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ABsTRACT. This paper discusses the mixed evolutionary variational-hemivariational inequality problem,
which incorporates a set of constraints and history-dependent operators. We utilized a mixed equilib-
rium formulation with appropriate functions and a fixed-point principle for history-dependent operators
to prove the existence and uniqueness of solutions. As an application to demonstrate the peculiar weak
solution for a viscoelastic frictional contact problem that involves the unilateral signorini type condi-
tion for the normal velocity together with non-monotone normal damped response conditions and the
Coulomb law of dry friction that friction bounds depend on the amount of accumulated slip.
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1. INTRODUCTION

With the groundbreaking studies of Panagiotopoulos, see [1], the theory of hemivariational and
variational-hemivariational inequalities was introduced in the early 1980s. Since then, the theory has
significantly advanced in pure and applied mathematics owing to innovative and efficient methods
incorporating convex and nonsmooth analysis,see [2, 3]. Hemivariational inequalities, which include
nonconvex, nondifferentiable, and local Lipschitz functions, are variational representations of physical
processes. They play a crucial role in the depiction of a wide range of mechanical problems that occur
in solid and fluid mechanics, we refer to [4, 5, 6, 7, 8, 9].

Let V be a reflexive Banach space and €2 C V be a nonempty, closed and convex set of constraints.
Let A, R1, R2,S be the nonlinear operators and M be the affine operator, which is supplemented by an
initial condition. Assume that ¢ is a convex function and j is a local Lipschitz function. Let R1, R2, S
be the history-dependent operators. The problem reads as follows: find w : (0,7) — V such that
w(t) € Qforae. t € (0,7)and

(W'(t) + At w(t)) + (Riw)(t) — f(t),v — w(t))yvexv + 5°(t (Sw)(1), Maw(t); Mo — Muw(t))
+ p(t, (Raw)(t), Mv) — o(t, (Row)(t), #w(t)) >0, Vv € Q, ae. t € (0,7T) (1.1)

is known as first-order evolutionary variational -hemivariational inequality problems involving to-
gether with history-dependent operators and a set of constraints.

Inspired and motivated by the recent works [10, 11, 12, 13, 14, 15, 16, 17], in this paper, we establish
the existence, uniqueness and regularity of the solution at (1.1). We also discuss the problem (1.1) in
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the framework of evolution triple of spaces, exploiting the result on the mixed equilibrium inequality
and a fixed-point principle history-—dependent operators. The second is to obtain the unique weak
solution to a dynamic frictional contact problem for a viscoelastic material with a long memory and
unilateral constraints in velocity. The contact condition involves a unilateral Signorini-type condition
for the normal velocity combined with the nonmonotone normal damped response condition.

2. PRELIMINARIES

Unless otherwise stated everywhere in this paper A(t, ) = A (), ¢(t,-, ) = @i(+,-),and JO(t, -, -) =
J2(-,-). Let (X, || - ||x) be a Banach space, X* be its dual space, and (-, -)x+xx be the duality pairing
between X* and X. The symbols — and — represent the strong and weak convergence, respectively.
For a set D C X, conv(D) is the convex hull of D. The notation .Z(IE, IF') stands for the space of
linear bounded operators from a Banach space It to a Banach space I, and is endowed with the usual
norm || - || ¢ ). For aset S C X, we write [|S||x = sup {[|u[x | v € S} . Let J : X — 2% be the
set-valued mapping. The duality mapping is defined by

Ju = {u* € X*|(u*, u)x+xx = ullk = ||U*H§g*} , Vu € X.
We review several details pertaining to single-valued operators and bifunctions from the reference

[5, 18].

Definition 2.1. A single-valued operator A : X — X* is said to be
(i) demicontinuous, if u,, — u € X implies Au,, =~ Au € X*,
(ii) monotone, if (Au — Av,u — v)x+xx > 0,Vu,v € X,
(iii) strongly monotone if there exists a constant av4 > 0 such that

(Au — Av,u — v)xrxx > aallu — |k, Vu,v € X,
(iv) relaxed monotone if there exists a constant a4 > 0 such that
(Au — Av,u — v)xrxx > —aqgllu —vl%k, Vu,v € X,
(v) cocoercive if there exists a constant a4 > 0 such that
(Au — Av,u — v)xrxx > aqllAu — Av|ks, Vu,v € X,
(vi) relaxed cocoercive if there exists a constant a4 > 0 such that
(Au — Av,u — v)xrxx > —aqllAu — Av|k., Vu, v € X,
(vil) (cvg,B4)-relaxed cocoercive if there exist constants ay > 0, 54 > 0 such that
(Au — Av,u — v)xsxx > —aallAu — Av|x + Ballu — ||k, Vu,v € X,
(viii) Lipschitz continuous if the exists a constant { 4 > 0 such that
JAu — Aullx- < Callu— vllx, Vo € X*,
(ix) maximal monotone, if it is monotone and the conditions (u,u*) € X x X* and

(u* — Av,u — v)x*xx > 0, Vv € X*

imply v* = Au,
(x) quasi monotone, if lim sup(Auy,, u, — u)x+xx > 0 for any sequence {u,} C X with u,, —
u € X,

(xi) pseudomonotone, if for any sequence {u,, } C X such that u,, — v € X and
lim sup(Aup,, un, — u)xrxx < 0,

we have
lim inf (Aup, u, — v)xrxx > (Au,u — v)xxx, Y0 € X,
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(xii) bounded, if it maps bounded subsets of X into bounded subsets of X*.

Definition 2.2. [19] A function f : X — R is said to be

(i) (resp. weakly) upper semicontinuous (usc) at zg € X, if for any sequence {z,,} C X with (resp.
Tp — To) T, — T, We have

limsup f(z,) < f(z0),

(ii) (resp. weakly) lower semicontinuous (Isc) at xg € X, if for any sequence {z,,} C X with (resp.
Ty — To) Tn, — T, we have

f(zo) < liminf f(zy),
(iii) f is said to be (resp. weakly) usc (Isc) on X, if f is (resp. weakly) usc (Isc) at z, for all x € X.

