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A NUMERICAL ITERATION METHOD FOR THE CAUCHY PROBLEM IN LINEAR
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Abstract. This paper investigates numerical solution methods for the Cauchy problem of the Navier
equation on a connected domain. We utilize the measured Cauchy data on a portion of the domain
boundary to invert the unknown Cauchy data on another portion of the boundary. First, we present
the corresponding mathematical model, i.e. the Navier equation, and combine it with the known Cauchy
data. Then, we discretize this mathematical model to obtain a corresponding ill-conditioned linear system
of equations. We employ the pseudoinverse method, conjugate gradient method, and Tikhonov regular-
ization method based on the Morozov discrepancy principle to solve this system of equations. The effec-
tiveness of the algorithms is evaluated using spectral analysis. Next, we propose an improved Landweber
iteration method. We first demonstrate the effectiveness of the algorithm using a filtering function and
then analyze the errors of the algorithm to prove its stability and accuracy. Finally, we verify the stability
and accuracy of the method through numerical experiments. Therefore, the proposed method is feasible
and the numerical solutions obtained by this method can better approximate the true solution compared
to several previous methods.
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1. Introduction

The elastic wave equation (Navier equation) has been widely applied in various fields of physics.
Solving the Cauchy problem of the Navier equation is of utmost importance in non-destructive testing,
imaging, and geophysical exploration techniques. By measuring data and solving the Cauchy problem,
it is possible to infer information about the internal structure of materials, the location and shape of de-
fects, and achieve material inspection and imaging. The research background of the Navier equation can
be traced back to the early 19th century when scientists conducted in-depth studies on solid mechanics
and wave phenomena. The development of the Navier equation aims to explain the propagation, re-
flection, refraction, and other phenomena of elastic waves in solids. It also seeks to predict and analyze
wave phenomena such as seismic waves, sound waves, and vibrations. In [1, 2, 3],the stability of the
Cauchy problem has been extensively examined. Marin et al. [4, 5] approached the Cauchy problem
in linear elasticity by formulating it as a system of linear equations using the iteration BEM(Boundary
Element Method). Numerous numerical methods have been introduced in the literature to solve the
Cauchy problem in linear elasticity. The alternating iterative algorithm for the Cauchy problem in
elasticity was presented in [6, 11] , while [7, 8, 9, 12]discuss other iterative methods. Marin [15] com-
bined BEM with the Landweber method to solve the Cauchy problem in linear elasticity. Furthermore,
[17]investigates the possibility of obtaining a stable approximate solution to the Cauchy problem in
linear elasticity by utilizing the CGM (conjugate gradient method) in conjunction with the BEM. Other
BEM-type methods can be found in [9, 18, 19, 21]. The FEM(Finite Element Method) is referenced in
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[22, 23, 24] as a means of obtaining approximate solutions to boundary problems in partial differential
equations. Fairweather and Karageorghis [26] have contributed to the literature on the MFS(Method of
Fundamental Solutions) and related methods over the past three decades. It is worth noting that there is
limited research available on the data completion problem in linear elastodynamics. However, in [27],
the authors present a layer potential method for linear elastic dynamics. They conducted studies on
convergence, provided stability estimates, and presented numerical examples to verify the efficiency of
the proposed method. Additionally, in [35, 36], Chapko and coauthors discuss the boundary integral
method in linear elastodynamics.

This paper is organized as follows. In Section 2, we introduce the mathematical model, which is
the Navier equation, and incorporate it with the given Cauchy data. Subsequently, we discretize this
mathematical model to obtain a corresponding ill-conditioned linear system of equations. In Section 3,
we utilize the pseudoinverse method, conjugate gradient method, and Tikhonov regularization method
based on the Morozov discrepancy principle to solve this system of equations. The effectiveness of these
algorithms is evaluated using spectral analysis. Furthermore, in Section 3, we propose an improved
Landweber iteration method. We first demonstrate the effectiveness of the algorithm using a filtering
function and then analyze the errors of the algorithm to establish its stability and accuracy. In Section
3,We propose an improved Landweber iteration method. They first demonstrate the effectiveness of the
algorithm using a filtering function and then analyze the errors of the algorithm to prove its stability
and accuracy. In Section 4, we verify the stability and accuracy of the method through numerical
experiments. The proposed method is proven to be feasible, and the numerical solutions obtained by
this method exhibit closer approximation to the true solution compared to several previous methods.

