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A NUMERICAL ITERATION METHOD FOR THE CAUCHY PROBLEM IN LINEAR
ELASTIC DYNAMICS
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ABsTRACT. This paper investigates numerical solution methods for the Cauchy problem of the Navier
equation on a connected domain. We utilize the measured Cauchy data on a portion of the domain
boundary to invert the unknown Cauchy data on another portion of the boundary. First, we present
the corresponding mathematical model, i.e. the Navier equation, and combine it with the known Cauchy
data. Then, we discretize this mathematical model to obtain a corresponding ill-conditioned linear system
of equations. We employ the pseudoinverse method, conjugate gradient method, and Tikhonov regular-
ization method based on the Morozov discrepancy principle to solve this system of equations. The effec-
tiveness of the algorithms is evaluated using spectral analysis. Next, we propose an improved Landweber
iteration method. We first demonstrate the effectiveness of the algorithm using a filtering function and
then analyze the errors of the algorithm to prove its stability and accuracy. Finally, we verify the stability
and accuracy of the method through numerical experiments. Therefore, the proposed method is feasible
and the numerical solutions obtained by this method can better approximate the true solution compared
to several previous methods.
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1. INTRODUCTION

The elastic wave equation (Navier equation) has been widely applied in various fields of physics.
Solving the Cauchy problem of the Navier equation is of utmost importance in non-destructive testing,
imaging, and geophysical exploration techniques. By measuring data and solving the Cauchy problem,
it is possible to infer information about the internal structure of materials, the location and shape of de-
fects, and achieve material inspection and imaging. The research background of the Navier equation can
be traced back to the early 19th century when scientists conducted in-depth studies on solid mechanics
and wave phenomena. The development of the Navier equation aims to explain the propagation, re-
flection, refraction, and other phenomena of elastic waves in solids. It also seeks to predict and analyze
wave phenomena such as seismic waves, sound waves, and vibrations. In [1, 2, 3],the stability of the
Cauchy problem has been extensively examined. Marin et al. [4, 5] approached the Cauchy problem
in linear elasticity by formulating it as a system of linear equations using the iteration BEM(Boundary
Element Method). Numerous numerical methods have been introduced in the literature to solve the
Cauchy problem in linear elasticity. The alternating iterative algorithm for the Cauchy problem in
elasticity was presented in [6, 11] , while [7, 8, 9, 12]discuss other iterative methods. Marin [15] com-
bined BEM with the Landweber method to solve the Cauchy problem in linear elasticity. Furthermore,
[17]investigates the possibility of obtaining a stable approximate solution to the Cauchy problem in
linear elasticity by utilizing the CGM (conjugate gradient method) in conjunction with the BEM. Other
BEM-type methods can be found in [9, 18, 19, 21]. The FEM(Finite Element Method) is referenced in
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[22, 23, 24] as a means of obtaining approximate solutions to boundary problems in partial differential
equations. Fairweather and Karageorghis [26] have contributed to the literature on the MFS(Method of
Fundamental Solutions) and related methods over the past three decades. It is worth noting that there is
limited research available on the data completion problem in linear elastodynamics. However, in [27],
the authors present a layer potential method for linear elastic dynamics. They conducted studies on
convergence, provided stability estimates, and presented numerical examples to verify the efficiency of
the proposed method. Additionally, in [35, 36], Chapko and coauthors discuss the boundary integral
method in linear elastodynamics.

This paper is organized as follows. In Section 2, we introduce the mathematical model, which is
the Navier equation, and incorporate it with the given Cauchy data. Subsequently, we discretize this
mathematical model to obtain a corresponding ill-conditioned linear system of equations. In Section 3,
we utilize the pseudoinverse method, conjugate gradient method, and Tikhonov regularization method
based on the Morozov discrepancy principle to solve this system of equations. The effectiveness of these
algorithms is evaluated using spectral analysis. Furthermore, in Section 3, we propose an improved
Landweber iteration method. We first demonstrate the effectiveness of the algorithm using a filtering
function and then analyze the errors of the algorithm to establish its stability and accuracy. In Section
3,We propose an improved Landweber iteration method. They first demonstrate the effectiveness of the
algorithm using a filtering function and then analyze the errors of the algorithm to prove its stability
and accuracy. In Section 4, we verify the stability and accuracy of the method through numerical
experiments. The proposed method is proven to be feasible, and the numerical solutions obtained by
this method exhibit closer approximation to the true solution compared to several previous methods.