Definition 2.3. Let ) be a nonempty, closed and convex subset of X. I : 2 x 2 — R is said to be

(i) monotone, if I'(u,v) + I'(v,u) < 0,Yu,v € §,
(ii) quasimonotone, if for all {u,} C Q with u,, — u € X, we have

lim inf I'(uy,, u) <0,
(ili) pseudomonotone, if for all {u,} C Q with u,, — v € X and
lim inf I"(up,, u) > 0,
we have
lim sup I'(up, v) < T'(u,v), Vv € Q.

Definition 2.4. [19] Let €) be a nonempty, closed and convex subset of X. Let I" : €2 x 2 — R be
a bifunction with I'(u, u) = 0,Vu € Q. The bifunction I" is said to be maximal monotone if for every
u € € and for every convex function ¢ : @ — R with ¢(u) = 0, we have

P(v) > T'(v,u), Vv € Q = YP(v) > —T'(u,v), Vv € .

We recall the existence of a solution to the mixed equilibrium problems. Let U be a subset of a
reflexive Banach space X. Find u € U such that

I'(u,v) + Y(u,v) + £(u,v) > 0,Vv € U. (2.1)
We require the following presumptions.

() # U is a closed convex subset of X. (2.2)

I': U x U— Ris such that

(a) T' is monotone and maximal monotone,
(b) T'(u, -) is convex and Isc for all u € U, (2.3)
(¢) M'(u,u) = 0,forallu € U.

T :U x U — R is such that

a) T is pseudomonotone,

b) for each finite subset D of U, Y (-, v) is usc on conv (D), for all v € U, (2.4)
¢) Y (u,-) is convex for all u € U,

d) T(u,u) = 0,forallu € U.

(
(
(
(
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£ : U x U — R is such that

(a) £ is quasimonotone,

(0)

(¢)
(d) £(u,u) =0,forall u € U.

There is a nonempty weakly compact subset W such that for every A > 0 small enough, a weakly

compact and convex subset B) of U exists that satisfies the following condition: for all u € U\W,
there exists v € B, such that

T(u,v) + £(u,v) + Algu, v — uhxenx < D(v, ). (2.6)

(-,v) is usc for all v € U,

ﬁ (2.5)

(u,-) is convex for all u € U,

Theorem 2.5. [20] Assume that the hypotheses (2.2)-(2.6) hold. Then, (2.1) has at least one solutionu € U.

Definition 2.6. [21] Let X be a Banach space and 7 : X — R be a locally Lipschitz function, that is,
for each x € X, there are a neighbourhood .4/ = .4#'(z) and a constant x_y > 0 such that

(w) = 3(2)] < kyllw—2|x, Yw,z € A

The generalized directional derivative of 7 at # € X in the direction v € X, denoted by 3°(z;v), is
defined by

) —
P(x;v) = limsup 2y +A0) j(y)
y—x,AL0 A

The generalized gradient of 7 at x, denoted by 07(z), is given by
dy(x) = {z* € X*|(z*,v) < P(x;v), Vv e X}

Lemma 2.7. [3] Let X be a Banach space, 0 < T < oo. Let & : L%(0,T;X) — L?(0,7;X) be an
operator such that

t
1(Sm)(1) = (Sm) (D)% < 19/0 ln1(s) = m2(s) s, Vm,m2 € L*(0,T5X),t € (0,T)
where ) > 0 is a constant. There exists a unique n* € L*(0,T;X) such that
SIn* =n".
3. MAIN RESULTS

In this section, we discuss the solution of the mixed evolutionary variational-hemivariational in-
equality problems with a set of constraints and history-dependent operators.
Let (V,H, V*) be an evolution triple of spaces, where V is a separable reflexive Banach space, H is a
separable Hilbert space, the embedding V C H is continuous and compact, and V is dense in H. Given
0 < T < +o00, we give the following Bochner spaces

¥ =L*0,T;V), ¥*=L*0,T;V*), # ={ve ¥ e ¥},

where v’ denotes the distributional derivative of v, and ¥ and #* are reflexive Banach spaces, # C
L?(0,T;H) is a separable, reflexive Banach space and compact. It is well known that the embedding
¥ C L*(0,T;H) C #* are continuous. The duality pairing between #* and ¥ is defined by

T
<U),U>7/*X4// = / <w(t)7v(t)>v*><v dt, YVw € 7/*,21 eV,
0

and operator £ : D(L) C V' — V™" is
Lv=1v"Vv e D(L), (3.1)
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where D(L) = {v € #'|v(0) = 0} is linear and maximal monotone.
Let X,Y and Z be Banach spaces. The mixed evolutionary variational-hemivariational inequality
problem for finding w € # such that w(t) € Q for a.e. t € (0,7) and

(w'(t) + Ar(w(t) + (Raw)(t) — £(£), 0 — w(t))vexv + 37 ((Sw)(t), Mw(t); Mo — Mw(t))
0t((Row)(t), Mv) — ¢ ((Raw)(t), Mw(t)) > 0,Yv € Q,t € (0,T),
w(0) = wo.
(3.2)
The assumptions for (3.2) are the following.

A:(0,T) x V— V* is such that

((a) A (-y(v) is measurable on (0, 7)) for allv € V,

(b) A ( ) is demicontinuous on V for a.e. t € (0,7,

(e) | Ac(v)|[v+ < 00(t) + o1]|v]v, Vv € V,t € (0,T) with a function

00 € L%(0,T) satisfying oo > 0 a.e. in (0,7'), and a constant g; > 0,

(d) A(+) is relaxed cocoercive for a.e. t € (0,7, i.e., for the constants a4 > 0,54 > 0

such that

(Ar(v1) = Ag(v2), 01 — v2)vexv 2> —aal Ae(vr) = Ai(v2) R + Ballvr — v2lf;, Yor,v2 €V,
(e) Aqy(-) is Lipschitz continuous with respect to the constant (4 > 0 such that

| AL (v1) — Ag(v2) || v+ < Callvr — ve|lv, Yvi,v2 € V t € (0,T).

(3.3)

7:(0,T) x Z x X — R is such that

(a) 3¢)(2,v) is measurable on (0,7") for all z € Z, v € X,

(b) 7 ( v) is continuous on Z for allv € X, ae.t € (0,7,

(¢) 7¢(z,-) is locally Lipschitz on X for all z € Z, ae. t € (0,7,

(d) [1026(2, v)[[w+ < H(0) + K |2l|z + D |lvllx, V= € Z,v € X, t € (0,T) (34)

with @ € L2(0,T) and 9, 9], 9} > 0,
() (21, v1;02 — v1) + 79 (22, V2301 — v2) < @21 — 2oflzflvr — vallx + adflvr — vallk
| forallz; € Z,v; € X,i=1,2, ae.t € (0,7) withad >0, o > 0.

