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Abstract. This paper deals with the existence of solutions for a novel variant of fractional sweeping
processes, where the Caputo type derivative belongs to the set of constraints which is assumed to be closed
convex and varies in a Hölderian way. By using a modified catching-up algorithm, we construct a family
of approximate solutions that converges to a Hölderain solution of the evolution inclusion under the
semicoercivity condition of the considered operator. The Cauchy criterion of the approximate solutions
in an infinite dimensional Hilbert space is obtained under some additional condition.
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1. Introduction

The sweeping process, first introduced and extensively studied by J.J. Moreau in a series of papers [16,
17, 18, 19], was originally designed to model quasi-static evolution of elastoplastic systems in unilateral
mechanics. His work not only established a precise mathematical framework but also broadly used as
a foundation for numerous extensions and practical applications in the decades that followed such as:
switched electrical circuits [1, 3], nonsmooth mechanics [13], crowd motion [14] among others.

Let H be a Hilbert space and let T > 0 be a nonnegative real number. Moreau’s approach provides a
way to describe the evolution of a point that is swept by a moving set Ω : [0, T ] ⇒ H. Formally, such
model can be presented by the following generalized Cauchy problem{

−u̇(t) ∈ NΩ(t)(u(t)) a.e. t ∈ [0, T ]

u(0) = u0 ∈ Ω(0),
(SP)

where u̇(t) stands for the time derivative of u(t) and a.e. (almost everywhere) means that the inclusion
holds on a set in [0, T ] of full Lebesgue measure. Whereas, u(t) represents the state of the system at
time t, Ω(t) is a time-dependent (moving) set, usually convex, representing the set of constraints, minus
sign reflects resistance to leaving the set Ω(t) and NΩ(t)(u(t)) denotes the (outward) normal cone to
the set Ω(t) at the point u(t) in the sense of convex analysis.

The Fractional calculus and its associated differential equations and inclusions has emerged as a pow-
erful mathematical tool due to its numerous applications in applied mathematics, unilateral mechanics
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and various fields of sciences and engineering. Recently in [25, 26] Zeng et al. introduced and studied
for the first time the so-called fractional sweeping process defined as follows{

ACDα
0u(t) ∈ −NΩ(t)(u(t)) + f(t, u(t)) a.e. t ∈ [0, T ]

u(0) = u0 ∈ Ω(0),

where CDα
0u(t) is the (left-sided) Caputo fractional derivative of order 0 < α < 1 of u(·) and the sets

Ω(t) are assumed convex or prox-regular and varies in α-Hölder continuous way. Later in [7, 5] the
authors proposed a new variant with Caputo fractional derivative in the constraint and provided an
application in contact problems. This novel variant has the following form{

ACDα
0u(t) ∈ −NΩ(t)

(
ACDα

0u(t) + Bu(t)
)

a.e. t ∈ [0, T ]

u(0) = u0 ∈ Ω(0),

where A,B : H → H are two linear bounded operators such that A is coercive and B is semi-definite.

Let φ : H → H be a mapping. In this paper, we are interested in a novel variant of the fractional
sweeping sweeping process, say the implicit fractional sweeping process with Caputo velocity constraint

ACDα
0u(t) + Bu(t) ∈ −NΩ(t)

(
CDα

0u(t)
)
+ φ(t) a.e t ∈ [0, T ],

u(0) = u0.

(IFSP)

As we see, the fractional derivative CDα
0u(t) appears in both sides of the first relationship of (IFSP)

which translates the implicit aspect of the problem. This study represents an extension of what exists in
the usual implicit sweeping processes (see [3, 2] ) to the fractional setting. We use a modified catching-
up algorithm to construct a sequence of approximate solutions (un(·))n and then, prove its uniform
convergence to the desired solution u(·). This will be done in a finite dimensional Hilbert space under
the assumptions that the set of constraints Ω(t) is supposed to vary in α-Hölder continuous way with
respect to time and A is semi-coercive operator. The finite dimensional condition limits the applica-
tions for this new variant in some Hilbert space, for this reason, we assume in the last section that A
is coercive wich makes the differential inclusion (IFSP) having Hölderian solution even in infinite
dimensional space by showing the Cauchy criterion of the approximate solutions (un(·))n.

The paper is organized as follows. In the next section, we recall some standard tools from convex
analysis and fractional calculus which are involved throughout the paper. In section 3, we gather the
notations and the hypotheses used along the paper. We prove in section 4 some auxiliary results which
will be needed in the rest of the paper as well as the existence result of the evolution inclusion (IFSP).
The last section is devoted to establish the existence of solution in a general Hilbert space under the
coercivity condition on the operator A.

2. Notation and Preliminaries

In all the paper, unless otherwise stated, J := [0, T ], T > 0 is an interval ofR andH is a (real) infinite
dimensional Hilbert space whose scalar product will be denoted by ⟨·, ·⟩ and the associated norm by ∥·∥.
For any x ∈ H and η ≥ 0, the closed (respectively open) ball centered at xwith radius η will be denoted
byB[x, η] (respectivelyB(x, η)). For x = 0 and η = 1, we will put BH or B in place ofB[0, 1]. Further,
if Ω is a subset of H, we denote by δΩ(·) or δ(·,Ω) the indicator function of Ω, that is, δ(x,Ω) = 0 if
x ∈ Ω and +∞ otherwise.

We will denote by C(J ;H) the space of continuous maps from J to H. It is well known that C(J ;H)
is a Banach space equipped with the norm of the uniform convergence denoted by ∥ · ∥C(J ;H) or ∥ · ∥∞
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and defined as follow
∥Φ∥∞ := max

t∈J
∥Φ(t)∥, for all Φ ∈ C(J ;H).

For p ∈ [1,+∞], we denote by Lp(J ;H) the quotient of all λ-Bochner measurable maps Φ : J → H
such that ∥Φ(·)∥ belongs to Lp(J ;R). The space Lp(J ;H) will be endowed with the norm ∥ · ∥p given
by

∥Φ∥p :=
(∫ T

0
∥Φ(t)∥pdt

) 1
p

,

whereas, the one on the space L∞(J ;H) of essentially bounded measurable maps will be denoted by
∥ · ∥L∞ and given by

∥Φ∥L∞ := inf{c > 0 : ∥Φ(t)∥ ≤ c for a.e t ∈ J}.

Whenever there is no ambiguity concerning either the norm ∥ · ∥∞ or ∥ · ∥L∞ , we will merely denote
∥ · ∥∞ in place of ∥ · ∥L∞ .

