dt' < 1/°° !f(ﬂert)—f(l’—t)’dt
0 t 7 Jo t]

g
L < C”-/ t]°~ldt < 0o, since >0,
0

while I is finite, by Holder’s inequality, for f € LP(R"™), 1 < p < co. Now we link the relation between
the Hilbert transform and conjugate Poisson integral. We have the following important theorem.
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Theorem 3.3. Forany f € LP(R), 1 < p < oo, the Hilbert transform H f(x) exists and is finite a.e.
Moreover, it is equal to the limit of the conjugate Poisson integral of f at every point of the Lebesgue set

Lyof f,ie
: e x—t f) .\ _
i, (/_oo Wire el x—t‘“) - 7

The proof of the above theorem based on the equivalence of non-tangential bounded and the exis-
tence of non-tangential limit of harmonic functions on the upper half plane. We refer the readers to
the book of Stein and Weiss [21] for a good reference

ifZCGACf.

Remarks.
(1). The above theorem does not apply to L>°. Let f(z) = 1. Then H f(x) need not exist. However, if
we assume further that f is bounded and that

/ |f($)|da: < 400
|z|>1 ’

]

then it is easily seen that the H f(x) exists and is finite almost everywhere.

(2). The above theorems also excludes the case p = 1 also. The example f(x) = X(q,5)(z) shows that
H f is not necessary integrable if f € L'(R). In fact, for ¢ (a, b), we have

b
i) = [ 2% =g

™ r—t s

a—x

b—z|’

If x € (a,b) and € > 0 is sufficiently small, then we have

1 TTE i bat 1
/(@) 7T£1—>I%{/a x—t+/x+€:c—t} 7r0g

We note that as |z| — oo,

a—x —a
b—=z
This shows that H f ¢ L'(R).

(3). If f € L*(R™), then for every a > 0, then the operator H is of weak type (1,1), i.e.,

|b — al |b— al
|z — bl |z|

log

b
1
5

‘zlog

Chn
{rer: Hf(@)>a}| < Z2|flm.

4. 2 ESTIMATE FOR THE OPERATOR H

Indeed, we may define the Hilbert transform operator
H:f—H(f), for fe lP(R"), 1<p<o0

especially for p = 2. As usual, denote sgn(z) = 1 for z > 0 and —1 for z < 0. Then one may show
that

(H f)(x) = —i(sgn(x)) f(x) (4.1)
for f € L?(R!). In particular,

IH(F)lz2w) = I flz2w),  forall fe L*(RY). (4.2)

From Plancherel’s theorem and the density property of C3(R) in L?(R), it follows that H has a unique
extension to a bounded, linear operator from L?(R) to itself.
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In order to prove (4.2), we may consider the “truncate” transform:
+00

(H f)e(z) = / FOKen(z — 1)t = (f % Ko n)(2)

—00

with the “truncate” kernel:

1 if e<lz|< N
K&N(‘r):{g ||

elsewhere.

Then (H f) n(z) is the convolution of a square integrable function f with an integrable kernel K .
It follows that (H f). y € L?*(R!) for each fixed ¢ and N. Hence by basic property of the Fourier
transform, one has

—_ ~ —

(Hf)en(x) = f(x) - Ken(x) for almost z € R

But,
o 1 ) N _—2mixt _ 2mixt
Kon(z) = / L omamiatgy — / C e
e<|z|<N € t
N - . Nlz| o
sin 2mat 2 S
= —Qi/ AT g = —Z(sgn(x))/ mwdw,
c t ™ ezl w

where the last integral is uniformly bounded and converges to

00 -
S w ™
dw = —

0 w 2

ase %/(Emd N — oo. Hence we know that, for each x, € and IV,
(a) Ko@) < O
(b). Ken(z) = (—i)(sgn(z)) ase — 0and N — oo.
From (a) and (b), it follows that
H(Hf)a,NHLQ(R) < C - fllL2mw)-

Hence, by Plancherel’s theorem, we have

H(Hf)a,NH]}(R) <C- HfHLQ(R)-

By the Lebesgue dominated convergence theorem, one concludes that

o —

(H)en(€) = (=)(sen(€)f(§)  in L*(R),

since
|HDex@) + Ciaenfie) , , = |[Fov) + (isan(@)] F)|, =0
ase — 0and N — oo. Therefore,
(Hf)en — H(f),
in L? norm, for some square integrable function H(f) such that
(H[)(x) = —i(sgn(x)) f (2).
Moreover, from the above identity, we see that H]TI?H 2R = Hf” r2(r)- Therefore, by Plancherel’s

theorem again, we have
IH fll2w) = £l 22(w)-
Thus, (4.2) is true.
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This enables us to see that the conjugate Poisson integral of an L? function coincides a.e. with the
Poisson integral of its Hilbert transform.

Corollary 4.1. If f € L?(R) then fory > 0,

(f*Qy)(x) = (Hf*Py)(z)  ae (4.3)
Proof. Formula (4.3) means that
1 [t t 1 [T

holds almost everywhere. Since both sides of (4.4) have the same Fourier transform which equals

—isgn(€)e 2 £(g).

The proof of the corollary is therefore complete. 0 g

Note that if H?f = H(H f) then, by (4.1), H?> = —1I, where I is the identity operator in L?(R). This
fact, together with
IH fll2w) = £l 22wy
we know that H is a unitary operator in L*(R).

Example 4.2. Riesz transforms.

Since in R! the function % may be written as
x x

Jz2  Ja|r T
with n = 1 which is the dimension of R'. Let n > 2and 1 < j < n. For f € C’& (R™) set

T;— Y
R;f(x) = Cyp.v. g
]f( ) p Rnf(y)‘flf—y‘n—"_l Y

where
("3
n+1 .

T 2
Again the limit exists for all f € C} because of the cancelation property of the kernel Cnmijﬂ- The

Cp =

operators R;, j = 1,...,n are called Riesz transforms of f. [

In fact, the Hilbert transform and the Riesz transforms are special cases for the following singular
integral operators:

f=1Tf,

where

Tf(z) =pv. | K(z—y)f(y)dy

R (4.5)
= lim K(z —y)f(y)dy.
e—0 \:v—y|>a
Here the kernel K satisfies the following Calderéon-Zygmund conditions:
K@< g ¥ o#o (46)
Blx —y|? 1
K@) - K@l < 22V 0y <1 oyl < el (@)

= Ta 2
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and

/ K(x)dx =0, VO0<r <r <oo. (4.8)
r1<|e[<rs

This section deals with the fundamental properties of the singular integral operators given by convo-
lution with kernels with singularities at the origin and at the infinity. The theory for such singular
integrals was developed by Calderon and Zygmund in the 1950s [3]. We say that these kinds of opera-
tors are first generation singular integrals. Later, L. Hérmander [14] introduced the following condition
to replace condition (4.7):

[ IK@-y- K@z < B ¥ l>0 @9)
|z|>2]y|
It is easy to see that condition (4.7) implies condition (4.9). By (4.7), we know that

Blz—y—=[* Byl

But in the region {z,y € R" : |z| > 2|y|}, one has
’_’>|’_|‘>H_*1‘| *1|’
T x T z| = <|z|.

It follows that

By By
|K(z —y) — K(z)| < o=y < e

Therefore,
/ |K(x —y) — K(x)|dz < §|y\7/ |z|7"Vdx = B.
|z|>2]y| |z|>2]y|
One of the corner stones to obtain the LP, 1 < p < oo estimates for the operator 7 is the following

weak type (1, 1) estimate for 7.

Theorem 4.3. Let T be an operator defined by (4.5) with kernel K satisfying conditions (4.6), (4.8), and
(4.9). We assume that T is bounded on L?(R"),

1T fllL2@ny < Coll fllL2@ny-

Then T can be extended as an operator of weak type (1,1) and the operator norm C’ depends only on the
constant B in (4.9) and Cs:

!

C
’{x eR": |Tf(x)| > oz}‘ < ;”f”Ll(Rn), forall fecL'NIL2 (4.10)

The proof of the above theorem is highly nontrivial which relies on the famous result is so-called the
Calderon-Zygmund decomposition. Readers can consult the books by Stein [19] and [20].

Remark.
Calderon [2] raises a question regarding mapping properties of the Cauchy integral

or(fw) = [ T g,

sz_w

namely, to determine the rectifiable Jordan curve I' for which Cr gives ride a bounded operator on
L?(T). This was solved by G. David and J. Journé in 1984 [8] and G. David, J. Journé, S. Semmes in 1985
who showed that Cr is bounded on L?(T") when I satisfies

w(T'N B(z;7)) < Cr
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for every zp € C, r > 0 and some constant C'. This opened up a large study of (which was called then)
Ahlfors regularity by David and Semmes [9]. When d = 1, this condition appeared in Ahlfors’s famous

paper [1].
Let E C R" be a closed set, not reduced to a point, and j be a (positive Borel) measure supported
on E. The set F is called Ahlfors-regular of dimension d if there exists a constant C' > 1 such that

clrd < pw(EN B(x;r)) < C-rd
forallz € Eand 0 < r < diam(E) and there is a constant C' such that
Clu(4) < HYEN A) < Cp(4)

for all Borel sets A € R™. Here H? denote the d-dimensional Hausdorff measure.

5. RETURN TO THE CAUCHY-SZEGO PROJECTION

There is a second kernel naturally associated with €2, the Szegd kernel S(z, w) which serves the same
purpose

U(w) = / S(z,w)u(z)do(z), w € ) (5.1)
2€0Q

and which arises from considering the orthogonal projection
S: L*(09,do) — H*(09). (5.2)
Here H2(092) is the closed subspace of L?(9f2) of boundary values holomorphic functions in 2 For

any u € L?(09),
S(u)(w) = / S(zwhu(z) do(z),  weQ, (5.3)
2€0Q

from which (5.3) follows since, in (5.1), U = S(u).

Now we may ask an important question: Does S(z,w) = K(z,w)? In general, the answer is “No”.
There is a key reason why S(z, w) must be more involves than K (z, w). If ) is simply connected, then
the Riemann mapping function can be immediately and explicitly obtained from S(z, w).

The orthogonal projection S : L?(9Q) — H?2(09) is represented by the Szego kernel S(w, z) of

S(u)(w) = / L Swauede(z),  wen

We have identified S(u), which is a function in H2(952), with its unique holomorphic extension to 2,
and we shall repeatedly perform this identifications. Now if { ¢y } is an arbitrary complete orthonormal
system in H2(09) (i.e., in the measure do of 9Q2) we have

Sw,2) =Y dr(w)ge(z), weQ, z€0Q
k=1

and it follows that the unit disc D has Szeg6 kernel

1 1
orl —wz’

Sp(w, z) = lw| <1, |z| =1 (5.4)

Notice also that S(w, z) = S(z,w) are defined for z, w € Q.



120 D.-C. CHANG, X. WU, AND J.-C. YAO

5.1. The Szegé kernel S(z,zo) in terms of the projection S. If u € H?(92), then on one hand,
Cauchy formula gives

u(zo) = 5 » Zufziog(z) do(z),  zeQ

where £(z) do(z) = dz, £(z) is the unit tangent to dS2 at z and ¢ is the counterclockwise arc length
parametrization of 0€2. Setting

1,(2) = conjugate of (L ! §(z))

2wz — 29

and using scalar product notation (-, -) on H2(99Q) we get u(zo) = (u,1),,) or, neglecting the compo-
nent of 1., orthogonal to H?(9<2)
u(z0) = (u, S(1hz))- (5.5)
On the other hand (5.5) gives
u(z0) = (u(),S(z0,)) = (u("), 8 20))- (5.6)
Both (5.5) and (5.6) hold for all u € H?(0S2) and also S(v,) and S(-, z) are in H?(912). Uniqueness

shows that we have proved S(z, z9) = S(1)5,) for z € Q.