¢ :(0,7) xY x X — R is such that

) ¢(.)(y,v) is measurable on (0, 7)) forally € Y,v € X,
b) ¢ ( v) is continuous on Y forallv € X, ae.t € (0,7,
¢) ¢t(y, -) is convex and lower semi continuous on X forally € Y, ae.t € (0,7,
) pr(yr,v2) = @e(yr, v1) + @e(y2, v1) — e(y2, v2) < Bellyr — yallyllvr — vallx (3.5)
forally; € Y,v; € X,i=1,2, ae.t € (0,7) with 5, > 0,
() 10¢u(y, llx < VE + 9 lylly + IS vlvvy € Y,v € V, ae.t € (0,T)
with 9§ € L*(0,T),98,97,95 > 0.

(a
(
(
(d
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Ri: ¥V — V*Ro:¥ — L*0,T;Y), and S : ¥ — L*(0,T;7Z) are such that

(@) [(R1v1)(8) = (Ryva) ()|l < 9% [ [[v1(s) — va(s) | vds, Yor,v0 € ¥
ae. t € (0,T) with 9%t > 0,
(b) [[(Rav1) () — (Raw) (®) |y < 92 [y [|v1(s) — va(s)|lwds, Yvi,vz € ¥,
ae. t € (0,T) with 952 > 0,
() [(Sv1)(t) = (Sv2) ()]l z < 95 [y o1 (s) — va(s)|vds, Yor,va € ¥,
ae. t e (0,T) with S > 0.

(3.6)

() # Q is a closed and convex subset of V. (3.7)
M :V — X is such that

{(a) M is an affine operator.
(b) the Nemitsky operator M : # — L?(0,T; X) corresponding to M is compact.
fe v w eV. (3.9)
{ Ba— > o] A2,

(3.8)

3.10
where Ay : V — X is defined by Ayv = Mo — My Vo € V. (3.10)

We prove the existence and uniqueness result of (3.2).
Theorem 3.1. If (3.3)-(3.10) hold with wy = 0, then (3.2) has a unique solution.

Proof. This is achieved in several steps.
Step 1. Let ¢ € ¥,n € L?(0,T;Y) and s € L?(0,T : Z) be fixed and consider the following auxiliary
problem.
Find w = weye € # withw(t) € Qfora.e. t € (0,T) such that
(w'(t) + Ar(w(t)) = f(t) + (), v — w(t))vexv + 20 (<(), Muw(t); Mo — Muw(t))
+pi(n(t), Mo) — p(n(t), Mw(t)) >0, Yo € Q, ae.t € (0,7T), (3.11)
w(0) = 0.
We demonstrate the uniqueness of the solution to (3.11). For the sake of simplicity, we exclude the
subscripts £, n and ¢ from the proof of this part. Let w; € #',i = 1,2 be solutions to (3.11), i.e,,
wi(t) € Qforae. t € (0,7), w;(0) =0 and
(wi(t) + Ae(wi(t)) — () + &), v — wi(t))vxv + 57 ((£), My (t); Mo — Mawi(t))
+oe(n(t), Mv) — @i(n(t), Mw;(t)) > 0,Vv € Q, ae.t € (0,T), i =1,2.
From the aforementioned inequalities, we get
(Wi (t) = wh(t), wi(t) — wa(t))weuv + (Ae(wi(t)) — Ae(wa(t)), wit) — wat))vexv
< 2 (s (1), Maw (£); Mawa (£) — Mawn (£)) + 55 (< (£), Muwa (£); Maws (£) — Mawa(1)).
Using the integration by parts formula, (3.3)(d)(e) and (3.4)(e), we have
1

010 = wa Ol + (—ahi+ 8 [ lua(s) = walo)lfys

oot
< Oé%/ [Muw:(s) — Mws(s)|%ds, Vt € [0,T).
0
Then, from (3.8), we obtain

(—eacq + Ba = adll AP llwn = wsll3aq vy < 0,98 € [0,7)
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Therefore, from (3.10), we have w; = wg and the proof is completed.
Step 2. We are now proof that (3.11) has a solution. For this purpose, we introduce

O=L%0,T;Q) = {ve ¥t) € Qforae. t € (0,T)}, (3.12)

and U; = D(L) N U, where
D(L) ={w e # | w(0) = 0}.
Consider the following problem for finding w € U; such that

T
/0 (' (1) + Au(w(£)) — F(t) + £(t), 2(t) — w(t) vyt
T
n / 0(s(8), Mu(t):; M= (t) — Muw(t))dt
0

T
+/O (e(n(t), Mz(t)) — we(n(t), Mw(t)))dt > 0,V z € Uy. (3.13)

We now prove that (3.11) and (3.13) are equivalent. For this, we assume that w € # is a solution of
(3.11). This implies that w € U and w(0) = 0, which leads to w € Uj. Let z € U;. Then, we have

(w'(t) + Ar(w(t)) = f(t) + &), 2(8) — w(t))vexv + 3¢ (s (), Muw(t); Mz(t) — Muw(t))
+or(n(t), Mz(t)) — @i(n(t), Mw(t)) > 0, forae.t € (0,7T).

By integration, we deduce that w € U; is a solution to (3.13). Assume that w € U; solves (3.13). Since
0 € Q and U is a convex set, by using [[22], Theorem 9.1, p.270], we have

D(L) (U is dense in U. (3.14)

By taking advantage of (3.14), we discover that w € U is a solution to the following problem. Find
w € U7 such that

T T
/0<W'(t)+«4t(w(t))—f(t)+€(t)a5(f)—W(t)>v*xvdt+/0 72 (s(8), Muw (t); M2(t) — Muw(t))dt

T
" /0 (oe(n(t), MZ(1)) — 9i((6), Muo(£)))dt > 0,V € Ty (3.15)

In fact, let z € U = L%(0,T; ). From (3.14), there exists a sequence 2, € D(L) N U such that
n—z€ V.