Given an extended real-valued function Φ : H → R ∪ {+∞}, the subdifferential of Φ at a point
x ∈ domΦ (in the sense of convex analysis) is the set (may be empty) defined by

∂Φ(x) := {v ∈ H : ⟨v, y − x⟩ ≤ Φ(y)− Φ(x), for all y ∈ H}, (2.1)

where domΦ := {y ∈ H : Φ(y) < +∞} is the effective domain of Φ. When Φ(x) = +∞, by
convention ∂φ(x) = ∅, that is x /∈ Dom ∂Φ, where DomF := {x ∈ H : F (x) ̸= ∅} is the domain of a
set-valued map F : H ⇒ H and

gphF := {(x, y) ∈ H×H : y ∈ F (x)},

is the graph of F .
LetΩ be a nonempty closed convex subset ofH. We define three functions that are of great interest in

modern convex analysis (see [22, 23]). Those particular functions correspond to the support functions
σ(Ω, ·) of Ω and to the distance function dΩ(·) from the set Ω respectively, given by

σ(Ω, ·) : H → R ∪ {+∞} with σ(Ω, ζ) := sup
x∈Ω

⟨x, ζ⟩ ,

dΩ(·) : H → R+ with dΩ(x) := inf
y∈Ω

∥x− y∥.

The notion of support function σ(Ω, ·) can be used to characterizes the closed convex set Ω through
the following equivalence property

x ∈ Ω if and only if ⟨ζ, x⟩ ≤ σ(Ω, ζ) for all ζ ∈ H. (2.2)

According to (2.1) and for x ∈ Ω , it is straightforward to see that an element ξ ∈ ∂ψΩ(x) if and
only if ⟨ξ, v − x⟩ ≤ 0 for all v ∈ Ω, so ∂ψΩ(x) is the set of outward normals of Ω at the point x ∈ Ω
denoted by NΩ(x) and defined by

NΩ(x) = {ϑ ∈ H : ⟨ϑ, z − x⟩ ≤ 0 for all z ∈ Ω}.

We derive from the last relationship that

ϑ ∈ NΩ(x) ⇔ σ(Ω, ϑ) = ⟨ϑ, x⟩ and x ∈ Ω. (2.3)

Moreover, for any nonempty subsets Ω1,Ω2 ⊂ H we have the representation

σ(Ω1 +Ω2, ·) = σ(Ω1, ·) + σ(Ω2, ·). (2.4)
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Now, we recall some basic definitions and properties related to fractional calculus; we refer the
reader to [21, 10, 8] for more details and discussions. Let x(·) ∈ L1([0, T ];H), the (left-sided) Riemann-
Liouville fractional (Bochner) integral of order 0 < α < 1 is defined by

(Iα0 x)(t) = Iα0 x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds,

where Γ(·) is the Euler’s Gamma function defined by Γ(α) :=
∫ +∞
0 tα−1e−tdt. The following propo-

sition collects some fundamental characterizations and properties of the Riemann-Liouville fractional
integral.

Proposition 2.1 (See [8] ). Let α ∈]0, 1] and p ∈] 1α ,+∞]. Then

(a) For any ϑ(·) ∈ Lp([0, T ];H), the value (Iα0 ϑ)(t) is well defined for any t ∈ [0, T ], and (Iα0 ϑ)(0) =
0.

(b) There exists Lα > 0 such that, for any ϑ(·) ∈ Lp([0, T ];H) and any t, s ∈ [0, T ], the inequality
below is valid

∥(Iα0 ϑ)(t)− (Iα0 ϑ)(s)∥ ≤ Lα∥ϑ∥p|t− s|α−
1
p ,

where 1
p = 0 if p = ∞. In particular, (Iαϑ)(·) ∈ C([0, T ];H).

For a mapping x(·) : [0, T ] → H, the (left-sided) Riemann-Liouville fractional derivative of order
0 < α < 1 is defined by

(LDα
0x)(t) =

LDα
0x(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αx(s)ds.

One also defines the (left-sided) Caputo fractional derivative of order 0 < α < 1 by

(CDα
0x)(t) =

CDα
0x(t) =

LDα
0 (x(·)− x(0))(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−α(x(s)− x(0))ds,

provided that the right hand side is well-defined.
Let us describe some properties of the Riemann-Liouville fractional derivative. Prior this, let us

define the set Iα(L∞([0, T ];H)) by

Iα(L∞([0, T ];H)) := {x(·) : [0, T ] → H : ∃v(·) ∈ L∞([0, T ];H) : x(t) = Iα0 v(t),∀t ∈ [0, T ]}.

Proposition 2.2 (See [8] ). Let 0 < α < 1 then

(a) For any mapping x(·) ∈ Iα(L∞([0, T ];H)) one has
(a1) The mapping t 7→ (LDα

0x)(t) is well defined for almost every t ∈ [0, T ], and (LDα
0x)(·) ∈

L∞([0, T ];H).
(a2) The equality (Iα0

LDα
0x)(t) = x(t) is valid for any t ∈ [0, T ].

(b) For any mapping w(·) ∈ L∞([0, T ];H) : (LDα
0 I

α
0 w)(t) = w(t) for almost every t ∈ [0, T ].

The next lemma provides an extension of this famous property in the fractional framework.

Lemma 2.3. Let 0 < α < 1 and let x(·) ∈ Iα(L∞([0, T ];H)) then [0, T ] ∋ t 7→ ∥x(t)∥2 ∈
Iα(L∞([0, T ];H)) and

LDα
0 ∥x(t)∥2 ≤ 2⟨LDα

0x(t), x(t)⟩, a.e t ∈ [0, T ]. (2.5)

Now, let us recall a fractional version of Gronwall inequality proved for the first time in [9, Lemma
7.1.1]. We also refer the reader to [24, 12] and [4, Theorem 4.2] for other related results.



46 I. KECIS, T. HADDAD, AND A. BOUACH

Lemma 2.4. Given a nondecreasing function a(·) ∈ L1([0, T ];R+). Let ϱ > 0, µ ≥ 0 and u(·) ∈
L1([0, T ];R+). Assume that for any t ∈ [0, T ]

u(t) ≤ µIϱ0u(t) + a(t),

then
u(t) ≤ a(t)Eϱ(µt

ϱ) on [0, T ],

where Eϱ(·) is the Mittag-Leffler function defined by

Eϱ(z) :=
∞∑
k=0

zk

Γ(ϱk + 1)
.

We also need the following discrete version of Gronwall’s inequality.

Lemma 2.5. Let η > 0 and let (θk), (ak) be sequences of nonnegative real numbers such that

θk ≤ η +

k−1∑
p=1

apθp, for k ∈ N,

then

θk ≤ η exp

k−1∑
p=1

ap

 .

To conclude this section, we establish an auxiliary result which will be used to give some bounded-
ness property of the constructed sequence.

Lemma 2.6. Let (Ω(t))t∈[0,T ] be a family of nonempty sets such that Ω(s) ⊂ Ω(t)+ω(|t− s|)B,∀t, s ∈
[0, T ] where ω(·) : [0, T ] → R+ is a continuous function. Then, for any t ∈ [0, T ] we can find z ∈ Ω(t)
such that

∥z∥ ≤ ∥z0∥+ ∥ω∥∞,
for any fixed element z0 ∈ Ω(0). In particular, under the assumption (HΩ) stated below, we obtain

∥z∥ ≤ ∥z0∥+KTα. (2.6)

Proof. Fix any z0 ∈ Ω(0) and take arbitrary time t ∈ [0, T ] then z0 ∈ Ω(t) + w(t)B, this means that
there exists z ∈ Ω(t) such that z0 ∈ {z}+ ω(t)B, which in turn implies that z ∈ {z0}+ ω(t)B. Then

∥z∥ ≤ ∥z0∥+ ω(t) ≤ ∥z0∥+ ∥ω∥∞.