6. THE CaucHy PrRoJECTION K

Now we set up another projection K : L2(9Q) — H2(052) that is not orthogonal but which is given
by the Cauchy kernel. However, K is “closed” in orthogonal though, as comparison with its adjoint K*
will show. For more details, readers can consult a paper by Kerzman and Stein [16].

For any u € L?(9)) set

1 u(2)

Ulw) = — dz, w e Q. (6.1)
21 J,yco0 2 — W

Then, the following is known.

Theorem 6.1. There is a unique function K(u) € H?(0Q) of which U(w) is the holomorphic extension.
Moreover,

IK(@)l[L200) < ¢ llullz2oa),
where ¢ = ¢(Q2) is independent of u.

Here “extension” means that ||K(u)(z) — U(z — ev(z))|| — 0 whene — 0. Here € > 0 and v(z)
is the outer normal to 0f2 at 2. Indeed, one allows to consider non-tangential “extension”.
Moreover, the following singular integral representation is valid for any u € C*°(992), w, z € 902

1 1 u(z) -
K(u)(w) = §u(w) + %P.V. /zeaQ po—— &(z)do(z). (6.2)
We rewrite (6.2) as
Kw)(w) = ~u(w)+ PV. [ K(w,2)u(z)do(z) 63)
2 €00
with K (w, 2) = 51 £(z), the Cauchy kernel.

Being bounded in L?(952), K has abounded adjoint K* : L2(09) — L?(09) defined as (K (u),v) =
(u, K*(v)) and a simple application of Fubini’s theorem to the Plemelj formula (6.3) shows that if
u € C*(00)

K*(u)(w) = éu(w) +P.V. o0 K(z,w)u(z)do(z), w € 0N (6.4)
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Comparison of (K(u),v) = (u, K*(v)) and (6.4) brings in the following theorem.
Theorem 6.2. The kernel E(w,z) =: K(z,w)—K(w, z) is in C*°(9Q x 9Q) if it is defined on the diagonal
as

E(z,z) = _QLm‘ Real part of (23)

Remark. The singularities of K(z,w) and K (w, ) exactly cancel out, hence F(z, z) = 0 since £(2)
is orthogonal to £(z) (the parameter being arc length). Hence the Cauchy kernel K (w, z) is closed to
self-adjoint for z near w on 0f2.

Proof. Tt is obvious that E(z,w) € C*(9Q x 082 \ X) where ¥ is the diagonal of 02 x 0f). By the
above remark, we know that F(z,w) is well-defined on . Let z = £(s) and w = £(t) where s and
t are arc length parameters, z and w are “close” with z # w and s, t lie in a tiny interval [a, b]. By
Taylor’s Theorem, one has

2(s) =E&(s) = E(t) +E(W)(s — 1) + %5(75)(8 — 1)+ (s = )°(0)

(6.5)

w(t) =¢&(t)

where a < § < b. Then we have
: LE(1)

2s) —w(t) = £(t)(s — t){l + 5%(8 ) (s—1)2 @(9)}. (6.6)
Now we apply the identity ﬁ = 1—n+ R(n) with R(n) = 7% ¢(n) with ¢ € C> near n = 0 to
obtain

L _ L MO e
a0 Fe ot 2ge O e e o7

Next we differentiate (6.5) with respect to the variable s and obtain
E(s) = &) +E()(s — 1) + (5 — )*0(0)
Combining the above identity with (6.7) to get

do  _ 1 1éw
() —w(® 5=t 280

+ (s—1t)-¢(0). (6.8)

Similarly, we have
) 1 1€
2(s) —w(t)  s—t  2€(t)
Substracting (6.9) from (6.8) and (6.7) show that the singularities of i cancel out and

+ (s —1t) - ¢(0). (6.9)

E(w,z) = K(z,w) — K(w,z) = L {Re(g(t)) +(s—1) 'tcp(H)}

2w | \E(e)
which holds for s, t € [a,b], s # t. As we discussed at the beginning of the proof, F(w, z) is also
defined for s = ¢. Hence the proof of this theorem is therefore complete. g

Theorem 6.3. The integral operator E : L?(0Q) — L?(0N)) defined by
E(u)(w) = / E(w,z)u(z)do(z), w €0
2€002

is compact and iE is in addition self adjoint. The operator 1 — E is one-to-one onto L*(9§2) — L?(0%)
and hence it has a bounded inverse (1 — E)~! : L2(0Q) — L*(09).
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Now, both S and K reproduce holomorphic functions so that, as operators on L?(952), SK = K
and KS = S and taking adjoints
K'S = K* and SK* =S
since S* = S. Subtracting off
S(K'-K) =S-K = S=K(1-E) (6.10)
This is our basic desired formula. Notice that in the process of subtracting K* — K, the principal value
signs in (6.2) and (6.4) have disappeared.

Let £(w) be the vector (i.e., complex number) which results from reflecting &(w) in the chord deter-
mined by z € 992 and w € 0f). Then

1 1 ~ .

[€(w) = &(2)] (6.11)
In order to show (6.11), we may apply a rotation so that z — w is horizontal i.e, 2 — w € R. Now the
circle is that only plane curve such that the chord determined by any two of its points meets the curve
with the same angle at both points. Hence FE(w, z) = 0 for all z, w € 92 implies that 2 is a circle. In
fact, we just proved the following.

E(w,z) = 2 2 — w

Theorem 6.4. The only bounded, smooth, simply connected plane region () whose Szego kernel S(w, z)
coincides with the Cauchy kernel K (w, z) for allw € Q and z € S is the disc.

We are interested in the special case in which the L?(92) operator norm of E is less than 1 because
then (6.10) can be rewritten as a geometric series. Assume then that Q) is “nearly-circular’ in the sense
that

ﬁ / em/ con |Z_1w\2‘g(“’) — £(2)])* do(2) do(w) < 1 (6.12)

which implies ||El|,, < 1. In this case we can summarize our results in

Theorem 6.5. Assume (6.12) holds. Then

(1).8=>7%K E/, where the series converges in the L*(0)) operator norm.

(2). For any u € L?(09)) the remainder Ry (u) =: S(u) — Z;VZOKEj(u) — 0 uniformly on 0S2.
The same holds for any derivative with respect to arc length DR (u) which exists if N > 1. By the
maximum principle the convergence are also uniform on ).

7. ANALYSIS ON THE UNBOUNDED UNIT BarL in C"H1

7.1. Action on the Siegel upper half space. Let D = {z € C : |z| < 1} be the unit dick in the
complex plane and let Q1 = {w € C: Im(w) > 0} be the upper half plane in C. Consider the Cayley
transform

¢: D — Ql
is given explicitly by
i(l1—2)
C(z) = T

Notice that € is a bijective may and its inverse is given by
1 —w

-1 -
¢ )= it w
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Now we would like to generalize this transform to high dimensional cases. In C"*?, the unit ball can
be written as B = {(z1,...,2,41) € C**! : Zill |2x|? < 1}. It turns out that the unbounded
realization of the ball B is given by

n
Qi1 = {(w1,...,wn11) = (W, wnp1 € C1 2 Im(wpyn) > Z Jwi |}
k=1

Now the mapping that shows B and €2,,41 to be biholomorphically equivalent is given by
d:B — Qn—l—l

21 Zn Z.(1 - zn+1))
Zlyeney Zn, 2 r—>( e ) .
( ! " n+1) 1+ Zn+1 1+ Zn+1 1+ Zn4-1
Denote Aut(€2,41) the collection of all biholomorphic self-mappings of 2, 1. This set forms a group
when equipped with the binary operation of composition of mappings. In fact it is a topological group
with the topology of uniform convergence on compact sets. There is a natural isomorphism between

Aut(B) and Aut(€2y,+1) which is given by
Aut(B) 3 ¢ — Popo® 1 € Aut(Qnir).

It turns out that we can understand the automorphism group of B more completely by passing to the
automorphism group of €2,,41. We shall use the idea of the Iwasawa decomposition G = K AN where
K is compact, A is Abelian, and N is nilpotent.

The compact part of Aut(B) is the collection of all automorphisms that fix the origin. Using Schwartz
lemma, it is known that any such automorphism is a unitary rotation. This is an (n + 1) x (n + 1)
complex matrix whose rows (or columns) form a Hermitian orthonormal basis of C"*!. Let us denote
this subgroup by K. We see that the group is compact just using a normal families argument: if {¢;}
is a sequence in K then Montel’s theorem guarantees that there will be a subsequence converging
uniformly on compact sets. It is easy to show that the limit function will be a biholomorphic mapping
that fixes the origin.

Now let us look at the Abelian part. For this part, it is more convenient to begin our analysis on
Qp11. Let us consider the group of dilations, which consists of the nonisotropic mappings

6t Qg1 = Qnps
given by
gg(wl, e Wny Why1) = (EWL,. .., EWn, E2Wn 1)
for any € > 0. This group is clearly Abelian. It corresponds, under the mapping ®, to the group of
mappings on B given by
(215 Zns Zng1) = B 04, 0 B(2).
Now it is immediate to calculate that

<I>_1( ) 21w1 2wy, 1 — Wpot
i+ Wog1 A Wagt A+ W

After long computation, one has
5.(2) = < 2ez L 2ez, 7 (1—62)+Zn+1(1—|—82)> .
=) Y (=) RS =) Sy CRy=) M (=) Wy (=)
One may verify directly that z € B < 0.(z) € B. We shall find the “nilpotent” part. Again, it is much

easier to work on the unbounded domain 2,1 1.
Denote by H" the Heisenberg group:

H" ~C" xR = {(2,t) = (21,...,20,t) : 2 € C", ¢ € R}
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with group law

n
(z,t) - (w,s) = z—f—w,t-l—s-i-QImZ zjw; | . (7.1)
j=1

It is clear, because of the Hermitian inner product z - w = E?:l 2w, that the group operation (7.1) is
non-abelian. Now an element of 0€2,, 11 has the form

(w1, ..., wn,Re(wni1) +i|w'?), where w' = (w1,...,w,).

We identify this boundary point with the Heisenberg group element (w’, Re(wy,11)), and call the cor-
responding mapping ¥. Now we can specify how the Heisenberg group acts on 0€},41. If w =
(W', wp41) € 041 and g = (2/,t) € H" then we have the action

g(w) = ¥ (g W(w)) = ¥ g+ (', Re(wn1))] = ¥ [(2s1) - (', Re(wnsn)]-
More generally, if w € €, is an arbitrary element then we write
w=(W1,..., Wy, Wnt1) = (W, wy41)
= (w1, .., W, Re(Wny1) + il +i(Im(wny1) — [0'[?))
= (wl, ey Wy, Re(wpay) + i|w'|2) + (0, oo, 0, i(Im(wpg) — |w’|2)).

Now we may introduce the “height function” p = Im(wy,41) — |w’|? on €, 1. Then we may let g acts
on w as follows:

g[w] :9[(1017 - wn, Re(wn1) + ifw?) + (0, ., 0,i(Im(wn 1) — |w,|2))} (7.2)
Eg[(ﬂn, ooy Wh, Re(wpa1) + i|w'|2)} + (O, ooy 0yi(Im(wp41) — \w'!Q))- |

In other words, we let g act on level sets of the height function. From now on, let us drop the prime in
the variable. For g = (z,t), one has

glw] = g| (. wn,Re(wain) +ilwl)| + (0,0, i(Im(wp41) — |w]?))
=yt [g- (w,Re(wn1)] + (0,...,0,i(Im(wn41) — \w|2))

} +(0,...,0,i(Im(wn 1) — [w]?))

= (z + w,t + Re(wp41) + 2Im(z - @) + i|z + w|2) + (0, ..., 0,i(Im(wp41) — |w\2))

= (z 4+ w,t +i|2]* + w1 + 202 - w).

~—_

=g [(z + w,t + Re(wp41) + 2Im(z - w)

This mapping is plainly holomorphic in w (but not is z). Hence we see explicitly that the action of the
Heisenberg group on €2, 1 is a biholomorphic mapping.