2. PROBLEM AND ITS APPROXIMATION

we consider a bounded connected domain D C R? filled with an isotropic elastic medium of density
p, and the boundary 9D = I' U ¥ of D is sufficiently smooth, where I" and ¥ are the known part
and the unknown part of the boundary 9Dand I' N ¥ = (). Neglecting the body forces of the elastic
medium itself, assuming the displacement field u corresponding to the stress tensor o-(u) in D satisfies
the following Navier equations

V-o(u)+ pw?u =0, inD. (2.1)

where w designates the frequency of vibration. For a linear isotropic elastic medium, the components
of the stress tensor o(u) be

g,y = ACSZJEM + 2N5U> 1,7=1,2,

e _ 1 ou, n Oou,
Y 2\ox, Oz,)’
where ¢, is the Kronecker delta function, A and 1, often referred to as the Lemé constants, and satisfy
pw>0and A+ p > 0.

with the strain tensor €,, given by

2.1. The Cauchy problem of Navier equations. Consider the following Cauchy problem: Where
the displacement field w in D satisfies the following Navier equations

pAu+ A+ p)VV - u 4 pwu = 0. (2.2)

On the known boundary I, the displacement u satisfies the following boundary conditions:

e Dirichlet boundary condition
u=f,onl. (2.3)
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e Neumann boundary condition
T,u=t, onl. (2.4)
Find the displacement field u € C%(D) N C(D), that is, determine the Cauchy data on 3.

2.2. Method of fundamental solutions. The solution u of the Navier equations on a two dimen-
sional plane can be decomposed into compressible and shear components through the Helmholtz de-
composition
U = Up + Ug,
where u,, := (—1/k2) grad div w represents the the compressional part of w, and u, := (—1/k2)
grad® divt w represents the shear part of u
N ou ouw\' n Ouy  Ouy
grad—u := (—am, 8x1> sdivu = o Oy’

the wavenumbers of compressional and shear waves k, and k, respectively, are given by

SR e

Auy, + k2w, =0 and Aug + kJus =0
We know that the fundamental solution of the Helmholtz equation with a wavelength of k is given by
the following

There holds

Ok |z —y|) = { (k‘x yl), 337y€R27 T # y; (2.5)

Hevljanle —y|, xyeR’, x#y,
with Ho(l) be the Hankel function of the first kind of order zero. In this paper, we mainly consider
the two-dimensional plane. From the Helmholtz decomposition, it can be inferred that Z(x, y) is the

fundamental solution of the Navier equation on the two-dimensional plane. Its form can be determined
as following

_ i
Sy = =1 H () = 7= 70 93 (B ) = 1 ()]

where r = | — y|. The displacement field u can be approximate by discretisation as
N .
u(z) ~un(z) = ZE(:D,yj) [bﬂ ,x €D, (2.6)
=1 g
where a;,b;,j = 1,2,..., N, are the coefficients, y; € R? \ D are the source points with the number

N.
For a fixed point & € 0D, T the traction operator defined on the boundary 9D, is given by

(Thu)p = )\ngg’:;j + pn, (gw + gacuz> ,0=1,2,
where n is the unit outward normal vector. Combining the equation (2.6), we can get
N
tlx)~ty(x) = ZT(cc,yj) [Zj] : (2.7)
j=1

The matrix T is given by

N Tll(ili,yj) TlQ(wayj)
T(ic,yj) - < T21(5137yj) ng(x,yj) > ’
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whose elements are given by

Tu(z,y;) = {(/\ +2u) 1;(;3,3/]) + A 12(33,2/]) ni+p < 15(5”7%) 12(x y] ) no.
1 T2 | 9

= OUa(z,y;) |\ OUn(@,y;)] aU12(337yj) 3U22 (x y]
Tio(x, J’j) = [()\ + 2u) o + A o - ny+p o o,
Tor(z, y;) = p oUn (@, y;) + r2(2, y;) n; + AM + (A +2u 8U12 OUs(z, y;)