The inequality (2.6) is a direct consequence of the latter one with the choice w(t) := Ktα. □

3. Mild Assumptions

For the sake of readability, in this section we collect the hypotheses used throughout the development
of the paper.
(HΩ) Ω(·) : [T0, T ] ⇒ H is a multimapping such that for each t ∈ [T0, T ], Ω(t) is a nonempty closed

convex subset of H which moves in a α-Hölderian way for some α ∈]0, 1[, that is
Ω(t) ⊂ Ω(s) +K|t− s|αB, ∀ t, s ∈ [0, T ].

(Hφ) φ : [0, T ] → H is a continuous mapping.
(HB) B : H → H is a bounded, symmetric, linear, and semi-definite operator, that is ⟨Bx, x⟩ ≥ 0 for

any x ∈ H.
(HA) A : H → H is a bounded, symmetric, linear, and semi-definite operator such that

⟨Ax, x⟩ ≥ ρ∥x∥2 − β, ∀x ∈ Ω(0) for some ρ > 0 and β > 0. (3.1)
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(H′
A) A : H → H is a bounded, symmetric, linear operator such that

⟨Ax, x⟩ ≥ ρ∥x∥2, ∀x ∈ Ω(0) for some ρ > 0. (3.2)

This last property means that the operator A is coercive on Ω(0).

Lemma 3.1. Under assumptions (HΩ), (HA) and (HB), the set-valued mapping
H ∋ x 7→

(
NΩ(t) +A+ µB

)
(x) is surjective for every t ∈ [0, T ] and any µ > 0.

Proof. Firstly, let us prove that the operator A satisfies the inequality (3.1) over all the sets Ω(t), t ∈
[0, T ]. Pick any t ∈ [0, T ] then Ω(t) ⊂ Ω(0)+ tαB. Let x ∈ Ω(t), then x− tαv ∈ Ω(0) for some v ∈ B,
this entails trough (3.1)

⟨A(x− tαv), x− tαv⟩ ≥ ρ∥x− tαv∥2 − β

⇒ ⟨Ax, x⟩ ≥ ρ∥x∥2 − β + t2α(ρ∥v∥2 − ∥A∥) + 2tα(⟨Ax, v⟩ − ρ⟨x, v⟩), for any t ∈ [0, T ],

letting t ↓ 0, we get the desired property. Now, observe that the operator Q := Ax + µB, µ > 0 is
bounded, symmetric, linear, semi-definite and satisfies the following inequality

⟨Qx, x⟩ = ⟨Ax, x⟩+ µ⟨Bx, x⟩ ≥ ρ∥x∥2 − β for any x ∈ Ω(t) and any t ∈ [0, T ].

Since the latter property is valid over all the sets Ω(t), we are in a position to apply [2, Lemma 1] to get
the surjectivity of NΩ(t) +A+ µB. □

4. Main Results

In this section, we use an implicit scheme to approximate the problem (IFSP). In details, let be
given some positive integer n, we consider the partition of interval [0, T ] with the points tnk = kδn
with δn = T

n and let us set

φn
k = φ(tnk), γn,α =

δαn
Γ(α+ 1)

,

it results that ∥φn
k∥ ≤ ∥φ∥∞. Starting by the initial guess un0 = u0, we construct a sequence (unk), k =

1, . . . , n by using the following iterate procedure

Aznk + Bunk ∈ −NΩ(tnk )
(znk ) + φn

k (4.1)

unk = u0 + γn,α

k∑
p=1

znp {(k − p+ 1)α − (k − p)α} , un0 = u0. (4.2)

Let us justify the well-posedness of the suggested numerical method. Prior this, we introduce a se-
quence (ωk)1≤k≤n as follows

ωn
k−1 = u0 + γn,α

k−1∑
p=1

znp ((k − p+ 1)α − (k − p)α) , ωn
0 = u0, (4.3)

then
unk = ωn

k−1 + γn,αz
n
k . (4.4)

The equality (4.4) allows us to rewrite the inclusion (4.1) as follows

(A+ γn,αB)(znk ) + Bωn
k−1 ∈ −NΩ(tnk )

(znk ) + φn
k ,

which is equivalent to
φn
k − Bωn

k−1 ∈
(
NΩ(tnk )

+A+ γn,αB
)
(znk ).
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The assumptions (HA) and (HB) with the help of the Lemma 3.1 guarantee the surjectivity of the
set-valued operator

(
NΩ(tnk )

+A+ γn,αB
)

, in other words, the element znk exists and

znk ∈
(
A+ γn,αB +NΩ(tnk )

)−1
(φn

k − Bωn
k−1), (4.5)

which entails the existence of the claimed sequence (unk), k = 1, . . . , n.

Lemma 4.1. Assume that hypotheses (HΩ), (HA), (HB) and (Hφ) are made. There exists two real num-
bers c1 > 0 and c2 > 0 such that, for any integer n ≥ 1 the following uniform estimates hold

∥znk ∥ ≤ c1 and ∥unk∥ ≤ c2, k = 1, . . . , n, (4.6)

where

c1 :=

{[(
4

ρ2
a2n,α +

2

ρ
∥B∥2

)
(∥y0∥+KTα)2 +

4

ρ

(
1

ρ
∥φ∥2∞ + β + ∥φ∞∥(∥y0∥+KTα)

)] 1
2

+∥u0∥
√

2

ρ
+

4

ρ2
∥B∥2

}
exp

(
Tα

Γ(α+ 1)

√
2

ρ
+

4

ρ2
∥B∥2

)
,

and

c2 = ∥u0∥+
c1T

α

Γ(α+ 1)
,

for any fixed point y0 ∈ Ω(0).