As we have mentioned before, the group H,, acts simply transitively on 0€2,,41. It follows that the
group may be identified with 0€2,, 1 in a natrual way. Let us now make this identification explicit. First
observe that 0 € 9,,41. If g = (2,t) € H,, then

9(0) =T ((2,8) - (0,0)) = U1 (z,t) = (2,t +i[2]*) € Ot
Conversely, if (w, Re(wy+1) + i|w|?) € 0241, then let g = (w, Re(wy41)). Hence
9(0) = U~ (w,Re(wn41) = (w,Re(wns1) + ilw|*) € Opis.

Comparing this result with the similar but much simpler situation for the upper half plane R? , we may
conclude that H,, = 0,,41.
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7.2. The Lie group structure of the Heisenberg group. The Heisenberg group H,, has 2n + 1 real
dimensions and we can define the differentiation of a function in each direction consistent with the
group structure by considering 1-parameter subgroup in each direction.

Let g = (z,t) be an element in H,,, where

z2=(21,...,2n) = (x1+ Y1, .., Tn + iyYn)
and ¢t € R. If we let
Yar—1(s) = (0,0,...,s+10,...,0), Yar(s) = (0,0,...,0+is,...,0)
for 1 < k < n and the s term in the kth slot, and if we let
Yon+1(s) = ve(s) = (0, s)

(with 2n zeros and one s), then each forms a one-parameter subgroup of H,,.
WE define the differentiation of f at g = (z,t) in each one-parameter subgroup as follows:

X f(g) = %f(g - Y2k—1(8))

s=0
d ) . .
:7f($1+Zy17""xk+s+7lyk7""xn+Zynat+2yk8)

of of
= | = — < k<

s=|

Vif(o) = -5 (0- ()|,

d , . ,
:*f(xl+ZZ/1,---7$k+l(yk+S)a~--7$n+l?/n7t—2$ks)

(93/}4; Tk 9t> (Zut)) > k =n,

Tf(9) = 5 Flo ()|,

s=0

:if(xl+iy1)"'7$n+iyn7t+5)

_of
=5 —(z,1).
Note that
[(Xj, Xi] = 1Y), Y] = [ X3, T] = Y3, T] =0, Vjk=1,...,n
and

The only nonzero commutator in the Heisenberg group is [ Xk, Yi|:

_(9f of 9y (9 , 9N\ (9 o
[X’“’Y’“]_<a +2yk8t><8 29”’“&) <6yk maza) (a +2yk8t>

) ) 9 \ 8 )
<a T > at <8ykyk> at ot

In summary, all commutators [X;, Xj], [Y}, Ys] for j # k and [ X}, T, [Yj,T| equal zero. The only
nonzero commutator is [X;,Y;] = —4T. All second-order commutators [[A, B], C] will be zero, just
because [A, b] will be either zero or —47". Thus the vector fields on the Heisenberg form a nilpotent Lie
algebra of step 2.
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7.3. Analysis on the Heisenberg group. We define the “homogeneous norm” | - |, on H,, to be

1
lgln = (21" + ). (7.3)
Then | - |, satisfies the following properties

® lgln = 0and |g[n =0 g=0;
e g — |g|p is a continuous function from H,, to R™ and is smooth on H,, \ {0};
o [0:(9)|n = ¢lg|pn foralle > 0.

These three properties do not uniquely determine the norm. If ¢ is positive, smooth away from the
origin and homogeneous of degree 0 in the group dilation structure, then ¢(g)|g|s, is another “norm”.
The group H,, is also equipped with the Euclidean norm in R?"*!, Let us denote it as | - |

1
|g|e = (|Z‘2 +t2)2‘

Lemma 7.1. For|g|? < 1, we have

l9le < 19ln < Vlgle-

Proof. We see that
gle = VP2 < (sl + )7 = gl
reduces to
(2P +)% < |2)* + £ or 2222 +1* < %, or 222+ < 1.
Since we assumed that |g|2 = |2|> 4+ t? < 1, we have 2|z|> 4 ¢? < 1. Furthermore
gl = (1 +3)7 < (|2 +£)F = Vgl
That completes the proof. 0

Lemma 7.2. We have
dV (g) = dardy; - - - depdyndt = r**drdo(€),

where do is a smooth, positive measure on the Heisenberg unit sphere {£ € H,, : |£|, = 1}.

Proof. Let x = (x1,...,%2,+1) € Hy,. If we let r = |z, then
T = (xlv s 737271-&-1) = 7’(51,- o 752714-1) = (T§17 s 7T§2n7r2§QN+1)

where |¢|;, = 1. Then we have
2n 2
2 2
Sonp1 =1 — (Zf;) .
k=1
Therefore we may consider the coordinate transform

(1'17 .. -ax2n+1) = (517 cee a£2n7r)‘

Calculating the Jacobian matrix, one obtains

i r 0 e 0 &
3m1 611 . % P
Tfl 6752 or 0 T 0 62
J = : : : = : :
OTont1  O%any1 . OTany 0 0 . r Eon
961 0 or r2 9€2n+1 r2 Omt1 r2 O2n+1 2ré
L 3 23 0an 2n+1 ]
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Therefore,
| det J| = 20+ (2€2n+1 Zf 8522“)'
Hence
dV (z) = dxy - - - dropdrons1 = r2n iy do(z),
where

do = <2§2n+1 Zf aég“) d&y - - - déap.

O

Now we can calculate the volume of the ball in H,, using polar coordinates. Let ¥ be the surface

area of the unit sphere in H,,:
¢c= [ ol = [ doe)
[€]n=1 Y

Then the volume of the unit ball in H,, is

1
|B| :/ dV(:c)z// 2y de = —©
el <1 = Jo 2n +2

Hence the volume of a ball of radius R will be

BOn| = [ avie) = [ avire) = @0 [ av(e) = R
|CE‘}L<R |x|h<l

|z <1

Now the integration of characteristic function of balls is well defined. We call 2n + 2 the homogeneous
dimension of H,, even though the topological dimension of H,, is 2n + 1. The critical index m for a
singular integral is such that

/ —dV() —}—ooi'fozZm
©:1) lz[* <o if 0<a<m

and the critical index coincides with the homogeneous dimension. Thus the critical index for a singular
integral in H,, is 2n + 2, which is different from the topological dimension.

7.4. H,, is a space of homogeneous type. For z,y € H,,, we define the distance d(z, y) as follows:

d(l‘,y) = ‘xil ' y|h
Then d(x, y) satisfies the following properties:

e d(x,y) =0 & x=y;

e d(z,y) = d(y,2);
e There exists 79 > 0 such that d(z,y) < o (d(z,u) + d(u,y)).

Proof. The first assertion is obvious. Now we turn to the second assertion. It is easy to check that

x~1 = —z. Thus

dz,y) = [a7" yln = [(=2) - ylu = [z (=y)|n = d(y, z).
It remains to show the three assertion. Let

sup d(z,y) = C, inf [d(x,u) —i—d(u,y)] = D.

|z|h,ly-h<1 [z 1|yl s luln <1
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Then C' > 1 and D > 0. Therefore we get
C .
d,y) < C < Zld,u) +dw,y)], if |zl [yl lulp < 1.

Now, for general x, y and u, let 7 = max{|z|s, |y|n, |u|n}. Then x = r2’, y = ry’ and v = ru’ where
|2’ |y |¥ |y |4/| 1 < 1. Then we have
d(z,y) = d(ra’,ry’) = rd(2',y)
and
d(z,u) + d(u,y) = r[d(m', u') + d(u, y’)]

Hence

Q

d(z,y) < —[d(w,u) +d(u,y)], for all =,y u.

-

g

Define balls in H,, by B(z;r) = {y € H,, : d(z,y) < r}. Then, equipped with the Lebesgue
measure £ on R?"T! H,, is a space of homogeneous type. We need to check the following three
conditions:

e The Positivity Property: 0 < p(B(z;7)) < oo for all z € H,, and r > 0;
e The Doubling Property: there exists a constant C'; > 0 such that

w(B(z;2r)) < Cip(B(x;7));
e The Enveloping Property: there exists a constant Co > 0 such that if B(x;7) N B(y; p) # & and
p > r, then B(y; Cap) 2O B(x;r).

Proof. The first assertion is obvious since p(B(z;7)) = r?"*2|B| where |B| is the volume of the unit
ball. Moreover

w(B(z;2r)) = 22" 2(B(z;7)) = Oy =222
Now we turn to the third assertion. The result follows because, equipped with the distance d, the
Heisenberg group is a quasi-metric space. In detail, let v € B(z;7r) N B(y, p). Then d(z,v) < r and
d(v,y) < p.Ifu € B(z;r), then we obtain

d(y7 ’LL) < Y0 [d(y7 U) + d(”? u)] < Y0 [p + ")/()Cl(U, Jf) + ’Yod@?v U)]
<0 [p + 270r] < Y0(1 + 270)p.
Thus we may let Cy = o + 273. O

Hence, (H,,, 1) is a space of homogeneous type in the sense of Coifman and Weiss [6].
We say that a function f : H,, — C is homogeneous of degreem € R < f(ex) = ™ f(x).
The Schwartz space S of H,, is the Schwartz space of R?"*+1:
<o)

(2 s)

The norm || - /4,3 is a semi-norm and § is a Frechet space. The dual space of S is the space of tempered
distributions. For ¢ € § and § > 0, set

ps(z) = p(0x),  ’(z) = 5‘2”_%(%)'

Note the homogeneous dimension playing a role in the definition of ¢°.
A tempered distribution 7 is said to be homogeneous of degree m provided that

T((pé) = 0"1(p).

S(H,) = {f :H, - C: ||[fllag = sup
zcH,,
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If it happens that the distribution 7 is given by integration against a function K which is homogeneous
of degree m, then the resulting distribution is homogeneous of degree m:

4@—/K( M_/KM
- [ K@ " ().

Proposition 7.3. Let f be a homogeneous function of degree A € R. Assume that f is C' away from the
origin. Then there exists a constant C' > 0 such that

_ 1
(@) = fW)| < Clo —yln-lal™,  whenever |z —yly < 2l

_ 1
[f(@-y) = f(@)] < Clyln- |23~ whenever |yl < ol

Proof. Let us look at the first inequality. If we dilate z, y by p > 0, then

LHS =|f(pz) — f(py)| = P f(x) — f(v)]
RHS =Clpx — pyln - lpz[p " = CpMz =yl - [y~

Thus the inequality is invariant under dilation. So it is enough to prove the inequality when |z|, = 1
and |z — y|p < ﬁ. Then y is bounded from 0:

d(z,0) <~o(d(z,y) +d(y,0))

1 1 1 3
d(y,0) > — —d(z,y) > — — — = > >0.
(©:0) Y0 (@9) Y 4 4

Applying the classical Euclidean mean value theorem to f(x):

[f(z) = f)] < sup|Vf]- [z —yle.

Note that the supremum is taken on the segment connecting x and y. Since |z|, = 1 and y is bounded
from 0, we have

[f(x) = f(y)] < Clo—yle < Clo =yl
The last inequality is by Lemma 7.1. We may show the second inequality by similar method and con-
clude the proof of the proposition. 0

Let (X, i) be a measure space and f : X — C a measurable function. We say f is weak type p,

0 < p < infty if there exists a constant C' > 0 such that
C

u{xeX:\f(x)\>/\}§ﬁ, vV, A>0.

Remark. If f € LP, then f is weak type p. For suppose that f € LP(X), then
Cz [ 1f@ra@ 2 [ If@rie 2 0 oplre X 18] >,
>

hence f is of weak type p. But the converse is not true. Let X = R* and let f(z) = ﬁ is weak type
but not pth power integrable. The following two lemmas are very useful in our discussion which can

be found in Folland and Stein [11]
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Theorem 7.4. Let (X, i), (Y, v) be measurable spaces. Let
K:XxY = C

satisfy
Ch
plo s [K(zy) > A} <57, (forfixedy)

v{y: |[K(z,y)| > A} < %, (for fixed x)

where C' and C are independent of y and x respectively and r > 1. Then

fH/f K (2, 3)dv(y)

141 1, forl <p< . 7.

