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ABsTRACT. This paper deals with the existence of solutions for a novel variant of fractional sweeping
processes, where the Caputo type derivative belongs to the set of constraints which is assumed to be closed
convex and varies in a Holderian way. By using a modified catching-up algorithm, we construct a family
of approximate solutions that converges to a Holderain solution of the evolution inclusion under the
semicoercivity condition of the considered operator. The Cauchy criterion of the approximate solutions
in an infinite dimensional Hilbert space is obtained under some additional condition.
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1. INTRODUCTION

The sweeping process, first introduced and extensively studied by J.J. Moreau in a series of papers [16,
17, 18, 19], was originally designed to model quasi-static evolution of elastoplastic systems in unilateral
mechanics. His work not only established a precise mathematical framework but also broadly used as
a foundation for numerous extensions and practical applications in the decades that followed such as:
switched electrical circuits [1, 3], nonsmooth mechanics [13], crowd motion [14] among others.

Let H be a Hilbert space and let 7" > 0 be a nonnegative real number. Moreau’s approach provides a
way to describe the evolution of a point that is swept by a moving set 2 : [0, 7] = H. Formally, such
model can be presented by the following generalized Cauchy problem

—(t) € Nog(u(t)) ae tel[0,T] (sP)
u(0) = ug € £(0),
where 4(t) stands for the time derivative of u(t) and a.e. (almost everywhere) means that the inclusion
holds on a set in [0, 7] of full Lebesgue measure. Whereas, u(t) represents the state of the system at
time ¢, Q(t) is a time-dependent (moving) set, usually convex, representing the set of constraints, minus
sign reflects resistance to leaving the set €2(t) and N (u(t)) denotes the (outward) normal cone to
the set €(¢) at the point u(t) in the sense of convex analysis.

The Fractional calculus and its associated differential equations and inclusions has emerged as a pow-
erful mathematical tool due to its numerous applications in applied mathematics, unilateral mechanics
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and various fields of sciences and engineering. Recently in [25, 26] Zeng et al. introduced and studied
for the first time the so-called fractional sweeping process defined as follows

{ACTD)S“u(t) € —No(u(t)) + f(t,u(t)) ae tel[0,T]
u(0) = up € 2(0),

where “Dgu(t) is the (left-sided) Caputo fractional derivative of order 0 < o < 1 of u(-) and the sets
Q(t) are assumed convex or prox-regular and varies in a-Holder continuous way. Later in [7, 5] the
authors proposed a new variant with Caputo fractional derivative in the constraint and provided an
application in contact problems. This novel variant has the following form

{A%gu(t) € —No) (ADgu(t) + Bu(t)) ae. te[0,T]
u(0) = ug € 2(0),

where A, B : H — H are two linear bounded operators such that A is coercive and B is semi-definite.

Let ¢ : H — H be a mapping. In this paper, we are interested in a novel variant of the fractional
sweeping sweeping process, say the implicit fractional sweeping process with Caputo velocity constraint

ADGu(t) + Bu(t) € —Nag) (“Dgu(t)) + ¢(t) aet € [0,T],
(ZFSP)
u(0) = uyp.

As we see, the fractional derivative CTD)S‘u(t) appears in both sides of the first relationship of (ZFSP)
which translates the implicit aspect of the problem. This study represents an extension of what exists in
the usual implicit sweeping processes (see [3, 2] ) to the fractional setting. We use a modified catching-
up algorithm to construct a sequence of approximate solutions (u,(-)), and then, prove its uniform
convergence to the desired solution (-). This will be done in a finite dimensional Hilbert space under
the assumptions that the set of constraints {2(¢) is supposed to vary in a-Holder continuous way with
respect to time and A is semi-coercive operator. The finite dimensional condition limits the applica-
tions for this new variant in some Hilbert space, for this reason, we assume in the last section that A
is coercive wich makes the differential inclusion (ZFSP) having Holderian solution even in infinite
dimensional space by showing the Cauchy criterion of the approximate solutions (uy,(+))n.