Proof. The inclusion (4.1) implies that

⟨φn
k −Aznk − Bunk , y − znk ⟩ ≤ 0, for any y ∈ Ω(tnk),

which gives by (4.4)

⟨Aznk + Bωn
k−1 + γn,αBznk − φn

k , z
n
k − y⟩ ≤ 0, for any y ∈ Ω(tnk),

hence

⟨Aznk + γn,αBznk , znk ⟩ ≤ ⟨Aznk + γn,αBznk , y⟩+ ⟨φn
k − Bωn

k−1, z
n
k − y⟩, for any y ∈ Ω(tnk),

the imposed assumptions (HA) and (HB) ensure that for any y ∈ Ω(tnk)

ρ∥znk ∥2 − β ≤ ⟨Aznk , znk ⟩+ γn,α⟨Bznk , znk ⟩︸ ︷︷ ︸
≥0

≤ ⟨Aznk + γn,αBznk , y⟩+ ⟨φn
k − Bωn

k−1, z
n
k − y⟩

≤ an,α∥y∥∥znk ∥+
(
∥B∥∥ωn

k−1∥+ ∥φn
k∥
)
(∥y∥+ ∥znk ∥)

= an,α∥y∥∥znk ∥+ ∥B∥∥y∥∥ωn
k−1∥+ ∥B∥∥ωn

k−1∥∥znk ∥+ ∥φn
k∥∥znk ∥+ ∥φn

k∥∥y∥, (4.7)

where an,α := ∥A∥+γn,α∥B∥. On the other side, due to the classical inequality pq ≤ 1
ρp

2+ ρ
4q

2, p, q ∈
R, it follows that

an,α∥y∥∥znk ∥ ≤
a2n,α
ρ

∥y∥2 + ρ

4
∥znk ∥2

∥B∥∥y∥∥ωn
k−1∥ ≤ 1

2
∥B∥2∥y∥2 + 1

2
∥ωn

k−1∥2

∥B∥∥ωn
k−1∥∥znk ∥ ≤ 1

ρ
∥B∥2∥ωn

k−1∥2 +
ρ

4
∥znk ∥2, ∥φn

k∥∥znk ∥ ≤ 1

ρ
∥φn

k∥2 +
ρ

4
∥znk ∥2.
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Accordingly, the inequality (4.7) brings us to

∥znk ∥2 ≤
(
2

ρ
+

4

ρ2
∥B∥2

)
∥ωn

k−1∥2 +
(

4

ρ2
a2n,α +

2

ρ
∥B∥2

)
∥y∥2 + 4

ρ

(
1

ρ
∥φn

k∥2 + β + ∥φn
k∥∥y∥

)

≤

(√
2

ρ
+

4

ρ2
∥B∥2∥ωn

k−1∥+
{(

4

ρ2
a2n,α +

2

ρ
∥B∥2

)
∥y∥2 + 4

ρ

(
1

ρ
∥φn

k∥2 + β + ∥φn
k∥∥y∥

)} 1
2

)2

,

consequently, for any y ∈ Ω(tnk ),

∥znk ∥ ≤
√

2

ρ
+

4

ρ2
∥B∥2∥ωn

k−1∥+
{(

4

ρ2
a2n,α +

2

ρ
∥B∥2

)
∥y∥2 + 4

ρ

(
1

ρ
∥φn

k∥2 + β + ∥φn
k∥∥y∥

)} 1
2

.

Since the latter inequality holds true for any y ∈ Ω(tnk ) then, the assumption (HC) along with the Lemma 2.6
guarantees the existence of some y ∈ Ω(tnk ) such that

∥y∥ ≤ ∥y0∥+KTα, for any fixed point y0 ∈ Ω(0),

this leads us to the following estimate

∥znk ∥ ≤
√

2

ρ
+

4

ρ2
∥B∥2∥ωn

k−1∥+ rn,α,y0 ,

where

rn,α,y0
:=

{(
4

ρ2
a2n,α +

2

ρ
∥B∥2

)
(∥y0∥+KTα)2 +

4

ρ

(
1

ρ
∥φ∥2∞ + β + ∥φ∥∞(∥y0∥+KTα)

)} 1
2

,

using the latter and (4.3), we obtain

∥znk ∥ ≤ rn,α,y0
+ ∥u0∥

√
2

ρ
+

4

ρ2
∥B∥2 + γn,α

√
2

ρ
+

4

ρ2
∥B∥2

k−1∑
p=1

∥znp ∥ ((k − p+ 1)α − (k − p)α) ,

applying discrete gronwall’s inequality stated in Lemma 2.5 yields

∥znk ∥ ≤
(
rn,α,y0

+ ∥u0∥
√

2

ρ
+

4

ρ2
∥B∥2

)
exp

(
γn,α

√
2

ρ
+

4

ρ2
∥B∥2

k−1∑
p=1

((k − p+ 1)α − (k − p)α)

)

≤
(
rn,α,y0

+ ∥u0∥
√

2

ρ
+

4

ρ2
∥B∥2

)
exp

(
Tα

Γ(α+ 1)

√
2

ρ
+

4

ρ2
∥B∥2

)
,

finally, the sequence (znk )1≤k≤n is uniformly bounded and

∥znk ∥ ≤

({(
4

ρ2
a2n,α +

2

ρ
∥B∥2

)
(∥y0∥+KTα)2 +

4

ρ

(
1

ρ
∥φ∥2∞ + β + ∥φ∞∥(∥y0∥+KTα)

)} 1
2

+∥u0∥
√

2

ρ
+

4

ρ2
∥B∥2

)
exp

(
Tα

Γ(α+ 1)

√
2

ρ
+

4

ρ2
∥B∥2

)
=: c1.

On the other side, the right boundedness property in (4.6) is a direct consequence of the last estimate and (4.2),
and therefore we are done with the proof of this lemma. □

After sequences (unk) and (znk ) are introduced via (4.2) and (4.5) respectively, we are now in a position
to define the sequences of functions un(·) and zn(·) as follows: un(0) = 0 and

un(t) = unk , zn(t) = znk , for every t ∈]tnk−1, t
n
k ], 1 ≤ k ≤ n. (4.8)

It is obvious that zn(·) ∈ L∞([0, T ];H) and then, according to Proposition 2.1, the mapping Iα0 zn(·) is
well-defined and Iα0 zn(0) = 0.

We consider the function θn(·) defined by θn(t) := tnk for any t ∈]tnk−1, t
n
k ] with θn(0) = 0. It is not

difficult to show that
sup

t∈[0,T ]
|θn(t)− t| ≤ δn → 0 as n→ 0.



50 I. KECIS, T. HADDAD, AND A. BOUACH

Finally, we introduce the function ûn : [0, T ] → H that will play the role of the approximate solutions
of the problem (IFSP):

ûn(t) = u0 + Iα0 zn(t), for all t ∈ [0, T ]. (4.9)

Lemma 4.2. For any t ∈ [0, T ]( and then t ∈]tnk−1, t
n
k ] for some 1 ≤ k ≤ n), one has

ûn(t) = u0 +
1

Γ(α+ 1)

znk (t− tnk−1)
α −

k−1∑
p=1

znp [(t− tnp )
α − (t− tnp−1)

α]

 , (4.10)

in particular
ûn(t

n
k) = unk . (4.11)

Proof. Let t ∈ [0, T ] and let k ∈ {1, . . . , n} be such that t ∈]tnk−1, t
n
k ] then

ûn(t) = u0 + Iα0 zn(t) = u0 +
1

Γ(α)

t∫
0

(t− s)α−1zn(s)ds

= u0 +
1

Γ(α)

k−1∑
p=1

tnp∫
tnp−1

(t− s)α−1zn(s)ds+

t∫
tnk−1

(t− s)α−1zn(s)ds


= u0 +

1

Γ(α)

k−1∑
p=1

znp

tnp∫
tnp−1

(t− s)α−1ds+ znk

t∫
tnk−1

(t− s)α−1ds

 ,

thus

ûn(t) = u0 +
1

Γ(α+ 1)

znk (t− tnk−1)
α −

k−1∑
p=1

znp [(t− tnp )
α − (t− tnp−1)

