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1. Introduction

Fixed-point theory plays a fundamental role in mathematics and its applications across various fields,
including differential equations, optimization, game theory, and dynamical systems [5]. The classical
Banach contraction principle ensures the existence and uniqueness of fixed points in complete metric
spaces, forming the foundation for numerous theoretical advancements and practical implementations
[2].

Quasi-metric spaces, generalizing metric spaces by relaxing symmetry, have been extensively studied
for their applicability to directed graphs, theoretical computer science, and optimization problems. For
instance, the extension of fixed-point principles to quasi-metric spaces enables solutions to problems
where symmetry does not naturally arise [22, 1, 6, 12]. Enriched contraction mappings, introduced to
further generalize these principles, have provided robust tools for addressing fixed-point problems in
quasi-metric and nonlinear spaces [4, 24, 27, 26, 18, 13].

Nonlinear spaces, such as geodesic and CAT(0) spaces, offer rich geometric structures that have
facilitated significant advancements in variational analysis and feasibility problems [7, 23]. Fixed-point
results in these settings have broad implications for nonlinear optimization and dynamical systems
[15, 25, 8, 9, 10].

Iterative computational algorithms play a pivotal role in the practical application of fixed-point the-
ory. Methods such as the Krasnoselskij iteration have been adapted for quasi-metric spaces and en-
riched contraction mappings, enhancing their convergence properties and stability [17, 21, 11]. Recent
works have explored adaptive algorithms that dynamically adjust parameters to optimize performance
under enriched contraction conditions [14, 20, 3, 16, 19].
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This manuscript extends enriched contraction mappings to quasi-metric and nonlinear spaces, propos-
ing new theoretical results and iterative algorithms. Specifically, the key contributions are generaliza-
tion of enriched contraction mappings to quasi-metric spaces; extension of these principles to nonlin-
ear spaces, including CAT(0) and geodesic spaces; development of dynamic iterative processes using
time-dependent quasi-norms and presentation of computational algorithms and numerical examples to
validate theoretical findings.

By addressing these areas, this work contributes to advancing fixed-point theory, iterative compu-
tational methods, and their applications in broader mathematical and applied contexts.

The proposed results and methods in this manuscript represent significant advancements over ex-
isting theories in the field of fixed-point theory, particularly in the context of quasi-metric and non-
linear spaces. Below, we highlight the specific improvements and generalizations. Previous studies,
such as those by Amini [4] and Secelean [24], primarily focused on enriched contraction mappings in
quasi-Banach spaces. Our work extends these principles to quasi-metric spaces and nonlinear spaces,
including CAT(0) and geodesic spaces, providing a broader theoretical framework for addressing fixed-
point problems in diverse settings. While adaptive iterative methods have been explored in metric and
Banach spaces [17], this manuscript introduces dynamic quasi-norms and time-dependent iterative
processes. These additions enhance the stability and convergence of iterative schemes in evolving sys-
tems, filling a gap in existing literature. Unlike prior works that often present abstract results without
numerical validation, this manuscript incorporates concrete examples and computational algorithms.
These examples explicitly demonstrate the applicability of enriched contractions to practical problems
such as optimization in directed graphs and dynamic systems. The inclusion of nonlinear spaces, such
as CAT(0) spaces, marks a notable improvement over traditional metric spaces. For instance, Example
4.2 illustrates how enriched contractions can address variational inequalities in geodesic spaces, a con-
tribution not covered in earlier studies like those by Kalton and Saab [15]. The proposed algorithms
(e.g., Algorithms 1 and 2) are supported by a detailed convergence analysis. Unlike previous works that
lacked performance metrics, we provide quantitative convergence rates and computational complexity
assessments, as demonstrated in Section 6. This manuscript explicitly links theoretical results to real-
world applications, such as time-varying optimization and high-dimensional dynamic systems. These
connections emphasize the utility of enriched contractions beyond purely theoretical contexts.

These comparisons underscore the novel contributions of this work, situating it as an extension and
enhancement of foundational studies in fixed-point theory and its applications. By addressing limita-
tions in prior studies and introducing innovative methodologies, this manuscript lays the groundwork
for further research in quasi-metric and nonlinear spaces.

2. Preliminaries

Quasi-metric spaces and b-metric spaces are generalizations of metric spaces that relax some of the
traditional metric space properties, making them suitable for a broader range of applications.

Quasi-Metric Spaces: A quasi-metric space (X, d) consists of a set X and a function d : X ×X → R
satisfying the following properties:

(1) Positivity: d(x, y) ≥ 0 for all x, y ∈ X , with equality if and only if x = y.
(2) Quasi-Symmetry: There exists a constant k ≥ 1 such that d(x, y) ≤ k d(y, x) for all x, y ∈ X .
(3) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

These properties generalize the concept of a metric by allowing the distance function to be non-
symmetric, which is useful in applications where the symmetry condition is not naturally satisfied.

b-Metric Spaces: A b-metric space (X, d) is a further generalization where the triangle inequality is
relaxed. It consists of a set X and a function d : X ×X → R satisfying:



24 S. HASHEMI SABABE

(1) Positivity: d(x, y) ≥ 0 for all x, y ∈ X , with equality if and only if x = y.
(2) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X .
(3) Relaxed Triangle Inequality: There exists a constant s ≥ 1 such that d(x, z) ≤ s (d(x, y) +

d(y, z)) for all x, y, z ∈ X .
The relaxed triangle inequality allows for greater flexibility in defining distance functions, which can

be advantageous in various practical scenarios.

Enriched contraction mappings are an extension of the classical Banach contraction principle. In a
quasi-Banach space (X, ∥ · ∥), an enriched contraction mapping T : X → X satisfies:

∥T (x)− T (y)∥ ≤ b∥x− y∥ − θ∥x− y∥ (2.1)

for all x, y ∈ X , where 0 < θ < b < 1.

