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Abstract. In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2], let the VI
indicate a variational inclusion for two accretive operators and let the CFPP denote a common fixed point
problem of a countable family of nonexpansive mappings. In this paper, we introduce a parallel Mann-
type extragradient algorithm for solving a general system of variational inequalities (GSVI) with the VI
and CFPP constraints. We then prove the strong convergence of the suggested algorithm to a solution of
the GSVI with the VI and CFPP constraints under some suitable assumptions. As applications, we apply
our main result to the variational inequality problem (VIP), split feasibility problem (SFP) and LASSO
problem in Hilbert spaces.
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1. Introduction

In a real Hilbert space H , suppose that the inner product and induced norm are denoted by the
notations ⟨·, ·⟩ and ∥ · ∥, respectively. Given a closed convex set ∅ ≠ C ⊂ H . Let PC be the metric
projection from H onto C . Given a mapping A : C → H . Consider the classical variational inequality
problem (VIP) of finding a point u∗ ∈ C s.t. ⟨Au∗, v − u∗⟩ ≥ 0 ∀v ∈ C . The solution set of the VIP
is denoted by VI(C,A). In 1976, Korpelevich [23] first designed an extragradient method for solving
the VIP. Whenever VI(C,A) ̸= ∅, this method has only weak convergence, and only requires that the
mapping A is monotone and Lipschitz continuous. To the most of our knowledge, it has been one of the
most popular approaches for solving the VIP up to now. Moreover, it has been improved and modified
in various ways so that some new iterative methods happen to solve the VIP and related optimization
problems; see e.g., [1, 2, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 25, 26, 29, 32, 33, 40, 41] and references
therein, to name but a few.

Assume that A : C → H is an inverse-strongly monotone mapping, B : D(B) ⊂ C → 2H is a
maximal monotone operator, and S : C → C is a nonexpansive mapping. Consider the variational
inclusion (VI) of finding a point x∗ ∈ C s.t. 0 ∈ (A+ B)x∗. In order to solve the FPP of S and the VI
for A,B, Manaka and Takahashi [28] suggested an iterative process, i.e., for any given x0 ∈ C , {xj} is
the sequence generated by

xj+1 = αjxj + (1− αj)SJ
B
λj
(xj − λjAxj) ∀j ≥ 0, (1.1)
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where {αj} ⊂ (0, 1) and {λj} ⊂ (0,∞). They proved weak convergence of {xj} to a point of Fix(S)∩
(A+B)−10 under some suitable conditions.

Recently, Abdou et al. [2] suggested a parallel algorithm, i.e., for any given x0 ∈ C , {xj} is the
sequence generated by

xj+1 = (1− ζ)Sxj + ζJB
λj
(αjγf(xj) + (1− αj)xj − λjAxj) ∀j ≥ 0, (1.2)

where S,A,B are the same as above, ζ ∈ (0, 1), {λj} ⊂ (0, 2α) and {αj} ⊂ (0, 1). They proved
strong convergence of {xj} to a point of Fix(S) ∩ (A + B)−10 under some appropriate conditions.
In the practical life, many mathematical models have been formulated as the VI. Without question,
many researchers have presented and developed a great number of iterative methods for solving the
VI in various approaches; see e.g., [2, 8, 12, 16, 18, 24, 28, 33, 35] and the references therein. Due to the
importance and interesting of the VI, many mathematicians are now interested in finding a common
solution of the VI and FPP.

Furthermore, for q ∈ (1, 2], suppose that E is a uniformly convex and q-uniformly smooth Banach
space with q-uniform smoothness coefficient κq . Assume that f : E → E is a ρ-contraction and
S : E → E is a nonexpansive mapping. Let A : E → E be an α-inverse-strongly accretive mapping
of order q and B : E → 2E be an m-accretive operator. Very recently, Sunthrayuth and Cholamjiak
[33] proposed a modified viscosity-type extragradient method for the FPP of S and the VI of finding
x∗ ∈ E s.t. 0 ∈ (A+B)x∗, i.e., for any given x0 ∈ E, {xj} is the sequence generated by

yj = JB
λj
(xj − λjAxj),

zj = JB
λj
(xj − λjAyj + rj(yj − xj)),

xj+1 = αjf(xj) + βjxj + γjSzj ∀j ≥ 0,

(1.3)

where JB
λj

= (I + λjB)−1, {rj}, {αj}, {βj}, {γj} ⊂ (0, 1) and {λj} ⊂ (0,∞) are such that: (i)
αj + βj + γj = 1; (ii) limj→∞ αj = 0,

∑∞
j=1 αj = ∞; (iii) {βj} ⊂ [a, b] ⊂ (0, 1); and (iv) 0 < λ ≤

λj < λj/rj ≤ µ < (αq/κq)
1/(q−1), 0 < r ≤ rj < 1. They proved the strong convergence of {xj} to a

point of Fix(S) ∩ (A+B)−10, which solves a certain VIP.
On the other hand, let J : E → 2E

∗ be the normalized duality mapping from E into 2E
∗ defined

by J(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥2 = ∥ϕ∥2} ∀x ∈ E, where ⟨·, ·⟩ denotes the generalized duality
pairing between E and E∗. Recall that if E is smooth then J is single-valued. Let B1, B2 : C → E
be two nonlinear mappings in a smooth Banach space E. Consider the general system of variational
inequalities (GSVI) of finding (x∗, y∗) ∈ C × C s.t.{

⟨µ1B1y
∗ + x∗ − y∗, J(x− x∗)⟩ ≥ 0 ∀x ∈ C,

⟨µ2B2x
∗ + y∗ − x∗, J(x− y∗)⟩ ≥ 0 ∀x ∈ C,

(1.4)

where µi is a positive constant for i = 1, 2. In particular, if E = H a real Hilbert space, it is easy to see
that the GSVI (1.4) reduces to the GSVI considered in [19],{

⟨µ1B1y
∗ + x∗ − y∗, x− x∗⟩ ≥ 0 ∀x ∈ C,

⟨µ2B2x
∗ + y∗ − x∗, x− y∗⟩ ≥ 0 ∀x ∈ C.

(1.5)

In [19], problem (1.5) is transformed into a fixed point problem in the following way.

Lemma 1.1. (see [19]). For given x∗, y∗ ∈ C , (x∗, y∗) is a solution of problem (1.5) if and only if
x∗ ∈ GSVI(C,B1, B2), where GSVI(C,B1, B2) is the fixed point set of the mapping G := PC(I −
µ1B1)PC(I − µ2B2), and y∗ = PC(I − µ2B2)x

∗.

In addition, assume that {µj} ⊂ (0, 1
L), {λj} ⊂ (0, 2α] and {αj}, {α̂j} ⊂ (0, 1] with αj + α̂j ≤ 1.