2. Problem and Its Approximation

we consider a bounded connected domain D ⊂ R2 filled with an isotropic elastic medium of density
ρ, and the boundary ∂D = Γ ∪ Σ of D is sufficiently smooth, where Γ and Σ are the known part
and the unknown part of the boundary ∂Dand Γ ∩ Σ = ∅. Neglecting the body forces of the elastic
medium itself, assuming the displacement fieldu corresponding to the stress tensorσ(u) in D satisfies
the following Navier equations

∇ · σ(u) + ρω2u = 0, in D. (2.1)
where ω designates the frequency of vibration. For a linear isotropic elastic medium, the components
of the stress tensor σ(u) be

σıȷ = λδıȷεℓℓ + 2µεıȷ, ı, ȷ = 1, 2,

with the strain tensor εıȷ given by

εıȷ =
1

2

(
∂uı

∂xȷ
+

∂uȷ

∂xı

)
,

where δıȷ is the Kronecker delta function, λ and µ, often referred to as the Lemé constants, and satisfy
µ > 0 and λ+ µ > 0.

2.1. The Cauchy problem of Navier equations. Consider the following Cauchy problem: Where
the displacement field u in D satisfies the following Navier equations

µ∆u+ (λ+ µ)∇∇ · u+ ρω2u = 0. (2.2)

On the known boundary Γ, the displacement u satisfies the following boundary conditions:
• Dirichlet boundary condition

u = f , on Γ. (2.3)
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• Neumann boundary condition
Tnu = t, on Γ. (2.4)

Find the displacement field u ∈ C2(D) ∩ C(D̄), that is, determine the Cauchy data on Σ.

2.2. Method of fundamental solutions. The solution u of the Navier equations on a two dimen-
sional plane can be decomposed into compressible and shear components through the Helmholtz de-
composition

u = up + us,

where up := (−1/k2p) grad div u represents the the compressional part of u, and us := (−1/k2s)

grad⊥ div⊥ u represents the shear part of u

grad⊥u :=

(
− ∂u

∂x2
,
∂u

∂x1

)⊤
; div⊥u :=

∂u2

∂x1
− ∂u1

∂x2
.

the wavenumbers of compressional and shear waves kp and ks, respectively, are given by

ks = ω

√
ρ

µ
, kp = ω

√
ρ

λ+ 2µ
.

There holds
∆up + k2pup = 0 and ∆us + k2sus = 0

We know that the fundamental solution of the Helmholtz equation with a wavelength of k is given by
the following

Φ(k |x− y|) =

{
i
4H

(1)
0 (k |x− y|), x,y ∈ R2, x ̸= y;

eik|x−y|/4π |x− y|, x,y ∈ R3, x ̸= y,
(2.5)

with H
(1)
0 be the Hankel function of the first kind of order zero. In this paper, we mainly consider

the two-dimensional plane. From the Helmholtz decomposition, it can be inferred that Ξ(x,y) is the
fundamental solution of the Navier equation on the two-dimensional plane. Its form can be determined
as following

Ξ(x,y) = − i

4
H

(1)
0 (ksr)−

i

4ρω
▽x ▽⊤

x

[
H

(1)
0 (ksr)−H

(1)
0 (kpr)

]
,

where r = |x− y|. The displacement field u can be approximate by discretisation as

u(x) ≈ uN (x) =
N∑
j=1

Ξ(x,yj)

[
aj
bj

]
, x ∈ D, (2.6)

where aj , bj , j = 1, 2, ..., N, are the coefficients, yj ∈ R2 \D are the source points with the number
N .

For a fixed point x ∈ ∂D, T the traction operator defined on the boundary ∂D, is given by

(Tnu)ℓ := λnℓ
∂uȷ

∂xȷ
+ µnȷ

(
∂uℓ

∂xȷ
+

∂uȷ

∂xℓ

)
, ℓ = 1, 2,

where n is the unit outward normal vector. Combining the equation (2.6), we can get

t(x) ≈ tN (x) =
N∑
j=1

T (x,yj)

[
aj
bj

]
. (2.7)

The matrix T is given by

T (x,yj) =

(
T11(x,yj) T12(x,yj)
T21(x,yj) T22(x,yj)

)
,
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whose elements are given by

T11(x,yj) =

[
(λ+ 2µ)

∂U11(x,yj)

∂x1
+ λ

∂U12(x,yj)

∂x2

]
n1 + µ

(
∂U11(x,yj)

∂x2
+

∂U12(x,yj)

∂x1

)
n2,

T12(x, yj) =
[
(λ+ 2µ)

∂U12(x,yj)

∂x1
+ λ

∂U22(x,yj)

∂x2

]
n1 + µ

(
∂U12(x,yj)

∂x2
+

∂U22(x,yj)

∂x1

)
n2,

T21(x,yj) = µ

(
∂U11(x,yj)

∂x2
+

∂U12(x,yj)

∂x1

)
n1 +

[
λ
∂U11(x,yj)

∂x1
+ (λ+ 2µ)

∂U12(x,yj)

∂x2

]
n2,

T22(x,yj) = µ

(
∂U12(x,yj)