From (3.13), we have
T
/O (W (1) + Au(w(£)) — F(t) + £(t), zn(t) — w(t)vexvdt
T
+ / S0 (8), Maw(t); Mz (£) — Mao(t))dt
0

T
+ /0 (pe(n(t), Mz, (t)) — @e(n(t), Mw(t)))dt — 0asn — oo, ¥n € IN. (3.16)

From [[5], Theorem 2.39], we have
zn(t) — Z(t) € V, forae. t € (0,7T)
and there is g € L%(0, T) such that
l|zn(®)|lv < g(t) forae. t € (0,T).

Hence,
Mzp(t) — MZ(t) € Xforae. t € (0,7).



194 S.S. CHANG, SALAHUDDIN, X. R. LI, A. A. H. AHMADINI, M. LIU, J. F. TANG

From the upper semicontinuity of 7? with the last variable, we have
lim sup 72 (s (t), Mw(t); Mz, (t) — Mw(t)) < 22(s(t), Mw(t); Mz — Mw(t)),Vt € (0,T).  (3.17)
Using (3.4)(d) to estimate (3.17) as following:
192 (5 (8), Muw(#); Mz () = Muw(t))] < [[970(<(£), Mw(t)) |+ [ Mzn (t) — Muw(?)[[x
< (9300 + sl + o3IOl ) (IMg(t) + V(o))
= A(t), forae. t € (0,T) with A € L'(0,T).

Using the Fatou Lemma to get

T T
lim sup/ Ps(t), Mw(t); Mz, (t) — Mw(t))dt < / Ps(t), Mw(t); Mz(t) — Mw(t))dt. (3.18)
0 0
Since the function ¢;(n(t), ) is continuous on X. therefore, from [23], we have

pr(n(t), Mzn(t)) — e(n(t), Mw(t)) — @i(n(t), Mz(t)) — @i(n(t), Mw(t)) for ae. t € (0,T).
It follows from (3.5)(e) that
lpe(n(t), Mzn(t)) — @i (n(t), Mw(t))| < [[0p:(n(t), Mzn(t)) 5+ [|Mzn (1) — Muw(t)||x
< (9§ () + 97 [In(®)lly + 951Mlg(8) (IMlg(t) + [[Mw(t)[[x)
= A(t), forae. t € (0,T) with A € L?(0,T).

Using the Lebesgue-dominated convergence theorem, we have

T
hm/ pr(n(t), Mz (t ))sﬁt(n(t%Mw(t)))dt:/O (e (n(t), M=(2)) =i (n(t), Muw(t)))dt. (3.19)

Using (3.18) and (3.19) and taking the upper limit in (3.16), we conclude that w € U; is a solution to
(3.15).

Finally, we show that (3.11) and (3.15) are equivalent. It is clear that (3.11) implies (3.15). The converse
implication follows from [[24], Lemma 2.3], we conclude that (3.11) and (3.15) are equivalent and the
proof is completed. g

Next to demonstrate the existence of a solution to (3.11), it is sufficient to prove that there exists a
solution to (3.15).

We hereby demonstrate that there is at least one solution to the equation (3.15). This can be done
in various methods. For our purpose, applying Theorem 2.5 is sufficient. We introduce the following
additional notation which allows us to rewrite (3.15) in the form of the mixed equilibrium inequality
as stated in (2.1). Let the operators & : ¥ — ¥*, .# : ¥ — L?(0,T;X), and the functions
Yv: ¥ — R, J: ¥ — R be defined by

(Fw)(t) = A(w(t)),Yw e ¥, ae. t € (0,T),
(AMw)(t) =Mw(t),Yw e ¥, ae. t € (0,T),

T
vlw) = [ aln(®). M)t forw e ¥,

T
J(w) = / 2e(s(t), Mw(t))dt forw € 7.
0
Next, we establish the bifunctions I', T, £ : U; x U7 — R described by
DNw,z) = (Lw,z — w)ysxy + Y(z) — P(w), (3.20)
T(U},Z) = <.AU}*f+€,Z*U]>7/*X7/, (321)
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£(w,2) = J(w; 2z — w),Vw, 2z € Uy. (3.22)
Using (3.15), we can equivalently formulated as follows.
Find w € U7 such that

D(w,z) + T(w, z) + £(w,z) > 0,V z € Uy. (3.23)

From Theorem 2.5, we prove the existence of a solution to (3.23). We shall verify the assumptions made
in this theorem for U = U;.

Claim 1. The bifunctional I" described by (3.20) verifies the condition (2.3).

First, we prove (2.3)(a). Since

Nw,z) +T(z,w) = —(Lw — Lz,w— 2)yxy <0,Vw,ze U.

Therefore, I" is monotone. Now, we prove that I" is a maximal monotone. Let I'1 (w, z) = (Lw,z —
W)y xy forw,z € U1, and w € Uy, ¢ : U1 — R with ¢(w) = 0 be a convex function, then

d(z) > T(z,w),Vz € U1 = ¢(v) >T'1(z,w) + P(w) —¥(2), Vz € Uy.
Hence
¢(2) +¥(2) — ¢Y(w) = T'(z,w),V 2 € Us. (3.24)

Since L : ¥ — ¥ is a maximal monotone, then Iy is also a maximal monotone. Thus, (3.24) implies
that

¢(2) +9(2) — P(w) > ~T1(w,2),V z € V.
Therefore,
d(z) > T (w,2) —¢Y(w) +¥(2) = —T'(w, 2),V z € Uy,
which show that I" is maximal monotone.
Assumptions (3.8) and (3.5)(c) bring us closer to condition (2.3)(b). We will prove that I'(w, -) is convex

and lower semi-continuous for all w € U;. Let w, 21, 29 € U1 and vy € (0, 1). According to (3.5)(c), we
have

L(w,v21 + (1 = 7)22) = (Lw,v21 + (1 = 7)z2 — W)y +p(v21 + (1 = 7)22) — h(w)
<A(Lw, z1 —w)yey + (L= ) (Lw, 20 — w)yexy +7(¢(21) — Y(w))
+ (1 =7)(¥(22) — ¢(w))
=0 (w,z1) + (1 = 7)I(w, 22),
which suggests that for all w € U1, I'(w, -) is convex. Furthermore, (3.8) gives us
M2y — Mz € L*0,T;X), with z, — z € ¥, asn — 00,2,z € U1.
Therefore, we may assume that (.# 2,,)(t) — (# 2)(t) € X forae. t € (0,T), i.e.,

Mzp(t) — Mz(t) € Xforae. t € (0,7).