Ceng et al. [8] introduced a Mann-type hybrid extragradient algorithm, i.e., for any initial u0 = u ∈ C ,
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{uj} is the sequence generated by

yj = PC(uj − µjAuj),

vj = PC(uj − µjAyj),

v̂j = JB
λj
(vj − λjAvj),

zj = (1− αj − α̂j)uj + αj v̂j + α̂jSv̂j ,

uj+1 = PCj∩Qju ∀j ≥ 0,

where Cj = {x ∈ C : ∥zj − x∥ ≤ ∥uj − x∥}, Qj = {x ∈ C : ⟨uj − x, u − uj⟩ ≥ 0}, JB
λj

=

(I + λjB)−1, A : C → H is a monotone and L-Lipschitzian mapping, A : C → H is an α-inverse-
strongly monotone mapping, B is a maximal monotone mapping with D(B) = C and S : C → C is
a nonexpansive mapping. They proved strong convergence of {uj} to the point PΩu in Ω = Fix(S)∩
(A+B)−10 ∩VI(C,A) under some mild conditions.

In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2], let the VI indicate a
variational inclusion for two accretive operators and let the CFPP denote a common fixed point prob-
lem of a countable family of nonexpansive mappings. In this paper, we introduce a parallel Mann-type
extragradient algorithm for solving the GSVI (1.4) with the VI and CFPP constraints. We then prove
the strong convergence of the suggested algorithm to a solution of the GSVI (1.4) with the VI and CFPP
constraints under some suitable assumptions. As applications, we apply our main result to the varia-
tional inequality problem (VIP), split feasibility problem (SFP) and LASSO problem in Hilbert spaces.
Our results improve and extend the corresponding results in Manaka and Takahashi [28], Sunthrayuth
and Cholamjiak [33], and Ceng et al. [8] to a certain extent.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with the dual E∗. For simplicity,
we shall use the following notations: xn → x indicates the strong convergence of the sequence {xn}
to x and xn ⇀ x denotes the weak convergence of the sequence {xn} to x. Given a self-mapping T
on C . We use the notations R and Fix(T ) to stand for the set of all real numbers and the fixed point
set of T , respectively. Recall that T is said to be nonexpansive if ∥Tu− Tv∥ ≤ ∥u− v∥ ∀u, v ∈ C . A
mapping f : C → C is called a contraction if ∃δ ∈ [0, 1) s.t. ∥f(u) − f(v)∥ ≤ δ∥u − v∥ ∀u, v ∈ C .
Also, recall that the normalized duality mapping J defined by

J(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥2 = ∥ϕ∥2} ∀x ∈ E (2.1)

is the one from E into the family of nonempty (by Hahn-Banach’s theorem) weak∗ compact subsets of
E∗, satisfying J(τu) = τJ(u) and J(−u) = −J(u) for all τ > 0 and u ∈ E.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf{1− ∥u+ v∥
2

: u, v ∈ E, ∥u∥ = ∥v∥ = 1, ∥u− v∥ ≥ ϵ}.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup{∥u+ τv∥+ ∥u− τv∥
2

− 1 : u, v ∈ E, ∥u∥ = ∥v∥ = 1}.

A Banach space E is said to be uniformly convex if δE(ϵ) > 0 ∀ϵ ∈ (0, 2]. It is said to be uniformly
smooth if limτ→0+ ρE(τ)/τ = 0. Also, it is said to be q-uniformly smooth with q > 1 if ∃c > 0 s.t.
ρE(t) ≤ ctq ∀t > 0. If E is q-uniformly smooth, then q ≤ 2 and E is also uniformly smooth and
if E is uniformly convex, then E is also reflexive and strictly convex. It is known that Hilbert space
H is 2-uniformly smooth. Further, sequence space ℓp and Lebesgue space Lp are min{p, 2}-uniformly
smooth for every p > 1 [38].
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Let q > 1. The generalized duality mapping Jq : E → 2E
∗ is defined by

Jq(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥q, ∥ϕ∥ = ∥x∥q−1}, (2.2)

where ⟨·, ·⟩ denotes the generalized duality pairing between E and E∗. In particular, if q = 2, then
J2 = J is the normalized duality mapping of E. It is known that Jq(x) = ∥x∥q−2J(x) ∀x ̸= 0 and
that Jq is the subdifferential of the functional 1

q∥ · ∥
q . If E is uniformly smooth, the generalized duality

mapping Jq is one-to-one and single-valued. Furthermore, Jq satisfies Jq = J−1
p , where Jp is the

generalized duality mapping of E∗ with 1
p + 1

q = 1. Note that no Banach space is q-uniformly smooth
for q > 2; see [34] for more details.

The following lemma is an immediate consequence of the subdifferential inequality of the functional
1
q∥ · ∥

q .

Lemma 2.1. Let q > 1 and E be a real normed space with the generalized duality mapping Jq . Then

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x+ y)⟩ ∀x, y ∈ E, jq(x+ y) ∈ Jq(x+ y). (2.3)

The following lemma can be obtained from the result in [38].

Lemma 2.2. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly convex. Then there
exist strictly increasing, continuous and convex functions g, h : R+ → R+ with g(0) = 0 and h(0) = 0
such that

(a) ∥µu+ (1− µ)v∥q ≤ µ∥u∥q + (1− µ)∥v∥q − µ(1− µ)g(∥u− v∥) with µ ∈ [0, 1];
(b) h(∥u− v∥) ≤ ∥u∥q − q⟨u, jq(v)⟩+ (q − 1)∥v∥q

for all u, v ∈ Br and jq(v) ∈ Jq(v), where Br := {y ∈ E : ∥y∥ ≤ r}.

The following lemma is an analogue of Lemma 2.2 (a).

Lemma 2.3. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly convex. Then there
exists a strictly increasing, continuous and convex function g : R+ → R+ with g(0) = 0 such that

∥λu+ µv + νw∥q ≤ λ∥u∥q + µ∥v∥q + ν∥w∥q − λµg(∥u− v∥)

for all u, v, w ∈ Br and λ, µ, ν ∈ [0, 1] with λ+ µ+ ν = 1.

Proposition 2.4. [4] Let {Sn}∞n=0 be a sequence of self-mappings on C such that∑∞
n=1 supx∈C ∥Snx − Sn−1x∥ < ∞. Then for each y ∈ C , {Sny} converges strongly to some point

of C . Moreover, let S be a self-mapping on C defined by Sy = limn→∞ Sny for all y ∈ C . Then
limn→∞ supx∈C ∥Snx− Sx∥ = 0.

Proposition 2.5. [38] Let q ∈ (1, 2] a fixed real number and let E be q-uniformly smooth. Then ∥x +
y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ κq∥y∥q ∀x, y ∈ E, where κq is the q-uniform smoothness coefficient of E.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if Π [Π (x)+
t(x− Π (x))] = Π (x), whenever Π (x) + t(x− Π (x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C
into itself is called a retraction if Π 2 = Π . If a mapping Π of C into itself is a retraction, then Π (z) = z
for each z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. In terms of [30], we know
that if E is smooth and Π is a retraction of C onto D, then the following statements are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ∥Π (x)−Π (y)∥2 ≤ ⟨x− y, J(Π (x)−Π (y))⟩ ∀x, y ∈ C ;

(iii) ⟨x−Π (x), J(y −Π (x))⟩ ≤ 0 ∀x ∈ C, y ∈ D.
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Let B : C → 2E be a set-valued operator with Bx ̸= ∅ ∀x ∈ C . Let q > 1. An operator B is said to
be accretive if for each x, y ∈ C , ∃jq(x− y) ∈ Jq(x− y) s.t. ⟨u− v, jq(x− y)⟩ ≥ 0 ∀u ∈ Bx, v ∈ By.
An accretive operator B is said to be α-inverse-strongly accretive of order q if for each x, y ∈ C ,
∃jq(x − y) ∈ Jq(x − y) s.t. ⟨u − v, jq(x − y)⟩ ≥ α∥u − v∥q ∀u ∈ Bx, v ∈ By for some α > 0. If
E = H a Hilbert space, then B is called α-inverse-strongly monotone. An accretive operator B is said
to be m-accretive if (I +λB)C = E for all λ > 0. For an accretive operator B, we define the mapping
JB
λ : (I + λB)C → C by JB

λ = (I + λB)−1 for each λ > 0. Such JB
λ is called the resolvent of B for

λ > 0.