P q 1 _1
maps LP to LY where ;=ptr

The main idea in the proof of Theorem 7.4 is the following result of Isaiah Schur:

Lemma 7.5. (Schur’s Lemma) Let 1 < r < oo. Let (X,u), (Y,v) be measurable spaces and let
K : X xY — C satisy

1

([ mGara) <o
(/ |K<ac,y>|%w<y>)i <o,

where C'| and Cy are independent of y and x respectively. Then
Fr [ K @) vty

maps LP(X) to LY(X) where% =14l 1 fori<p<

1
p

Proof of Theorem 7.4: By the Marcinkiewicz interpolation theorem, it is enough to show that f — T'(f)
is weak type (p, q). Fix A > 0. Let p > 0 be a constant to be specified later. Let us define

K(z, if |K(z,y)|>
Ky () = (z,y) : (K ()| = p
0 if |K(z,y)l<p
KZ(xvy) :K(CC,y) - Kl(!E,y)
Obvious, Ko (x,y) is bounded. Define

- / Ko (z,y) f(y) dv(y).
Y

Then T'(f) = T1(f) + T2(f). Hence,
pla e X [T(H@) > 2} —pfo € X5 (@) + To()(w)] > 27}
<p{z e X+ |Ti(f)(@)] +[T2(f)(x)] > 2\} (7.4)
<u{we X [Ti(f)(a)] > A} + pfo € X [To() @) > A



CAUCHY-SZEGO PROJECTIONS AND RELATED TOPICS 131

Let f € LP(Y) and assume || f||z» = 1. Choose p’ such that l + i, = 1. Then we get

1)) =| [ Kottt < ([ 1ot avty ) ([ wtwpa )

and from the definition of distribution function,

’ p ’_
[ 1wl avty) = [ g ()
P ’ /_1C / P /_1— ;o —
</psp Srds:Cp/sp "ds = C'pP 7.
0 0

The last inequality holds since

p—1-r= 1
p

Thus we get

To(N@)] < (7 fllr = C*' 7.

Letp = (%)% Then

Ta(N@)] < ¢ (g*)” Y

Therefore one obtains the distribution function ap, (5 (s) = u{xr € X : [Ta(f)(z)| > s} at the “height”
s = Ais 0. From (7.4), it follows that

ar(p)(2A) < ary ().

Since | K1 (z,y)| > p, we have ag, (5.)(\) = ag, () (p) if X < p. Thus

/Y Ky (2, y) dv(y) = /0 sty oy (V)N

Similarly, we get
[ 1K@ alua) < o

Recall that is L(z, y) is a kernel and

| @@ < ¢ and [ pepla) < c

then by Schur’s lemma, f — [, f(y)L(z,y)dv(y) is bounded on LP(Y), 1 < p < oco. Thus T} is
bounded on LP(Y) and

1Ty (Hllexy < Co" "I fllepry = Cp' "
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Denote A = {x € X : T1(f)(z)A}. By Tchebycheft’s inequality, we have

ap (A = /Adﬂ(x) < //\Wdu(w)

< HTl(f)lep(X) < (Cpt=r)P
- AP - AP
(2"
e AN O N\, P —
=C v =C- -\ VL

Therefore,

C
O[T(f)(2)\) ~ )\q.

A
|

g

Now we may apply Theorem 7.4 to LP estimate for the fractional integral on the Heisenberg group.
Let
Ko(z) = [z, "2 0<a<2n+2,
be a kernel. Consider the operator
Fo:fr— fxK,
on H,,. A natural way to proceed now is to calculate the weak type of K. Then Theorem 7.4 can be
applied to obtain the mapping properties of the operator F . Now

2

m{x eH,: |Ky(z)| > )\} = m{x: |z, < (%)2%—#2,@} < C- (%)‘23135_

We see immediately that K, is of weak type 5222 Thus the hypotheses of Theorem 7.4 are satisfied

2n+2—«a
with r = 231;3 —. We conclude that /, maps LP(H,,) to LY(H,,) with
1 1 o« Lo, 2
g p 2n+2 b a

8. L2 ESTIMATES FOR SINGULAR INTEGRALS ON THE HEISENBERG GROUP

We now turn our attention to singular integral operators. First, let us mention the following cele-
brating result which was obtained by Folland and Stein [11] in 1974.

Theorem 8.1. Let K be a function non H,, that is smooth away from the origin and homogeneous of
degree —2n — 2. Assume that

/ K(x)do(x) =0,
|lz|n=1
where do is the area measure on the unit sphere in the Heisenberg group. Define

Tf(x) = PV.(Kx f) = lim K@) f(y™"-z)dV(y).

e—=0 lyln>e

Then the limit exists pointwisely and in norm and

1Tz < ClIfllLe-

This theorem is an analogue of L? estimate of the Hilbert transform and Riesz transforms, where the
underlying manifold is R” and use isotropic dilations, i.e.,

5z, xn) = (021, ..., 0Ty), v §>0.

The kernel K is a Calderon-Zygmund kernel, i.e., K (z) satisfying properties (4.6), (4.8) and (4.9) in
Section 3. In other words, K € C*°(R" \ X)) satisfies the following properties:
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e K is homogeneous of degree —n;
. flxlezl K (z)dz = 0 where |z, is the Euclidean norm of the vector x;

i f|x|ez|y\e |K(z —y) — K(z)|dz < B, V |yle > 0.
Then

T(f)(x) = pv. o flz —y)K(y)dy

is bounded on L?(R™). The main idea in proving L? estimate of the Hilbert transform and Riesz trans-
forms is to show that ﬁ( is bounded. Then the L? boundedness of T" follows immediately from the
Plancherel theorem. This Fourier analysis approach works on H" in principle but not in practice, since
the Plancherel formula on H" requires consideration of irreducible unitary representations (of H") and
the Hilbert-Schmidt norms of operator-valued functions. We will use the method, of ”so-called” has a
pejorative connotation, almost orthogonality which is a very powerful tool in dealing with noncommu-
tative singular integrals.
The problem with our kernel K is that it is integrable neither at 0 not at co. Consider 7'(f) as
o0
MOEED | Fo -y K (y)dy.
e —oo ¥ 2P <[y|n <2k +1

Each of the operators in the sum is easy to handle and has operator norm of order of magnitude 1. The
triangle inequality then yields that

N
Y T <C-N.
k=—N op

Such a crude estimate is of no use. The insight of the following lemma is that when the operators
being summed act on different (nearly orthogonal) parts of the Hilbert space then the norm of the
sum is actually independent of the number of terms. This lemma was discovered by Cotlar [7] in
connection with ergodic theory, and in the present form was introduced by Knapp and Stein [17] in
order to establish the boundedness of singular integral operators on nilpotent Lie groups. Now we
make this precise with the following Cotlar-Knapp-Stein Lemma:

Theorem 8.2. Let §) be a Hilbert space and a set of bounded (on §)) operatorsT);. Suppose that there exists

a bi-infinite sequence of positive numbers a; with A = Z;’;_m aj < oo such that

1T5Ty [ op < a?,k, and || T; Tk|lop < a?,k. (8.1)

Then for any finite collection of indices A,

YT <A

jer lop

Proof. Recall the elementary Hilbert space fact that
7T = |IT|* = IT*||*.
But TT™* is self-adjoint, and for a self-adjoint operator B we have
IB*lop = | Bllgp, ¥ k€N.

Thus, in our case
(TT*)™lop = ITT*|I5p = I T3
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In particular, the hypothesis (8.1) implies that
[Tllop <ag V¥V j.

Let T =} c5 7). To make use of our condition on products, we consider

(TT*™ = > T, TET;,TE ... T;

*
J1"92773 % g4 0 ]2m—1]—_'7'2m'
JeA?™ J=(j1,....j2m)

Our first estimate is

17575, -+ Tjpe 1 T, lop = H(ThT;;) (T3 1 T3, llop 52)
2 2 '
Sy W i,

Since some of these pairs may be close, we group them differently:

HTJ1T]*2 j2m 1 JQmHOP ”TJl(T]*gTB) (T]*Qm QEmel)]?;m”op'

Thus
" 2
HTJlTJz J2m 1 J2 ”op < A? ]2 93" Qoo —jom_1- (8.3)
We take the geometric mean of the equations (8.2) and (8.3) and see that

ITT ) lop < D A-@ji—jo - Qjais* Qjaps 2ot~ Vizon-1—jom-
JeAzm
Now we sum over the index ja,,, then over ja,,_1, etc., each time yielding a contribution of at most A
(by our hypothesis). So
[(TT*)"[op < N - A?™ where N = |A|.
Now when take the m!" root, we see that

[(TT*)[lop < VN - A2,

Letting m — oo, we have
|TT*||lop < A®
so that [|T'[[op < A. This completes the proof of the lemma. O

This lemma is so fundamental that it bears some discussion. In general, if one is summing N opera-
tors T}, each having norm 1, then one cannot expect the sum to have norm less than N. For example,
when all the operators 7 are the same operator, then the operator norm of the sum should be V. How-
ever if the operators T; each operate on a “different part” of the Hilbert space, then one might hope for
some improvement.

As an example, let the Hilbert space be L?(T) and let the j** operator T} be convolution with the

h' character, €270 J € Z. Then each T} has operator norm 1. But, by the Riesz-Fischer theory,
also Z;V:_ ~ I has norm 1, for any value of V. Of course this works because the operator T; operates
27ij6

precisely on the one-dimensional space spanned by e . From a Hilbert space point of view, operators

T; and Ty, j # k, live in different worlds.

To impose a hypothesis analogous to what is true for the operators 7 in the last paragraph would be
too restrictive. The Cotlar-Knapp-Stein lemma tells us that if the operators T are “almost orthogonal”,
then the result still holds.

Proof of Theorem 8.1. We start with an auxiliary function ¢(z) = ¢o(|z|s), where ¢g € C5°(RL) and
1 if 0<¢<1
bo(C) = .
0 if 2<(<o0

Let ' ‘
bi(x) = p(277x) — p(277 ).
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We stress here that the dilations are taking place in the Heisenberg group structure (the action of the
Iwasawa subgroup A).

Note that
. 1 if <2
PERTES S
0 it |x), <2711
and
. i—1
H(2-THg) = 1 if |z|p < 2{
0 if |z, <2
Therefore

Y(x) = ¢(2772) —p(277 M r) =0, if |x[p <27l or |xfp > 27T

In other words,
supp(y;) C {27! < [af, < 27T

It follows that for arbitrary x, there exists at most two 1;’s such that = € supp(7/;). Now we have

N
Y Wile) =[62Ve) — o2V )] + [9(2V2) — 9(2Va)] + -+
j=—N
+ 027N a) — 927V 2w)] + [p(27 V) — 927V )]
= — (2N Mz) + o2 Va) =1

if 27N < |z|, < 2. Therefore

Z pi(x) = 1.

j=—o00
We let
Kj(z) = ¢j(z)K(x)
and
Ti(f)(z) = f* Kj().
Then

T(f)(w) = [*PV.K = fx Y Kij(x) = Y Ti(f)(@).

j=—00 Jj=—00
If we can show that

e ||T;|| < C where the constant C' is independent of j;
o ILT;| < C-2707",
o |T/T|| < C-2717H,

Suppose the above three properties have been proved. If we let a; = V217, then the hypothesis of
Cotlar-Knapp-Stein’s theorem is satisfied. We may conclude then that finite sums of the 7’; have norm
that is bounded by C'. An additional argument will be provided below to show that the same estimate
holds for infinite sums.