∂x2
+

∂U22(x,yj)

∂x1

)
n1 +

[
λ
∂U12(x,yj)

∂x2
+ (λ+ 2µ)

∂U22(x,yj)

∂x2

]
n2.

where U is the fundamental solution of the Navier equation. The unknowns {aj , bj}Nj=1 will be
calculated by the collocation method. Generally, we choose M points {xi}Mi=1 on the boundary Γ as
the collocation points. Thus we will give a system about the unknowns, namely

Aφ = b (2.8)
The matrix A has a large condition number due to the ill-posedness of the Cauchy problem, and there-
fore it is necessary to give a regularized stable solution. To solve in a stable way, we use the methods
such as pseudo-inverse method, minimum solution method including the regularization parameter cho-
sen by Morozov discrepancy principle, conjugate gradient method.

3. Several Numerical Solution Methods

In general, we consider the perturbed equation
Aφδ = bδ (3.1)

Here, bδ = (f δ, tδ)⊤ is measured noisy data satisfying
∥∥bδ − b∥∥ ≤ δ × ∥b∥ = σ where δ is the noise

level.

Theorem 3.1. (Picard) LetA : F −→ U be a compact linear operator with singular system (sj ,uj ,vj).
The equation of

Aφ = b

is solvable if and only if b belongs to the orthogonal complement b ∈ N (A∗)⊥ and satisfies∑
j∈J

1

s2j
(b,vj)

2 < ∞.

In this case a solution is given by

φ =
∑
j∈J

1

sj
(b,vj)uj .

Theorem 3.2. LetA : F −→ U be an injective compact linear operator with singular system (sj ,uj ,vj),
and let q(α, s) : (0,∞)× (0, ∥A∥] → R satisfying the following conditions:

1. For ∀α > 0 and 0 < s < ∥A∥, we have |q(α, s)| ≤ 1.
2. There exists a function c(α) such that for ∀ 0 < s < ∥A∥, we have |q(α, s)| ≤ c(α)s.
3. For all 0 < s < ∥A∥, we have limα→0 q(α, s) = 1. q(α, s) is called a filtering function, and the

following theorem holds:
1.Operator Rα : U −→ F, α > 0 :

Rαb =

∞∑
j=1

q(α, sj)

sj
(b,vj)uj

is a regularization operator, and ∥Rα∥ ≤ c(α).
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2.If we choose α = α(δ) such that α(δ) → 0 as δ → 0 and δc(α(δ)) → 0, then α = α(δ) is an
admissible choice.

3.1. Moore-Penrose generalized inverse matrix methods. Using the Moore-Penrose pseudoin-
verse matrix provides a stable and reliable solution method for solving ill-conditioned systems of linear
equations. The Moore-Penrose pseudoinverse matrix, denoted as A+, is a matrix that satisfies the fol-
lowing four conditions and has the same dimensions as AT The Moore-Penrose pseudoinverse is a
matrix A+ of the same dimensions as AT satisfying four conditions:

(1)AA+A = A,
(2)A+AA+ = A+,
(3)AA+ is Hermitian,
(4)A+A is Hermitian.
The generalized inverse matrix of a matrix is not unique, and different generalized inverse matrices

may lead to different solutions. Therefore, in practical applications, it may be necessary to choose an
appropriate generalized inverse matrix based on the specific problem. One commonly used method for
computing the Moore-Penrose generalized inverse matrix is the SVD (Singular Value Decomposition).
In singular systems, the matrixA can be decomposed into the product of three matrices: A = USV T ,
where U and V are orthogonal matrices, and S is a diagonal matrix with its diagonal elements sj
known as singular values. When computing the generalized inverse matrix, S+ can be obtained by
taking the inverse ofS and then transposing it, where the nonzero singular values inS are reciprocated
and placed on the diagonal. The solution to an ill-conditioned system of linear equations is represented
as

A+b = φ =
∑
j∈J

1

sj
(b,vj)uj .

However, in practical computations, we may encounter singular values sj that approach 0. If we in-
troduce a perturbation bδ to b, the perturbation of the solution φδ =

∑
j∈J

1
sj
(bδ,vj)uj can deviate

significantly from the true value, leading to numerical instability.
In order to avoid this situation, we use truncated singular value decomposition to approximate the

generalized inverse matrix. We introduce a tolerance parameter, denoted as tol(tolerance), to control
the truncation of singular values. The tolerance is a non-negative number that determines which singu-
lar values should be considered as non-zero when computing S+. Any value smaller than tol is treated
as 0. We perform truncated singular value decomposition on the matrix A, decomposing it into the
product of three matrices:A = USV T , where U and V are orthogonal matrices, and S is a diagonal
matrix. The approximate generalized inverse matrix of A can be represented as A+ = V S+UT . S+

is obtained by taking the reciprocals of the non-zero elements in S that are greater than tol, while con-
sidering the remaining elements as 0. Therefore, the solution to the perturbed equation (3.1) is given
by φδ = A+ ∗ bδ . Generally, a larger tolerance retains more singular values, resulting in a generalized
inverse matrix that is closer to the inverse of the original matrix. From the perspective of the solution
representation, it is as if a certain regularization filter has been introduced to the singular values, which
can be seen as