Lemma 2.6. [24, 16] Let B : C → 2E be an m-accretive operator. Then the following statements hold:
(i) the resolvent identity: JB

λ x = JB
µ (µλx+ (1− µ

λ )J
B
λ x) ∀λ, µ > 0, x ∈ E;

(ii) if JB
λ is a resolvent of B for λ > 0, then JB

λ is a firmly nonexpansive mapping with Fix(JB
λ ) =

B−10, where B−10 = {x ∈ C : 0 ∈ Bx};
(iii) if E = H a Hilbert space, B is maximal monotone.

Let A : C → E be an α-inverse-strongly accretive mapping of order q and B : C → 2E be an
m-accretive operator. In the sequel, we will use the notation Tλ := JB

λ (I − λA) = (I + λB)−1(I −
λA) ∀λ > 0.

Proposition 2.7. [24] The following statements hold:
(i) Fix(Tλ) = (A+B)−10 ∀λ > 0;

(ii) ∥y − Tλy∥ ≤ 2∥y − Try∥ for 0 < λ ≤ r and y ∈ C .

Proposition 2.8. [37] Let E be uniformly smooth, T : C → C be a nonexpansive mapping with
Fix(T ) ̸= ∅ and f : C → C be a fixed contraction. For each t ∈ (0, 1), let zt ∈ C be the unique fixed point
of the contraction C ∋ z 7→ tf(z) + (1− t)Tz on C , i.e., zt = tf(zt) + (1− t)Tzt. Then {zt} converges
strongly to a fixed point x∗ ∈ Fix(T ), which solves the VIP: ⟨(I − f)x∗, J(x∗ − x)⟩ ≤ 0 ∀x ∈ Fix(T ).

Proposition 2.9. [24] Let E be q-uniformly smooth with q ∈ (1, 2]. Suppose that A : C → E is an
α-inverse-strongly accretive mapping of order q. Then, for any given λ ≥ 0,

∥(I − λA)u− (I − λA)v∥q ≤ ∥u− v∥q − λ(αq − κqλ
q−1)∥Au−Av∥q ∀u, v ∈ C,

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 ≤ λ ≤ ( qακq
)

1
q−1 , then I−λA

is nonexpansive.

Proposition 2.10. [32] Let E be q-uniformly smooth with q ∈ (1, 2]. Let ΠC be a sunny nonexpansive
retraction from E onto C . Suppose that B1, B2 : C → E are α-inverse-strongly accretive mapping of
order q and β-inverse-strongly accretive mapping of order q, respectively. Let G : C → C be a mapping
defined by G := ΠC(I − µ1B1)ΠC(I − µ2B2), and GSVI(C,B1, B2) denote the fixed point set of G. If
0 ≤ µ1 ≤ ( qακq

)
1

q−1 and 0 ≤ µ2 ≤ ( qβκq
)

1
q−1 , then G is nonexpansive.

Lemma 2.11. [32] Let E be q-uniformly smooth with q ∈ (1, 2]. Let ΠC be a sunny nonexpansive
retraction from E onto C . Suppose that B1, B2 : C → E are two nonlinear mappings. For given x∗, y∗ ∈
C , (x∗, y∗) is a solution of problem (1.4) if and only if x∗ ∈ GSVI(C,B1, B2), where GSVI(C,B1, B2)
is the fixed point set of the mapping G := ΠC(I − µ1B1)ΠC(I − µ2B2), and y∗ = ΠC(I − µ2B2)x

∗.

Lemma 2.12. [3] Let E be smooth, A : C → E be accretive and ΠC be a sunny nonexpansive retraction
from E onto C . Then VI(C,A) = Fix(ΠC(I − λA)) ∀λ > 0, where VI(C,A) is the solution set of the
VIP of finding z ∈ C s.t. ⟨Az, J(z − y)⟩ ≤ 0 ∀y ∈ C .

Recall that if E = H a Hilbert space, then the sunny nonexpansive retraction ΠC from E onto C
coincides with the metric projection PC from H onto C . Moreover, if E is uniformly smooth and T



MANN-TYPE EXTRAGRADIENT ALGORITHMS FOR SYSTEMS OF VARIATIONAL INEQUALITIES 211

is a nonexpansive self-mapping on C with Fix(T ) ̸= ∅, then Fix(T ) is a sunny nonexpansive retract
from E onto C [31]. By Lemma 2.12 we know that, x∗ ∈ Fix(T ) solves the VIP in Proposition 2.8 if
and only if x∗ solves the fixed point equation x∗ = ΠFix(T )f(x

∗).

Lemma 2.13. [27] Let {Γn} be a sequence of real numbers that does not decrease at infinity in the sense
that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for each integer i ≥ 1. Define
the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where integer n0 ≥ 1 such that {k ≤ n0 : Γk < Γk+1} ≠ ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 ∀n ≥ n0.

Lemma 2.14. [5] Let E be strictly convex, and {Tn}∞n=0 be a sequence of nonexpansive mappings on C .
Suppose that

⋂∞
n=0 Fix(Tn) is nonempty. Let {λn} be a sequence of positive numbers with

∑∞
n=0 λn = 1.

Then a mapping S on C defined by Sx =
∑∞

n=0 λnTnx ∀x ∈ C is defined well, nonexpansive and
Fix(S) =

⋂∞
n=0 Fix(Tn) holds.

Lemma 2.15. [37] Let {an} be a sequence in [0,∞) such that an+1 ≤ (1 − sn)an + snνn ∀n ≥ 0,
where {sn} and {νn} satisfy the conditions: (i) {sn} ⊂ [0, 1],

∑∞
n=0 sn = ∞; (ii) lim supn→∞ νn ≤ 0 or∑∞

n=0 |snνn| < ∞. Then limn→∞ an = 0.

3. Main Results

Throughout this paper, suppose that E is a q-uniformly smooth and uniformly convex Banach space
with q ∈ (1, 2]. Let C be a nonempty closed convex subset of E and ΠC be a sunny nonexpansive
retraction from E onto C . Let f : C → C be a ϱ-contraction with constant ϱ ∈ [0, 1q ) and {Sn}∞n=0

be a countable family of nonexpansive self-mappings on C . Let A : C → E and B : C → 2E be a σ-
inverse-strongly accretive mapping of order q and an m-accretive operator, respectively. Suppose that
B1, B2 : C → E are α-inverse-strongly accretive mapping of order q and β-inverse-strongly accretive
mapping of order q, respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn)∩GSVI(C,B1, B2)∩(A+B)−10 ̸=

∅ where GSVI(C,B1, B2) is the same as defined in Lemma 2.11.