Finally, utilizing Fatou Lemma and (3.5)(c), we arrive at
T
lim inf 1 (2,) = lim inf / o (n(8), Man () dt
0
T
> [ timint gu(a(0) M ()
0

T
> /O or((8), Ma(t))dt
= (2).
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Thus,
liminf I'(w, z,) = liminf [(Lw, z;, — W)y xy + ¥ (2n) — Y(w)]
> liminf(Lw, z, — w)y+xy + liminf ¢ (z,) — Y(w)
> (Lw, 2 — w)yrxy +1(2) — P(w)
=I'(w,z),YVw eV,
implies that for allw € U1, I'(w, -) is lower semi-continuous. The requisite (2.3)(c) is obvious. Therefore,
we deduce that Claim 1 is accurate.
Claim 2. The bifunction ' described by (3.21) verifies the condition (2.4).

First, we demonstrate that for each finite subset D C Uy, Y (-, 2) is upper semi-continuous on
conv(D) for all z € Uy. Suppose {w,,} C conv(D) is such that

w, — w € V.

Since conv (D) is a closed and convex set, such that w € conv(D). From (3.3)(b) and [[25], Proposition
27.7(b)], it follows that o/ : ¥ — #"* is demicontinuous. So, here we are

dw, = dw e V*
and
lim sup Y (wy, 2) = limsup ((FLwp, 2 — wp)ysxy + (€ — [, 2 — wp)yexy)

= lim sup(& wn, 2 — wp) y+xy + 1M — f, 2 — wn)ye sy

= (Fw, 2 = w)yrxy + (= [z = w)yxy

=T (w, 2).
Since Y(+, z) is upper semi-continuous on conv(D) for all z € Uy, that is, the condition (2.4)(b) is hold.
From (3.3)(b),(d), I is pseudomonotone on ;. The proof is similar to the [20, 26], therefore, for this
reason, it is omitted. Hence, (2.4)(a) is hold. The conditions (2.4)(c),(d) is simply verified. Therefore,
Claim 2 is true.
Claim 3. The bifunctional £ described by (3.22) verifies the condition (2.5).

First, we prove that (2.5)(a). Let {w,} C U7 with w, — w € # . From (3.10), we obtain that

Mw, — Mw € L*0,T;X). Using the converse Lebesgue-dominated convergence theorem, we
can determine that n € L?(0, T), such that

| Mw,, (¢)||x < n(t),forae. t € (0,7)

and
Muwy, (t) — Muw(t) € X forae. t € (0,T).
Afterward, we consider the function A,, : (0,7") — R defined by

A (t) = 29(s(t), Muwy, (£); Mw(t) — Mw,(t)) for a.e. t € (0,T).
Using (3.4)(d) and [[5], Proposition 3.23(iii)], we get
[An(8)] = |26 (8), Mo (£); Mo (t) — M (8))
< (1024 (), Mawn, (2)) |5+ [| Mo (£) — Mawn (2) [|xc
< (3(0) + H Oz + 1M (1) ) (M (0) 5 + [ Mua(0) ) . for ae. £ € (0.7).

Hence, we have
|An(t)] < A(t)ae. t € (0,T) with A € L'(0,T),

At = (9(0) + 2 ls(®)lz + 94n(®)) (IMw()llx + (1)) forae.t € (0,7).
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Additionally, according to [[5], Proposition 3.23(ii)], we see that 39(z, -, -) isusc on X x X for ¢ € (0,7),
z € Z. Consequently, using Fatou Lemma, we have

liminf £ (wy, w) = lim inf J%(w,; w — w,)

T
< lim sup/O (s (t), Mawy, (£); Muw(t) — Mwy(t)) dt

T
< [ R0 i
0

=0.
Hence (2.5)(a) is valid, and .£ is quasimonotone. Using the upper semicontinuity of J%(-, z) for all z €
¥, we determine that the condition (2.5)(b). Since J°(w, -) is positively homogeneous and subadditive
for all w € ¥, therefore, it is convex and implies the condition (2.5)(c). Hence, (2.5)(d) is held, and we
conclude that Claim 3 is supported.

Claim 4. The condition (2.6) is valid.
The condition (2.6) holds if

T/\(’U), ’UO)

— —oo uniformly in A, as ||w — vg|| — 400, for some vy € U1, (3.25)
[lw — woll»

where
Ta(w,v9) = Y(w,vg) + £(w,vg) + Agw,vg — W)y 53,V w € Uy.
From (3.3)(c),(d) and (3.4)(d),(e), we have

Ta(w,0) = (Fw — f,—w)yxy + J*(w; —w) + Agw, —w)y«xy
= <,5wa - J2707 0— w)V*X’V + <527070 - w)"//*X’Y/ + <f7w>”V*><"V
+ J%(w; 0 — w) 4+ JO(0;w — 0) — JO(0;w — 0) + A(Jw, —w) =y
< —alillwly + Ballwlly + loollz2lwlly + o (| Ancl l[wll + [|Mollx)?
+ (% + sz 0ra ) (Asellleolly + [Mollx) + 1711+
<~ (aac ~ Ba — ol ANIP) 013 + (leollz2 + 203l Anel[Mollxc + 11711+

+ (9 + Hllcll oz ) I lwly + (8 + Pl 20,72 ) 1Mollx + o 1Mol

wlly = Alwl5

< —(aach — Ba+ a Axl*)llwlly + lleoll 2 + 205 Axel[[IMollx + [ £+

(9 + 9 lsll 20y ) 1Mol + o 1Mol

|w|l»

+ (196 + 19{||<||L2(0,T;Z)> [ Axell +

As a result, (3.25) is held with vg = 0.

According to Theorem 2.5, the equation (3.23) has a solution w € U;. Hence, there is a solution to
(3.15). From Step 1, we may say that (3.15) has a unique solution w € % and the proof is therefore
complete.