φ =
∑
j∈J

q(tol, sj)

sj
(b,vj)uj .

where
q(tol, sj) =

{
1, s2j ≥ tol,

0, s2j < tol,

The condition q(tol, sj) ≤ 1is obviously satisfied. We choose

c(tol) =
1√
tol

,
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and whens2j ≥ tol, we have c(tol)sj ≥ 1 = q(tol, sj). Furthermore,

lim
tol→0

q(tol, sj) = 1.

Clearly, q(tol, sj)is a filtering function. According to Theorem3.2, the pseudoinverse method can be
used to obtain a relatively stable numerical solution.

3.2. Tikhonov regularization method. We use the least squares method to transform the problem
or equation (2.8) into the following equivalent problem of minimizing:

min
φ

∥Aφ− b∥22 .

When solving the above minimization problem, we cannot guarantee the existence and uniqueness of
the solution. Therefore, it is necessary to impose further restrictions on the minimizers to ensure their
existence and uniqueness.

The idea of Tikhonov regularization is to solve this problem by adding a penalty term to the objective
function. Specifically, we seek to minimize the Tikhonov functional:

Jα(φ) = ∥Aφ− b∥22 + α ∥φ∥22 , (3.2)

where α > 0 is called the regularization parameter.
Its solution is equivalent to the solution of the following equation:

(A∗A+ αI)φα = A∗b. (3.3)

The solution to the problem can be expressed as the solution to the following equation:

φα = (A∗A+ αI)−1A∗b = Rαb (3.4)

SinceA is a compact operator, its singular system is given by (sj ,uj ,vj), whereAφj = sjbj ,A
∗bj =

sjφj . From φα = (A∗A+ αI)−1A∗b, we have (A∗)−1(A∗A+ αI)φα = b. Furthermore,

(A∗)−1(A∗A+ αI)φj =
α+ s2j
sj

b; (A∗A+ αI)−1A∗bj =
α+ s2j
sj

φj ,

so the singular values of the operator (A∗)−1(A∗A + αI) are α+s2j
sj

. Thus, the operator Rα can be
written in the following form:

Rα =

∞∑
j=1

sj
α+ s2j

(b,uj)vj =

∞∑
j=1

q(α, sj)

sj
(b,uj)vj ,

where

q(α, sj) =
s2j

α+ s2j
.

It is clear from Theorem 3.2 that q(tol, sj) is a filter function. Therefore, the constructed operator
Rα is a regularization operator.

The regularization parameter is obtained by Morozov discrepancy principle. Morozov discrepancy
principle is to choose the regularization parameter by finding the zeros of G(α) :=

∥∥Aφδ
α − bδ

∥∥2−σ2.
The zeros of G(α) are solved by Newton’s method to obtain the regularization parameter as following:

• Initialize: n = 0, and take α0 = ∥A∥2 δ/(
∥∥bδ∥∥− σ) as the initial value of the Newton iteration.



176 Y. SUN AND M. JIANG

• For n = 1, 2, ..., if |αn+1 − αn| > ε(ε ≪ 1), continue the iteration

get φδ
αn

from (A∗A+ αnI)φ
δ
αn

= A∗bδ

get d
dαφ

δ
αn

from (αnI +A
∗A) d

dαφ
δ
αn

= −φδ
αn

.

G(αn) =
∥∥Aφδ

αn
− bδ

∥∥2 − σ2

∇G(αn) = 2αn

∥∥A d
dαφ

δ
αn

∥∥2 + 2α2
n

∥∥ d
dαφ

δ
αn

∥∥2 ,
set αn+1 = αn − G(αn)

∇G(αn)

until |αn+1 − αn| < ε(ε ≪ 1).
By introducing the regularization operator

Rα := (αI +A∗A)−1A∗, α > 0,

we can achieve the regularized solution φδ
α = Rαb

δ.