Algorithm 3.1. Parallel Mann-type extragradient algorithm for the GSVI (1.4) with the VI and CFPP
constraints.

Initial Step: Given ζ ∈ (0, 1) and x0 ∈ C arbitrarily.
Iteration Steps: Given the current iterate xn, compute xn+1 as follows:
Step 1 Calculate wn = snxn + (1− sn)Gxn;
Step 2 Calculate vn = ΠC(wn − µ2B2wn);
Step 3 Calculate un = ΠC(vn − µ1B1vn);
Step 4 Calculatexn+1 = (1−ζ)Snun+ζJB

λn
(αnf(un)+(1−αn)un−λnAun), where {sn}, {αn} ⊂

(0, 1) and {λn} ⊂ (0,∞).
Set n := n+ 1 and go to Step 1.

Lemma 3.2. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} is bounded.

Proof. Let p ∈ Ω :=
⋂∞

n=0 Fix(Sn) ∩GSVI(C,B1, B2) ∩ (A+B)−10. Then we observe that

p = Gp = Snp = JB
λn
(p− λnAp) = JB

λn
(αnp+ (1− αn)(p−

λn

1− αn
Ap)).
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By Propositions 2.9 and 2.10, we know that I−µ1B1, I−µ2B2 and G := ΠC(I−µ1B1)ΠC(I−µ2B2)
are nonexpansive mappings. Since G : C → C is a nonexpansive mapping, by Lemma 2.2 (a) we get

∥wn − p∥q ≤ sn∥xn − p∥q + (1− sn)∥Gxn − p∥q − sn(1− sn)g̃(∥xn −Gxn∥)
≤ ∥xn − p∥q − sn(1− sn)g̃(∥xn −Gxn∥). (3.1)

Using the nonexpansivity of G again, we obtain from un = Gwn that

∥un − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥ ∀n ≥ 0. (3.2)

Put yn := JB
λn
zn and zn := αnf(un)+(1−αn)un−λnAun for all n ≥ 0. Since JB

λn
, Sn and I− λn

1−αn
A

are nonexpansive for all n ≥ 0, we obtain from (3.2) that

∥yn − p∥ (3.3)
= ∥JB

λn
(αnf(un) + (1− αn)un − λnAun)− p∥

= ∥JB
λn
(αnf(un) + (1− αn)(un − λn

1− αn
Aun))− JB

λn
(αnp+ (1− αn)(p−

λn

1− αn
Ap))∥

≤ ∥(αnf(un) + (1− αn)(un − λn

1− αn
Aun))− (αnp+ (1− αn)(p−

λn

1− αn
Ap))∥

= ∥(1− αn)((un − λn

1− αn
Aun)− (p− λn

1− αn
Ap)) + αn(f(un)− p)∥

≤ (1− αn)∥un − p∥+ αn∥f(un)− f(p)∥+ αn∥f(p)− p∥
≤ (1− αn(1− ϱ))∥un − p∥+ αn∥f(p)− p∥
≤ (1− αn(1− ϱ))∥xn − p∥+ αn∥f(p)− p∥

= (1− αn(1− ϱ))∥xn − p∥+ αn(1− ϱ)
∥f(p)− p∥

1− ϱ

≤ max{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}.

Hence, from (3.2) and (3.3) we get

∥xn+1 − p∥ ≤ (1− ζ)∥Snun − p∥+ ζ∥yn − p∥

≤ (1− ζ)∥un − p∥+ ζmax{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}

≤ (1− ζ)∥xn − p∥+ ζmax{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}

≤ max{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}.

By induction, we have

∥xn − p∥ ≤ max{∥x0 − p∥, ∥f(p)− p∥
1− ϱ

} ∀n ≥ 0.

Consequently, {xn} is bounded, and so are {un}, {wn}, {yn}, {zn}, {Snun}, and {Aun}. This com-
pletes the proof. □

Theorem 3.3. Let {xn} be the sequence generated by Algorithm 3.1. Suppose that the following conditions
hold:

(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(C2) 0 < a ≤ λn
1−αn

≤ b < (σqκq
)

1
q−1 and 0 < c ≤ sn ≤ d < 1;

(C3) 0 < µ1 < (αqκq
)

1
q−1 and 0 < µ2 < (βqκq

)
1

q−1 .
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Assume that
∑∞

n=0 supx∈D ∥Sn+1x − Snx∥ < ∞ for any bounded subset D of C . Let S : C → C be
a mapping defined by Sx = limn→∞ Snx ∀x ∈ C , and suppose that Fix(S) =

⋂∞
n=0 Fix(Sn). Then

xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, J(x∗ − p)⟩ ≤ 0 ∀p ∈ Ω , i.e., the fixed
point equation x∗ = ΠΩf(x

∗).

Proof. First of all, let x∗ ∈ Ω and y∗ = ΠC(x
∗ − µ2B2x

∗). Using Proposition 2.9 we get

∥vn − y∗∥q = ∥ΠC(wn − µ2B2wn)−ΠC(x
∗ − µ2B2x

∗)∥q

≤ ∥wn − x∗∥q − µ2(βq − κqµ
q−1
2 )∥B2wn −B2x

∗∥q,

and

∥un − x∗∥q = ∥ΠC(vn − µ1B1vn)−ΠC(y
∗ − µ1B1y

∗)∥q

≤ ∥vn − y∗∥q − µ1(αq − κqµ
q−1
1 )∥B1vn −B1y

∗∥q.

Combining the last two inequalities, we have

∥un − x∗∥q ≤ ∥wn − x∗∥q − µ2(βq − κqµ
q−1
2 )∥B2wn −B2x

∗∥q (3.4)
−µ1(αq − κqµ

q−1
1 )∥B1vn −B1y

∗∥q.

Also, using Propositions 2.5 and 2.9 and the convexity of ∥ · ∥q , from (3.3) and (3.4) we get

∥yn − x∗∥q (3.5)

≤ ∥(1− αn)((un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)) + αn(f(un)− x∗)∥q

≤ (1− αn)
q∥(un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)∥q

+qαn(1− αn)
q−1⟨f(un)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

≤ (1− αn)[∥un − x∗∥q − λn

1− αn
(σq − κq(

λn

1− αn
)q−1)∥Aun −Ax∗∥q]

+qαn(1− αn)
q−1⟨f(un)− f(x∗), Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

≤ (1− αn(1− qϱ))∥un − x∗∥q − λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

≤ (1− αn(1− qϱ))[∥wn − x∗∥q − µ2(βq − κqµ
q−1
2 )∥B2wn −B2x

∗∥q − µ1(αq − κqµ
q−1
1 )

×∥B1vn −B1y
∗∥q]− λn(σq − κq(

λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q.
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Using Lemma 2.2 (a) again, from (3.1), (3.2) and (3.5) we get

∥xn+1 − x∗∥q (3.6)
≤ (1− ζ)∥Snun − x∗∥q + ζ∥yn − x∗∥q − ζ(1− ζ)g(∥Snun − yn∥)
≤ (1− ζ)∥wn − x∗∥q + ζ{(1− αn(1− qϱ))[∥wn − x∗∥q − µ2(βq − κqµ

q−1
2 )∥B2wn −B2x

∗∥q

−µ1(αq − κqµ
q−1
1 )∥B1vn −B1y

∗∥q]− λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+κqα
q
n∥f(un)− x∗∥q} − ζ(1− ζ)g(∥Snun − yn∥)

≤ (1− αnζ(1− qϱ))[∥xn − x∗∥q − sn(1− sn)g̃(∥xn −Gxn∥)]
−ζ(1− αn(1− qϱ))[µ2(βq − κqµ

q−1
2 )∥B2wn −B2x

∗∥q

+µ1(αq − κqµ
q−1
1 )∥B1vn −B1y

∗∥q]− ζλn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+ζqαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+ζκqα
q
n∥f(un)− x∗∥q − ζ(1− ζ)g(∥Snun − yn∥).