α]

 ,

which gives the desired formula of ûn(t), as well as the relationship (4.11). □

Lemma 4.3. Assume that hypotheses (HΩ), (HA), (HB) and (Hφ) are made. The following assertions
hold

(zn)n converges weakly to some z(·) in L∞([0, T ];H) (4.12)
(un(t)) converges weakly in H to u0 + Iα0 z(t), for all t ∈ [0, T ] (4.13)
lim
n→∞

(un(t)− ûn(t)) = 0. (4.14)

Here, the convergence of (zn)n to z(·) is considered in the weak star topology of L∞([0, T ];H), that is

lim
n→∞

∫ T

0
⟨zn(t), ζ(t)⟩dt =

∫ T

0
⟨z(t), ζ(t)⟩dt, for any ζ ∈ L1([0, T ];H).

Proof. The claimed properties follow directly from the proof of Theorem 3.5 in [25]. However, the
property (4.14) can be also proved as follows, let t ∈ [0, T ] and let k ∈ {1, . . . , n} such that t ∈]tnk−1, t

n
k ]

then
∥ûn(t)− un(t)∥ = ∥ûn(t)− ûn(t

n
k)∥ = ∥Iα0 zn(t)− Iα0 zn(t

n
k)∥ = ∥Iα0 zn(t)− Iα0 zn(θn(t))∥,

by what precedes, zn(·) ∈ L∞([0, T ];H) and ∥zn∥∞ ≤ c1, this combined with the Proposition 2.1
ensures the existence of some Lα > 0 such that

∥ûn(t)− un(t)∥ ≤ c1Lα|θn(t)− t|α → 0 as n→ ∞.

□
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After establishing all the above auxiliary properties, we come to our main result in this work which
provides the well-posedness (in the sense of existence) of the inclusion (IFSP) in a finite dimensional
Hilbert space. That will be done under the assumption that the operator A is semicoercive.

Theorem 4.4. Assume that hypotheses (HΩ), (H′
A), (HB) and (Hφ) are satisfied. Then, for any initial

condition u0 ∈ H , the implicit fractional sweeping process (IFSP) has at least one α-Hölderian solution
u : [0, T ] → H satisfying

u(·) ∈ {u0}+ Iα(L∞([0, T ]);H)), (4.15)
CDα

0u(t) ∈ Ω(t) a.e t ∈ [0, T ], (4.16)
and

∥CDα
0u(t)∥ ≤ c1 a.e t ∈ [0, T ]. (4.17)

Proof. The proof will be divided into several steps.
Step 1: We prove that

(ûn(t)) converges in H to u(t) := u0 + Iα0 z(t), for all t ∈ [0, T ]. (4.18)

Due to the inequality (4.6), it results that for any t ∈ [0, T ], ∥ûn(t)∥ ≤ ∥u0∥ + Tc1
Γ(α) . This means that

(since dim(H) < +∞) the set {un(t), n ∈ N} is relatively compact in H for every t ∈ [0, T ]. On the
other hand, by (a) of Proposition 2.1, one can find some real Lα > 0 such that for all t, s ∈ [0, T ]

∥ûn(t)− ûn(s)∥ = ∥Iα0 zn(t)− Iα0 zn(t)∥ ≤ c1Lα|t− s|α,

then, for any ε > 0 there exists some real δ(ε) :=
(
ε/(c1Lα)

)1/α
> 0 such that all t, s ∈ [0, T ] and for

any n ∈ N
|t− s| < δ(ε) ⇒ ∥ûn(t)− ûn(s)∥ < ε,

which translates the equicontinuity of the family {xn(·), n ∈ N}. Getting all the above together and
using Arzelà-Ascoli’s theorem, we deduce that (ûn(·))n has a subsequence (not relabeled) converging
uniformly to a mapping u(·) ∈ C([0, T ];H) with u(0) := u0. Pick an arbitrary time t ∈ [0, T ] then

∥u(t)− u0 − Iα0 z(t)∥ ≤ ∥u(t)− ûn(t)∥+ ∥ûn(t)− un(t)∥+ ∥un(t)− u0 − Iα0 z(t)∥,

since dim(H) < +∞, it results form (4.13) and (4.14), after passing to the limit as n → +∞, that
u(t) = u0 + Iα0 z(t), which gives the inclusion (4.15). Furthermore, the assertion (b) of Proposition 2.2
allows us to get

CDα
0u(t) = z(t), a.e t ∈ [0, T ].

Bearing in mind that CDα
0 ûn(t) = zn(t) a.e t ∈ [0, T ] so, the weak convergence of CDα

0 ûn(·) to CDα
0u(·)

in L∞([0, T ];H) is a direct consequence of (4.12). On the other hand, for all t, s ∈ [0, T ]

∥u(t)− u(s)∥ = lim
n→+∞

∥ûn(t)− ûn(s)∥ ≤ c1Lα|t− s|α, (4.19)

which translates the α-Hölder property of u(·). By what precedes, for almost every t ∈ [0, T ]

∥CDα
0u(t)∥ ≤ ∥CDα

0u∥L∞([0,T ];H) ≤ lim inf
n→+∞

∥CDα
0 ûn∥L∞([0,T ];H) ≤ c1,

this ensures the claimed inequality (4.17).

Step 2: We show that CDα
0u(t) ∈ Ω(t) for almost every t ∈ [0, T ].

According to the above analysis and by virtue of Mazur’s lemma, for each n ∈ N there exists some
sequence of convex combinations of the form(K(n)∑

k=n

σk,n
CDα

0 ûk

)
n

with σk,n ≥ 0 and
K(n)∑
k=n

σk,n = 1,
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converging strongly to CDα
0u in L∞([0, T ];H). Extracting a subsequence, we may suppose that there

exists some negligible set N ⊂ [0, T ] such that
(

K(n)∑
k=n

σk,n
CDα

0 ûk(t)

)
n

converges in H to CDα
0u(t) as

n → +∞ for all t ∈ [0, T ]\N . The inclusion CDα
0 ûn(t) ∈ Ω(θn(t)) a.e t ∈ [0, T ] with the help of

[15, Proposition 2.6] and the convexity of Ω(θn(t)) entails that for all t ∈ [0, T ]\N (without loss of
generality, we keep the same negligible set N )

K(n)∑
k=n

σk,n
CDα

0 ûk(t) ∈ Ω(θn(t)),

this yields, for all t ∈ [0, T ]\N

dΩ(t)(
CDα

0u(t)) = dΩ(t)(
CDα

0u(t))− dΩ(t)

K(n)∑
k=n

σk,n
CDα

0 ûk(t)

+ dΩ(t)

K(n)∑
k=n

σk,n
CDα

0 ûk(t)


− dΩ(θn(t))

K(n)∑
k=n

σk,n
CDα

0 ûk(t)


≤
∥∥∥∥CDα

0u(t)−
K(n)∑
k=n

σk,n
CDα

0 ûk(t)

∥∥∥∥+K|t− θn(t)|α,

letting n → ∞ and taking the closedness of Ω(t) into account, we obtain that CDα
0u(t) ∈ Ω(t) for

almost every t ∈ [T0, T ].
Step 3 We prove that

ACDα
0u(t) + Bu(t) ∈ −NΩ(t)

(
CDα

0u(t)
)
+ φ(t) a.e t ∈ [0, T ].