Fact 1. If T'(g) = g % L, then ||T'(9)|| 2 < ||L||z1 - |lg||12 by the generalized Minkowski’s inequality.
In order to finish the proof of the theorem, it reduces to prove the claims. We first need to show that
| K;llLr < C. Since K is homogeneous of degree —2n — 2, we have

K(279z) = (277)7 " 2K (z) = 21" K (2).
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Hence we get
Kj(z) =j(x)K(z) = 27K (27 2);(x)
=279 K (270 ) [p(27Tx) — (277 0)].
Thus,

1Kl = /H K ()]dV ()

_ / 2-ICn+2) | K (27T - [p(27Tx) — $(279H ) |dV ()

n

- / 212+ 2)9=12m42) ¢ (1) | () — b(20)|dV (2)

n

_ / K (2)||é(z) — 6(20)|dV (z) = / |Ko(2)|dV (x) = C.
H,

n

This is exactly the first assertion. Before proving the second assertion, let us note the following:
Fact2.IfT1(g) = g * L1 and T»(g) = g * Lo, then
T;oTa(g) = Ti(g* L) = (g% Lo)*x L1 = g= (Lo * Lq).
Also, if T(g) = g * L, then
T"(9) = g+ L7,
where L*(z) = L(z~1). Here z~! is the inverse of = in H,,. We see this by calculating

(T"(9), ) =(g,T(f))

- / o ( /H f@)nt -y)dV@c))dV(y)

[ 7@ [ @I gV ave
= <g * L*, f>

Now let us turn to the second assertion. Without loss of generality, we may assume that j > k. Hence
we need to show

ITy Tl < © - 287

From Fact 2, we know that 7377 (f) = f * (K} * K;). Therefore, by the generalized Minkowski
inequality, it is enough to show that

| K}« Kj|| g < C -2,
We can write K. * K as follows:

. Kj(y)Kpi(y~" - 2)dV(y) =/ (—1)*" 2Kz -y~ Kg (y)dV (y)

(8.4)
- /H Kj(z -y~ Ki(y)dV (y).
Claim 1.

/ Ki@)iv(e) = [ Ki@avis) = o (8.5)
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To see this, we calculate that

| Ki@dVie) = | K )62 ) — o(277 )]V ()

/ / K(r&) [¢o(277r) — ¢o(277 ) |7+ dr do(€)

/ AR g0 (279r) — go (277 ) /K )do (&) dr = 0.
0

As a result,
Ky ()dV(z) = |  Kp(-z)dV(z) —/ (=12 Ky (z)dV ()
H, H, n
= Ky(z)dV (z) =
H,

Thus, from (8.4) and (8.5), we can rewrite K; * K as follows:

Kg*Kz:=/L K-y VG@AVG) = [ [Kyeey) - K@) Ki )V (o)

n

Claim 2.
/;\Aa@wy—wKﬂxndvu»::Cﬂz—ﬂmh (5.6)

To see this, recall that

and

Therefore,
Kj(2j:c) = K(Qj:c)z/)j(2jx) = K(ij) [qﬁ(m) — <z5(2x)] = 2j(*2”*2)K0(a?).
Hence we obtain
[ 1Kol ™) = Kola)|avia) < € s
H,
& |K; (20 (z -y 1) — K;(22)|dV(z) < C- 272y,
H,
o [ 2 ()7 — Ky@)aVia) £ 02y,
@Aﬁ&wwﬁ—&mww <oy =2

Therefore, to prove (8.6), we only need to show that

/H ‘Ko(x g h —Ko(a:)]dV(x) < C-|ylp.
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First, suppose that |y|;, > 1. Then

/ |Ko(z -y~ ") — Ko(z)]dV (z) < / ‘Ko(x‘y1)|dV(w)+/ |Ko(z)|dV (z)
H, H, H,
/ |Ko(z)|dV (z) = 2// | Ko(ré)|r*"*dr do(€)
_2// |+ |¢o(r) ¢0(2T)‘7“2n+1d7“d0’(5)
=2 / / |- |¢o(r) = go(2r)|r 2" 2r*" T dr do(€)

gc-/ |K(9)| 1drdo(ﬁ) < Clog4 < C".
» 9—-1T

Thus we have

/ Koz -y — Ko(@)|dV(2) < Clyle, i lyla > 1.
H,

Now suppose that |y|;, < 1. We may consider Kj as a function on R?*"*!, We use the notation Ko to
denote such a function. Since y‘l, the inverse of y in H,,, corresponds to —y in R+ e get

|Ko( - y ) — Ko(z)| = \f(o(fﬂ —y) - f(o(ﬂﬂ)’-
Thus, using the mean value theorem, we have
|Ko(z — y) — Ko(z)| < Clyle.
Therefore, from Lemma 7.1, one has
|Ko(z —y) — Ko(z)| < Clyln.

Hence,
[ 1Koy - Kofe)|av(z)
H,

<C- Z/|h/H Xsupp(|Ko(zy—1)— Ko (2))) 4V (2) (8.7)

<C-lyln </Hn Xsupp(Ko(ey-1))dV (z) + /Hn Xsupp(Ko(x-y—l))dV(ﬂﬁ)) :
We certainly have
supp(Ko(z -y~ ") € {27 <|z-y ' <2} and supp(Ko(z)) C {27' <|z-y~'| <2}
Since |y|, < 1, if # € supp(Ko(z -y~ 1)), we have
zln < y(jz -y e+ lyln) < 3.
Therefore,
supp(Ko(z -y™")) € {laln < 37}

Hence we can rewrite (8.7) as follows:
/H |Ko(z -y~ 1) = Ko(2)]dV(z) < C-[yla(37)*"** = C" [yln-

Thus the Claim 2 is proved.
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Now let us concentrate on || * K| 11

15+ Kl = [ ][ 1) - K@Ky m)ave)
< [ 1K) [ 1Ky - K@lav@av)
<[ L)€ 27 v )
=C-277 /Hn | Ki(y=)] - lylndV (y)
o2 [ P )V ()
_C.9 E/Ooo K (r€)| - 7 - 20 L dor(€)
e /z /0 K <rso>o\ |k (r) [P 2 dr do (€)
~c.2 [ e /0 P22 22 () | dr do (€)

27+1

gc-z—j/ dr < C -2k,
2

k—1

Hence the second assertion is proved. The proof of the third assertion is similar.
Now we invoke the Cotlar-Knapp-Stein lemma and get

M
1>,
/=1

< C, vV M e N.

We actually wish to consider
NN = [ fey K@)
e<lyln<N

andlete — 0and N — oo.

Claim 3.
ITY(H)] 2 < Cllfllzes

where C'is independent of € and N.
For the proof of the Claim 3, let

KN(y) = K(y)xen(yln)-
Then

T (f)(x) = . flx -y HEX (y)av (y).

Therefore, to prove the Claim 3, we will show that || KV |1 < C, where C is independent of € and N.
We may find j, k € Z such that

Xl <ol and  2F <& < 2kt!
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and want to compare ), . T¢ and TN, So we look at

Z K, | - KN,

<<k
Note that
> Ko =K(@)[t(x) + - + ()]

J<t<k
=K(2)[¢(2772) — ¢(277 M 2) + (27 1a) — p(27Vw) £ -
+ (27" ) — (275 %2) + (27 a) — (27 )]
=K(2)[¢(277z) — ¢(277 )]
It follows that

supp Z K, C {23'*1 < x|y < 2k+1}

J<U<k
and
Y Ky(x) = K(z), if 20 < |zf, <2M
J<Ll<k
Hence,
supp | [ D0 K| KX | < [{277! < Jal < 27} ({28 < Jal < 254}
J<U<k
c [{27% < fol < 2} [ J {27V < Jaln < 2N}).
Therefore,
| > w2, 5 K@av ) + [ K@)V ()
J<e<k L 27 le<|z|p<2e 2-IN<|z|,<2N
2¢e _— 2N -
= [ [ mGorarase + [ [ e ar dote
xJ2-1e nJo-1N
2e
= [ e [ e
2-1¢ by
2N
e WG
21N b))
=C"(log 4 +1log 4) = C.
It follows that
N N
< < 2wl 32 w-n] <
J<E<k J<l<k

Hence, applying Functional Analysis Principle I (Theorem 8.3), the proof of the theorem is therefore
complete. [

As we can see in the proof of Theorem 8.1, one needs to apply the following Functional Analysis
Principle. Readers can find the proof of it in many standard functional analysis book.
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Theorem 8.3. Let X be a Banach space and S a dense subset. Let T; : X — X be linear operators.
Suppose that

(a). For each s € S, lim;j_,o T}(s) exists in the Banach space norm;

(b). There is a finite constant C' > 0, independent of x, such that

[Ti(2)|lx < C-llzl, VzeX and Vj

Then lim_,, Tj(z) exists for every xz € X.

9. THE SzZEGO KERNEL ON THE SIEGEL UPPER HALF SPACE
Let us begin with the classical upper half-plane in C!, U = {z + iy : y > 0}, and it associate Hardy
space:

W) = {f e HE): 2215/:0|f(x+iy)\2dx < oo},

Obvious, H?(U) is a Hilbert space with norm given by

I = sup ([ 116+ inPac)”

The classical structure for this space is the following Paley-Wiener theorem:

Theorem 9.1. The equation

fe F(z) = / S F(N)dA (9.1)

0
yields an isomorphism between L*(R ) and H*(U).

Observe that one direction of this theorem is easy: given a function f € L?(R, ), the integral in (9.1)
converges absolutely as long as y = Im(z) > 0. Furthermore, for any y > 0, we set Fyy(x) = F(x +1y)
and see that

2
dzx

2
dzx

IFlae = [ | [ memsiin
S/ / e27ri:v)\f()\)d)\
R [JO

=1f@Z2@ = 1f@Z2@,)-

It is also clear that
HF”H2(R2) :SUPHFy”m(R) = ‘|f($)HL2(R+)-
+ y>0

The more difficult direction is the assertion that the map f(\) — F(z) is actually onto H*(R?). We
shall not treat it in detail. but refer the reader instead to Stein and Weiss’s book [21] or or Katznelson’s
book [15].

We would like to develop an analogue for the Paley-Wiener theorem on the Siegel upper half space
Qp11. First we must discuss integration on H,,. Recall that a measure dm on a topological group is
the Haar measure (unique up to multiplication by a constant) if it is a Borel measure that is invariant
under left translation. Our measure dw’ds (the usual Lebesgue measure) turns out to be both left and
right invariant, i.e, it is unimodular. The proof is simply a matter of carrying out the integration:

f((Z 1) (W', s))dw'ds = fZ +w' t+s+2Im(2 - w'))dw'ds
H, H,

= f + ', s)dw'ds = f(w', s)dw'ds.
Hn H"
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Observe now that the map (w’, s) — (—w’, —s) preserves the measure but also sends an element of
H,, onto its inverse. Thus it sends left translation into right translation, and so that left invariance of
the measure implies its right invariance. With that preliminary step out of the way, we can make the
following.

Definition 9.2. Define

1

2

120, 40) = SUpD </ / (2t +il2)? +z’p)\2dz’dt)
p>0 n JR

HQ(QnJ,-l) = {f € H(Qn-‘rl) : "f“H2(9n+1) < OO}

Here p is the “height function” p = Im(wy41) — |w'|? on Q,41.

Then we set

Now, just as in the case of U C C!, where we integrated over level sets {z+iy € Ri : y = constant}
which are parallel to R! = 8]1%3_, so here we integrate over level sets p =constant which are parallel to
H, = 0Q,41.

Let us prove that H?(Q,,11) is a Hilbert space first. The substitute for L?(R ) in the present case
will be H2 which consists of all function f=7f (2/,\) with 2/ € C™ and A € R such that

(1). f is jointly measurable in 2" and \;
(2). For almost every A, 2’ — f(2/, \) is entire on C";

(3).
|f|| / / (2, N)2e™ NP g2/ dx < 00}

We have the following basic structure theorem:

Theorem 9.3. Consider the equation
oo
F(z) = F(,2p11) = / XN £ N)dA. (9.2)
0

(1). Givenan f € H2, the integral in (9.2) converges absolutely for z € Q41 and uniformly for z €
K CC Qpy1. Thus we can interchange the order of differentiation and integration, and we see that the
function F' given by the integral is holomorphic.