Step 3. Let (&,m;,5) € L*(0,T;V* X Y x Z),i = 1,2 and wy = we e, € W, W2 = Weynpe, € W
with wy (t), wa(t) € Q for a.e. t € (0,7), be the unique solutions to (3.15) corresponding to (£1, 71, 1)
and (&2, 12, 2), respectively. We will display the estimate below:

w1 = wallr20.4v) < O (lls1 = 2llr20.62) + Im = m2ll 206y + 161 = E2llL2(0.4v+)) » VE € [0, T,
(3.26)
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where ¥ is a positive constant.
From (3.15), we have

(wi(t) + As(wi (1)) = f(£) + &), wa(t) — wi(t))vexv + 57 (s1.(t), My (£); Muwa () — Mun (1))
+ @t (m (t), Mwa(t)) — we(n1(t), Mw1(t)) > 0, forae. t € (0,7T) (3.27)

and

(wh(t) + Ap(wa(t)) — f(£) + Ea(t), wi(t) — wat))vesxv + 57 (s2(t), Muwa (t); Muws () — Muws(t))
+ oe(n2(t), Mwi(t)) — @e(n2(t), Mwa(t)) > 0, forae.t € (0,7). (3.28)

and, assume that

From (3.27) and (3.28), we have

(wi(t) — wh(t), wa(t) — wi(t))vexv + (Ae(wi(t)) — Ap(wa(t)), wa(t) — wi(t))vexv

+ 79 (51 (£), Mwy (£); Muwa (t) — Muwy (t)) + 55 (sa(t), Muwa (t); Muws (£) — Mua(t))

+ e (), Mwa(t)) — e(m(t), Mwi(t)) + ee(n2(t), Mwi(t)) — @e(n2(t), Mws(1))

> (&1(t), wi(t) —wa(t))vexv — (§2(t), wa(t) — wi(t))vxv, forae. t € (0,7). (3:29)

Now, we integrate the aforementioned inequality on (0, ¢), and use the assumptions (3.3)(d), (3.4)(e)
and (3.5)(d) to obtain

31010 = wa Ol = 5 10n(0) = wa0) i+ (—oac + ) [ (o) = wats) s

S@%!\AMII/O l1(s) = sa(s)l|zllwi(s) — wals)[vds
Jrf)é%l«‘lawIIQ/0 ”wl(s)_w2(3)||Vd5+BsDHAMH/O 1m1(s) = m2(8) [l [wi(s) — wa(s)llwds

v le(s) = &als)

v+ |Jwi(s) — wa(s)||vds, Vt € [0,T].

Next from (3.10) and the Holder inequality, we have

(—eaci + Ba— oAl ) llwr = walF2(0 ) < @l Asclller = <2l 2oz e = woll 2oy

+ BollAncllllm — m2ll 2 0,63) w1 — wallp2(0,6v) + 11610 = E2ll2 (0,67 lwr — w2l 2204wy, VE € [0, T

Therefore, the inequality (3.26) follows from (3.10).
Step 4. In this stage, we use the argument of fixed point to define the operator & : L2(0, T; V* x Y x
Z) — L?(0,T;V* x Y x Z) by

%(57775 () = (lefnca R2w§n§a Swf’%)av(& 777§) € L2(0a TaV* x Y x Z),
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where wg,c € # is the unique solution to (3.11) corresponding to (§,7,<). From (3.6), (3.25) and the
Holder inequality, we discover a constant ¥} > 0 such that

I19(€1,m, 1) () — (€2, 72, 2) (D sy = I(R1wn)(#) — (Ruwa) () |3+
+ [[(Rawn)(t) = (Raw2) )3, + 1(Sw1)(2) — (Sw2)(B)]1Z

< (W /tuwms) uws) (W / fen (s >des)2
G [ s )de8>

S ﬁle - w2||L2(O,t,V*)

<9 (lls1 = 2oy + Im = 320wy + 161 = &2l 320,v-))
implies that

[1S(&1,m1,61) () — S(&2,m2, 92) (D) R vy <z

<9 /0 1Ex 71 61)(8) — (€2, 72 2)(5)|

From Lemma 2.7, we have a unique fixed point (£*,7*,¢*) of S, i.e.,

(€5, n",¢*) € L*(0,T; VF x Y x Z) and (", 1", ¢*) = (€5, 1", ¢%).
Step 5. Let (£*,7*,¢*) € L?(0,T; V* x Y x Z) be the unique fixed point of 3. We define wg«p«c+ to
be the unique solution to (3.11) corresponding to (£*, 1", ¢*). From the definition of &, we have

f* = Rl (’wg*n*g*), 7’]* = Rg(wg*n*g*) and §* = S(U’E*n*c*)'
Finally, we use these relations in (3.11), and come to the conclusion that wgx ¢+ is the unique solution
to (3.2) and completes the proof.
Next, we define the constrained mixed variational-hemivariational inequality problem with the non-

homogeneous initial condition 0 # wy € V for finding w € # such that w(t) € Q forae. t € (0,7)
and

3 wyxz,dsforae. t € (0,T). (3.30)

w'(t) + A(w(t)) + (Raw)(t) — f(t),v — w(t))vexv + 2 (Sw)(t), Muw(t); Mv — Muw(t))
+e1((Ra )(t),Mv) ei((Raw)(t), Mw(t)) = 0,Vv € Q,
w(0) =

/\

(3.31)
Theorem 3.2. Assume that (3.2)-(3.6) hold, then the equation (3.31) has a unique solution.

Proof. Let w(t) = w(t) —wo and Q@ = {v—wp|v € Q} C V. We define the operator A0, T)xV —
V*and M : V — X by

Ai(v) = Ai(v +wp), forv € V, ae. t € (0,T), (3.32)

Mv = M(v + wy), forv € V. (3.33)

Now, we reformulate the problem (3.31) as follows.
Find @ € # such that w(t) € Q forae. t € (0,7) and

(' () + Au(@(1) + (Riw)(t) = f(t), v = w())vexv

RS (@ + wo) (1), Mo (1); Mw — Mao (1)) ] ) 6530
+pe((Ra(w 4+ wp)) (t), Mv) — @ ((Re(w + wo)) (), Mw(t)) > 0,Vv € €,

w(0) =
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From Theorem 3.1 to deduce that (3.34) has a unique solution w € W . Therefore it is sufficient to show
that A; and M satisfy the condition (3.3) and (3.8).