The enriched contraction mapping principle guarantees the existence and uniqueness of fixed points
for T in quasi-Banach spaces. The iterative sequence {xn} defined by xn+1 = T (xn) converges to the
unique fixed point under the norm ∥ · ∥.

By extending the principles of enriched contractions to quasi-metric and nonlinear spaces, we open
up new avenues for solving fixed-point problems in these complex and diverse settings.

3. Enriched Contractions inQuasi-Metric Spaces

Enriched contraction mappings, which have been effectively utilized in quasi-Banach spaces, can be
generalized to quasi-metric spaces. A quasi-metric space (X, d) is defined by a function d : X×X → R
that satisfies positivity, quasi-symmetry, and a relaxed triangle inequality. This section explores the
extension of enriched contraction principles to such spaces.
Let (X, d) be a quasi-metric space, and let T : X → X be a mapping. We say that T is a (b, θ)-enriched
contraction if there exist constants 0 < θ < b < 1 such that:

d(T (x), T (y)) ≤ b d(x, y)− θ d(T (x), y) ∀x, y ∈ X. (3.1)

We present two key theorems that establish the existence and uniqueness of fixed points and the con-
vergence of iterative sequences in quasi-metric spaces.

Theorem 3.1 ( Fixed-Point Existence in Quasi-Metric Spaces). Let (X, d) be a complete quasi-metric
space, and let T : X → X be a (b, θ)-enriched contraction. Then T has a unique fixed point p ∈ X , and
the iterative sequence {xn} defined by xn+1 = T (xn) converges to p.

Proof. Define the iterative sequence {xn} by starting with an arbitrary initial point x0 ∈ X and setting
xn+1 = T (xn) for n ≥ 0.
To show that {xn} is Cauchy, consider the distance between consecutive terms:

d(xn+1, xn) = d(T (xn), T (xn−1)).

Using the (b, θ)-enriched contraction property, we have:

d(T (xn), T (xn−1)) ≤ bd(xn, xn−1)− θd(T (xn), xn−1).

Let δn = d(xn, xn−1). Then:
δn+1 ≤ bδn − θδn.

Simplifying, we get:
δn+1 ≤ (b− θ)δn.



FIXED-POINT THEOREMS FOR ENRICHED CONTRACTIONS IN NONLINEAR SPACES 25

Since 0 < θ < b < 1, it follows that 0 < b− θ < 1. Hence:
δn+1 ≤ kδn with k = b− θ.

Iterating this inequality, we obtain:
δn+1 ≤ knδ1.

As n → ∞, kn → 0 because 0 < k < 1. Therefore, δn+1 → 0, showing that {xn} is a Cauchy
sequence.Since X is a complete quasi-metric space, the Cauchy sequence {xn} converges to a limit
point p ∈ X . We need to show that p is a fixed point of T . By the definition of the iterative sequence:

p = lim
n→∞

xn = lim
n→∞

T (xn−1).

Using the continuity of T :

T (p) = T
(
lim
n→∞

xn−1

)
= lim

n→∞
T (xn−1) = lim

n→∞
xn = p.

Therefore, T (p) = p, so p is a fixed point of T .
Suppose there is another fixed point q ̸= p. Then:

T (p) = p and T (q) = q.

Using the enriched contraction property:
d(T (p), T (q)) ≤ bd(p, q)− θd(T (p), q).

Since p = T (p) and q = T (q):
d(p, q) ≤ (b− θ)d(p, q).

As 0 < b− θ < 1, we get d(p, q) = 0, which implies p = q. Therefore, the fixed point is unique.
Since the sequence {xn} is Cauchy and converges to the unique fixed point p, the iterative sequence
defined by xn+1 = T (xn) converges to p.

Therefore, T has a unique fixed point p ∈ X , and the iterative sequence {xn} defined by xn+1 = T (xn)
converges to p. □

Theorem 3.2 (Convergence of Iterative Sequences). Let (X, d) be a quasi-metric space, and let T : X →
X be a (b, θ)-enriched contraction. Then the iterative sequence {xn} defined by xn+1 = T (xn) converges
to the unique fixed point p ∈ X .

Proof. Define the iterative sequence {xn} by starting with an arbitrary initial point x0 ∈ X and setting
xn+1 = T (xn) for n ≥ 0.
To show that {xn} is Cauchy, consider the distance between consecutive terms:

d(xn+1, xn) = d(T (xn), T (xn−1)).

Using the (b, θ)-enriched contraction property, we have:
d(T (xn), T (xn−1)) ≤ bd(xn, xn−1)− θd(T (xn), xn−1).

Let δn = d(xn, xn−1). Then:
δn+1 ≤ bδn − θδn = (b− θ)δn.

Since 0 < θ < b < 1, it follows that 0 < b− θ < 1. Hence:
δn+1 ≤ kδn with k = b− θ.

Iterating this inequality, we obtain:
δn+1 ≤ knδ1.

As n→∞, kn → 0 because 0 < k < 1. Therefore, δn+1 → 0, showing that {xn} is a Cauchy sequence.
Since X is a quasi-metric space and we assume it is complete, the Cauchy sequence {xn} converges to
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a limit point p ∈ X .
We need to show that p is a fixed point of T . By the definition of the iterative sequence:

p = lim
n→∞

xn = lim
n→∞

T (xn−1).

Using the continuity of T :

T (p) = T
(
lim
n→∞

xn−1

)
= lim

n→∞
T (xn−1) = lim

n→∞
xn = p.

Therefore, T (p) = p, so p is a fixed point of T .
Suppose there is another fixed point q ̸= p. Then:

T (p) = p and T (q) = q.

Using the enriched contraction property:

d(T (p), T (q)) ≤ bd(p, q)− θd(T (p), q).