02 O0x1 I o1
N (OUp(x,y;)  OUx(z,y;) [ U (x, y;) M

Tl vi) = o < Oy * Oy A 02 T2 O "

where U is the fundamental solution of the Navier equation. The unknowns {a;, b; };VZI will be
calculated by the collocation method. Generally, we choose M points {wz}f\i 1 on the boundary I' as

the collocation points. Thus we will give a system about the unknowns, namely
Ap=> (2.8)

The matrix A has a large condition number due to the ill-posedness of the Cauchy problem, and there-
fore it is necessary to give a regularized stable solution. To solve in a stable way, we use the methods
such as pseudo-inverse method, minimum solution method including the regularization parameter cho-
sen by Morozov discrepancy principle, conjugate gradient method.

3. SEVERAL NUMERICAL SOLUTION METHODS

In general, we consider the perturbed equation
A’ = b (3.1)
Here, b = (f°,1°)T is measured noisy data satisfying Hb‘S — b|| < 6 x ||b]| = o where § is the noise

level.

Theorem 3.1. (Picard) Let A : F — U be a compact linear operator with singular system (s;, u;, v;).
The equation of

Ap=0>b
is solvable if and only if b belongs to the orthogonal complement b € N'(A*)* and satisfies

jeJ I
In this case a solution is given by
Y= Z (b, vj)u
JjeJ J

Theorem 3.2. Let A : F — U be an injective compact linear operator with singular system (s;, u;, v;),
and let q(c, s) : (0,00) x (0,||Al|] = R satisfying the following conditions:

lg(e, s)] < 1.

2. There exists a function c(cv) such that forV 0 < s < || Al|, we have |g(a, s)| < c(a)s.

, we have lim,_0 q(a, s) = 1. q(«, s) is called a filtering function, and the

following theorem holds:
1.0perator Ry, : U — F,a > 0:

= Q(av S )
R.,b= Z Tj(b, v;)u;j

is a regularization operator, and | R, || < c(a).
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2.If we choose o« = «(0) such that «(d) — 0 asd — 0 and dc(a(d)) — 0, then o = «(9) is an
admissible choice.

3.1. Moore-Penrose generalized inverse matrix methods. Using the Moore-Penrose pseudoin-
verse matrix provides a stable and reliable solution method for solving ill-conditioned systems of linear
equations. The Moore-Penrose pseudoinverse matrix, denoted as AT, is a matrix that satisfies the fol-
lowing four conditions and has the same dimensions as A7 The Moore-Penrose pseudoinverse is a
matrix AT of the same dimensions as A7 satisfying four conditions:

(1) AATA = A,

(2) ATAAT = AT,

(3) AA™ is Hermitian,

(4) A* A is Hermitian.

The generalized inverse matrix of a matrix is not unique, and different generalized inverse matrices
may lead to different solutions. Therefore, in practical applications, it may be necessary to choose an
appropriate generalized inverse matrix based on the specific problem. One commonly used method for
computing the Moore-Penrose generalized inverse matrix is the SVD (Singular Value Decomposition).
In singular systems, the matrix A can be decomposed into the product of three matrices: A = USVT,
where U and V are orthogonal matrices, and S is a diagonal matrix with its diagonal elements s;
known as singular values. When computing the generalized inverse matrix, ST can be obtained by
taking the inverse of S and then transposing it, where the nonzero singular values in .S are reciprocated
and placed on the diagonal. The solution to an ill-conditioned system of linear equations is represented

as
Atb=p = Z (b,v))u
jeJ ]
However, in practical computations, we may encounter singular values s; that approach 0. If we in-
troduce a perturbation bs to b, the perturbation of the solution ¢° = 3 jel s L (b9, vj)u; can deviate
significantly from the true value, leading to numerical instability.