(2). The function F' defined in part (9.2) from an f € H2 is an element of H2(Q41), and the resulting
map f — F is an isometry of’;‘-[2 onto H?(Q,11); i.e., it is an isomorphism of Hilbert spaces.

(3). Leti = (0,...,0,i) € C*"*! and let f € H*(Qpy1). Set f- = f(z —l—E%)‘aQnH. Then f. is a function
onH,,
fe = fo in LQ(Hn) as € — 0,
and
I follz2e,) = I1f g2
The idea of the proof is to freeze the 2’ variable and look at the Paley-Wiener representation of the

half-space Im(2,,41) < |2’|2. However, thee are several nontrivial technical problems with this process,
so we shall have to develop the proof stages. First, we want to show that H? is a Hilbert space.

Lemma 9.4. H2 is a Hilbert space.
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Proof. Since H?2 is defined as L2 (C™ x Ry, dm) for a certain measure m, its inner product is already
determined. It remains to proof the completeness of the space.

Since we are dealing with holomorphic functions, the L? convergence will lead to a very strong (i.e.,
uniform on compact subsets) type of convergence on the interior of C" x R. Now suppose we are given
a Cauchy sequence in H2; we must show that some subsequence converges to an element of H?2. Since
H? is an L? space and L? being complete, some subsequence converges in L2, and we can extract from
that a subsequence converging both in L? and pointwise almost everywhere. Next take a compact set
K CC C" which is the closure of an open set and L CC R, and a subsequence { f, } such that

1
// (2" A) = o (2, V)| Pd2dn < o7
JJK 2
It follows that

zk:kakaHi(’L = %:/J/K | fr(2,N) ffk+1(z’,)\)|2dz'd)\ < oo.

If we set

= [ 1Rl N) = fen ) fa,

/ZAk()\) d\ < oo.
Ly

Thus ), Ag(X\) < oo for almost every A € L. Passing to a subset K’ CC K we find a number 6 > 0
such that B(2';§) CC K for all 2/ € K. Since, for a fixed A, the functions fj, are holomorphic on K,
they obey the mean value property. Hence,

1
‘fk(2/7 A fk_;’_l(Z A)‘ n 5271 /B( /6) ‘fk(w/’ )\) — fk+1 (w/’ )\)‘ dw/

then one has

Ch 2
S52n </ ‘fk(w’,)\) —fk+1(w’,/\)‘2dw'>
B(z';9)

<Cs - VAR(N)

forall 2/ € K’ and ) fixed. Therefore, the sequence { fx (-, \)} converges uniformly on compact subsets
of C™ for almost every A. Since, for almost every A the functions f; are holomorphic, the limit is
then holomorphic. Since the functions f} already converge in L?(C" x R, dm) and pointwise almost
everywhere, the limit is in H2. The proof of the lemma is therefore complete. 0

Next we need to prove the following result.
Lemma 9.5. If f € H2, then for (', zp11) € K CC Q, 11, we have that

/ 627Ti>\2n+1 f(Z,, )\) d)\
0

converges absolutely. Its absolute value is < Cc|| || 2-

Proof. For (2, 2p41) € K CC Qu41, there is an & > 0 such that Im(z,,11) — |2/|> > &. Since f(2/, \)
is entire in 2’ for almost every \ , we have by mean value property that

/ 1 / /
SN = gy i, 1Nl ©03)

The number § > 0 will be determined later.
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Since Im(2,,41) < —|2/|?> — ¢, we calculate that

/ 627ri)\zn+1f(2/7 )\) d)\‘

0

IN

/ 6727r5)\67277)\|z’|2’f(zl7 A)‘ d\
0

1 1
oo 3 o0 , 5
(/ e~ 2meA d)\) . (/ e~ 2N ATAl |2’f(z/,)\)‘2d/\>
0 0
by Schwarz’s inequality. Now set
1
c = (/OO ¢=2meA dA) :
0
and apply (9.3) to obtain
/ eQTFi)\Zn+1f(z/,)\) d)\'

0

< C* /OO —27EeA 47T)\|Z/|2</ |f( / )\)‘d /) 2d>\ ’
v (& (& w, w .
— [B(z",90)[ \ Jo B(+'3)

But an application of Schwarz’s inequality to the w’ integration yields
2

IN

=

/ eQTl’i)\Zn+1 f(zl, )\) d)\

0

<C? / e 2merg—AmAlZ'® / |f(w', \)|dw’ dX.
0 B(z,6)

—47 |2 |2 —4m\|w’ |2

Now we would like to replace the expression e and then apply condition (3) of

the Definition 9.2. Since w’ € B(z';4), we see that

by e

_ 72 _ /2 —
e A\ |w'| > e 4|2 | e 47r)\6'

We choose 0 < 0 < 5. It follows that

_ _ 112 _ _ _ 12 _ 712
e 27r5)\e amAlZ? e 27rs)\647r>\66 47r)\66 N e 4\ |w’|

and we find that

/ 627T7:A2n+1f(2/’)\) d)\

0

2 )
< C? / / 4T F(w!, N)Pdw’ dA.
0 JB(5)

Hence we have

o0
/ eQﬂZAZn+1f(z/’)\) d\ < 02_ < Hf”qfﬂ
0

This completes the proof of the lemma. U

Now that we have the absolute convergence of our integral and uniform convergence for z € K CC
11, we are allowed to differentiate under the integral sign and it is clear that the function F' which
is created from f € H? is holomorphic. We may continue to prove Theorem 9.3. Here are two obser-
vations.

(a). There would appear to be an ambiguity in the definition

00
f(zlv )‘) - / 6—27F>\(90n+1+2yn+1)f(2/’ Tn41 + iyn-&-l) drpi1  where ypi1 > ’Z/|2'
—00
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After all, the right-hand side explicitly depends on y,+1, and yet the left-hand side is independent of
Yn+1- The fact is that the right-hand side is also independent of y,, 1. After all, f is holomorphic in
the variable z,,11 + iyn 11, as it ranges over the half-plane y,, 1 > |2’|>. Then our claim is simply that
the integral of f over a line parallel to the x-axis is independent of the particular line we choose (as
long as y,, 11 > |#/|%). This statement is a consequence of Cauchy’s integral theorem: the difference of
the integral of f over two parallel horizontal lines is the limit of the integral of f over long horizontal
rectangles: from — NV to N say. Now the integral of f over a rectangle is zero, and we will see that f
has sufficiently rapid decrease at co so that then integrals over the ends of the rectangle tend to zero
as N — oo. Therefore,

o
/ €—2W>\($n+1+2yn+1)f(z” Tri1 + iYns1) ATyt
—0oQ

o0
=27\ (Tnt1+iY, ! !
:/ e 2Nt W) £(2 iy iy ) dn
—0oQ

for 0 < yny1 < ypy1-

(b). Fix a point (2, zp11) € Qpy1. Consider the functional which sends f € H2 to F(2, zpt1),
where F’ is the function created by the Fourier integral of f. Then this functional is continuous on H2.
However, the integral of f which yields F' is taken over a 1-dimensional set, so how can the result be
well-defined pointwise as a function?

The answer is that for almost every A we are careful pick an almost everywhere equivalent of f(2/, \)
which is entire in 2/, so that the resulting F' is holomorphic. Thus the precise definition of our linear
functional is “evaluation at the point (2/, z;,+1) of the holomorphic function which is an almost every-
where equivalent of the function F arising from f.” We next prove the following lemma.

Lemma 9.6. Let F' € H*(Qy41). Then, for a fixed 2/, F.(2',+) € H*({ynt1 > |7'|*}) (as a function of
one complex variable) where

F.(2,2ns1 +iyns1) = F(2', py1 + iyner + ie), for ¢ > 0.

Proof. We may assume 2z’ = 0. Apply the mean value theorem to F'(0, Z,,11 +iyn+1 +%€) on D(0; ") x
B(0,9), where D is a disc in the plane and B C C™. We see that

|F(0, 201 + iynsr +ie)|* = 05,75./ / |F|*d2 dw.
D(-Tn+1+7;yn+l+i575,) 8(076)

Hence,
> 2
/ ‘F(O, Tpa1 + z'yn+1 + ZE)‘ d$n+1
oo N
<Cyss- / / / |F|2d2 dw dxpy 1.
—00 J D(Zn+1+iynt1-+ie,8’) JB(0;0)
But

00 00 0
/ / |F(z 4+ w)|dwdz < / / |F(z + iv)|dv dz
—00 J D(p+41+iynt1+ie,6’) —oo0 J—¢’

for any F. We may choose ' = £ and set ¢’ = 2%, to obtain

é 28"
/ F.(z+iv)dv = / F.(x +iv)dv.
- 0
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Thus

S
/ |FE(0a Tp+1 + iyn+l)|2dxn+l

—00

0 26’
<C- / / / |F (2, xpa1 + iyni1 +iv +ie")|d2' dv dzy 1.
—00 J0 B(0;6)
Now |2'| < ; we choose § = \/‘5;/ so that |2/| < %/ Therefore
2
HFE(Oa ')Hq.ﬂ
00 26' g ¢ 2
SC-/ / / ‘F("I}'n_t,_l +i(z',\z'[2+yn+1) +i(v+§+§ - |Z/\2)’ dv dz'dzp 1.
—oo JB(0;0) JO
/|2

Next set v = v + %’ — |2/|* and observe that

28’ / 25’+£’
€ "2 2 N
/ |F(0,v+ = —[']?)|dv < / |F(0,9)|dd.
0 2 0
But we know that 2§ + %/ = £ so we have

£ oo 5/ 2
HF&(O,')H,?_[Q SC-/ / / ‘F(z’,an+i(z',\z’]2+yn+1+v+§ dz' dx 4 1dv
0 J—oo0 JB(0;9)

<O [ Nyt = 5o 1Pl < o

This completes the proof of the lemma. g

Remark. Lemma 9.6 is not necessarily true for the boundary limit function F(z’, x,, 41 + i|2’|?). For
the constant Cs5 ~ §~", hence the right-hand side blows up as € — 0 (and hence § — 0). We are finally

in a position to bring our calculations together and to prove Theorem 9.3. We have seen that from a
given f € H? we obtain a function F (', zn+1), holomorphic in €,,11. We now show that it is in H?
and in fact that its H* norm equals || f|| .. Now

oo
/ / |F (2, 2ps +il2)* + ip)‘deanz’
nJ—o0o

:// |E(2, 2P 1m0 g g
nJO

and the integral on the right increases to

/ / ‘Fv(z',)\)‘26_4”/\|Z,|2d)\dz’, as p— 0.
n Jo

Hence,
o 2
HF”gﬂ(ﬂm) — Sup/ / |F(2 2nir + |22 + ip) | *dan1d2’
p>0 n J—oo
L 2 /|2
= [ [TIFG NP < 51
nJ0o

Furthermore, this equality of norms implies that our map from H?2 to H? is injective. All that remains
is to show that an arbitrary F' € H? has such a representation.
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Given F = F(2', z,41) € H*(Qp41), Lemma 9.6 tells us that for any fixed ¢ > 0 and 2’ € C", the
function F.(z', zp41) = F(2/, zn41 + ic) has a Paley-Wiener representation. Moreover, the function
F.(Z', \) is holomorphic in the z’-variable. Since we have the relation

F.(7, 2n41) —/ FL(2, \)e2™#nt1d)
0

and since the functions {F.} are uniformly bounded in H2 as e — 0, it follows that the functions
{F.} are uniformly bounded in H2. We can therefore extract a subsequence {F¢,} such that F;.;, — fo
weakly as j — 0o. Observe that since fy € H2 we can recover from it Fy € HZ(Q).

Lemma 9.5 tells us that for (2/, z,11) € K CC €y,+1, the (continuous) linear functional on H? given
by Fourier inversion and then evaluation at the point (2, 2,,11) is uniformly bounded:

|F(, 2n41)| < Ci - |1 F |l -
Thus F;, (2, zn11) — Fo(2', 2n11) uniformly on compact subsets of 2,, 1. However,
FEJ’ (Z,’ZnJrl) = F(Z/,Zn+1 + iej) - F(Z/’Zn+1)

pointwise, so we know that fo = F'. Thus F' has a representation in terms of a function in H?2 because
fo does.