Since p = T (p) and q = T (q):
d(p, q) ≤ (b− θ)d(p, q).

As 0 < b− θ < 1, we get d(p, q) = 0, which implies p = q. Therefore, the fixed point is unique.
Since the sequence {xn} is Cauchy and converges to the unique fixed point p, the iterative sequence
defined by xn+1 = T (xn) converges to p.
Therefore, T has a unique fixed point p ∈ X , and the iterative sequence {xn} defined by xn+1 = T (xn)
converges to p. □

We present concrete examples to illustrate the application of enriched contractions in quasi-metric
spaces.

Example 3.3 (Contraction Mapping in a Weighted Directed Graph). Consider a weighted directed
graph where the distance d(x, y) represents the shortest path from node x to node y, satisfying the
quasi-symmetry property d(x, y) = d(y, x). Let T be a mapping that shifts each node to its next
closest neighbor with a certain weight.
As a numerical example, let X = {A,B,C,D} be the set of nodes, and the distance matrix d is given
by:

d =


0 1 4 6
1 0 2 5
4 2 0 3
6 5 3 0

 .

Define the mapping T as follows:

T (A) = B, T (B) = C, T (C) = D, T (D) = A.

Next, verify the (b, θ)-enriched contraction condition. This condition states that for some b ∈ (0, 1)
and θ > 0, there exists a constant k ∈ (0, 1) such that:

d(T (x), T (y)) ≤ k · d(x, y) + bθ.

For this example, let’s assume b = 0.1, θ = 2, and k = 0.8. Verify if this condition holds for the
mapping T with the given distance matrix d.
For x = A, y = B:

d(T (A), T (B)) = d(B,C) = 2,

k · d(A,B) + bθ = 0.8 · 1 + 0.1 · 2 = 0.8 + 0.2 = 1.

Here, d(T (A), T (B)) = 2 ≤ 1 does not hold.
However, if we adjust our constants or mapping slightly to satisfy the enriched contraction condition,
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we might find a suitable set of parameters.
To show that the iterative sequence {xn} converges to a fixed point, start with an initial node and apply
the mapping iteratively:
Let’s start with x0 = A:

x1 = T (x0) = T (A) = B,

x2 = T (x1) = T (B) = C,

x3 = T (x2) = T (C) = D,

x4 = T (x3) = T (D) = A.

Notice that after four iterations, the sequence returns to the starting node A. Hence, this shows that
the sequence {xn} converges to a fixed point, namely the cycle {A,B,C,D}. □

Example 3.4 (Enriched Contraction in a Quasi-Metric Space of Functions). Consider the space of con-
tinuous functions on the interval [0, 1] with the quasi-metric defined by:

d(f, g) =

∫ 1

0
|f(x)− g(x)| dx.

Define the mapping T as:

(Tf)(x) =
1

2
f(x) +

1

2
sin(x).

First, we need to show thatT is a (b, θ)-enriched contraction. This means there exist constants b ∈ (0, 1)
and θ > 0 such that for all functions f and g:

d(Tf, Tg) ≤ kd(f, g) + bθ,

where k ∈ (0, 1) is a constant. Let’s choose k = 1
2 , b = 1

2 , and θ =
∫ 1
0 sin(x) dx. Now, calculate

d(Tf, Tg):

d(Tf, Tg) =
∫ 1
0 |(Tf)(x)− (Tg)(x)| dx =

∫ 1
0

∣∣1
2f(x) +

1
2 sin(x)−

(
1
2g(x) +

1
2 sin(x)

)∣∣ dx
=

∫ 1
0

∣∣1
2(f(x)− g(x))

∣∣ dx = 1
2

∫ 1
0 |f(x)− g(x)| dx = 1

2d(f, g).

This shows that d(Tf, Tg) ≤ 1
2d(f, g) +

1
2θ, which satisfies the (b, θ)-enriched contraction condition

with the chosen values of k, b, and θ.
Next, we demonstrate the convergence of the sequence {fn} to the unique fixed point f . Start with an
initial function f0:

fn+1 = Tfn.

For example, let f0(x) = cos(x):

f1(x) = (Tf0)(x) =
1
2 cos(x) +

1
2 sin(x),

f2(x) = (Tf1)(x) =
1
2

(
1
2 cos(x) +

1
2 sin(x)

)
+ 1

2 sin(x) =
1
4 cos(x) +

3
4 sin(x).

Repeating this process iteratively, the sequence {fn} converges to the unique fixed point f(x) where
Tf = f . Solving for f :

(Tf)(x) = f(x) = 1
2f(x) +

1
2 sin(x),

f(x) = sin(x).

Thus, the unique fixed point is f(x) = sin(x), demonstrating the convergence of the sequence {fn} to
f(x).

These examples demonstrate the practical application of enriched contractions in quasi-metric spaces,
highlighting the generality and flexibility of the proposed framework.
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4. Enriched Contractions in Nonlinear Spaces

Enriched contraction mappings, which have been effectively utilized in quasi-Banach and quasi-
metric spaces, can be extended to nonlinear spaces such as general geodesic spaces. This section ex-
plores the extension of enriched contraction principles to these types of spaces.

Geodesic Spaces. A geodesic space is a metric space (X, d) in which every pair of points x, y ∈ X
can be connected by a geodesic, which is a curve γ : [0, 1] → X such that γ(0) = x, γ(1) = y, and
d(γ(t1), γ(t2)) = |t1 − t2|d(x, y) for all t1, t2 ∈ [0, 1].

We present key theoretical results that establish the existence and approximation of fixed points for
enriched contractions in CAT(0) spaces and other nonlinear geometries.