For each n ≥ 0, we set

Γn = ∥xn − x∗∥q,
ϵn = αnζ(1− qϱ),

ηn = ζ(1− αn(1− qϱ))[µ2(βq − κqµ
q−1
2 )∥B2wn −B2x

∗∥q

+µ1(αq − κqµ
q−1
1 )∥B1vn −B1y

∗∥q] + ζλn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+ζ(1− ζ)g(∥Snun − yn∥) + (1− αnζ(1− qϱ))sn(1− sn)g̃(∥xn −Gxn∥),

δn = ζqαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+ζκqα
q
n∥f(un)− x∗∥q.

Then (3.6) can be rewritten as the following formula:

Γn+1 ≤ (1− ϵn)Γn − ηn + δn ∀n ≥ 0, (3.7)

and hence
Γn+1 ≤ (1− ϵn)Γn + δn ∀n ≥ 0. (3.8)

We next show the strong convergence of {Γn} by the following two cases:
Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

From (3.7), we get
0 ≤ ηn ≤ Γn − Γn+1 + δn − ϵnΓn.

Since αn → 0, ϵn → 0 and δn → 0, we have ηn → 0. This ensures that limn→∞ g(∥Snun − yn∥) =
limn→∞ g̃(∥xn −Gxn∥) = 0,

lim
n→∞

∥B2wn −B2x
∗∥ = lim

n→∞
∥B1vn −B1y

∗∥ = 0, (3.9)

and
lim
n→∞

∥Aun −Ax∗∥ = 0. (3.10)
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Note that g and g̃ are a strictly increasing, continuous and convex functions with g(0) = g̃(0) = 0. So
it follows that

lim
n→∞

∥Snun − yn∥ = lim
n→∞

∥xn −Gxn∥ = 0. (3.11)
On the other hand, using Lemma 2.2 (b) and the firm nonexpansivity of ΠC , we have

∥vn − y∗∥q = ∥ΠC(wn − µ2B2wn)−ΠC(x
∗ − µ2B2x

∗)∥q

≤ ⟨wn − µ2B2wn − (x∗ − µ2B2x
∗), Jq(vn − y∗)⟩

= ⟨wn − x∗, Jq(vn − y∗)⟩+ µ2⟨B2x
∗ −B2wn, Jq(vn − y∗)⟩

≤ 1

q
[∥wn − x∗∥q + (q − 1)∥vn − y∗∥q − h̃1(∥wn − x∗ − vn + y∗∥)]

+µ2⟨B2x
∗ −B2wn, Jq(vn − y∗)⟩,

which hence attains
∥vn − y∗∥q ≤ ∥wn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qµ2∥B2x

∗ −B2wn∥∥vn − y∗∥q−1.

In a similar way, we get
∥un − x∗∥q = ∥ΠC(vn − µ1B1vn)−ΠC(y

∗ − µ1B1y
∗)∥q

≤ ⟨vn − µ1B1vn − (y∗ − µ1B1y
∗), Jq(un − x∗)⟩

= ⟨vn − y∗, Jq(un − x∗)⟩+ µ1⟨B1y
∗ −B1vn, Jq(un − x∗)⟩

≤ 1

q
[∥vn − y∗∥q + (q − 1)∥un − x∗∥q − h̃2(∥vn − y∗ − un + x∗∥)]

+µ1⟨B1y
∗ −B1vn, Jq(un − x∗)⟩,

which hence attains
∥un − x∗∥q ≤ ∥vn − y∗∥q − h̃2(∥vn − y∗ − un + x∗∥) + qµ1∥B1y

∗ −B1vn∥∥un − x∗∥q−1

≤ ∥xn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qµ2∥B2x
∗ −B2wn∥∥vn − y∗∥q−1

−h̃2(∥vn − un + x∗ − y∗∥) + qµ1∥B1y
∗ −B1vn∥∥un − x∗∥q−1. (3.12)

Since JB
λn

is firmly nonexpansive (due to Lemma 2.6 (ii)), by Lemma 2.2 (b) we get

ll∥yn − x∗∥q = ∥JB
λn
(αnf(un) + (1− αn)un − λnAun)− JB

λn
(x∗ − λnAx

∗)∥q

≤ ⟨(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx
∗), Jq(yn − x∗)⟩

≤ 1

q
[∥(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx

∗)∥q + (q − 1)∥yn − x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)],
which together with the convexity of ∥ · ∥q and the nonexpansivity of I − λn

1−αn
A, implies that

∥yn − x∗∥q ≤ ∥(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx
∗)∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

= ∥(1− αn)((un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)) + αn(f(un)− x∗)∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

≤ (1− αn)∥(un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ (1− αn)∥un − x∗∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥).
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This together with (3.2) and (3.12), implies that

∥xn+1 − x∗∥q

≤ (1− ζ)∥Snun − x∗∥q + ζ∥yn − x∗∥q

≤ (1− ζ)∥un − x∗∥q + ζ[(1− αn)∥un − x∗∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)]
= (1− ζαn)∥un − x∗∥q + ζαn∥f(un)− x∗∥q

−ζh1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ (1− ζαn)[∥xn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qµ2∥B2x

∗ −B2wn∥∥vn − y∗∥q−1

−h̃2(∥vn − un + x∗ − y∗∥) + qµ1∥B1y
∗ −B1vn∥∥un − x∗∥q−1] + ζαn∥f(un)− x∗∥q

−ζh1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ ζαn∥f(un)− x∗∥q + ∥xn − x∗∥q − {(1− ζαn)[h̃1(∥wn − vn − x∗ + y∗∥)

+h̃2(∥vn − un + x∗ − y∗∥)] + ζh1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)}
+qµ1∥B1y

∗ −B1vn∥∥un − x∗∥q−1 + qµ2∥B2x
∗ −B2wn∥∥vn − y∗∥q−1,

which immediately yields

(1− ζαn)[h̃1(∥wn − vn − x∗ + y∗∥) + h̃2(∥vn − un + x∗ − y∗∥)]
+ζh1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

≤ ζαn∥f(un)− x∗∥q + Γn − Γn+1 + qµ1∥B1y
∗ −B1vn∥∥un − x∗∥q−1

+qµ2∥B2x
∗ −B2wn∥∥vn − y∗∥q−1.

Since h̃1, h̃2 and h1 are strictly increasing, continuous and convex functions with h̃1(0) = h̃2(0) =
h1(0) = 0, from (3.9) we conclude that ∥wn − vn − x∗ + y∗∥ → 0, ∥vn − un + x∗ − y∗∥ → 0 and
∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥ → 0 as n → ∞. Note that

∥wn − un∥ ≤ ∥wn − vn − x∗ + y∗∥+ ∥vn − un + x∗ − y∗∥,

and

∥un − yn∥
= ∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn + αn(un − f(un)) + λn(Aun −Ax∗)∥
≤ ∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥+ αn∥un − f(un)∥+ λn∥Aun −Ax∗∥.