The paper is organized as follows. In the next section, we recall some standard tools from convex
analysis and fractional calculus which are involved throughout the paper. In section 3, we gather the
notations and the hypotheses used along the paper. We prove in section 4 some auxiliary results which
will be needed in the rest of the paper as well as the existence result of the evolution inclusion (ZFSP).
The last section is devoted to establish the existence of solution in a general Hilbert space under the
coercivity condition on the operator .A.

2. NOTATION AND PRELIMINARIES

In all the paper, unless otherwise stated, J := [0,7],T > 0is an interval of R and H is a (real) infinite
dimensional Hilbert space whose scalar product will be denoted by (-, -) and the associated norm by ||-||.
Forany x € Hand n > 0, the closed (respectively open) ball centered at « with radius 7 will be denoted
by Bz, n)] (respectively B(x,n)). For z = 0 and = 1, we will put By or B in place of B|0, 1]. Further,
if 2 is a subset of H, we denote by dq(-) or 4(-, 2) the indicator function of €, that is, (z,Q2) = 0 if
x € 2 and +o0 otherwise.

We will denote by C(J; H) the space of continuous maps from .J to H. It is well known that C(.J; H)
is a Banach space equipped with the norm of the uniform convergence denoted by || - ||l¢(s.m) or || - [0
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and defined as follow
|P]|oo := max |®(t)]|, forall ® € C(J; H).
€

For p € [1,+00], we denote by LP(.J; H) the quotient of all A-Bochner measurable maps ¢ : J — H
such that || ®(-)|| belongs to LP(.J;R). The space LP(J; H) will be endowed with the norm || - ||, given

by
ol = ( | ' o(01Pa) "

whereas, the one on the space L°°(.J; H) of essentially bounded measurable maps will be denoted by
| - [[L~ and given by

|@]|Loe :=inf{c > 0: ||®(t)|| < c forae t € J}.

Whenever there is no ambiguity concerning either the norm || - || or || - || oo, we will merely denote
|| - | in place of || - || Lo

Given an extended real-valued function ® : H — R U {+oco}, the subdifferential of ® at a point
z € dom @ (in the sense of convex analysis) is the set (may be empty) defined by

00(x):={ve H: (v,y—z) < P(y) — P(x), forally € H}, (2.1)

where dom® := {y € H : ®(y) < +oo} is the effective domain of ®. When ®(z) = +o0, by
convention dp(z) = (), that is © ¢ Dom 0®, where Dom F' := {z € H : F(x) # ()} is the domain of a
set-valued map F' : H = H and

gph F:={(z,y) e HxH:y € F(z)},

is the graph of F'.

Let €2 be a nonempty closed convex subset of H. We define three functions that are of great interest in
modern convex analysis (see [22, 23]). Those particular functions correspond to the support functions
o(€2,-) of 2 and to the distance function dq(-) from the set 2 respectively, given by

o(Q,:) : H— RU{+o0} witho(,() :=sup (z,(),
e

do(-) : H — Ry with do(z) = inf ||z — y]|.
YyeN

The notion of support function o (€2, -) can be used to characterizes the closed convex set 2 through
the following equivalence property

x € Q ifand only if (¢,z) < o(£,() forall ¢ € H. (2.2)

According to (2.1) and for x € 2, it is straightforward to see that an element £ € 0vYq(x) if and
only if ({,v —x) < 0 for all v € €, so 0Yq(x) is the set of outward normals of 2 at the point z € 2
denoted by Nq(z) and defined by

No(z) ={d e H: (¥,z —x) < O0forall z € Q}.
We derive from the last relationship that
¥ € Nq(z) & 0(Q2,9) = (¢,2) andz € Q. (2.3)
Moreover, for any nonempty subsets {21, 2y C H we have the representation

U(Ql + Q27 ) = U(le ) + U(Q27 ) (24)
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Now, we recall some basic definitions and properties related to fractional calculus; we refer the
reader to [21, 10, 8] for more details and discussions. Let z(-) € L!([0, T]; H), the (left-sided) Riemann-
Liouville fractional (Bochner) integral of order 0 < v < 1 is defined by

(1§)(0) = I§(0) = s

t
! ] /0 (t — s)* ta(s)ds,

where I'(+) is the Euler’s Gamma function defined by I'(«) := 0+°° t*~le~tdt. The following propo-
sition collects some fundamental characterizations and properties of the Riemann-Liouville fractional
integral.