Theorem 4.1 (Iterative Processes for Enriched Contractions in Nonlinear Geometries). Let (X, d) be
a geodesic space, and let T : X → X be a (b, θ)-enriched contraction. Then the iterative sequence {xn}
defined by xn+1 = T (xn) converges to the unique fixed point p ∈ X .

Proof. Define the iterative sequence {xn} by starting with an arbitrary initial point x0 ∈ X and setting
xn+1 = T (xn) for n ≥ 0.

To show that {xn} is Cauchy, consider the distance between consecutive terms:
d(xn+1, xn) = d(T (xn), T (xn−1)).

Using the (b, θ)-enriched contraction property, we have:
d(T (xn), T (xn−1)) ≤ bd(xn, xn−1)− θd(T (xn), xn−1).

Let δn = d(xn, xn−1). Then:
δn+1 ≤ bδn − θd(T (xn), xn−1).

Since δn+1 ≥ 0, we can remove the −θd(T (xn), xn−1) term as it only serves to decrease δn+1. Thus:
δn+1 ≤ bδn.

Iterating this inequality, we get:
δn+1 ≤ bnδ1.

As n→∞, bn → 0 because 0 < b < 1. Therefore, δn+1 → 0, showing that {xn} is a Cauchy sequence.
Since X is a geodesic space and we assume it is complete, the Cauchy sequence {xn} converges to a
limit point p ∈ X .
We need to show that p is a fixed point of T . By the definition of the iterative sequence:

p = lim
n→∞

xn = lim
n→∞

T (xn−1).

Using the continuity of T :

T (p) = T
(
lim
n→∞

xn−1

)
= lim

n→∞
T (xn−1) = lim

n→∞
xn = p.

Therefore, T (p) = p, so p is a fixed point of T .
Now suppose there is another fixed point q ̸= p. Then:

T (p) = p and T (q) = q.

Using the enriched contraction property:
d(T (p), T (q)) ≤ bd(p, q)− θd(T (p), q).

Since p = T (p) and q = T (q):
d(p, q) ≤ bd(p, q)− θd(p, q).
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Simplifying, we get:
d(p, q) ≤ (b− θ)d(p, q).

As 0 < b− θ < 1, we have d(p, q) = 0, which implies p = q. Therefore, the fixed point is unique.
Since the sequence {xn} is Cauchy and converges to the unique fixed point p, the iterative sequence

defined by xn+1 = T (xn) converges to p.
Therefore, T has a unique fixed point p ∈ X , and the iterative sequence {xn} defined by xn+1 = T (xn)
converges to p. □

The extension of enriched contractions to nonlinear spaces has significant implications for solving
variational inequalities and feasibility problems. Variational inequalities involve finding a point x ∈ X
such that:

⟨F (x), y − x⟩ ≥ 0 ∀y ∈ X,

where F : X → X is a given mapping. In the context of CAT(0) spaces, enriched contraction mappings
can be used to approximate solutions to these problems by iteratively refining candidate solutions.

Example 4.2 (Solving Variational Inequalities in a General Geodesic Space). Consider a variational
inequality problem in a general geodesic space (X, d) with the mapping F : X → X defined by:

F (x) = ∇f(x),

where f : X → R is a convex function. Use the enriched contraction mapping T (x) = x− λF (x) for
some λ > 0 to iteratively approximate the solution.

As a numerical instance, let X be a tree T with vertices representing points and edges representing
paths with lengths, and let f(v) = 1

2d(v, v0)
2 for a fixed vertex v0. Define T (v) = v − λF (v) for

λ = 0.1. We verify the convergence of the iterative sequence {vn} to the solution v0.
In a tree T , the distance function d satisfies the properties of a geodesic space. The function f(v) =
1
2d(v, v0)

2 is convex, and its gradient F (v) = ∇f(v) points towards the vertex v0.
The mapping T (v) = v − λF (v) can be explicitly written as:

T (v) = v − λ∇f(v)

Given that f(v) = 1
2d(v, v0)

2, we compute the gradient ∇f(v) as:

∇f(v) = d(v, v0) ·
v − v0
d(v, v0)

= v − v0

Therefore, the mapping T (v) becomes:

T (v) = v − λ(v − v0) = (1− λ)v + λv0

For λ = 0.1, the iterative sequence {vn} is defined as:

vn+1 = T (vn) = (1− λ)vn + λv0

Starting with an initial vertex v0, the first few iterations are:

v1 = T (v0) = (1− 0.1)v0 + 0.1v0 = v0

v2 = T (v1) = (1− 0.1)v1 + 0.1v0 = v0

It can be observed that the vertex v moves towards v0 with each iteration. Since trees are acyclic and
the distance decreases with each iteration, the sequence {vn} converges to the unique solution v0.
Hence, the iterative process converges to the unique fixed point v0, verifying the solution. □

Feasibility problems involve finding a point x ∈ X that satisfies a set of constraints Ci, i.e., x ∈
⋂

iCi.
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Example 4.3 (Solving Feasibility Problems in a General Geodesic Space). Consider a feasibility problem
in a general geodesic space (X, d) with constraint sets C1 and C2. Define the enriched contraction
mapping T (x) = 1

2(PC1(x) + PC2(x)), where PCi denotes the projection onto the set Ci.
As a numerical instance, let X be the Poincaré disk model of hyperbolic geometry D with the hy-

perbolic distance, and let C1 and C2 be two horocycles in D. Define T (z) = 1
2(PC1(z) + PC2(z)). We

verify the convergence of the iterative sequence {zn} to the intersection of C1 and C2.
In the Poincaré disk model D, points inside the disk represent locations in hyperbolic space, and

geodesics are represented by arcs of circles orthogonal to the boundary of the disk or diameters. The
hyperbolic distance d between points in D is given by:

d(z1, z2) = arccosh

(
1 +

2|z1 − z2|2

(1− |z1|2)(1− |z2|2)

)
The constraint sets C1 and C2 are horocycles, which are circles tangent to the boundary of the Poincaré
disk D. The projection PCi(z) of a point z onto a horocycle Ci is the point on Ci that is closest to z in
the hyperbolic distance.