Fix any integer n ∈ N, the inclusion (4.1) along with the the above considerations bring us to the
inclusion

φ(θn(t))−Azn(t)− Bûn(θn(t)) ∈ NΩ(θn(t))(zn(t)),

the application of (2.3) gives

σ(Ω(θn(t)), ξn(t)) = ⟨ξn(t), zn(t)⟩, a.e t ∈ [0, T ], (4.20)

where ξn(t) := φ(θn(t))−Azn(t)− Bûn(θn(t)). Further, according to the Hölderian behavior of the
sets Ω(t), t ∈ [0, T ] with the help of the equality (2.4) one has, for any a ∈ H

σ(Ω(t), a) = sup
y∈Ω(t)

⟨y, a⟩ ≤ sup
y∈Ω(θn(t))+|t−θn(t)|αB

⟨y, a⟩ = σ(Ω(θn(t)) + |t− θn(t)|αB, a)

= σ(Ω(θn(t)), a) + σ(|t− θn(t)|αB, a)
≤ σ(Ω(θn(t)), a) + |t− θn(t)|α∥a∥,

which yields by (4.11) and (4.20)

σ(Ω(t), ξn(t)) ≤ σ(Ω(θn(t)), ξn(t)) + νn(t) = ⟨ξn(t), zn(t)⟩+ νn(t), (4.21)

where
νn(t) := (∥φ∥∞ + c1∥A∥+ c2∥B∥)|t− θn(t)|α → 0 as n→ +∞.

Integrating the inequality (4.21) brings us to∫ T

0
(σ(Ω(t), ξn(t))− ⟨ξn(t), zn(t)⟩) dt ≤

∫ T

0
νn(t)dt,
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passing to the inferior limit when n → +∞ in the previous inequality and using the Lebesgue Domi-
nated Theorem, one gets

lim inf
n→+∞

(∫ T

0
σ(Ω(t), ξn(t))dt+

∫ T

0
⟨−ξn(t), zn(t)⟩dt

)
≤ 0. (4.22)

Recalling that the mapping

ζ ∈ L2([0, T ];H) 7→
∫ T

0
σ(Ω(t), ζ(t))dt,

is lower semicontinuous with respect to the weak topology of L2([0, T ];H) thanks to [20, Corollary
p227] (one can also consult [6] for various extensions in more general settings). Further, it is not difficult
to check that ξn(·) converges to ξ(·) := φ(·)−Az(·)−Bu(·) in the weak star topology of L∞([0, T ];H),
which in turn implies its weak convergence in L2([0, T ];H). Consequently∫ T

0
σ(Ω(t), ξ(t))dt ≤ lim inf

n→+∞

∫ T

0
σ(Ω(t), ξn(t))dt. (4.23)

On the other side, since the operator A is semi-definite and symmetric, one gets

2 lim inf
n→+∞

∫ T

0
⟨Az(t), zn(t)⟩dt−

∫ T

0
⟨Az(t), z(t)⟩dt ≤ lim inf

n→+∞

∫ T

0
⟨Azn(t), zn(t)⟩dt,

this yields ∫ T

0
⟨Az(t), z(t)⟩dt ≤ lim inf

n→+∞

∫ T

0
⟨Azn(t), zn(t)⟩dt, (4.24)

the last inequality being due to the weak convergence of zn(·) to z(·) in L∞([0, T ];H). By the previous
development, we have

∣∣∣∣ ∫ T

0

(
⟨Bûn(θn(t)), zn(t)⟩ − ⟨Bu(t), z(t)⟩

)
dt

∣∣∣∣
=

∣∣∣∣ ∫ T

0
(⟨Bûn(θn(t))− Bu(t), zn(t)⟩+ ⟨Bu(t), zn(t)− z(t)⟩) dt

∣∣∣∣
≤ c1∥B∥

∫ T

0
∥ûn(θn(t))− u(t)∥dt+

∣∣∣∣ ∫ T

0
⟨Bu(t), zn(t)− z(t)⟩dt

∣∣∣∣, (4.25)

by passage to the limit as n→ ∞ with the use of the weak convergence of zn(·) to z(·) and the uniform
convergence of ûn(·) to u(·), we deduce that

lim
n→+∞

∫ T

0
⟨Bûn(θn(t)), zn(t)⟩dt =

∫ T

0
⟨Bu(t), z(t)⟩dt. (4.26)

By what precedes, zn(·) converges weakly to z(·) in L∞([0, T ];H) and φ(θn(·)) converges strongly to
φ(·) in L1([0, T ];H), it follows directly that

lim
n→+∞

∫ T

0
⟨φ(θn(t)), zn(t)⟩dt =

∫ T

0
⟨φ(t), z(t)⟩.

Combining the latter equality with (4.22), (4.23), (4.24) and (4.26) to obtain∫ T

0

(
σ(Ω(t), ξ(t))− ⟨ξ(t), CDα

0u(t)⟩
)
dt ≤ 0, (4.27)
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bearing in mind that CDα
0u(t) ∈ Ω(t) for a.e t ∈ [0, T ], so σ(Ω(t), ξ(t)) − ⟨ξ(t), CDα

0u(t)⟩ ≥ 0 for a.e
t ∈ [0, T ] and then∫ T

0

(
σ(Ω(t), ξ(t))− ⟨ξ(t),CDα

0u(t)⟩
)
dt ≥

∫ τ

0

(
σ(Ω(t), ξ(t))− ⟨ξ(t),CDα

0u(t)⟩
)
dt ≥ 0, for all τ ∈ [0, T ],

taking (4.27) into account, we get∫ τ

0

(
σ(Ω(t), ξ(t))− ⟨ξ(t),CDα

0u(t)⟩
)
dt = 0, for all τ ∈ [0, T ]

⇒ σ(Ω(t), ξ(t)) = ⟨ξ(t),CDα
0u(t)⟩, a.e t ∈ [0, T ],

with the above notations and through the equality (2.3), we conclude that
ACDα

0u(t) + Bu(t) ∈ −NΩ(t)

(
CDα

0u(t)
)
+ φ(t) a.e t ∈ [0, T ].