Now we cinfirm that .4; meets (3.3). Since (3.3)(a),(b) are clear. For v € V, a.e. t € (0,T), we have
1A (0) v+ = [|A: (v + wo) [v+ < 00(t) + o1]lv + wollv < eo(t) + e1llwollv + e1]|v]v-
Therefore, with 9o(t) = 00(t) + o1||wo||v and 91 = 01, the assumption (3.3)(c) holds. Additionally, for

vy,vg € V,ae. t € (0,7), we obtain
(Ap(v1) — Ai(v2),v1 — v2)vexv = (Ai(v1 + wo) — Ai(va + wo), v1 — Vo) vexv
= (A¢(v1 +wo) — Ag(va + wo), (v1 +wo) — (v2 + wo))vexv
—a |l Ae(v1 +wo) — Ar(vz +wo) | + Ball(v1 + wo) — (v2 + wo)|F
—a 4l (v1 +wo) — (v2 + wo) [ + Ball(v1 + wo) = (v2 +wo) [
(—0aq + Ba)llvr = valfy- (335)
Hence, (3.3)(d) holds with a;tCiI - B1= OZAC,24 — B4.

Next, using Ay, = A and My = Aywo + Mo to confirm that M satisfies (3.8). Given that
Ayt 1 V — Xis linear and Ay = Mv — M for v € V and from (3.33), we have

V

v

Agzv = Mo — Mo = M(v + wp) — Mwg = A (v + wo) + Mo — (Apcwo + Mo) = Ayv, forv € V,
and
Mo = Muwy = Ayrwo + Mo,
imply that M is an affine operator. Furthermore, for v € V, a.e. t € (0,T), we get
(A V) (t) = M(v(t)) = M(v(t) +wo) = M(v + wo)(t). (3.36)

According to the compactness of .#, ./ and (3.36) is compact. Hence, M satisfies (3.8). Therefore, from
Theorem 3.1, (3.31) has a unique solution w € #'. Therefore w € # given by w(t) = w(t) + wy is a
unique solution to (3.31) and the proof is completed. g

4. APPLICATIONS

In this section, we present a classical contact problem in a variational formulation and prove its
existence of unique weak solution. Consider a viscoelastic body occupies a bounded domain {2 C
R*,¢ = 1,2,3. The boundary of €2, denoted by T, is assumed to be Lipschitz continuous and v is
a outward unit normal at 1. Suppose that T consists of three mutually disjoint and measurable parts
Tp, T and "¢ such that meas(Tp) > 0. The symbol S* denotes the space of © x ¢ symmetric matrices.
The standard inner products and norms on R* and S* are given by

u-v =uv;, |ul| = /(u-u)foru=(u;),v = (v;) € R,
o-1T=om, |lo|=+(o o) foro=(0;),7= (1) € S".
For a vector field v, v, and v, denote its normal and tangential components on the boundary defined
by
v, =v-vand v, =V — v, V.
Given a tensor o, the symbols 0, and o denote its normal and tangential components on the boundary,
ie.,

op=(ov)-vando, =ov —o,v.
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Consider a classical model for the contact process on the finite time interval for finding a displacement

fieldu: Q x (0,7) — R* and a stress field o : Q x (0,7) — S* such that for all ¢t € (0,7,

o(t) =Ae(u'(t)) + Be(u / €(t — s)e(u'(s))ds in Q, (4.1)

represents the constitutive law for viscoelastic materials with long memory in which 2l is the viscosity
operators, ‘B represents the elasticity operator and € is the relaxation tensor, and €(u) denotes the
linearized strain tensor defined by

e(u) = (g45(n)), &i5(u) = %(um + i) in €.

The motion of the equation

u’(t) = Diva(t) + fo(t) in Q, (4.2)
where Divo = (0y;,;) and fj is a density of the body forces.
u(t) =0on Tp, (4.3)

is a displacement homogeneous boundary where the body is fixed on Tp.

o(t)v = fy(t)on Tn (4.4)

is a traction boundary condition with surface tractions of density fy acting on Ty .

U, (t) < g,0u(t) +n(t) <0, (u,(t) — g)(ou(t) +n(t) =0,
n(t) < k(uy (t))9jy (u,(t)) onTe, (45)

is a Signorini unilateral contact boundary condition for the normal velocity in which g > 0 and 97,
denotes the Clarke subgradient of a prescribed function j,. Condition n(t) € k(u,(t))d7,(ul(t)) on
To is a normal damped response condition where « is a given damper coefficient depending on the
normal displacement.

wwNSHanmww)

or= i ([ rrtones) e it 0o o

is a Coulomb law of dry friction in which F, denotes the friction bound and

u(0) = ug, u'(0) = wp in , (4.7)

are the initial conditions, where uy is a initial displacement and wy a initial velocity.
The total accumulated slip is represented by

t
/ |lu-(x,s)||dsatx € Te, t € [0,t].
0

To provide the weak formulation of (4.1)-(4.7), we use the following spaces
H =LY, V={ve H(QR)v=00nTp}

where 7 is a Hilbert space with the inner product
(o,€)r = / 0ij(x)gij(x)dz, Vo, e € A,
Q

and the norm || - || s». The inner product and the corresponding norm on V are given by

(w,v)y = (e(u),e(v))r, Vv = lle(v)lr, Yu,v e V.
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However, the continuity of the trace operator p : V. — L?(T¢; R) implies
IVllze(imey < llollllvilv, ¥v eV,

where p is a norm of the trace operator in .2 (V, L?(T¢; RY)). We define a space of fourth order tensor
fields

Noo = {0 = (0ijr)|oijri = Ojirs = orij € L(R), 1 < 4,5,k 1 <1}

is a real Banach space with the norm

ol = D lowmllie@), Yo € Moo
1<i k<

Now we suggest the following hypotheses for (4.1)-(4.7) as:

A:Q x S* — S*is such that

( (a) (-, e) is measurable on 2 for all € € S*.

(b) there exists . > 0 such that

|20(x,e1) — A(x,e9)|| < Laller — ez, Ve, ea € Stae x € Q.

(c) there exist ag > 0, By > 0 such that

(A(x,e1) — A(x,€2)) - (61 — €2) > —aaLg|ler — e2||* + Buller — e2||?, Ver, &2 € S
[ (d) A(x,0) = 0, forae x € (.

(4.8)

B: QxS — S*is such that

( (a) B(-, &) is measurable on (2 for all € € S.