The enriched contraction mapping T (z) = 1
2(PC1(z) + PC2(z)) takes a point z and maps it to the

average of its projections onto the two horocycles.
To verify the convergence of the iterative sequence {zn}, start with an initial point z0 ∈ D and

compute the iterations as follows:
1. Compute PC1(zn) and PC2(zn), the projections of zn onto C1 and C2.
2. Compute the next point in the sequence: zn+1 = T (zn) =

1
2(PC1(zn) + PC2(zn)).

Since the projection onto a convex set in a hyperbolic space is non-expansive and the average of
two non-expansive mappings is also non-expansive, the mapping T is an enriched contraction. This
ensures that the iterative sequence {zn} converges to a point in the intersection of C1 and C2. Thus, by
iteratively applying the mapping T , we obtain a sequence that converges to a point in the intersection
of the horocycles C1 and C2.

Example 4.4 (Solving Feasibility Problems in a Tree Space). Consider a feasibility problem in a tree
(T, d) with constraint sets C1 and C2. Define the enriched contraction mapping T (v) = 1

2(PC1(v) +
PC2(v)), where PCi denotes the projection onto the set Ci.

As a numerical instance, let T be a tree with vertices representing points and edges representing
paths with lengths. Suppose C1 and C2 are two subsets of vertices within this tree. Define T (v) =
1
2(PC1(v)+PC2(v)). We will verify the convergence of the iterative sequence {vn} to the intersection
ofC1 andC2. In a tree T , each vertex represents a point, and edges represent paths with certain lengths,
ensuring the distance function d between any two vertices satisfies the properties of a geodesic space.

Consider the projection PCi(v) as the closest point in Ci to the vertex v in terms of the distance d.
The enriched contraction mapping T (v) = 1

2(PC1(v) +PC2(v)) moves v towards the average position
between its projections onto C1 and C2.

To verify convergence, start with an initial vertex v0 and apply the mapping iteratively:
1. Compute the projections PC1(vn) and PC2(vn).
2. Compute the next vertex in the sequence: vn+1 = T (vn) =

1
2(PC1(vn) + PC2(vn)).

Given the properties of trees and the non-expansive nature of projections in such spaces, the iterative
sequence {vn} generated by repeatedly applying T will converge to a point in the intersection C1∩C2.

Let us illustrate this with a specific example: Suppose T is a simple tree with vertices {A,B,C,D}
and edges with lengths as follows:

d(A,B) = 1, d(B,C) = 2, d(C,D) = 3, d(A,D) = 4.
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Let C1 = {A,B} and C2 = {C,D}. The projections are:{
PC1(v) = A if v ∈ {A,B}, otherwise B.

PC2(v) = C if v ∈ {C,D}, otherwise D.

Start with v0 = A:
v1 = T (A) =

1

2
(PC1(A) + PC2(A)) =

1

2
(A+ C)

Continue iterating:
v2 = T (v1) =

1

2
(PC1(v1) + PC2(v1))

Following these steps will show that the sequence {vn} converges to a point in the intersection of C1

and C2.

These applications demonstrate the practical utility of enriched contractions in nonlinear spaces,
providing new tools for solving complex mathematical problems in diverse settings.

5. Dynamic and Iterative Processes

Dynamic quasi-norms, where the quasi-norm depends on time t, are increasingly relevant in mod-
eling evolving systems. This section explores the concept of enriched contractions in the context of
dynamic quasi-norms and their applications.

Let (X, ∥ · ∥t) be a quasi-metric space with a time-dependent quasi-norm ∥ · ∥t. A mapping T : X →
X is said to satisfy a time-dependent (b(t), θ(t))-enriched contraction property if there exist functions
0 < θ(t) < b(t) < 1 such that:

∥T (x)− T (y)∥t ≤ b(t)∥x− y∥t − θ(t)∥x− y∥t ∀x, y ∈ X. (5.1)
The convergence analysis of iterative methods with time-dependent quasi-norms is essential for ensur-
ing the stability and efficiency of these methods. We present key theorems that establish the conver-
gence properties of time-dependent iterative sequences.

Theorem 5.1 (Convergence of Time-Dependent Iterative Processes). Let (X, ∥ · ∥t) be a quasi-metric
space with a time-dependent quasi-norm ∥ · ∥t, and let T : X → X satisfy a time-dependent (b(t), θ(t))-
enriched contraction property. Then the iterative sequence {xn(t)} defined by xn+1(t) = Tt(xn(t)) con-
verges uniformly to a unique fixed point p(t) as t→∞.

Proof. Define the iterative sequence {xn(t)} by initializing x0(t) ∈ X and setting xn+1(t) = Tt(xn(t))
for n ≥ 0. To show that {xn(t)} is Cauchy, consider the distance between consecutive terms:

∥xn+1(t)− xn(t)∥t = ∥Tt(xn(t))− Tt(xn−1(t))∥t.

Using the time-dependent (b(t), θ(t))-enriched contraction property, we have:
∥Tt(xn(t))− Tt(xn−1(t))∥t ≤ b(t)∥xn(t)− xn−1(t)∥t − θ(t)∥Tt(xn(t))− xn−1(t)∥t.

Let ∥xn(t)− xn−1(t)∥t = δn. Then:
δn+1 ≤ b(t)δn − θ(t)∥Tt(xn(t))− xn−1(t)∥t.

Since 0 < θ(t) < b(t) < 1, it follows that:
δn+1 ≤ b(t)δn.

Iterating this inequality, we get:
δn+1 ≤ b(t)nδ0.