3.3. Conjugate gradient method. For the perturbation equation (3.1), we define function

f(φ) :=
∥∥∥Aφ− bδ

∥∥∥2 = (Aφ− bδ,Aφ− bδ),

then ∇f(φ) := 2A∗(Aφ− bδ). The steps of the conjugate gradient algorithm are as follows:
• Initialize: φδ

0 = φ
∗, d0 = b

δ −Aφδ
0, p1 = s0 = A

∗d0, where φ∗ is the initial guess;
• For k = 1, 2, ..., 200. If sk−1 ̸= 0, compute

qk = Apk,

αk = ∥sk−1∥2 / ∥qk∥2 ,
φδ

k = φδ
k−1 + αkpk,

dk = dk−1 − αkpk,

sk = A∗dk,

βk = ∥sk∥2 / ∥sk−1∥2 ,
pk−1 = sk + βkpk,

until sk−1 = 0. The iteration converges only whenA is a positive definite matrix.

4. Landweber Iteration Method

The solution to the equation (2.8) is equivalent to the solution of the following linear system:
φ = φ+ ωA∗(b−Aφ) (4.1)

Therefore, we introduce the following Landweber iteration scheme:
φk = φk−1 + ωA∗(b−Aφk−1) (4.2)

4.1. The effectiveness of the landweber iterative method. We know that
φk = (I − ωA∗A)φk−1 + ωA∗bδ,

and by recursion, we have

φk = ω

k−1∑
k=0

(I − ωA∗A)jA∗bδ + (I − ωA∗A)kφ0.

Usually, we take the initial value of the iteration as φ0 = 0. We define the operatorasRK as

RK := ω

K−1∑
k=0

(I − ωA∗A)kA∗.
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The expression of φK can be represented as φK = RKb
δ . Expanding Rk using the singular system

(sj ,uj ,vj) of the compact operatorA, we have the following expression forRK :

Rk : = ω

∞∑
j=1

K−1∑
k=0

(1− ωs2j )
k(b,vj)sjuj

=
∞∑
j=1

1

sj
[1− (1− ωs2j )

K ](b,vj)uj

=
∞∑
j=1

q(K, sj)

sj
(b,vj)uj

We take α = 1/K , and when 0 < ω ≤ 1/ ∥A∥2, the inequality p(K, sj) = q(α, sj) = 1 − (1 −
ωs2j )

1/α ≤ 1 holds. Using the Bernoulli inequality, we can obtain:

q(α, sj) = 1− (1− ωs2j )
1/α ≤ 1− (1−

ωs2j
α

) =
ωs2j
α

,

Therefore, we can take c(α) =
√

ω
α?, then q(α, sj) ≤

√
q(α, sj) ≤ c(α)sj?. Since 1 − ωs2j < 1, we

have:

lim
α→0

q(α, sj) = lim
K→∞

p(K, sj) = lim
K→∞

(1− (1− ωs2j )
K) = 1.

Therefore, when 0 < ω ≤ 1/ ∥A∥2, the constructed operator is a regular operator, and stable numerical
solutions can be obtained through iteration.

4.2. Convergence of the Landweber iteration method. Assuming φ+ = A+bδ , where φ+ is the
least squares solution of Aφ = bδ . Let D(A+) be the range of A+. Due to errors in the measured
Cauchy data bδ , when the value of bδ is not inD(A+), the iteration cannot converge to the true solution.
We have the following theorem.

Theorem 4.1. Let {φk} be the sequence of iterates generated by the iterative scheme (4.2). As k → ∞, if
bδ ∈ D(A+) , then φk → A+bδ . If bδ /∈ D(A+), then φk → ∞.

Proof. Assuming bδ ∈ D(A+), for φ+ = A+bδ , we haveA∗bδ = A∗Aφ+. Therefore,

φ+ −φk = φ+ − ωA∗A

k−1∑
j=0

(I − ωA∗A)jφ+.

Since the following equation holds:

ωA∗A

k−1∑
j=0

(I − ωA∗A)j = I − (I − ωA∗A)k,

we can deduce that
φ+ −φk = (I − ωA∗A)kφ+.

Furthermore, 0 < ∥ωA∗A∥ ≤ ω ∥A∥2 ≤ 1, so |I − ωA∗A| < 1,

lim
k→∞

∥∥φ+ −φk

∥∥ = lim
k→∞

∥∥∥(I − ωA∗A)kφ+
∥∥∥ ≤ lim

k→∞

∣∣∣(I − ωA∗A)k
∣∣∣ ∥∥φ+

∥∥ = 0,

which implies that φk → A+bδ .
Assuming bδ /∈ D(A+), we will use a proof by contradiction. Suppose that {φk} is bounded in

the Hilbert space, then there exists a convergent subsequence {φkn}. Since the operator A has weak
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convergence, we have Aφkn = Aφ. So, Aφkn = Aφ → Qbδ , where Q = Q|D(A+). Therefore,
bδ ∈ D(A+). By contrapositive, if bδ /∈ D(A+), then {φk} is unbounded. □

When bδ /∈ D(A+), the Landweber iteration does not converge. For the case of non-convergence,
we have the following theorem.