(b) there exists %y > 0 such that

IB(x,e1) — B(x,e2)|| < Lanller — e2||,Ve1,e2 € St ae.x € Q.

c) there exist ag > 0, By > 0 such that

(B(x,e1) — B(x,€2)) - (61 — €2) > —apLgle1 — e2||* + Buller — e2||?, Ver,e2 € S-.
(d) B(x,0) =0 forae x € Q.

(4.9)

¢ € C([0, T; o). (4.10)

k: 1o x R — R is such that

(a) k(-, ) is measurable on ¢ for all € R.

(b) there exist k1, k2 such that

0 <k <k(x,t) <kaVreR, ae.x € e (4.11)
(¢) there exists .Z,, > 0 such that

|k(x,71) — K(x,12)| < Zlr1 — 12|, V1,72 € R, ae.x € Te.
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Jv: Jo X R — R is such that

(a) 7,(-,7) is measurable on T,V 7 € R and there exists e € L?(T¢) such that

Jolre() € L' (o).

(b) 71 (x, ) is locally Lipschitz on R for a.e. x € T¢.

(c) there are Jg, 1 > 0 such that (4.12)
107, (x,7)| < Jg + 1|7, ¥r €R, ae.x € To.

(d) there exists a’» > 0 such that

jg(x,rl;rg —71) +jg(X,T2;T1 —7r9) < al|rp — r2|2,V7’1,T2 eR, ae.xec .

Fp : Jo x R — R is such that

(a) Fp(+,7) is measurable on ¢, Vr € R.
(b) there exists Z’7, > 0 such that

4.13
| Fo(x,71) — Fp(x,r2)| < ZLr,lr1 —ra|,Vri,m2 € R, ae.x € Te. (4.13)
(¢) Fp(x,7) = 0,Vr <0, and Fp(x,7) > 0,Vr > 0 forae x € Je.
fo € L*(0,T; L* (4 R")),
fy € L2(0,T; L*(Tx;RY)), ug,wg € V. (4.14)
Additionally, we introduce the set of admissible velocity fields U described by
U={veVy <gonc},
and an element f € V* by
(£, v)vexv = (fo, V)2 @) + (EN, V) L2(y )V € V. (4.15)

Now from the weak formulation of (4.1)-(4.7). We assume that v € U and ¢ € (0,7"), and multiply (4.2)
by v — u/(¢) and integrate by parts together with (4.3) and (4.4) to obtain

/Qu”(t) (v = (t))dz + /Q o(t) (e(v) —e(d'(t)))dx = / fo(t) - (v —u'(t))dx

Q

+ / fn(t) - (v —u'(t)dT + / oty (v—u(t)dT.
N To
Using (4.5) and the concept of the Clarke’s subgradient, we have

oy (t) (v — uy (1) = (0u(t) + 1) (v — g) — (0w (t) +n(t)) (u, () — g) — n(t) (Vs — uy,(t))
> —r(uy (£)) 59 (uy, (£); v, — (1)) on T (4.16)

From the friction law, (4.6) can be expressed as
t
or(t): (vo = (0) = 5 ([ Iar(@)lds ) (bv. | = e 0l) onTe. @)
Combining (4.16), (4.17) and the decomposition formula [5], we obtain

Fb (/ ||u7(8)||d8> (vl = Tl () 1) 4 (s, (8)) 55 (i, ()5 00—, (8)) 4o (B)p-(v—' (£)) > 0 on T,
’ (4.18)
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Again, concluding from (4.15)

[0 wnaos [ ([ utas) (vl - o o

+{o(t),e(v) —e('(t))p + / k(u, ()79 (ul,(t); v, — ul,(#)dT > (£,v — Wyexy.  (419)

o
Finally, from (4.1)-(4.7), we have following problem for finding u : (0,7) — V such that u(0) =
up, u'(0) = wg and

/Q u’(t) - (v —u'(t))dz + (A(e(u'(1))), e(v) — e(u'(t)))r + (Be(u(t)))
t t
+/0 C(t — s)e(u'(s))ds, e(v —e(u'(t)))).r + [{C Fy (/0 IIUT(S)IIdS) (vl = az (®)[1) a7

+/ k(u, (8))79(ul, (t); v, — ut, (£)dT > (£, v — 0)yexvVv € U, ae. t € (0,7). (4.20)
To

Now, we prove the unique solvability of (4.20).
Theorem 4.1. Assume that (4.8)-(4.14) and
Ba > agq Ly + ¥ ks p||?
holds. Then (4.20) has a unique solutionu € C([0,T]; V), u’ € # withu'(t) € U forae. t € (0,T).

Proof. Using the Theorem 3.2 with X = Y = Z = L?(T¢),Q = U, and M = p. Let the operator
A:V xV — V* and functions ¢ : Y x X — Rand 7: Z x X — R be defined by

(Aw), v)vexv = (Ue(w)), e(v)) ., YW, v eV,

oy, z) = A Foly)lzlldT, ¥y € Y,z € X,
C

)z x) = / K(2)g(x) d1,Vz € Z,x € X.
e

Now, the operators Ry : ¥ — ¥*, Ro: ¥ — L?(0,T;Y),and S : V — L?(0, T’; Z) specified by
t
(Raw) (1), v)v=xv = (B(e(uo) +/ e(w(s))ds),e(v))
0

+ </0t C(t—s)e(w(s))ds, e(v))p,Yw e ¥, veV te (0,T),

t s
(RQW)(t):/ |/ wo(r)dr + ug,||ds,Yw € ¥, t € (0,T),
0 0

(Sw)(t) = /Ot wy,(s)ds + ugy, Yw € ¥, t € (0,T).

Let w(t) = u/(¢)Vt € (0,T). Then, we have the following problems.
Find w € # such that w(t) € U forae. t € (0,7), w(0) = wo and
(W' (1) + Aw(t) + (Raw)(t) = £(t), v = w(t))wexv + 22 ((SW) (), Mw (1); Mv — Mw(t))
+ p((Raw)(t), Mv) — p((Raw)(t), Mw(t)) > 0,Vv € U, ae.t € (0,T). (4.21)
Due to the fact that the set {2 = U is a closed and convex subset of V with 0 € €2, and (3.7) holds. Then

from [5], (4.21) together with Theorem 4.1 has a unique solution w € #  such that w(t) € U for a.e.
t € (0,T), and completing the proof. g
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