In order to avoid this situation, we use truncated singular value decomposition to approximate the
generalized inverse matrix. We introduce a tolerance parameter, denoted as tol(tolerance), to control
the truncation of singular values. The tolerance is a non-negative number that determines which singu-
lar values should be considered as non-zero when computing S*. Any value smaller than tol is treated
as 0. We perform truncated singular value decomposition on the matrix A, decomposing it into the
product of three matrices: A = USVT, where U and V are orthogonal matrices, and S is a diagonal
matrix. The approximate generalized inverse matrix of A can be represented as A* = V.S+tUT. §+
is obtained by taking the reciprocals of the non-zero elements in .S that are greater than tol, while con-
sidering the remaining elements as 0. Therefore, the solution to the perturbed equation (3.1) is given
by ¢? = At % b. Generally, a larger tolerance retains more singular values, resulting in a generalized
inverse matrix that is closer to the inverse of the original matrix. From the perspective of the solution
representation, it is as if a certain regularization filter has been introduced to the singular values, which

can be seen as
q(tol, sJ
= b, v;)u;.

jeJ

where
1, s2>tol,

) — j =
a(tol, 55) {O, s? < tol,

The condition ¢(tol, s;) < 1is obviously satisfied. We choose

c(tol) =

1
Vitol
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and Whens? > tol, we have c(tol)s; > 1 = q(tol, sj). Furthermore,

lim ¢(tol,s;) = 1.

tol—0

Clearly, g(tol, s;)is a filtering function. According to Theorem3.2, the pseudoinverse method can be
used to obtain a relatively stable numerical solution.

3.2. Tikhonov regularization method. We use the least squares method to transform the problem
or equation (2.8) into the following equivalent problem of minimizing:

min | A — b3

When solving the above minimization problem, we cannot guarantee the existence and uniqueness of
the solution. Therefore, it is necessary to impose further restrictions on the minimizers to ensure their
existence and uniqueness.

The idea of Tikhonov regularization is to solve this problem by adding a penalty term to the objective
function. Specifically, we seek to minimize the Tikhonov functional:

Jo(p) = |Ap — b|3 + a3, (3.2)

where o > 0 is called the regularization parameter.
Its solution is equivalent to the solution of the following equation:

(A*A + al)p, = A™b. (3.3)

The solution to the problem can be expressed as the solution to the following equation:
Yo = (A*A+al) ' A*b = R,b (3.4)
Since A is a compact operator, its singular system is given by (s;, u;, v;), where Ap; = s;b;, A*b; =

sjp;. From ¢, = (A*A + oI) "' A*b, we have (A*)"}(A*A + aI)p, = b. Furthermore,

+s a+s
1b; (A*A+al) 'A*b; =

S5 S5

(A" HA*A + al)p; =

‘70]7

2

so the singular values of the operator (A*)~!(A*A + o) are . Thus, the operator R,, can be

written in the following form:

o o
_ Sj q(a, S]
Ra_ZoH—sz b,u;)v Z (b, uj)vy,
]:1 J ]:1
where

2
s“
J

a,8;) = .

Q< ) J) Ct—i—S?

It is clear from Theorem 3.2 that ¢(tol, s;) is a filter function. Therefore, the constructed operator
R,, is a regularization operator.

The regularization parameter is obtained by Morozov discrepancy principle Morozov discrepancy
principle is to choose the regularization parameter by finding the zeros of G(«) := HAgoa — b H —0?
The zeros of G(«) are solved by Newton’s method to obtain the regularlzatlon parameter as followmg

e Initialize: n = 0, and take g = ||A||> 5/ (Hb5 H — 0) as the initial value of the Newton iteration.
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e Forn=1,2,...,if |ap41 — ay| > e(e < 1), continue the iteration
get go‘s from (A*A + a, )gogn = A*b

get @cpan from (a, I + A*A)%cpgn = —@in.
G(ay) = HAcpgn — b5H2 —o?

VG(an) = 200 | Aghedh, [ + 203 || e,

Glan)

set Opt1 = Op — m

until [a,11 — ap| < e(e < 1).
By introducing the regularization operator
R, :=(al + A*A) 'A%, o >0,

we can achieve the regularized solution ¢° = R,b°.