Theorem 4.2. If ∥b− bδ ∥ ≤ δ ∗ ∥bδ ∥ = σ, bδ /∈ D(A+), then
∥∥φk −φδ

k

∥∥ ≤
√
kωσ, k ≥ 0.

Proof.

φk −φδ
k = ω

k−1∑
j=0

(I − ωA∗A)jA∗(b− bδ) := Rk(b− bδ),

and

∥Rk∥2 = ∥RkR
∗
k∥ = ω

∥∥∥∥∥∥
k−1∑
j=0

(I − ωA∗A)j(I − (I − ωA∗A)k)

∥∥∥∥∥∥ ≤ ω

∥∥∥∥∥∥
k−1∑
j=0

(I − ωA∗A)j

∥∥∥∥∥∥ .
Therefor

∥ωA∗A∥ ≤ 1; ∥I − ωA∗A∥ ≤ 1,

So ∥∥∥φk −φδ
k

∥∥∥ ≤
√
kωσ.

□

Because ∥∥φ+ −φk

∥∥ ≤
∥∥φ+ −φk

∥∥+
∥∥∥φk −φδ

k

∥∥∥ ,
when the error level σ is small and the number of iterations k is small, the data error

∥∥φk −φδ
k

∥∥ ≪ 1
can be ignored. However, as k becomes larger, the error increases, leading to the phenomenon of
semi-convergence. Therefore, choosing an appropriate iteration index k plays a role as a regularization
parameter.

4.3. Improved Landweber iteration. Through the above proof, we know that when bδ ∈ D(A+),
the Landweber iteration converges to A+bδ . However, when bδ /∈ D(A+), the iteration error first
decreases and then increases, which means that the iteration initially converges and then diverges.
In both cases, the choice of the number of iterations becomes crucial. It plays a role similar to the
regularization parameter mentioned earlier. Only by selecting an appropriate number of iterations can
we approach the true solution effectively.

For the first case, we can choose the initial value of the iteration as the regularized solution obtained
by the Morozov discrepancy principle: φα(αI +A

∗A)−1A∗bδ . The number of iterations can be set as
the ceiling value of the reciprocal of the regularization parameter, i.e., n =

⌈
α−1

⌉
.

For the second case, we have the following theorem:

Lemma 4.3. Suppose bδ /∈ D(A+), b ∈ R(A), and φ ∈ D(A) satisfiesAφ = b. If
∣∣Aφδ

k − bδ
∣∣ ≥ 2δ,

then φδ
k+1 provides a better approximation to the true solution φ+ than φδ

k.

In this paper, we determine whether bδ belongs to D(A+) by comparing the differences between the
numerical solutions obtained by two different iteration methods. Let’s assume the numerical solutions
obtained by these two methods are φδ

n and ψδ
m. The main difference between the two methods lies in

the number of iterations. If bδ ∈ D(A+), the iterative values obtained by both methods will be close to
each other. In this case, we chooseφδ

n as the numerical solution. On the other hand, when bδ /∈ D(A+),
the former iteration diverges, while the latter converges better to the true value, resulting in a larger
difference between them. In this case, we select ψδ

m as the numerical solution. We use the error level δ
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as a criterion to determine whether bδ belongs to D(A+). If
∥∥φδ

n −ψδ
m

∥∥ < δ× ∥b∥ = σ, we consider
bδ ∈ D(A+), and we chooseφδ

n as the numerical solution. If
∥∥φδ

n −ψδ
m

∥∥ ≥ δ×∥b∥ = σ, we consider
bδ /∈ D(A+), and we chooseψδ

m as the numerical solution. Therefore, we have the following improved
Landweber iteration method.

The steps for the improved Landweber iteration method are as follows:
• Initialization: The regularization parameter α is obtained from the Morozov discrepancy principle.

Set ω = 1/(2 ∥A∥2), φ0 = ψ0 = φα(αI + A∗A)−1A∗bδ as the initial values, and the number of
iterations n =

⌈
α−1

⌉
.

• For k = 1, 2, ..., n.

φδ
k = φδ

k−1 + ωA∗(bδ −Aφδ
k−1)

Obtain φδ
n.

• Then for k = 1, 2, ...

ψδ
k = ψδ

k−1 + ωA∗(bδ −Aψδ
k−1)

• Stop the iteration when
∥∥Aψδ

k − bδ
∥∥ < 2σ, and obtain ψδ

m.
• If

∥∥φδ
n −ψδ

m

∥∥ < δ×∥b∥ = σ, then the numerical solution is φδ
n. If

∥∥φδ
n −ψδ

m

∥∥ ≥ δ×∥b∥ = σ,
then the numerical solution is ψδ

m

The algorithm defined in the document can be represented by the operator R with the following
expression:

R : =
∞∑
j=1

1− (1− ωs2j )
k α
α+s2j

sj
(b,vj)uj

=
∞∑
j=1

q(1/k, α, sj)

sj
(b,vj)uj .