So it follows from (3.10) that

lim
n→∞

∥wn − un∥ = lim
n→∞

∥un − yn∥ = 0. (3.13)

Also, since wn = snxn + (1− sn)Gxn, from (3.11) and (3.12) we infer that

∥wn − xn∥ = (1− sn)∥Gxn − xn∥ ≤ ∥Gxn − xn∥ → 0 (n → ∞),

∥xn − un∥ ≤ ∥xn − wn∥+ ∥wn − un∥ → 0 (n → ∞), (3.14)
and hence

∥Snxn − xn∥ ≤ ∥Snxn − Snun∥+ ∥Snun − yn∥+ ∥yn − un∥+ ∥un − xn∥
≤ 2∥xn − un∥+ ∥Snun − yn∥+ ∥yn − un∥ → 0 (n → ∞).

Moreover, using Proposition 2.4 we get

lim
n→∞

∥Snxn − Sxn∥ = 0.
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So, it follows that

∥Sxn − xn∥ ≤ ∥Sxn − Snxn∥+ ∥Snxn − xn∥ → 0 (n → ∞). (3.15)

For each n ≥ 0, we put Tλn := JB
λn
(I − λnA). Then from (3.13) and αn → 0, we get

∥un − Tλnun∥ ≤ ∥un − JB
λn
(αnf(un) + (1− αn)un − λnAun)∥

+∥JB
λn
(αnf(un) + (1− αn)un − λnAun)− JB

λn
(un − λnAun)∥

≤ ∥un − yn∥+ ∥(αnf(un) + (1− αn)un − λnAun)− (un − λnAun)∥
= ∥un − yn∥+ αn∥f(un)− un∥ → 0 (n → ∞).

Since limn→∞ a(1 − αn) = a > 0, Without loss of generality, we may assume that ∃λ > 0 s.t.
λ ≤ a(1− αn) ≤ λn ∀n ≥ 0. Using Proposition 2.7 (ii), we obtain from (3.14) that

∥Tλxn − xn∥ ≤ ∥Tλxn − Tλun∥+ ∥Tλun − un∥+ ∥un − xn∥
≤ 2∥xn − un∥+ ∥Tλun − un∥
≤ 2∥xn − un∥+ 2∥Tλnun − un∥ → 0 (n → ∞). (3.16)

We define the mapping Φ : C → C by Φx := θ1Sx + θ2Gx + (1 − θ1 − θ2)Tλx ∀x ∈ C with
θ1 + θ2 < 1 for constants θ1, θ2 ∈ (0, 1). Then by Lemma 2.14 and Proposition 2.7 (i), we know that Φ
is nonexpansive and

Fix(Φ) = Fix(S) ∩ Fix(G) ∩ Fix(Tλ) =
∞⋂
n=0

Fix(Sn) ∩GSVI(C,B1, B2) ∩ (A+B)−10 (=: Ω).

Taking into account that

∥Φxn − xn∥ ≤ θ1∥Sxn − xn∥+ θ2∥Gxn − xn∥+ (1− θ1 − θ2)∥Tλxn − xn∥,

we deduce from (3.11), (3.15) and (3.16) that

lim
n→∞

∥Φxn − xn∥ = 0. (3.17)

Let zs = sf(zs) + (1 − s)Φzs ∀s ∈ (0, 1). Then it follows from Proposition 2.8 that {zs} converges
strongly to a point x∗ ∈ Fix(Φ) = Ω , which solves the VIP:

⟨(I − f)x∗, J(x∗ − p)⟩ ≤ 0 ∀p ∈ Ω .

Also, from Lemma 2.1 we get

∥zs − xn∥q

= ∥s(f(zs)− xn) + (1− s)(Φzs − xn)∥q

≤ (1− s)q∥Φzs − xn∥q + qs⟨f(zs)− xn, Jq(zs − xn)⟩
= (1− s)q∥Φzs − xn∥q + qs⟨f(zs)− zs, Jq(zs − xn)⟩+ qs⟨zs − xn, Jq(zs − xn)⟩
≤ (1− s)q(∥Φzs − Φxn∥+ ∥Φxn − xn∥)q + qs⟨f(zs)− zs, Jq(zs − xn)⟩+ qs∥zs − xn∥q

≤ (1− s)q(∥zs − xn∥+ ∥Φxn − xn∥)q + qs⟨f(zs)− zs, Jq(zs − xn)⟩+ qs∥zs − xn∥q,

which immediately attains

⟨f(zs)− zs, Jq(xn − zs)⟩ ≤
(1− s)q

qs
(∥zs − xn∥+ ∥Φxn − xn∥)q +

qs− 1

qs
∥zs − xn∥q.

From (3.17), we have

lim sup
n→∞

⟨f(zs)− zs, Jq(xn − zs)⟩ ≤ (1− s)q

qs
M +

qs− 1

qs
M =

(1− s)q + qs− 1

qs
M, (3.18)
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where M is a constant such that ∥zs − xn∥q ≤ M for all n ≥ 0 and s ∈ (0, 1). It is easy to see that
((1 − s)q + qs − 1)/qs → 0 as s → 0. Since Jq is norm-to-norm uniformly continuous on bounded
subsets of E and zs → x∗, we get

∥Jq(xn − zs)− Jq(xn − x∗)∥ → 0 (s → 0).

So we obtain
|⟨f(zs)− zs, Jq(xn − zs)⟩ − ⟨f(x∗)− x∗, Jq(xn − x∗)⟩|
= |⟨f(zs)− f(x∗), Jq(xn − zs)⟩+ ⟨f(x∗)− x∗, Jq(xn − zs)⟩+ ⟨x∗ − zs, Jq(xn − zs)⟩

−⟨f(x∗)− x∗, Jq(xn − x∗)⟩|
≤ |⟨f(x∗)− x∗, Jq(xn − zs)− Jq(xn − x∗)⟩|+ |⟨f(zs)− f(x∗), Jq(xn − zs)⟩|

+|⟨x∗ − zs, Jq(xn − zs)⟩|
≤ ∥f(x∗)− x∗∥∥Jq(xn − zs)− Jq(xn − x∗)∥+ (1 + δ)∥zs − x∗∥∥xn − zs∥q−1.

Hence, for each n ≥ 0, we get
lim
s→0

⟨f(zs)− zs, Jq(xn − zs)⟩ = ⟨f(x∗)− x∗, Jq(xn − x∗)⟩.

From (3.18), as s → 0, it follows that
lim sup
n→∞

⟨f(x∗)− x∗, Jq(xn − x∗)⟩ ≤ 0. (3.19)

By (C2), (3.10) and (3.14), we get

∥un − x∗ − λn

1− αn
(Aun −Ax∗)− (xn − x∗)∥

≤ ∥un − xn∥+
λn

1− αn
∥Aun −Ax∗∥

≤ ∥un − xn∥+ b∥Aun −Ax∗∥ → 0 (n → ∞). (3.20)
In addition, from (3.11), (3.13) and (3.14) it is easy to see that as n → ∞,
∥xn+1 − xn∥ ≤ (1− sn)∥Snun − xn∥+ sn∥yn − xn∥ ≤ ∥Snun − yn∥+ ∥yn − un∥+ ∥un − xn∥ → 0.