Finally we must show that, if F. is defined as above, then F. converges to a function f in L?(9Q,,11).
But we see that

[o.¢]

F.(z) = F(?,2pq1 +ie) = / R A 2 PO Y ))
0
so that
2 & ~ 2 72
/ ’F(Z,,Zn+1 +’L€)‘ dZ/den_t'_]_ — / / 6—47T)\€|F(Z/’)\)‘ 6—47‘1’)\‘2 | dZ/d)\
n 0 "
and

/ [Fuy (2) = Foy (2) 2/ sy = /°° / o2 _ =22 2 Bt )2 1mN R g g
H, 0 n

Thus the Lebesgue Dominated Convergence Theorem tells us that { . } is a Cauchy sequence in L?(H,,).
It follows that f has boundary values in L?(H,,).
As a direct consequence of Lemma 9.5, we have the following corollary:

Lemma 9.7. H?(Q,,11) is a Hilbert space with reproducing kernel.

The reproducing kernel for 7?2 is the Cauchy-Szegé kernel; we shall see, by symmetry considera-
tions, that it is uniquely determined up to a constant. Define S(z, w) to be the reproducing kernel for

H2 (1)

Theorem 9.8. On the Siegel upper half space (2,11, the Szegé kernel S(z,w) is
Cy Cn
S(z,w) = — = pory
P +1(Z’ w) [%(wnJrl - Zn+1) ZZ:I kak] o

where
n!



148 D.-C. CHANG, X. WU, AND J.-C. YAO

Observe that p is a polarization of our “height function” p(z) = Im(z,1) — |2’|?, for p(z,w) is
holomorphic in z, antiholomorphic in w, and p(z, z) = p(z). It is common to refer to new function p
as an “almost analytic continuation” of the old function.

Before we prove that theorem we will formulate an important corollary. Since all our constructs are
canonical, the Cauchy-Szeg6 representation ought to be modeled on a simple convolution operator on
the Heisenberg group. Let us determine how to write the reproducing formula as a convolution.

A function F' defined on ,,41 induces, for each value of the “height” p, a function on the Heisenberg

group:
Fy(#,1) = F(\t+i(l2]2 + p).

Since S(z,w) is the reproducing kernel, we know that
F(z) = / F(w)S(z, w)dm(w) (9.4)

where dm(w) = dw'ds is the Haar measure on H,, with w = (w’,s + i|w’|?). Recall part (3) of
Theorem 9.3 guarantees the existence of L2 boundary values for F, and the boundary of 92,1 is H,,.
Thus the integral (9.4) is well-defined. This is the corollary.

Corollary 9.9. We have that
Fp(z',t) = Fy* Kp(z',t),
where Fy is the L? boundary limit of F, and
2"~ 1n| 1

/ —
Kp(z’t) — ontl (]z’|2 ,it+p)n+1'

Proof. We write
Fpest) = [ S(G e+l +ip), s il ) P!+ ' Phdm(w).

Therefore,

Fp(z/,t)

F/ |2
e e D
n (B(s —dw'|? —t —ip—i|2/[2) — 3op_, zeg)

_ 2n+lc / F(wlv s+ Z|w,|2)
" Ju, [12/]2 + [w|? — 2Re(2" - w') + p — i(s — t + 2Im (2’ ~U))]n+1

:/ Fy(w', s)K,((Z, )71 - (0, 8))dm(w).

n

dm(w)

This completes the proof of the corollary. g

Proof of Theorem 9.8: First we need the following elementary uniqueness result from complex analysis.
We know that if p(z, w) is holomorphic in z and antiholomorphic in w then it is uniquely determined
by p(z, z) = p(z). Next we demonstrate

Claim (1). If g is an element of H,, then S(g o z,g o w) = S(z, w).
After all, if F' € H?(p,+1) then the map F — F, (where F,(z) = F(g o 2)) is a unitary map of
H2(Qpt1) to itself. Now

F(goz) = . S(z,w)F (g ow)dm(w).
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We make the change of variables W = g o wj; since dm is the Haar measure on H,, it follows that

dm(w) = dm(w). Thus

F(goz) = S(z,g7 1 o w)F(w)dm(w)
H,
therefore,

F(z) = S(g7 oz, g7t ow)F(w)dm(w).
H,
We conclude that S(z,w) and S(g o z, g o w) are both reproducing kernels for #2(2,,1). Hence they
are equal.

Claim (2). If § is the natural dilation on 2,11 by
8(2, 2ny1) = (07, 522n+1)
then
S(0z,0w) = 672" 28(z, w).

The proof is just as above:

F(6z) = . S(z,w)F(dw)dm(w)
= S(z,6 L) F(w) - 62" 2dm(w)
H,
so that
F(z) = §(n+2) (6712, 6 w) F(w)dm(w)
H,

Then the uniqueness of the reproducing kernel yields
S(z,w) = 6§12, 67 w) forall ¢ > 0.

Now the uniqueness result following Theorem 6.4 shows that S(z, w) will be completely determined if
we can prove that

Ch
pn+1 ( Z) ’
However, p(z) is invariant under translation of §2,, 1 1 by element of the Heisenberg group, i.e., p(goz) =
p(z) for all g € H,, and

S(z,2) =

p(82) = Im(6%241) — 022/ = 6% ().
Therefore the function
S(z2) - p(2)
has homogeneity zero and is invariant under the action of the Heisenberg group. Since the Heisenberg
group acts simply transitively on “parallels” to 0€2,,+1, and since dilations enables us to move from any
one parallel to another, any function with these two invariance properties must be constant. Hence we
have
S(2,2) = Co - p~ ™ D(2).
It follows that
S(z,w) = Cp - p~ "D (2, w).
At long last we have proved Theorem 9.8. We have not taken the trouble to calculate the exact value

of the constant in front of the canonical kernel. That value has no practical significance for us at this
moment.
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10. ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN HARDY SPACES

In this section, we shall prove that if a singular integral operator 71" defined by a kernel K satisfying
T : L*(R™) — L?*(R") satisfies the generalized Hormander’s condition:

/ |K(z —y) — K(x)|de < Cy-a?
|z[<alyl

for all @ > 2 and some 6 > 0 then the operator 7" extends to a bounded operator on H?(R") for
po < p < oo. In fact, we have the following theorem.

Theorem 10.1. Suppose that the kernel K satisfies the following condition:
/ K(z — 1) — K(@)|de < Cy - a~f (10.1)
|z|<aly]
foralla > 2 and some 0 > 0. We define the mapping T by

TN = [ Kw=y)fy)dy.
Assume that | T(f)||p2@ny < Ca - || f]|L2(rny holds. Then T extends to a bounded operator on HP(R")
forpg < p < oo, where pg is an index depending on 6 such that 0 < pg < 1. The operator norm of T only
depends on C and Cs.

In order to prove Theorem 10.1, let us prove the following Kolmogoroft’s Theorem first.

Theorem 10.2. (1). IfK is an operator of weak type (p,q), 1 < p,q < oo, with constant A, then for all
0 <r <gq, |Kf|" is locally integrable for each f € LP(R™) and, furthermore, the Kolmogoroff inequality

( / rKf<y>de)’ SM< a )TrEri‘éufuLp(Rn) (10.2)
E q—r

holds, where E C R™ is any compact subsets in R™ .

(2). Conversely, if there exist an r for which 0 < r < g and a positive constant Ay such that for all
E CR",

1
v 11
([irwras) < A 1B lusgen (103
holds for all f € LP(R™), then K is of weak type (p, q) with constant A < A;.

Proof. (1). Let
(Kf)Y(e) ={y € B: [Kf(y)l > a}| = |(Kf)«(a) N B].
Thus we have (Kf)Z(a) < v(E) and

(Kf)P(a) < (Tf)u(a) < <AHfHLP>q

(0}

| sy =r /Om LK f)E / ar [
-, /ONQT_HEW+ /N . <A|];|Lp> .

BN 4 (Al ) (qi ) N,

r

Then
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The last sum is minimized by N = A - || f||» |E|7% and this value of N gives (10.2).

(2). Assume that (10.3) holds. Let £ C (K f).(«) be any subset with |E| < co. Then we have

1
a-|E[r

1
< ( /E !Kf(y)ldy) < Ay B f o,

by Chebysheft’s inequality. Therefore,

A p\
|E| < <1||f||L> forall o > 0.
o'

That is, K is of weak type (p, q).
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Proof of Theorem 10.1. The result for p > 1 follows from the standard theory of singular integrals
(see e.g., Stein’s books [19] and [20]). For the fact that 7" maps HP(R") to L?(R"), see R. Fefferman [10].
It suffices to check the assertion on a (p, 00)-atom a for some p, since the conditions for this theorem

are invariant under translations and dilations. Hence we may assume that a is supported on the unit
ball B(0;1). We know that |a| < C and

/n a(z)dr = 0.

Let A(z) = K * a(x). It follows that we need to estimate

There are two cases:
Case 1. |x| < 4. Then we have

At (z) = My(A) () = Sup e * A(z)]-

P 2—p

/Iac|§4 A (2)fPde < </|I§4 \A*(x)|2dm> . (/|I§41 : dm)2

P 2—p
2

| </|wls41 | dx) :

P

2
< ( /|x§4‘A(x) dx)

<c.cr. (/M§4 \a(x)\Qd:c> .4”(22]7)

n(2—p)

<C-CP.4% 477 =C.

The second inequality above follows from the Hardy-Littlewood maximal theorem.

Case 2. |z| > 4. Then we have

o * A(z)] =

/n pe(r —y) /n a(z)K(y — Z)dzdy‘
[ ea=) [ alirt ) - Kiohtzay
e [ atto -2 - Ko~ pldsa.

The second equality holds by the moment condition for a. Now we define

J(x—y) = /| Iy =)~ Kz~ )ds
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then
J(x) = a(z)|K(x — z) — K(x)|dz.
() /||<1 ()[ ( ) ()}

Suppose ok < |z| < 2k+1 k> 9 then by the assumption, we have

/ |J(z)|dx < / / la(2)| - |K(x — z) — K(x)|dzdx
2h <[] <21 2h<fo<aktl J]z1<1

<c. K(z - 2) - K(2)|de

ng‘x|§2k+l
<C-Cp-27M
This tells us that J € L!(R™). Thus we have
1
sup |pe + A(w)| < sup — [ J(x = y)ldy = Mpur(J)(x).
e>0 e>0 €" Jiy|<e
Here My (J)(z) is the Hardy-Littlewood maximal function of J(z). If 0 < p < 1 and
I ={z cR": 28 <|z| < 21} for keZy,
we have

[ (@] < C I @,
k

Here |I;| is the measure of the cube I and I} = {z € R" : 2¥~1 < |z| < 252} is the “doubling” of
Ij;. Now by Kolmogoroff’s theorem, we have

[ otmnera =3 [ M) @)Pde < C- 3 1P 1
|x| >4 k=g v 2F <[z <2k k=2
. (10.4)
<C. Z 2k —ptl) o=kpl < (1. Zz—k[(n+9)p—n]_

k=1
If p > ;. then we have (n 4+ 0)p —n > 0. So the infinite series (10.4) converges and we have
proved that the mapping
a— axK
is bounded on HP(R") to itself for pg < p < 1. Since we know that a — a * K is bounded on H?(R")
to itself for 1 < p < oo, then by a interpolation theorem (see Folland and Stein [12]), we know that the

mapping is bounded on H?(R") to itself for py < p < oo. From the computation above, it is easy to
see the operator norm of 7" depends on C; and C only. i

Remarks.