We obtain the function:

q(1/k, α, s) = 1− (1− ωs2)k
α

α+ s2
,

where k depends on α, so the function q(1/k, α, s) actually has only two variables, and 1/k < α. It
can be proven that this function is a filtering function.

Proof. Since 1/k > 0, α > 0, and 1− ωs2 < 1, we have:

q(1/k, α, s) ≤ 1− (1− ωs2)k ≤ 1,

Using the Bernoulli inequality, we can deduce:

q(1/k, α, sj) = 1− (1− ωs2)k
α

α+ s2

≤ 1− (1− kωs2)
α

α+ s2

=
s2

α+ s2
+ kωs2

α

α+ s2
,

Therefore, we have the following inequality:

q(1/k, α, s) ≤
√

q(1/k, α, s) = s

√
1

α+ s2
s+ kω ≤ s

1√
α+ s2

+ s
√
kω,
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We can choose c(1/k, α) = 1/
√
α+ s2 +

√
kω, such that q(1/k, α, s) ≤ sc(1/k, α) holds. Further-

more,
lim

1/k,α→0
q(1/k, α, s) = 1

is obviously true. According to Theorem 3.2, we know that the constructed algorithm is a regularization
algorithm □

4.4. Error analysis. When bδ ∈ D(A+), from equation (4.2), we know that:

φδ
k = (I − ωA∗A)φδ

k−1 + ωA∗bδ,

By recursion, we have:
φδ

n = (I − ωA∗A)φδ
n−1 + ωA∗bδ

= ω

n−1∑
j=0

(I − ωA∗A)jA∗bδ + (I − ωA∗A)nφ0.

Also, bδ ∈ D(A+), for φ+ = A+bδ , we have A∗bδ = A∗Aφ+. Therefore, A∗bδ = A∗Aφ+ We also
have the identity:

ωA∗A
n−1∑
j=0

(I − ωA∗A)j = I − (I − ωA∗A)n,

Thus,
φ+ −φδ

n = (I − ωA∗A)nφ+ − (I − ωA∗A)nφα,∥∥∥φ+ −φδ
n

∥∥∥ =
∥∥(I − ωA∗A)n(φ+ −φα)

∥∥
≤ |(I − ωA∗A)n|

∥∥φ+ −φα

∥∥ .
Also, 0 < ∥ωA∗A∥ ≤ ω ∥A∥2 ≤ 1, hence |(I − ωA∗A)n| < 1. Therefore,

∥∥φ+ −φδ
n

∥∥ <
∥φ+ −φα∥. The improved iterative method can approximate the true value better than the minimum
norm solution method. If we take φ0 = 0 as the initial value of the iteration, similarly, we can see that
the generated error is

∥∥φ+ −φδ
n

∥∥ = |(I − ωA∗A)n| ∥φ+∥. Generally, φα is closer to the true value
than 0, so usually ∥φ+ −φα∥ < ∥φ+∥, which means that the improved Landweber iteration method
can usually approximate the true value better than the Landweber iteration method and the minimum
norm method.

5. Numerical Examples

In this section, we report some examples to demonstrate the effectiveness of our algorithm.

Example 5.1. In this example, the exact solution is given by
u(x) = Ξ(x,y0)p,

with y0 = (10, 10),p = (1, 0)⊤. The known part boundary is given byΓ = (cos t, sin t), t ∈ [0, π], and
the missing part of the boundary is Σ = (cos t, 0.5 sin t), t ∈ (π, 2π). We choose ∂B = (5 cos t, 5 sin t),
t ∈ [0, π], and investigate the case ω = 3, λ = µ = 1.

We choose the discrete points N = 160 of boundary Γ and the discrete points M = 80 on virtual
boundary. Figure 1 shows the solution domain, Figure 2 shows the numerical solutions obtained by
different methods and the exact solution for Example 2 when the noise level is δ = 0.1 ∥b∥. It can be
observed that the improved Landweber iteration method provides numerical solutions that are closer
to the true solution compared to other methods in most of the range. And figure 3 shows the real part
of the numerical solutions for example 5.1, with different noise levels. From this figure, it is known that
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the proposed numerical solution is a stable approximation of the exact solution. Table 1 shows errors
of the four regularization methods and the iteration numbers k of the Landweber iterative method for
different noise level in example 5.1. We can see that the errors will decrease as the noise level. The
results show that the Landweber iterative method will give the best approximation and the Moore-
Penrose method will give the worst result in this example.
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Figure 1. The boundary curves Γ, Σ and virtual boundary ∂B in example 5.1.
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Figure 2. The numerical solution and the true solution on Σ obtained using different methods under the
error level of 0.1 in example 5.1.
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Figure 3. The exact solution and the numerical solution on Σ with different noise levels in example 5.1.