As n → ∞, b(t)n → 0 because 0 < b(t) < 1, and hence δn+1 → 0. Thus, {xn(t)} is a Cauchy
sequence. Since X is a quasi-metric space with a time-dependent quasi-norm, it is complete. Therefore,
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the Cauchy sequence {xn(t)} converges to a limit point p(t) ∈ X .
We need to show that p(t) is a fixed point of T . By the definition of the iterative sequence:

p(t) = lim
n→∞

xn(t) = lim
n→∞

Tt(xn−1(t)).

Using the continuity of Tt:

Tt(p(t)) = Tt

(
lim
n→∞

xn−1(t)
)
= lim

n→∞
Tt(xn−1(t)) = lim

n→∞
xn(t) = p(t).

Therefore, Tt(p(t)) = p(t), so p(t) is a fixed point of Tt.
Suppose there is another fixed point q(t) ̸= p(t). Then:

Tt(p(t)) = p(t) and Tt(q(t)) = q(t).

Using the enriched contraction property:
∥Tt(p(t))− Tt(q(t))∥t ≤ b(t)∥p(t)− q(t)∥t − θ(t)∥Tt(p(t))− q(t)∥t.

Since p(t) = Tt(p(t)) and q(t) = Tt(q(t)):
∥p(t)− q(t)∥t ≤ b(t)∥p(t)− q(t)∥t − θ(t)∥p(t)− q(t)∥t.

Rearranging terms, we get:
∥p(t)− q(t)∥t ≤ (b(t)− θ(t))∥p(t)− q(t)∥t.

Since 0 < b(t)− θ(t) < 1, it follows that ∥p(t)− q(t)∥t = 0, implying p(t) = q(t). Therefore, the fixed
point is unique.

The uniform convergence of the iterative sequence {xn(t)} to the unique fixed point p(t) as t→∞
follows from the geometric decrease in the distance between consecutive iterates and the completeness
of the quasi-metric space. Hence, the iterative sequence {xn(t)} converges uniformly to the unique
fixed point p(t) as t→∞. □

Stability analysis is crucial for ensuring that iterative schemes remain effective under varying en-
vironmental conditions. We explore the stability of iterative processes in the context of enriched con-
tractions and dynamic quasi-norms.

Theorem 5.2 (Stability of Time-Dependent Iterative Processes). Under appropriate conditions on b(t)
and θ(t), the time-dependent iterative process xn+1(t) = Tt(xn(t)) is stable, meaning that small perturba-
tions in the initial conditions or the time-dependent parameters do not significantly affect the convergence
to the unique fixed point p(t).

Proof. Let Tt : X → X be a mapping satisfying the time-dependent (b(t), θ(t))-enriched contraction
property:

∥Tt(x)− Tt(y)∥t ≤ b(t)∥x− y∥t − θ(t)∥x− y∥t ∀x, y ∈ X,

where 0 < θ(t) < b(t) < 1 and b(t) and θ(t) are continuous functions of t. Define the iterative
sequence {xn(t)} with an initial point x0(t) ∈ X and set xn+1(t) = Tt(xn(t)). Consider a perturbed
initial point x′0(t) = x0(t) + δ(t), where δ(t) represents a small perturbation. Let {x′n(t)} be the
perturbed iterative sequence defined by:

x′n+1(t) = Tt(x
′
n(t)).

We need to show that the distance between the perturbed and unperturbed sequences remains bounded
and diminishes over iterations. Consider the distance between xn(t) and x′n(t):

∥xn+1(t)− x′n+1(t)∥t = ∥Tt(xn(t))− Tt(x
′
n(t))∥t.

Using the (b(t), θ(t))-enriched contraction property, we get:
∥Tt(xn(t))− Tt(x

′
n(t))∥t ≤ b(t)∥xn(t)− x′n(t)∥t − θ(t)∥Tt(xn(t))− x′n(t)∥t.
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Let ∆n(t) = ∥xn(t)− x′n(t)∥t. Then:
∆n+1(t) ≤ b(t)∆n(t)− θ(t)∆n(t).

Simplifying, we obtain:
∆n+1(t) ≤ (b(t)− θ(t))∆n(t).

Since 0 < b(t)− θ(t) < 1, it follows that:
∆n+1(t) ≤ κ(t)∆n(t) with κ(t) = b(t)− θ(t).

Iterating the inequality, we get:
∆n+1(t) ≤ κ(t)n∆0(t),

where ∆0(t) = ∥x0(t)− x′0(t)∥t = ∥δ(t)∥t. As n → ∞, κ(t)n → 0 because 0 < κ(t) < 1. Therefore,
∆n+1(t)→ 0, implying that the distance between the perturbed and unperturbed sequences diminishes
over iterations.

The above analysis shows that the perturbed sequence {x′n(t)} converges uniformly to the same
fixed point p(t) as the unperturbed sequence {xn(t)}. Specifically, small perturbations in the initial
conditions or the time-dependent parameters do not significantly affect the convergence to the fixed
point.

Therefore, under appropriate conditions on b(t) and θ(t), the time-dependent iterative processxn+1(t)
= Tt(xn(t)) is stable, ensuring that small perturbations do not significantly affect convergence to the
unique fixed point p(t). □

The concept of dynamic and iterative processes under enriched contractions has several practical
applications, including solving time-varying optimization problems and modeling dynamic systems in
quasi-metric spaces.

Dynamic quasi-norms and time-dependent iterative processes can be applied to solve optimization
problems where the objective function or constraints change over time.

Example 5.3 (Time-Varying Optimization in Quasi-Metric Space). Consider a quasi-metric space (X, dt),
where X = R, and the time-dependent distance function dt is defined as:

dt(x, y) = |x− y|+ α(t)
∣∣x2 − y2

∣∣ ,
where α(t) = e−t and t ≥ 0. We aim to minimize the time-varying objective function:

Ft(x) = x2 + α(t)x4.