3.3. Conjugate gradient method. For the perturbation equation (3.1), we define function
flp) = HAgo b‘;H (Ap — b, Ap — bY),
then Vf(p) :=2A"(Ap — b‘s). The steps of the conjugate gradient algorithm are as follows:
o Initialize: gog = *, dy=b’ — Acpg, p1 = So = A*dy, where " is the initial guess;
e Fork=1,2,...,200.If s;_1 # 0, compute
(g = Apy,
_ 2 2
ay = HSk 1/ gl
‘Pk ‘-Pk 1 T QkPk;
di, = d—1 — Pk,
S = A*dk,
2 2
Bk = lIsll™ / llsk—l”
Pk—1 = Sk + PPk

until s;_1 = 0. The iteration converges only when A is a positive definite matrix.

4. LANDWEBER ITERATION METHOD

The solution to the equation (2.8) is equivalent to the solution of the following linear system:

p=p+wA"(b— Ayp) (4.1)
Therefore, we introduce the following Landweber iteration scheme:
Pr=pr-1+twA*(b— Api_1) (4.2)

4.1. The effectiveness of the landweber iterative method. We know that
Pr = (I — wA*A)gok,l + wA*b(S,

and by recursion, we have
k—
Z I—wA A A*Y + (I — wA*A)F g

Usually, we take the initial value of the iteration as g = 0. We define the operatoras Ry as
K-1
Ri:=w) (I-wA*A)FA".
k=0



A NUMERICAL ITERATION METHOD FOR THE CAUCHY PROBLEM IN LINEAR ELASTIC DYNAMICS 177

The expression of @y can be represented as ¢ = Rxb°. Expanding Ry, using the singular system
(sj,uj,v;) of the compact operator A, we have the following expression for R:

oo K-1
Ry: =w (1 —wsjz)k(b, ORERTY
j=1 k=0
=3 - (1w v,
j=1"7
o (K s))
:Z " 22 (b,vj)u,
=t 7

We take o = 1/K, and when 0 < w < 1/[|A
ws?)l/ @ < 1 holds. Using the Bernoulli inequality, we can obtain:

?, the inequality p(K, s;) = qlo,s5) =1 - (1 -

wSs=
gla,sj))=1—-(1-wsH/*<1-(1-—L) =
Therefore, we can take c(o) = /27?, then g(c, s5) < \/q(a,s;) < ¢(a)s;?. Since 1 — ws?. <1, we
have:

li ) = i K.s:)= lim (1 — (1 —ws)&)=1.
ali%q(aasj) Kg)noop( 78]) Kg)noo( ( WS]) )

Therefore, when0 < w < 1/ ||A 2. the constructed operator is a regular operator, and stable numerical
solutions can be obtained through iteration.

4.2. Convergence of the Landweber iteration method. Assuming ¢+ = A1b’, where o7 is the
least squares solution of Ag = b°. Let D(A™T) be the range of A*. Due to errors in the measured
Cauchy data b%, when the value of b° is not in D(A*), the iteration cannot converge to the true solution.
We have the following theorem.

Theorem 4.1. Let {py} be the sequence of iterates generated by the iterative scheme (4.2). As k — oo, if
b’ € D(AT), then pp — ATV, Ifb? ¢ D(A™T), then @ — 0.

Proof. Assuming b® € D(A™1), for o = ATb?, we have A*b® = A* Ap™. Therefore,

k—1
et —pr =" —wATADY (I-wA*A)Y ",
j=0
Since the following equation holds:
k—1 '
wA*AY (I-wA*A) =T - (I -wA*A),
7=0

we can deduce that
e — =T -—wA A)pT.
Furthermore, 0 < |wA*A| < w||A|* < 1,50 |[I —wA*A| < 1,
lim Hcp+ - cpkH = lim H(I—wA*A)kcp"'H < lim (I—wA*A)k‘ Hcp*'” =0,
k—o0

k—o0 k—o0

which implies that ¢, — AT,
Assuming b° ¢ D(A™), we will use a proof by contradiction. Suppose that {(}} is bounded in
the Hilbert space, then there exists a convergent subsequence {¢y,, }. Since the operator A has weak



178 Y. SUN AND M. JIANG

convergence, we have Apy, = Ag. So, Apy, = Ap — Qb’, where Q = Q|p(a+). Therefore,
b% € D(A™). By contrapositive, if b? ¢ D(A™), then {¢} is unbounded. O

When b° ¢ D(A™), the Landweber iteration does not converge. For the case of non-convergence,
we have the following theorem.