This completes the proof of the theorem. □

Remark 4.5. As we see in (4.25), the strong convergence of ûn(t) to u(t) is required to prove that∫ T

0
∥ûn(θn(t))− u(t)∥dt −→ 0. (4.28)

So, contrary to what is known in classical sweeping process with the usual derivative u̇(t), the weak
convergence of ûn(t) to u(t), which can be proved in the setting of an infinite dimensional Hilbert
space with fractional derivative, is not sufficient to get the convergence in (4.28). This comes down
to the fact that the operator A is semi-coercive, which prevents us from using the Cauchy approach
(see the next section). To get around this difficulty, we have assumed that dimH < ∞ which allows
us to benefit from the Arzelà-Ascoli’s theorem. Aiming to highlight this situation in the usual setting,
i.e., where we deal with the classical implicit sweeping process, see for example [2] or [3], the weak
convergence of un(t) to u(t) is sufficient to obtain the inequality (4.26). Indeed, in such a case, one has∫ T

0
⟨Bu(t), u̇(t)⟩dt = 1

2
⟨Bu(T ), u(T )⟩ − 1

2
⟨Bu(0), u(0)⟩

≤ lim inf
n→+∞

(
1

2
⟨Bun(T ), un(T )⟩ −

1

2
⟨Bun(0), un(0)⟩

)
= lim inf

n→+∞

∫ T

0
⟨Bun(t), u̇n(t)⟩dt,

where these estimates are due to the following famous rule (given by an equality, see [11])
d

dt
∥υ(t)∥2 = d

dt
⟨υ(t), υ(t)⟩ = 2⟨υ(t), υ̇(t)⟩, (4.29)

for some absolutely continuous mapping υ(·). Whereas, in the fractional framework, as mentioned
above in (2.5), the equality (4.29) becomes an inequality and then we cannot benefit from the inferior
limit.

The next proposition presents a uniqueness result related to Theorem 4.4 in the case where the linear
operator B is coercive.
Proposition 4.6. In addition to the assumptions imposed in Theorem 4.4, we assume that the operator B
is coercive, that is, for all x ∈ H : ⟨Bx, x⟩ ≥ µ∥x∥2 for some µ > 0. Then, the sweeping process (IFSP)
admits one and only one α-Hölderian solution.

Proof. Since the existence result is established in Theorem 4.4, we only prove the uniqueness of solution.
To this end, let ui(·) : [0, T ] → H, i = 1, 2 be two solutions of (IFSP) with initial conditions u1(0) =
u2(0) = u0. Then, for a.e t ∈ [0, T ]〈

φ(t)−ACDα
0ui(t)− Bui(t), ζ − CDα

0ui(t)
〉
≤ 0, for any ζ ∈ Ω(t).
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Taking into account the inclusions CDα
0ui(t) ∈ Ω(t), i = 1, 2 a.e t ∈ [0, T ] and applying the last

inequality one time with ζ = CDα
0u2(t) and i = 1 and another time with ζ = CDα

0u1(t) and i = 2 and
adding the resulting inequalities, we get for a.e t ∈ [0, T ]〈
CDα

0u1(t)− CDα
0u2(t),A

(
CDα

0u1(t)− CDα
0u2(t)

)〉
+
〈
CDα

0u1(t)− CDα
0u2(t),B (u1(t)− u2(t))

〉
≤ 0,

using the fact A is semi-definite yields〈
CDα

0u1(t)− CDα
0u2(t),B (u1(t)− u2(t))

〉
≤ 0. (4.30)

Setting [0, T ] ∋ t 7→ Ψ(t) := ⟨B(u1(t)− u2(t)), u1(t)− u2(t)⟩, that is

Ψ(t) = V (u1(t)− u2(t)) where V (x) := ⟨Bx, x⟩, ∀x ∈ H.

Having in hand these notations and the inclusion u1(·) − u2(·) ∈ Iα(L∞([0, T ]);H)), we are in a
position to apply [8, Lemma 4.1] to conclude that Ψ(·) ∈ Iα(L∞([0, T ]);H)) and

CDα
0Ψ(t) ≤ ⟨∇V (u1(t)− u2(t)),

CDα
0u1(t)− CDα

0u2(t)⟩,

this combined with (4.30) entails
CDα

0 ⟨B(u1(t)− u2(t)), u1(t)− u2(t)⟩ ≤ 2⟨CDα
0u1(t)− CDα

0u2(t),B(u1(t)− u2(t))⟩ ≤ 0,

by virtue of (a2) of Proposition 2.2 and the coercivity of B, it follows that

µ∥u1(t)− u2(t)∥2 ≤ ⟨B(u1(t)− u2(t)), u1(t)− u2(t)⟩ ≤ 0, for all t ∈ [0, T ],

which ensures the equality u1(·) = u2(·) and translates the claimed uniqueness. □

5. Coercivity Settings

In this section, we are going to strengthen the hypothesis (3.1) imposed on A by assuming that A is
ρ-coercive. More precisely, in place of (HA), we will consider the assumption (H′

A), that is

⟨Ax, x⟩ ≥ ρ∥x∥2, ∀x ∈ C(0) for some ρ > 0. (5.1)

In such a case, some nice properties can be obtained concerning the approximate solutions (un(·))n
and the approach used along the paper as well.

Proposition 5.1. Let H be an dimensional Hilbert space. Assume that the conditions (HΩ), (H′
A), (HB)

and (Hφ) are made. Then (ûn)n is a Cauchy sequence in C([0, T ];H) converging uniformly in C([0, T ];H)
to a solution u : [0, T ] → H and satisfying the properties (4.15), (4.15) and (4.17).

Proof. Let us fix n,m ∈ N, the inclusion (4.1) along with the formulas of ûn, zn and θn bring us to the
inclusions 

φ(θn(t))−Azn(t)− Bûn(θn(t)) ∈ NΩ(θn(t))(zn(t))

φ(θm(t))−Azm(t)− Bûm(θm(t)) ∈ NΩ(θm(t))(zm(t))
, a.e t ∈ [0, T ], (5.2)

making use of the definition of the normal cone, we get

⟨φ(θn(t))−Azn(t)− Bûn(θn(t)), y1 − zn(t)⟩ ≤ 0,∀y1 ∈ Ω(θn(t)), (5.3)

and
⟨φ(θm(t))−Azm(t)− Bûm(θm(t)), y2 − zm(t)⟩ ≤ 0, ∀y2 ∈ Ω(θm(t)). (5.4)

The implicit constraints in (5.2) combined with the assumption (HΩ) give

zn(t) ∈ Ω(θn(t)) ⊂ Ω(θm(t)) +K|θn(t)− θm(t)|αB
zm(t) ∈ Ω(θm(t)) ⊂ Ω(θn(t)) +K|θn(t)− θm(t)|αB,
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coming back to (5.3) and (5.4) we obtain that for any v1, v2 ∈ B