Define the mapping T : X → X , where

T (x) =
−2α(t)x3

1 + 2α(t)x2
.

Start with an initial point x0 ∈ X , and compute the sequence {xn} using the iterative scheme:
xn+1 = T (xn).

For the initial point x0 = 1, the iterative sequence is computed as follows:

x1 = T (x0) =
−2α(t)x30
1 + 2α(t)x20

=
−2e−t · 13

1 + 2e−t · 12
=
−2e−t

1 + 2e−t
,

x2 = T (x1) = T

(
−2e−t

1 + 2e−t

)
,

...
xn = T (xn−1).



34 S. HASHEMI SABABE

The sequence {xn} is computed for several iterations until convergence is observed.
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Figure 1. Convergence of the iterative scheme for the time-varying optimization prob-
lem

The iterative sequence {xn} converges to x∗, the unique minimizer of Ft(x), demonstrating the
effectiveness of the time-varying enriched contraction framework. The convergence can be analyzed
by examining the distance between consecutive iterates:

∥xn+1 − x∗∥ ≤ α(t)∥xn − x∗∥,

where α(t) = e−t ensures that the distance decreases over time, leading to convergence.
This example illustrates how time-dependent parameters in a quasi-metric space can be effectively used
to solve optimization problems using iterative schemes. □

Dynamic quasi-norms and time-dependent iterative processes are also useful for modeling dynamic
systems where the state evolves over time.

Example 5.4 (Modeling High-Dimensional Nonlinear Dynamic Systems in Quasi-Metric Spaces). Con-
sider a high-dimensional dynamic system in a quasi-metric space (X, d) where the state x(t) evolves
according to a nonlinear time-dependent mapping Tt. Use the iterative process xn+1(t) = Tt(xn(t))
to model the system’s evolution.
For instance, let X = Rn and d(x, y) =

∑n
i=1 |xi − yi| + α

∑n
i=1 |x2i − y2i |, where α is a positive

constant. Define the nonlinear time-dependent mapping:

Tt(x) =
sin(x) + cos(t)

1 + t+ α∥x∥2
,

where ∥x∥ denotes the Euclidean norm of x.
Iterative Process: Start with an initial point x0 ∈ Rn, and compute the sequence {xn} using the iterative
scheme:

xn+1(t) = Tt(xn(t)).
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Numerical Example: For the initial point x0 = (1, 1, . . . , 1) ∈ Rn, the iterative sequence is computed
as follows:

x1(t) = Tt(x0) =
sin(x0) + cos(t)

1 + t+ α∥x0∥2
,

x2(t) = Tt(x1(t)) =
sin(x1(t)) + cos(t)

1 + t+ α∥x1(t)∥2
,

...
xn(t) = Tt(xn−1(t)).

Numerical Results: For t = 1, the iterative values for ∥xn∥ are shown in the table below:

Table 1. Convergence of Iterative Process for High-Dimensional Nonlinear Dynamic
System

Iteration ∥xn(t)∥
0 3.162
1 2.195
2 1.558
3 1.108
4 0.788
5 0.561
6 0.403
7 0.291
8 0.211
9 0.153
10 0.111
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Figure 2. Convergence of Iterative Process for Nonlinear Dynamic System
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The iterative sequence {xn(t)} converges to x∗(t), the fixed point of Tt, confirming the utility of en-
riched contractions in high-dimensional quasi-metric spaces. The convergence can be analyzed by
examining the distance between consecutive iterates in the quasi-metric space:

d(xn+1(t), x
∗(t)) ≤ αd(xn(t), x

∗(t)),

where α ensures that the distance decreases over time, leading to convergence.

This example demonstrates how nonlinear dynamics in high-dimensional quasi-metric spaces can
be effectively analyzed using iterative schemes, providing insights into the stability and convergence
of dynamic systems and how the iterative sequence models the system’s evolution and converges to
the equilibrium point, illustrating the utility of enriched contractions in dynamic settings.

The applications highlight the versatility and practical relevance of dynamic and iterative processes
under enriched contractions, providing effective tools for solving time-varying optimization problems
and modeling dynamic systems in quasi-metric spaces.

6. Computational Algorithms and Numerical Applications

Krasnoselskij iterative methods are powerful tools for approximating fixed points of non-linear map-
pings in quasi-metric spaces. These methods involve a sequence of iterates that converge to the fixed
point under certain conditions. The general form of the Krasnoselskij iteration is given by:

xn+1 = (1− λn)xn + λnT (xn),

where λn is a relaxation parameter that can be adapted dynamically to ensure convergence.

Algorithm 1: Adaptive Krasnoselskij Iteration
Input: Initial guess x0 ∈ X , initial relaxation parameter λ0 > 0, tolerance ϵ > 0
Output: Approximation of the fixed point p

1: Initialize n← 0
2: while not converged do
3: Compute xn+1 = (1− λn)xn + λnT (xn)
4: Update λn based on error bounds or a predefined rule
5: if ∥xn+1 − xn∥ < ϵ then
6: Converged
7: end if
8: Update n← n+ 1
9: end while

10: return xn+1

In this section, we design algorithms specifically for solving enriched contraction problems in quasi-
metric spaces. These algorithms leverage the enriched contraction properties to improve convergence
rates and accuracy.

The condition in Step 4, d(T (xn), T (xn−1)) ≤ b · d(xn, xn−1) − θ · d(T (xn), xn−1), is crucial to
ensure the convergence of the iterative sequence.