Using (3.19) and (3.20), we have

lim sup
n→∞

⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩ ≤ 0. (3.21)

Now, from (3.6) it is easy to see that
∥xn+1 − x∗∥q (3.22)
≤ (1− αnζ(1− qϱ))∥xn − x∗∥q

+ζqαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ ζκqα

q
n∥f(un)− x∗∥q

= (1− αnζ(1− qϱ))∥xn − x∗∥q

+αnζ(1− qϱ)[
q(1− αn)

q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn
1−αn

(Aun −Ax∗))⟩
1− qϱ

+
κqα

q−1
n ∥f(un)− x∗∥q

1− qϱ
].

Note that {αnζ(1− qϱ)} ⊂ [0, 1],
∑∞

n=0 αnζ(1− qϱ) = ∞ and

lim sup
n→∞

[
q(1− αn)

q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn
1−αn

(Aun −Ax∗))⟩
1− qϱ

+
κqα

q−1
n ∥f(un)− x∗∥q

1− qϱ
] ≤ 0.
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Applying Lemma 2.15 to (3.22), we infer that Γn → 0 as n → ∞. Thus, xn → x∗ as n → ∞.

Case 2. Suppose that there exists a subsequence {Γnk
} of {Γn} s.t. Γnk

< Γnk+1 ∀k ∈ N, where N
is the set of all positive integers. Define the mapping τ : N → N by

τ(n) := max{k ≤ n : Γk < Γk+1}.

Using Lemma 2.13, we have

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Putting Γn = ∥xn − x∗∥q ∀n ∈ N and using the same inference as in Case 1, we can obtain

lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0 (3.23)

and

lim sup
n→∞

⟨f(x∗)− x∗, Jq(uτ(n) − x∗ −
λτ(n)

1− ατ(n)
(Auτ(n) −Ax∗))⟩ ≤ 0. (3.24)

Because of Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0, we conclude from (3.6) that

∥xτ(n) − x∗∥q ≤
q(1− ατ(n))

q−1

1− qϱ
⟨f(x∗)− x∗, Jq(uτ(n) − x∗ −

λτ(n)

1− ατ(n)
(Auτ(n) −Ax∗))⟩

+
κqα

q−1
τ(n)

1− qϱ
∥f(uτ(n))− x∗∥q,

and hence
lim sup
n→∞

∥xτ(n) − x∗∥q ≤ 0.

Thus, we have
lim
n→∞

∥xτ(n) − x∗∥q = 0.

Using Proposition 2.5 and (3.23), we obtain

∥xτ(n)+1 − x∗∥q − ∥xτ(n) − x∗∥q

≤ q⟨xτ(n)+1 − xτ(n), Jq(xτ(n) − x∗)⟩+ κq∥xτ(n)+1 − xτ(n)∥q

≤ q∥xτ(n)+1 − xτ(n)∥∥xτ(n) − x∗∥q−1 + κq∥xτ(n)+1 − xτ(n)∥q → 0 (n → ∞).

Taking into account Γn ≤ Γτ(n)+1, we have

∥xn − x∗∥q ≤ ∥xτ(n)+1 − x∗∥q

≤ ∥xτ(n) − x∗∥q + q∥xτ(n)+1 − xτ(n)∥∥xτ(n) − x∗∥q−1 + κq∥xτ(n)+1 − xτ(n)∥q.

It is easy to see from (3.23) that xn → x∗ as n → ∞. This completes the proof. □

We also obtain the strong convergence result for the parallel Mann-type extragradient algorithm in
a real Hilbert space H . It is well known that κ2 = 1 [38]. Thus, by Theorem 3.3 we derive the following
conclusion.

Corollary 3.4. Let ∅ ̸= C ⊂ H be a closed convex set. Let f : C → C be a ϱ-contraction with
constant ϱ ∈ [0, 12) and {Sn}∞n=0 be a countable family of nonexpansive self-mappings on C . Let A :

C → H and B : C → 2H be a σ-inverse-strongly monotone mapping and a maximal monotone operator,
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respectively. Suppose that B1, B2 : C → H are α-inverse-strongly monotone mapping and β-inverse-
strongly monotone mapping, respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn) ∩GSVI(C,B1, B2) ∩ (A+

B)−10 ̸= ∅. For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snxn + (1− sn)Gxn,

vn = PC(wn − µ2B2wn),

un = PC(vn − µ1B1vn),

xn+1 = (1− ζ)Snun + ζJB
λn
(αnf(un) + (1− αn)un − λnAun) ∀n ≥ 0,

(3.25)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that
(C1) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2) 0 < a ≤ λn
1−αn

≤ b < 2σ and 0 < c ≤ sn ≤ d < 1;
(C3) 0 < µ1 < 2α and 0 < µ2 < 2β.

Assume that
∑∞

n=0 supx∈D ∥Sn+1x − Snx∥ < ∞ for any bounded subset D of C . Let S : C → C be
a mapping defined by Sx = limn→∞ Snx ∀x ∈ C , and suppose that Fix(S) =

⋂∞
n=0 Fix(Sn). Then

xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, p − x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed
point equation x∗ = PΩf(x

∗).

Remark 3.5. Compared with the corresponding results in Manaka and Takahashi [28], Sunthrayuth and
Cholamjiak [33], and Ceng et al. [8], our results improve and extend them in the following aspects.

(i) The problem of solving the VI for two monotone operators A,B with the FPP constraint of a
nonexpansive mapping S in [28, Theorem 3.1] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for two accretive operators A,B and the CFPP
of {Sn}∞n=0 a countable family of nonexpansive mappings. The Mann-type iterative scheme
with weak convergence in [28, Theorem 3.1] is extended to develop our parallel Mann-type
extragradient algorithm with strong convergence.

(ii) The problem of solving the VI for two monotone operators with the constraints of the FPP of a
nonexpansive mapping S and the VIP for a monotone and Lipschitzian mapping in [8, Theorem
3.1], is extended to develop our problem of solving solving the GSVI (1.4) with the constraints
of the VI for two accretive operators A,B and the CFPP of {Sn}∞n=0 a countable family of
nonexpansive mappings. The Mann-type hybrid extragradient method in [8, Theorem 3.1] is
extended to develop our parallel Mann-type extragradient algorithm.

(iii) The problem of solving the VI for two accretive operators A,B with the FPP constraint of a
nonexpansive mapping S in [33, Theorem 3.3] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for two accretive operators A,B and the CFPP of
{Sn}∞n=0 a countable family of nonexpansive mappings. The modified viscosity-type extragra-
dient method in [33, Theorem 3.3] is extended to develop our parallel Mann-type extragradient
algorithm.

4. Some Applications

In this section, we give some applications of Corollary 3.4 to important mathematical problems in
the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed convex subset C ⊂
H and a nonlinear monotone operator A : C → H . Consider the classical VIP of finding u∗ ∈ C s.t.