⟨Azn(t), zn(t)− zm(t)⟩ ≤ ⟨Bûn(θn(t))− φ(θn(t)), zm(t)− zn(t)⟩
+K|θn(t)− θm(t)|α⟨φ(θn(t))−Azn(t)− Bûn(θn(t)), v1⟩

and
⟨−Azm(t), zn(t)− zm(t)⟩ ≤ ⟨Bûm(θm(t))− φ(θm(t)), zn(t)− zm(t)⟩

+K|θn(t)− θm(t)|α⟨φ(θm(t))−Azm(t)− Bûm(θm(t)), v2⟩,

putting these last two inequalities together and using the coercivity of A and the inclusions zn(t) ∈
Ω(θn(t)), zm(t) ∈ Ω(θm(t)), we observe after simplifying

ρ∥zn(t)− zm(t)∥2 ≤ ⟨Bûm(θm(t))− Bûn(θn(t)), zn(t)− zm(t)⟩
+ ⟨φ(θn(t))− φ(θm(t)), zn(t)− zm(t)⟩+Qn,m(t),

where
Qn,m(t) := K|θn(t)− θm(t)|α⟨φ(θn(t))−Azn(t)− Bûn(θn(t)), v1⟩

+K|θn(t)− θm(t)|α⟨φ(θm(t))−Azm(t)− Bûm(θm(t)), v2⟩.
Let us establish an upper bound of the mapping Qn,m. This will be done by applying Proposition 2.1 as
follows

∥ûn(t)∥ ≤ ∥u0∥+ ∥Iα0 zn(t)− Iα0 zn(0)∥ ≤ ∥u0∥+ Lαc1T
α =: ĉ,

for some real number Lα > 0. Consequently
|Qn,m(t)| ≤ 2(∥φ∥∞ + c1∥A∥+ ĉ∥B∥)K|θn(t)− θm(t)|α,

this leads to

∥zn(t)− zm(t)∥2 − ∥B∥
ρ

∥ûn(θn(t))− ûm(θm(t))∥∥zn(t)− zm(t)∥ − En,m(t) ≤ 0, (5.5)

where

En,m(t) :=
2

ρ
(∥φ∥∞ + c1∥A∥+ ĉ∥B∥)K|θn(t)− θm(t)|α +

2c1
ρ

∥φ(θn(t))− φ(θm(t))∥.

The expression (5.5) represents a quadratic inequality of the form r2 + a1r + a2 ≤ 0, its discriminant
∆ = a21 − 4a2 is nonnegative where

r := ∥zn(t)− zm(t)∥, a1 := −∥B∥
ρ

∥ûn(θn(t))− ûm(θm(t))∥, a2 := −En,m(t).

Then, the estimate 0 ≤ r ≤ 1
2(−a1 +

√
∆) is satisfied, which entails that

r2 ≤ 1

4
(−a1 +

√
∆)2 ≤ 1

2
(a21 +∆) = a21 − 2a2,

thus

∥zn(t)− zm(t)∥2 ≤ ∥B∥2

ρ2
∥ûn(θn(t))− ûm(θm(t))∥2 + 2En,m(t)

≤ ∥B∥2

ρ2
(
∥ûn(t)− ûm(t)∥+ ∥ûn(θn(t))− ûn(t)∥+ ∥ûm(t)− ûm(θm(t))∥

)2
+ 2En,m(t)

≤ 2
∥B∥2

ρ2
∥ûn(t)− ûm(t)∥2 + Fn,m(t), (5.6)

where

Fn,m(t) := 2
∥B∥2

ρ2

(
c1L1,α (|θn(t)− t|α + |θm(t)− t|α)

)2

+ 2En,m(t),
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for someL1,α > 0. Because of the boundedness zn(·), the Proposition 2.2 allows us to write CDα
0 ûn(t) =

zn(t) for almost every t ∈ [0, T ], which gives thanks to (5.6)

⟨CDα
0 ûn(t)− CDα

0 ûm(t), ûn(t)− ûm(t)⟩ ≤ 1

2
∥zn(t)− zm(t)∥2 + 1

2
∥ûn(t)− ûm(t)∥2

≤
(
∥B∥2

ρ2
+

1

2

)
∥ûn(t)− ûm(t)∥2 + 1

2
Fn,m(t). (5.7)

Further, putting gn,m(t) := ûn(t)− ûm(t) = Iα0 (zn−zm)(t) where (zn−zm) is a (uniformly) bounded
mapping. Then gn,m(·) ∈ Iα(L∞([0, T ];H)), which in turn ensures the inclusion
∥gn,m(·)∥2 ∈ Iα(L∞([0, T ];H)) according to Lemma 2.3. Keeping in mind that gn,m(0) = 0 and
applying Lemma 2.3 again, one obtains

CDα
0 ∥gn,m(t)∥2 ≤ 2⟨CDα

0 gn,m(t), gn,m(t)⟩, a.e t ∈ [0, T ],

the latter together with (5.7) gives us

CDα
0 ∥gn,m(t)∥2 ≤

(
2∥B∥2

ρ2
+ 1

)
∥gn,m(t)∥2 + Fn,m(t), (5.8)

since gn,m(·) ∈ Iα(L∞([0, T ];H)), the Proposition 2.2 guarantees that

∥gn,m(t)∥2 ≤
(
2∥B∥2

ρ2
+ 1

)
Iα0 ∥gn,m(t)∥2 + Iα0 Fn,m(t).

It is not difficult to prove that the mapping

[0, T ] ∋ t 7→ hn,m(t) := Iα0 Fn,m(t) =
1

Γ(α)

t∫
0

(t− s)α−1Fn,m(s)︸ ︷︷ ︸
≥0

ds,

is nondecreasing and belongs to L1([0, T ];R). So, by applying Gronwall inequality stated in Lemma
2.4, we get the following estimate

∥gn,m(t)∥2 ≤ hn,m(t)Eα

((
2∥B∥2

ρ2
+ 1

)
tα
)

≤ Eα

((
2∥B∥2

ρ2
+ 1

)
Tα

)
hn,m(t).

On the one hand, for any t ∈ [0, T ] and any s ∈ [0, t], elementary computations allow us to find some
real number R > 0 such that

1

Γ(α)
(t− s)α−1Fn,m(s) ≤ R,

on the other hand, through the continuity of φ(·) and the convergence of θn(t) to t, we see that
limn,m→∞ Fn,m(t) = 0. Making use of the Lebesgue dominated Theorem, we obtain

lim
n,m→∞

hn,m(t) = 0,

which entails that limn,m→∞ supt∈[0,T ] ∥ûn(t) − ûm(t)∥ = 0 and translates the Cauchy criterion of
(ûn)n in C([0, T ];H). Consequently, (ûn)n converges uniformly to some mapping u ∈ C([0, T ];H)
which represents a solution of the main problem (IFSP). □
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2013.

[14] B. Maury and J. Venel. Un modèle de mouvement de foule. ESAIM: Proceedings, 18:143-152, 2007.
[15] B. S. Mordukhovich and N. M. Nam. Convex Analysis and Beyond, Volume I. Cham: Springer International Publishing,

2022.
[16] J. J. Moreau. Rafle par un convexe variable I. Travaux du Séminaire d’Analyse Convexe, Exposé 15. Montpellier, 1971.
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