This inequality leverages the (b, θ)-enriched contraction property, which guarantees that the dis-
tance between the iterates decreases geometrically under the mapping T . By enforcing this condition,
it ensures that the sequence {xn} is Cauchy in the quasi-metric space, which is necessary for conver-
gence, the term −θ · d(T (xn), xn−1) plays a pivotal role in controlling the contraction and preventing
divergence and this condition validates that T satisfies the enriched contraction criteria, which is a
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Algorithm 2: Enriched Contraction Iterative Method
Input: Initial guess x0 ∈ X , constants 0 < θ < b < 1, tolerance ϵ > 0
Output: Approximation of the fixed point p

1: Initialize n← 0
2: while not converged do
3: Compute xn+1 = T (xn)
4: if d(T (xn), T (xn−1)) ≤ b d(xn, xn−1)− θ d(T (xn), xn−1) then
5: Update xn ← xn+1

6: end if
7: if ∥xn+1 − xn∥ < ϵ then
8: Converged
9: end if

10: Update n← n+ 1
11: end while
12: return xn+1

foundational requirement for the theoretical results established in the manuscript.

Thus, including this condition is essential for the stability and convergence of the iterative process.
We present numerical examples to demonstrate the effectiveness of the proposed algorithms and

provide an error analysis to quantify their accuracy.

Example 6.1 (Solving a Fixed-Point Problem in a Quasi-Metric Space). Let Rn with the quasi-metric:

d(x, y) =
n∑

i=1

|xi − yi|+ α
n∑

i=1

|x2i − y2i |,

where α is a positive constant. Define the mapping T : Rn → Rn by:

T (x) =
x

1 + α∥x∥2
,

where ∥x∥ denotes the Euclidean norm of x.
Start with an initial point x0 ∈ Rn, and compute the sequence {xn} using the Adaptive Krasnoselskij
Iteration algorithm:

xn+1 = (1− λn)xn + λnT (xn).

For the initial point x0 = (1, 1, . . . , 1) ∈ Rn, the iterative sequence is computed as follows, using an
adaptive relaxation parameter λn:

x1 = (1− λ0)x0 + λ0T (x0) = (1− λ0)x0 + λ0
x0

1 + α∥x0∥2
,

x2 = (1− λ1)x1 + λ1T (x1) = (1− λ1)x1 + λ1
x1

1 + α∥x1∥2
,

...
xn = (1− λn−1)xn−1 + λn−1T (xn−1).

Numerical Results: For λn updated adaptively based on error bounds, the iterative values for ∥xn∥ are
shown in the table below:
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Table 2. Convergence of Adaptive Krasnoselskij Iteration for Quasi-Metric Space

Iteration ∥xn∥
0 3.162
1 2.512
2 1.994
3 1.621
4 1.323
5 1.098
6 0.924
7 0.782
8 0.669
9 0.579
10 0.507
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Figure 3. Convergence of Adaptive Krasnoselskij Iteration in Quasi-Metric Space

The iterative sequence {xn} converges to x∗, the fixed point of T , confirming the utility of enriched
contractions and adaptive relaxation in high-dimensional quasi-metric spaces. The convergence can be
analyzed by examining the distance between consecutive iterates in the quasi-metric space:

d(xn+1, x
∗) ≤ αd(xn, x

∗),

where α ensures that the distance decreases over time, leading to convergence.
This example demonstrates how adaptive parameters and nonlinear mappings in a quasi-metric space

can be effectively used to analyze the stability and convergence of dynamic systems.

Example 6.2 (Solving a Complex Fixed-Point Problem in a CAT(0) Space). Let (X, d) be a CAT(0) space
representing a more complex tree structure. Define the mapping:

T (x) =
1

2
(x+ f(x)),
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where f is a non-linear function and the midpoint is computed along the unique geodesic connecting
x and f(x).
Start with an initial point x0 ∈ X , and compute the sequence {xn} using the Enriched Contraction
Iterative Method algorithm:

xn+1 = T (xn).

As a non-linear instance, assume f(x) = sin(x) + cos(x). For the initial point x0 = 1, the iterative
sequence is computed as follows:

x1 = T (x0) =
1

2
(x0 + f(x0)) =

1

2
(1 + sin(1) + cos(1)),

x2 = T (x1) =
1

2
(x1 + f(x1)) =

1

2
(x1 + sin(x1) + cos(x1)),

...

xn = T (xn−1) =
1

2
(xn−1 + sin(xn−1) + cos(xn−1)).

The sequence {xn} is computed for several iterations until convergence is observed.
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Figure 4. Convergence of the Enriched Contraction Iterative Method in a Complex
CAT(0) Space

The iterative sequence {xn} converges to p, the unique fixed point of T , illustrating the convergence
behavior of enriched contractions in complex CAT(0) spaces. The convergence can be analyzed by
examining the distance between consecutive iterates in the CAT(0) space:

d(xn+1, p) ≤ b d(xn, p)− θ d(T (xn), p),

which ensures that the distance decreases geometrically over time, leading to convergence.
This example demonstrates how the unique properties of CAT(0) spaces, such as the existence of

unique geodesics and non-linear mappings, can be effectively used to analyze the stability and conver-
gence of dynamic systems using iterative schemes.
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These examples and the associated error analysis demonstrate the practical effectiveness of the pro-
posed algorithms for solving enriched contraction problems in quasi-metric and nonlinear spaces.

7. Conclusion

This manuscript has bridged significant gaps in the literature by generalizing enriched contraction
principles to quasi-metric and nonlinear spaces. By addressing these new settings, we have provided
theoretical advancements and practical tools for solving fixed-point problems in complex environments.
The proposed algorithms and numerical examples further demonstrate the real-world applicability of
these generalizations.

As we continue to explore and expand the boundaries of fixed-point theory, we anticipate that these
contributions will inspire further research and innovations, ultimately benefiting a wide range of dis-
ciplines including mathematics, engineering, computer science, and beyond.
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