Theorem 4.2. If||[b—bs || < 6 ||bs || = 0,bs ¢ D(AT), then ||or — 2| < Vkwo, k > 0.
Proof.

k—1
or— @l =w > (I —wA*A) A*(b— bs) := Ry(b —bs),
j=0
and
k— k—
|R:||> = | RpR| = Z I—wA*AY (I — (I —wA*A Z I-wA*A
j=0 7=0
Therefor
lwA™ Al < L [T -wA" Al <1,
So
o - ot] < v,
]
Because

let = el < lle* = eull + | ox — i

when the error level o is small and the number of iterations k is small, the data error HS% - goi H <1
can be ignored. However, as k becomes larger, the error increases, leading to the phenomenon of
semi-convergence. Therefore, choosing an appropriate iteration index k plays a role as a regularization
parameter.

4.3. Improved Landweber iteration. Through the above proof, we know that when ° € D(A™1),
the Landweber iteration converges to ATb°. However, when b’ ¢ D(AT), the iteration error first
decreases and then increases, which means that the iteration initially converges and then diverges.
In both cases, the choice of the number of iterations becomes crucial. It plays a role similar to the
regularization parameter mentioned earlier. Only by selecting an appropriate number of iterations can
we approach the true solution effectively.

For the first case, we can choose the initial value of the iteration as the regularized solution obtained
by the Morozov discrepancy principle: ¢, (ol + A* A)~' A*b°. The number of iterations can be set as
the ceiling value of the reciprocal of the regularization parameter, i.e., n = (oz_l].

For the second case, we have the following theorem:

Lemma 4.3. Suppose b° ¢ D(A"), b € R(A), and p € D(A) satisfies Ap = b. If | Ap) — b°| > 26,
then cpi 1 provides a better approximation to the true solution @ " than cpg.

In this paper, we determine whether b belongs to D(A™) by comparing the differences between the
numerical solutions obtained by two different iteration methods. Let’s assume the numerical solutions
obtained by these two methods are ¢ and 19,. The main difference between the two methods lies in
the number of iterations. If b° € D(A™), the iterative values obtained by both methods will be close to
each other. In this case, we choose (2 as the numerical solution. On the other hand, when b? ¢ D(A™),
the former iteration diverges, while the latter converges better to the true value, resulting in a larger
difference between them. In this case, we select 99, as the numerical solution. We use the error level §
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as a criterion to determine whether b° belongs to D(A™T). If Hgog - 'l/)an < 0 x ||b|| = o, we consider
b’ € D(A™), and we choose ), as the numerical solution. If |9 — 43,|| > 6 x ||b|| = o, we consider
b’ ¢ D(AT), and we choose 19, as the numerical solution. Therefore, we have the following improved
Landweber iteration method.

The steps for the improved Landweber iteration method are as follows:

o Initialization: The regularization parameter « is obtained from the Morozov discrepancy principle.
Set w = 1/(2||A|?), @o = o = palad + A*A)"LA*B) as the initial values, and the number of
iterations n = {a‘l

eFork=1,2,...n

@ = Pho1 +wAT (B — Ap)_y)

Obtain .
e Thenfork =1,2,...
P =P +wA (B — Agpy)
e Stop the iteration when HAl/)g —b° H < 20, and obtain 1/)?,1.
o If Hcpr - w;;” < & x ||b]| = o, then the numerical solution is . If H(pr - '(/anH > 6 x ||b]] = o,

then the numerical solution is 19,
The algorithm defined in the document can be represented by the operator R with the following

expression:
o 1—(1—ws?)k2,
17 a+s

R = s
Z 55 (b,v))u,
7j=1
(e.¢]

q(1/k, o, s;)
:§: s (b, vj)u;

j=1 !

We obtain the function:

_ 21k
q1/k,a,s) =1— (1 —ws”) Pt

where k depends on «, so the function ¢(1/k, «, ) actually has only two variables, and 1/k < a. It
can be proven that this function is a filtering function.