Proposition 2.1 (See [8] ). Let o €]0,1] and p E]é, +00]. Then

(a) Foranyd(-) € LP([0,T); H), the value (I§V)(t) is well defined for anyt € [0, T, and (1§V)(0) =
0.

(b) There exists Lo, > 0 such that, for any 9(-) € LP([0,T];H) and anyt,s € [0,T], the inequality
below is valid

a_l
(L5 0)(t) — (g D) ()] < Lalldllplt — s|™ 7,
where% = 0 if p = oo. In particular, (1*9)(-) € C(]0, T]; H).

For a mapping z(-) : [0,7] — H, the (left-sided) Riemann-Liouville fractional derivative of order
0 < a < 11is defined by

(Dgz)(t) = gx(t)zr(ll_oé)jt /O (1 — 5)=“u(s)ds.

One also defines the (left-sided) Caputo fractional derivative of order 0 < av < 1 by

1 d

(“D§z)(t) = D (t) = DF (x(-) - 2(0))(t) = o)l /0 (t =) (x(s) — 2(0))ds,

provided that the right hand side is well-defined.
Let us describe some properties of the Riemann-Liouville fractional derivative. Prior this, let us

define the set Z%(L*>°([0, T]; H)) by
Z(L>°([0,T; H)) == {x(-) : [0,T] — H: Ju(-) € L>=([0,T]; H) : z(t) = I§v(t),Vt € [0,T]}.

Proposition 2.2 (See [8] ). Let0 < o < 1 then
(a) For any mapping x(-) € Z*(L*°([0,T]; H)) one has
(a1) The mapping t — ("D&x)(t) is well defined for almost every t € [0,T], and ("D§z)(-) €
Lo ([0, T'); HI).
(ag) The equality (1§D x)(t) = x(t) is valid for anyt € [0,T).
(b) For any mapping w(-) € L°([0, T]; H) : (MD§I¢w)(t) = w(t) for almost everyt € [0,T).

The next lemma provides an extension of this famous property in the fractional framework.

Lemma 2.3. Let 0 < o < 1 and let z(-) € Z%(L*([0,T);H)) then [0,T] > t — |z(t)]® €
To(L([0, T H)) and

Sx@)? < 2(MDGa(t), 2(t)), aetc[0,T]. (2.5)

Now, let us recall a fractional version of Gronwall inequality proved for the first time in [9, Lemma
7.1.1]. We also refer the reader to [24, 12] and [4, Theorem 4.2] for other related results.
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Lemma 2.4. Given a nondecreasing function a(-) € LY([0,T];R.). Let 0 > 0, > 0 and u(-) €
LL([0, T); Ry.). Assume that for anyt € [0, T]
u(t) < plgu(t) + aft),
then
u(t) < a(t)Eo(ut®) onl0,T7,
where E,(-) is the Mittag-Leffler function defined by

00
Zk

Ey(z) = Z Tkt 1)’

k=0

We also need the following discrete version of Gronwall’s inequality.

Lemma 2.5. Let ) > 0 and let (6,), (ai,) be sequences of nonnegative real numbers such that

k—1
O <n+ Zapep, fork € N,
p=1
then
k—1
0, < nexp Z ap
p=1

To conclude this section, we establish an auxiliary result which will be used to give some bounded-
ness property of the constructed sequence.