⟨Au∗, v − u∗⟩ ≥ 0 ∀v ∈ C. (4.1)
The solution set of problem (4.1) is denoted by VI(C,A). It is clear that u∗ ∈ C solves VIP (4.1) if and
only if it solves the fixed point equation u∗ = PC(u

∗ − λAu∗) with λ > 0. Let iC be the indicator
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function of C defined by

iC(u) =

{
0 if u ∈ C,

∞ if u ̸∈ C.

We use NC(u) to indicate the normal cone of C at u ∈ H , i.e., NC(u) = {w ∈ H : ⟨w, v−u⟩ ≤ 0 ∀v ∈
C}. It is known that iC is a proper, convex and lower semicontinuous function and its subdifferential
∂iC is a maximal monotone mapping [10]. We define the resolvent operator J∂iC

λ of ∂iC for λ > 0 by

J∂iC
λ (x) = (I + λ∂iC)

−1(x) ∀x ∈ H,

where

∂iC(u) = {w ∈ H : iC(u) + ⟨w, v − u⟩ ≤ iC(v) ∀v ∈ H}
= {w ∈ H : ⟨w, v − u⟩ ≤ 0 ∀v ∈ C} = NC(u) ∀u ∈ C.

Hence, we get

u = J∂iC
λ (x) ⇔ x− u ∈ λNC(u)

⇔ ⟨x− u, v − u⟩ ≤ 0 ∀v ∈ C

⇔ u = PC(x),

where PC is the metric projection of H onto C . Moreover, we also have (A + ∂iC)
−10 = VI(C,A)

[35].
Thus, putting B = ∂iC in Corollary 3.4, we obtain the following result:

Theorem 4.1. Let f,A,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4. Suppose that Ω :=⋂∞
n=0 Fix(Sn) ∩GSVI(C,B1, B2) ∩ VI(C,A) ̸= ∅. For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0

be the sequence generated by
wn = snxn + (1− sn)Gxn,

vn = PC(wn − µ2B2wn),

un = PC(vn − µ1B1vn),

xn+1 = (1− ζ)Snun + ζPC(αnf(un) + (1− αn)un − λnAun) ∀n ≥ 0,

(4.2)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3) in
Corollary 3.4 hold. Then xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, p − x∗⟩ ≥
0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).

4.2. Application to split feasibility problem. Let H1 and H2 be two real Hilbert spaces. Consider
the following split feasibility problem (SFP) of finding

u ∈ C s.t. Tu ∈ Q, (4.3)

where C and Q are closed convex subsets of H1 and H2, respectively, and T : H1 → H2 is a bounded
linear operator with its adjoint T ∗. The solution set of SFP is denoted by ℧ := C ∩ T−1Q = {u ∈ C :
Tu ∈ Q}. In 1994, Censor and Elfving [21] first introduced the SFP for modelling inverse problems
of radiation therapy treatment planning in a finite dimensional Hilbert space, which arise from phase
retrieval and in medical image reconstruction.

It is known that z ∈ C solves the SFP (4.3) if and only if z is a solution of the minimization prob-
lem: miny∈C g(y) := 1

2∥Ty − PQTy∥2. Note that the function g is differentiable convex and has the
Lipschitzian gradient defined by ∇g = T ∗(I − PQ)T . Moreover, ∇g is 1

∥T∥2 -inverse-strongly mono-
tone, where ∥T∥2 is the spectral radius of T ∗T [6]. So, z ∈ C solves the SFP if and only if it solves the
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variational inclusion problem of finding z ∈ H1 s.t.

0 ∈ ∇g(z) + ∂iC(z) ⇔ 0 ∈ z + λ∂iC(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂iC(z)

⇔ z = (I + λ∂iC)
−1(z − λ∇g(z))

⇔ z = PC(z − λ∇g(z)).

Now, setting A = ∇g, B = ∂iC and σ = 1
∥T∥2 in Corollary 3.4, we obtain the following result:

Theorem 4.2. Let f,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4. Assume that Ω :=
⋂∞

n=0

Fix(Sn)∩GSVI(C,B1, B2)∩℧ ̸= ∅. For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence
generated by

wn = snxn + (1− sn)Gxn,

vn = PC(wn − µ2B2wn),

un = PC(vn − µ1B1vn),

xn+1 = (1− ζ)Snun + ζPC(αnf(un) + (1− αn)un − λnT
∗(I − PQ)Tun) ∀n ≥ 0,

(4.4)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3) in
Corollary 3.1 hold where σ = 1

∥T∥2 . Then xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I −
f)x∗, p− x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).

4.3. Application to LASSO problem. In this subsection, we first recall the least absolute shrinkage
and selection operator (LASSO) [36], which can be formulated as a convex constrained optimization
problem:

min
y∈H

1

2
∥Ty − b∥22 subject to ∥y∥1 ≤ s, (4.5)

where T : H → H is a bounded operator on H , b is a fixed vector in H and s > 0. Let ℧ be the
solution set of LASSO (4.5). The LASSO has received much attention because of the involvement of the
ℓ1 norm which promotes sparsity, phenomenon of many practical problems arising in statics model,
image compression, compressed sensing and signal processing theory.

In terms of the optimization theory, ones know that the solution to the LASSO problem (4.5) is a min-
imizer of the following convex unconstrained minimization problem so-called Basis Pursuit denoising
problem:

min
y∈H

g(y) + h(y), (4.6)

where g(y) := 1
2∥Ty − b∥22, h(y) := λ∥y∥1 and λ ≥ 0 is a regularization parameter. It is known that

∇g(y) = T ∗(Ty− b) is 1
∥T ∗T∥ -inverse-strongly monotone. Hence, we have that z solves the LASSO if

and only if z solves the variational inclusion problem of finding z ∈ H s.t.

0 ∈ ∇g(z) + ∂h(z) ⇔ 0 ∈ z + λ∂h(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂h(z)

⇔ z = (I + λ∂h)−1(z − λ∇g(z))

⇔ z = proxh(z − λ∇g(z)),

where proxh(y) is the proximal of h(y) := λ∥y∥1 given by

proxh(y) = argminu∈H{λ∥u∥1 +
1

2
∥u− y∥22} ∀y ∈ H,
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which is separable in indices. Then, for y ∈ H ,

proxh(y) = proxλ∥·∥1(y)

= (proxλ|·|(y1), proxλ|·|(y2), ...,proxλ|·|(yn)),

where proxλ|·|(yi) = sgn(yi)max{|yi| − λ, 0} for i = 1, 2, ..., n.
In 2014, Xu [39] suggested the following proximal-gradient algorithm (PGA):

xk+1 = proxh(xk − λkΓ
∗(Γxk − b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem (4.5).
Next, putting C = H, A = ∇g, B = ∂h and σ = 1

∥T ∗T∥ in Corollary 3.4, we obtain the following
result:

Theorem 4.3. Let f,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4 with C = H . Assume that
Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(H,B1, B2) ∩ ℧ ̸= ∅. For any given x0 ∈ H and ζ ∈ (0, 1), let {xn}∞n=0

be the sequence generated by
wn = snxn + (1− sn)Gxn,

vn = wn − µ2B2wn,

un = vn − µ1B1vn,

xn+1 = (1− ζ)Snun + ζproxh(αnf(un) + (1− αn)un − λnT
∗(Tun − b)) ∀n ≥ 0,

(4.7)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3) in
Corollary 3.4 hold where σ = 1

∥T ∗T∥ . Then xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I −
f)x∗, p− x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).
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