Proof. Since 1/k > 0, > 0,and 1 — ws? < 1, we have:
q(1/k,a,s) <1— (1 —ws?HF <1,

Using the Bernoulli inequality, we can deduce:

1/k,a,s; =1-(1—-ws?)f——
o1/, 5) (1wt 0
«
<1—(1—kws?
- ( ws)a+82
2
= + kws?——,
o+ 52 o+ s2

Therefore, we have the following inequality:

q(1/k,a,s) < \/q(1/k,a,s) = s Ss+kw<s + sVkw,
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We can choose ¢(1/k,a) = 1/vVa + s? + Vkw, such that ¢(1/k,«, s) < sc(1/k,a) holds. Further-

more,

1 1/k, =1
1/k1g;0q( [k e s) =

is obviously true. According to Theorem 3.2, we know that the constructed algorithm is a regularization
algorithm U

4.4. Error analysis. When b° € D(A™), from equation (4.2), we know that:
oh = (I —wA'A)p | +wA'D,
By recursion, we have:

@ =T -wA AP | +wA*b
n—1
=w) (I-wA*AY A" + (I —wA*A)"pq
7=0

Also, b® € D(A™), for o = ATb?, we have A*b® = A* Ap™. Therefore, A*b® = A* Ap™ We also
have the identity:

n—1
WA AY (I -wA* A =T (I-wA"A)",
j=0
Thus,
et — ) = (I —wA*A)'o" — (I —wA*A) ¢,

= (- wA"A) (ot — )|
<|(T A 4)" " — gl

Also, 0 < |[wA*A|| < w]||A|* < 1, hence |(I —wA*A)"| < 1. Therefore, et =&l <
™ — @q |- The improved iterative method can approximate the true value better than the minimum
norm solution method. If we take ¢oy = O as the initial value of the iteration, similarly, we can see that
the generated error is H(p“‘ - cprH = |(I —wA*A)"|||¢T]. Generally, ¢, is closer to the true value
than 0, so usually || — ¢,|
can usually approximate the true value better than the Landweber iteration method and the minimum
norm method.

Hso+—soi

5. NUMERICAL EXAMPLES
In this section, we report some examples to demonstrate the effectiveness of our algorithm.
Example 5.1. In this example, the exact solution is given by

u(z) = E(x, Yo)P;
withyg = (10,10),p = (1,0) ". The known part boundary is given by I' = (cost,sint), ¢ € [0, 7], and
the missing part of the boundary is ¥ = (cost,0.5sint), ¢t € (w,27). We choose 9B = (5cost, 5sint),
t € [0, 7], and investigate the case w = 3, A = p = 1.

We choose the discrete points N = 160 of boundary I' and the discrete points M = 80 on virtual
boundary. Figure 1 shows the solution domain, Figure 2 shows the numerical solutions obtained by
different methods and the exact solution for Example 2 when the noise level is § = 0.1|b||. It can be
observed that the improved Landweber iteration method provides numerical solutions that are closer
to the true solution compared to other methods in most of the range. And figure 3 shows the real part
of the numerical solutions for example 5.1, with different noise levels. From this figure, it is known that
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the proposed numerical solution is a stable approximation of the exact solution. Table 1 shows errors
of the four regularization methods and the iteration numbers k of the Landweber iterative method for
different noise level in example 5.1. We can see that the errors will decrease as the noise level. The
results show that the Landweber iterative method will give the best approximation and the Moore-
Penrose method will give the worst result in this example.

FIGURE 1. The boundary curves I, ¥ and virtual boundary 0B in example 5.1.
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FIGURE 2. The numerical solution and the true solution on ¥ obtained using different methods under the

error level of 0.1 in example 5.1.
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FIGURE 3. The exact solution and the numerical solution on ¥ with different noise levels in example 5.1.