Table 1. Solution errors of four regularization methods and the iteration numbers k of the Landweber
iterative method for different noise levels in example 5.1

Noise Level Moore-Penrose CG regularization Landweber iterations
0.3 0.4493993993 0.1746680954 0.1648413373 0.1585650958 18
0.2 0.2267597014 0.1377902612 0.1160873539 0.1263513181 36
0.1 0.1839350743 0.0877108214 0.0698267237 0.0763326733 134
0.05 0.0898867329 0.0519252895 0.0493794180 0.0436510521 566
0.03 0.0428777569 0.0338485096 0.0425175091 0.0288131876 1926
0.01 0.0284685366 0.0143286332 0.0370841194 0.0123241872 17955

Example 5.2. Consider the exact solution on a doubly connected domain is the same as in Example
5.1. The known part boundary is given by Γ = (cos t, 2 sin t), t ∈ [0, 2π], and the missing part of
the boundary is Σ = (0.25 cos t, 0.4 sin t − 0.3 sin2 t), t ∈ [0, 2π]. In this example,we choose ∂B =
(25 cos t, 25 sin t), t ∈ [0, 2π] and investigate the case ω = 3, λ = µ = 1.

We choose the discrete points N = 160 of boundary Γ and the discrete points M = 80 on virtual
boundary. Figure 4 shows the solution domain,Figure 5 shows the numerical solutions obtained by
different methods and the exact solution for Example 2 when the noise level is δ = 0.1 ∥b∥. It can be
observed that the improved Landweber iteration method provides numerical solutions that are closer
to the true solution compared to other methods in most of the range. And figure 6 shows the real part
of the numerical solutions for example 5.2, with different noise levels. From this figure, it is known that
the proposed numerical solution is a stable approximation of the exact solution. Table 2 shows errors
of the three regularization methods and the iteration numbers k of the Landweber iterative method for
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different noise level in example 5.2. We can see that the errors will decrease as the noise level. The
results show that the Landweber method will give the best approximation.
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Figure 4. The boundary curves Γ, Σ in example 5.2.
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Figure 5. The numerical solution and the true solution on Σ obtained using different methods under the
error level of 0.1 in example 5.2.
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Figure 6. The exact solution and the numerical solutions on Σ with different noise levels in example 5.2.

Table 2. Solution errors of three regularization methods and the iteration numbers k of the Landweber
iterative method for different noise levels in example 5.2

Noise Level Moore-Penrose CG regularization Landweber iterations
0.3 0.1421495412 0.1055258000 0.1705895446 0.1236391390 5
0.2 0.0891481767 0.0791264824 0.1205944501 0.0847829919 8
0.1 0.0419615751 0.0580590997 0.0611995929 0.0426234395 22
0.05 0.0222060718 0.0525248548 0.0278202252 0.0204922798 72
0.03 0.0140453998 0.0553005362 0.0151060049 0.0118445396 195
0.01 0.0052344923 0.0549088173 0.0053952254 0.0050705450 1961

6. Conclusion

The aim of this study is to investigate the Cauchy problem of the Navier equations on a two-
dimensional plane. Firstly, we formulate the Navier equations along with the given Dirichlet boundary
conditions and Neumann boundary conditions. Based on the fundamental solution of the Navier equa-
tions, it is discretized into a ill-conditioned system of linear equations. We then consider the perturbed
equation systemAφδ = bδ . Initially, we employ the pseudoinverse method to solve this ill-conditioned
system of linear equations and discuss the ill-posedness of the system by introducing SVD. We fur-
ther solve the ill-posed linear equation system by truncating the SVD and analyze the construction
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of regularization operators using filtering functions. Next, we present the Tikhonov regularization
method based on the Morozov discrepancy principle and provide several strategies for seeking reg-
ularization parameters in both prior and posterior settings. We also briefly introduce the conjugate
gradient method. Lastly, we introduce the Landweber iteration method and demonstrate its regulariza-
tion nature by finding its filtering function. We prove its convergence and divergence properties. Based
on this, we combine it with the Tikhonov regularization method and propose an improved Landweber
iteration method. By adjusting the initial value of the iteration and controlling the number of itera-
tions, we can improve the accuracy of the numerical solution. We ensure the stability of the numerical
solution by discussing two cases of noisy data simultaneously. Finally, we present numerical examples
on a simply connected domain and a doubly connected domain. We compare the numerical solutions
under different error levels and demonstrate that the improved Landweber iteration method can stably
obtain the numerical solution. By comparing the differences between the numerical solutions obtained
by different methods and the true solution, we verify that this method has higher accuracy compared
to other methods.
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