(1). In the proof of Theorem 10.1, we just use the moment condition

/n a(x)dr =0

to obtain our result for p > +0 For those p << 1, we have to use the higher moment condition for
a(x) so the assumption (10.1) in Theorem 10.1 is not enough to prove 7' : HP(R™) — HP(R™). In fact,
the correct condition for K such that 7" can be extended as a bounded operator on H?(R") should be

np

BK (2
/| Y K(x—y)— K(x) — Z O K( )yﬂ dr <C-a™’
z|>aly 18|=1
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for all a > 2 and for some ¢ > 0. Here n,, > {n (% — 1)} is the integral part of the number n (% — 1).

(2). From Theorem 10.1, we can prove that a singular integral defined by a Calder6n-Zygmund kernel

T(f)@) =time- [ 7 -5 ay

=0 Jiy>e ly|?
can be extended as a bounded from HP(R") to HP(R") for 0 < p < oc.

(3). Theorem 10.1 can be generalized to nilpotent Lie groups. The best example will be the Heisenberg
group H”. Let | - |5, be the “non-isotropic norm” function defined in (7.3) in Section 6.3. Let T be a
singular integral operator defined by a kernel K. Suppose further that 7' : L?(H?) — L?(H") and
that the kernel K satisfying supp(K’) has compact support in the variable z,

/| I>aly| ’K(xy)—K(:p”dV(x) <C1-a_0

and
[ ) - K@ave) < 6o
<] |>aly|n

for all @ > 2 and some 6 > 0. Then the operator 7" extends to a bounded operator on Hardy space
HP(H™) for py < p < oo and the operator norm of 7" depends on the constants C'; and C only.

11. LocaL HARDY Spaces hP(R™)

As we have seen before, the real Hardy spaces are designed to behave well under the Calderdon-
Zygmund operators. In particular, they respect translations, rotations, and dilations. It is known that
order zero pseudo-differential operators (which are not translation invariant) are not bounded on the
space H'(R"). Closely related to this shortcoming is the fact the Hardy spaces are not closed un-
der compositions with diffeomorphisms nor under multiplication by smooth functions with compact
support.

It is with these technical difficulties in mind that in order to deal with pseudo-differential operators of
order zero, we need first to introduce the definitions associated with the local Hardy theory developed
in Goldberg [13]. We first describe local Hardy spaces h?(R"™) in terms of “local” p-atoms. As before,
denote /(@) the side length of a cube Q.

Definition 11.1. Let 0 < p < 1. A bounded, measurable function a on R" is called a local (p, 2)-atom
if
e ¢ is supported on a cube () C R";
e llallzzqen) < Q1T
e Either /(Q) < 1 and fQ a(z)x*dx = 0 for all multi-indices o with |a| < [n (% - 1)}; or
Q) > 1.

Definition 11.2. A distribution f on R" is said to be in the local p-Hardy space, written f € h?(R")
if and only if there are a sequence {\;} € ¥ and local (p, 2)-atoms a; such that

F=>Xaj.
j=1
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The infimum of the norms |[{\;}||¢r, taken over all possible atomic decompositions, is comparable to
the hP norm of f.

Similar to HP(R™), we may define h”(R") by maximal function. Let ¢ be a fixed C§° function with
integral 1 and ¢.(z) = ¢ "¢(x/e), € > 0, is a standard approximation to the identity. The local
maximal function is defined by

Mioef () = sup. |60 * f(2)].

0<t<

The “locality” enters the picture because we calculate the supremum only over 0 < ¢ < 1. By a theorem
of Goldberg [13], we know that

Theorem 11.3. Let 0 < p < 1. A distribution f is in h?(R™) if and only if the maximal function
Mo f () lies in LP(R™). Moreover,

| Mioc f |l Lr@ny = [[{Aj}Hev-

Obviously, one has HP(R™) C hP(R™). The local Hardy spaces h” (R™) enjoy many attractive proper-
ties: they are preserved by composition with a diffeomorphism which is the identity map for sufficiently
large x; also if f € hP(R™) and ¢ € C§°(R"™) then ¢ - f € hP”(R™). For details, we refer the reader to
Goldberg’s paper. One result is that the local Hardy spaces may be defined on a manifold and are acted
on in a natural way by pseudo-differential operators.

The last theorem in this lecture notes that we are going to discuss is the h” regularity property for
pseudo-differential operators of order zero. Most of the material in this section is taken from joint
works of Chang, Krantz and Stein [4] and [5].

Theorem 11.4. Let EX be a bounded domain with smooth boundary. Suppose K is a distribution that is
smooth away from the diagonal ¥ = {(z,y) € E x R" : x = y} and let K(z,y) = k(x,z — y). For
each x € FE, we assume that the distribution k(x, z) is a smooth function when z # 0 which satisfies the
following conditions:

(1)
[k, )| =

<g¢

/ e =z, )dz

(2)
Ca
- |z‘n+\a|

‘8 Kz, 2) (r,2) € EXR™ 2z#0

0z
forall |a| > 0. We also assume that x: — k(x, ) is a smooth function and satisfies the following conditions:

3)

8%k (z,€)
0xP = 3
and
(4) ,
Ot Pk(x, 2) Caf
0z00zP | = |z[ntlal’ 270

forall |a| > 0,

B| > 0. We define the mapping T' by

T(f)(x) = [ k(z,x—2)f(z)dz.

R

We use the terminology “norm” even though these are not norms when p < 1.
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Then we have
ITfllperny < C- | fllpp@ny for 0<p < oo.
The constant C' depends on c,g and E only.

Proof. The result for p > 1 follows from the standard theory of singular integrals. When p < 1 and the
kernel k are translation invariant, see Theorem 10.1. Here we shall treat in detail only the case of p < 1
and T is not a convolution operator.

To prove the proposition, we need only to check the assertion on a local p-atom a € hP(R™). Let
us fix once and for all a function ¢ € C§°(R"), with ¢ > 0, supp(¢) C {z € R" : |z| < 1}, and
[ ¢(z)dz = 1. From Theorem 11.3, we see that in order to prove the theorem it is necessary to show
that

HMZOCAHLP(R") = HA*HLp(Rn) S C7

where A = T'(a).

Without loss of generality, we may assume that

supp(a) € {y € R": |y| < e}.

If the atom a is supported in a cube with diameter greater than 1, i.e, € > 1, then a does not necessarily

1_1
satisfy a moment condition. Since [|al|z2@ny < [Q[2» < 1, it is obvious that a € L?(R™). Hence by
part (3) of our hypotheses, we find that

2 2 = CL$2.I C- al'2$ C.
[ 1A@Pin < [ Ja@Pe = | @@ e [ )k <

It follows that || Al| 2y < CE__ s a “large” local p-atom and hence A € h?(R™).
E

1
|E[2 P
If the atom a is supported in a cube with diameter less than or equal to 1, i.e., a is a classical p-atom,
then there are two cases:

Case (1). |z| < 4e. Then we have

2—p

/x|g4s A (@) Pz < ( /x|g4e |A>'<(gg)|2d:,;>g ( /m|g4e dx>2

P 2—p

) 2 2
< ( /x|S4€|MHL(A)(x)\ dx) ( /M% dx)

2—p

<ec </ \A(I)Zal:c>g (/m|§4e dx) :
o (/x|<4€ \a(x)\2d33> . (45)@

n(p—2) n(2—p)

<P-em 2z -(de) 2 =C.

[MIS]

Here My, (A) is the Hardy-Littlewood maximal function of A.
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Case (2). |x| > 4e. Then we have
oo = | [ e =) [ atwbto.y - wauay
= /a(u) / o(y)k(x —y,x —y — u)dydu

/a(u)kt(ac, r —u)du

g

In order to finish the proof of this theorem, we must have good control of the kernels k;(x, u), for
0 < t < 1. We need the following two lemmas:

Lemma 11.5. Let k be a distribution in R™ satisfying the following estimates

M
R =

/ e 2™k dz
R

<q

and
2)
0%k(z)
0z%

Ca
= Jefre

forall |a] >0, z#0.
Then the function
ki(z) = dr(w)k(z —u)du
Rn

satisfies the size estimate

/

Ca

= T

0%k (2)
0z%

forall |a| > 0 and uniformly in0 < t < oo.

Proof. By rescaling, we may assume that ¢ = 1. It is easy to see, by taking the Fourier transform that,
the kernel k1 (z) satisfies

“k
fel<e aa | TEE o
It remains to show that
“k
VS

for |z| large. It suffices to show this for |z| > 2, i.e, |z —u| = |z|. By the assumptions on the distribution
k we have

0“1 (2) 0%k (2)

- —w)d

gA/ ﬂdu< A
\

ul<1 ‘Z _ u|n+|o¢\ — |Z|n+|o¢\ :

This completes the proof of the lemma. g
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Lemma 11.6. Let k(x, z) € C§°(R") x S'(R™) satisfy the following estimates

(1)

‘E(m,ﬁ)’ = / e ™8z, )dz| < ¢, uniformlyin x
Rn
and
(2) ,
0tPk(x, 2) A
0
0xBOz> | = |z[ntlal’ s

for all |«

, |8l = 0. Let ¢ be as in the beginning of the proof of Theorem 11.4. Then the function

ki(z,z) = - dr(w)k(x — u, 2z — u)du

satisfies the estimate

0%k (z, 2) A
0z% = |z|ntled
forall|al,|8] > 0and0 <t <1.
Proof. We may rewrite the kernel k;(z, z) as follows:
ki(2) = [ de(wk(z —u, z — u)du
]Rn
= dr(w)k(x — 2z, 2 —u)du (11.1)
R?’L
+ dr(u)[k(x —u, z —u) — k(x — 2z, 2 — u)|du.
R’ﬂ

The first term on the right satisfies the correct estimates by Lemma 8.5. By the assumptions on k(z, 2)
and the mean value theorem, the second term is dominated by

dr(u)[k(x —u,z —u) — k(x — 2,2 — u)|du

ul<t

<A- b¢(u)|z — u| " du. (11.2)
|ul<t

If |z| < 2and |z| < 4¢, then this is majorized by

ct"/ \u\*nﬂdu <t < cl\zr”“.
u| <5t

If |z| < 2 and |z| > 4t, then we have |z — u| > |z| — |u| > |z| — }|2| = 2|2|. Hence (11.2) is instead
majorized by

be(u)|z — u| ™" du < ¢q]z| " bs(u)du < ¢q|z| 7"
ul<t [u|<t
/
It follows that the second term in (8.1) is dominated by éﬁ since |z| < 2. When |z| > 2, we just need
to look at the size estimate

c
< —.
— 2

To prove that the function k;(x, 2) satisfying the estimate ‘ aagtz(f :2) < |Z|nﬁ|a\ is similar. We omit

the details. O

de(u)k(x — u, 2z — u)du

‘ Ju|<t

In this case we know that |u| <t <1< %‘ It follows that |z — u| =
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Conclusion of the proof of Theorem 11.4. We know that

oy x A(z)| = ‘/ a(u)ke(z, z — u) — ke(x, )] du (11.3)
for 0 < t < 1. However, by Lemma 11.6,
(—uw)* 0% (z, x) M+1 —n—M-—1
= . . 11.4
bl =) = 32 S e O (1149

Inserting the expression in Z‘ a|<n into (11.3) gives zero because of the moment condition satisfied by
a.
Now the integral that results from substituting the error term of (11.4) into (11.3) is majorized by

1
2

2
M / | 2 2M+2 CM non o
oM a(u)*du / P2y | < M B M
| M | <e e | [n M

Then we have

P
CMm n_n n
/ |pr x A(z)|P da :/ <|x’n+M+1 -g2 P52+M+1> dx
|| >4e || >4e

_ C(CM)ep(—n—M—l)—&-n . 5np—n+Mp+p — C(CM) < 00
This concludes Case (2) and Theorem 11.4 is proved. O

Final Remark. From Theorem 9.8, Theorem 10.1, and Theorem 11.3, we may conclude that the Hilbert
transform on R, Riesz transforms on R"*! and the Szegd projection on the Heisenberg group H,,
originally defined on Schwartz space S can be extended as bounded operators from H” to H? (and h?
to hP) for 0 < p < o0.
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