TaBLE 1. Solution errors of four regularization methods and the iteration numbers k of the Landweber
iterative method for different noise levels in example 5.1

Noise Level Moore-Penrose CG regularization Landweber iterations
0.3 0.4493993993  0.1746680954 0.1648413373 0.1585650958 18
0.2 0.2267597014  0.1377902612 0.1160873539 0.1263513181 36
0.1 0.1839350743  0.0877108214 0.0698267237 0.0763326733 134
0.05 0.0898867329  0.0519252895 0.0493794180 0.0436510521 566
0.03 0.0428777569  0.0338485096 0.0425175091 0.0288131876 1926
0.01 0.0284685366  0.0143286332 0.0370841194 0.0123241872 17955

Example 5.2. Consider the exact solution on a doubly connected domain is the same as in Example
5.1. The known part boundary is given by I' = (cost,2sint), t € [0,27], and the missing part of
the boundary is ¥ = (0.25cost,0.4sint — 0.3sin?¢t), t € [0, 27]. In this example,we choose OB =
(25cost,25sint), t € [0, 27| and investigate the case w = 3, \ = 1 = 1.

We choose the discrete points N = 160 of boundary I" and the discrete points M = 80 on virtual
boundary. Figure 4 shows the solution domain,Figure 5 shows the numerical solutions obtained by
different methods and the exact solution for Example 2 when the noise level is § = 0.1 ||b]|. It can be
observed that the improved Landweber iteration method provides numerical solutions that are closer
to the true solution compared to other methods in most of the range. And figure 6 shows the real part
of the numerical solutions for example 5.2, with different noise levels. From this figure, it is known that
the proposed numerical solution is a stable approximation of the exact solution. Table 2 shows errors
of the three regularization methods and the iteration numbers k of the Landweber iterative method for
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different noise level in example 5.2. We can see that the errors will decrease as the noise level. The
results show that the Landweber method will give the best approximation.
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FIGURE 5. The numerical solution and the true solution on ¥ obtained using different methods under the

error level of 0.1 in example 5.2.
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FIGURE 6. The exact solution and the numerical solutions on ¥ with different noise levels in example 5.2.

TABLE 2. Solution errors of three regularization methods and the iteration numbers & of the Landweber
iterative method for different noise levels in example 5.2

Noise Level Moore-Penrose CG regularization Landweber iterations
0.3 0.1421495412  0.1055258000 0.1705895446 0.1236391390 5
0.2 0.0891481767  0.0791264824 0.1205944501 0.0847829919 8
0.1 0.0419615751  0.0580590997 0.0611995929  0.0426234395 22
0.05 0.0222060718  0.0525248548 0.0278202252 0.0204922798 72
0.03 0.0140453998  0.0553005362 0.0151060049 0.0118445396 195
0.01 0.0052344923  0.0549088173 0.0053952254 0.0050705450 1961

6. CONCLUSION

The aim of this study is to investigate the Cauchy problem of the Navier equations on a two-
dimensional plane. Firstly, we formulate the Navier equations along with the given Dirichlet boundary
conditions and Neumann boundary conditions. Based on the fundamental solution of the Navier equa-
tions, it is discretized into a ill-conditioned system of linear equations. We then consider the perturbed
equation system Ay’ = b’. Initially, we employ the pseudoinverse method to solve this ill-conditioned
system of linear equations and discuss the ill-posedness of the system by introducing SVD. We fur-
ther solve the ill-posed linear equation system by truncating the SVD and analyze the construction
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of regularization operators using filtering functions. Next, we present the Tikhonov regularization
method based on the Morozov discrepancy principle and provide several strategies for seeking reg-
ularization parameters in both prior and posterior settings. We also briefly introduce the conjugate
gradient method. Lastly, we introduce the Landweber iteration method and demonstrate its regulariza-
tion nature by finding its filtering function. We prove its convergence and divergence properties. Based
on this, we combine it with the Tikhonov regularization method and propose an improved Landweber
iteration method. By adjusting the initial value of the iteration and controlling the number of itera-
tions, we can improve the accuracy of the numerical solution. We ensure the stability of the numerical
solution by discussing two cases of noisy data simultaneously. Finally, we present numerical examples
on a simply connected domain and a doubly connected domain. We compare the numerical solutions
under different error levels and demonstrate that the improved Landweber iteration method can stably
obtain the numerical solution. By comparing the differences between the numerical solutions obtained
by different methods and the true solution, we verify that this method has higher accuracy compared
to other methods.
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