Lemma 2.6. Let (€)(t))c[0,1] be a family of nonempty sets such that )(s) C Q(t) +w(|t —s|)B, Vt, s €
[0,T] wherew(-) : [0,T] — R is a continuous function. Then, for anyt € [0,T] we can find z € Q(t)
such that

1z[F < {lzoll + llwlloos
for any fixed element zo € $2(0). In particular, under the assumption (Hgq) stated below, we obtain

2] < flzol + KT (2.6)

Proof. Fix any zg € Q(0) and take arbitrary time ¢ € [0, 7] then zp € Q(t) + w(t)B, this means that
there exists z € Q(t) such that zyp € {z} + w(t)B, which in turn implies that z € {zp} + w(t)B. Then
1211 < llzoll + w(t) < [|zoll + [lwloo-

The inequality (2.6) is a direct consequence of the latter one with the choice w(t) := Kt®. g

3. MILD ASSUMPTIONS

For the sake of readability, in this section we collect the hypotheses used throughout the development
of the paper.
(Ha) Q) : [To,T] = H is a multimapping such that for each ¢ € [Ty, T, ©2(¢) is a nonempty closed
convex subset of H which moves in a a-Holderian way for some « €]0, 1], that is

Q(t) CQs)+ K|t —s|*B, Vit sel0,T].

(H,) ¢ :10,T7] — His a continuous mapping.

(HB) B:H — His a bounded, symmetric, linear, and semi-definite operator, that is (Bx, z) > 0 for
any z € H.

(Ha) A:H — His abounded, symmetric, linear, and semi-definite operator such that

(Az,z) > pllz||* — B, Vz € Q(0) for some p > 0 and 3 > 0. (3.1)
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(#'4) A:H — His abounded, symmetric, linear operator such that
(Az,z) > pllz||?, Yo € Q(0) for some p > 0. (3.2)
This last property means that the operator A is coercive on ©(0).

Lemma 3.1. Under assumptions (Hq), (Ha) and (Hp), the set-valued mapping
H > 2 — (Nqu + A+ pB) () is surjective for every t € [0,T] and any . > 0.

Proof. Firstly, let us prove that the operator A satisfies the inequality (3.1) over all the sets 2(¢),t €
[0,T]. Pick any t € [0, 7] then Q(t) C ©(0) +t*B. Let x € Q(t), then x — t*v € Q(0) for some v € B,
this entails trough (3.1)

(Alz = t), 2 — t*) > pllz — t%|* - 3
= (Az,2) > pllal|* = B+ **(pl|v]|* - | A]}) + 2t ((Az, v) — p(x,v)), forany t € [0, T],

letting ¢ | 0, we get the desired property. Now, observe that the operator Q) := Az + uB, > 0is
bounded, symmetric, linear, semi-definite and satisfies the following inequality

(Qz,z) = (Az,z) + u(Bz,z) > pl|z|*> — B for any z € Q(t) and any ¢ € [0, T.

Since the latter property is valid over all the sets €2(t), we are in a position to apply [2, Lemma 1] to get
the surjectivity of N o) + A + uB. O

4. MAIN REsSULTS

In this section, we use an implicit scheme to approximate the problem (ZFSP). In details, let be
given some positive integer n, we consider the partition of interval [0, 7' with the points ¢} = kd,
with §,, = % and let us set

50{
no_ + — n
Pk (/7( k)a Tn,a F(Oz ¥ 1)7
it results that ||} || < ||¢]|cc. Starting by the initial guess ug = ug, we construct a sequence (u}), k =
1,...,n by using the following iterate procedure

Azp + Bui € =Ny (21) + ¢k (4.1)
k

up =+ ey sy {(k—p+1)*—(k—p)°}, uf =uo. (4.2)
p=1

Let us justify the well-posedness of the suggested numerical method. Prior this, we introduce a se-
quence (wg)1<k<n as follows

k—1
WE_1 = U0+ Vna Zzg (k—p+1)*—=(k—p)%), wy=uo, (4.3)
p=1
then
Uy = wi_1 + Yna? - (4.4)

The equality (4.4) allows us to rewrite the inclusion (4.1) as follows
(A +m.aB)(2) + Bwi_1 € —Naun)(2r) + #F,
which is equivalent to

o — Buwl_, € (N o) + A+ %,QB) (2.
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The assumptions (1) and (Hp) with the help of the Lemma 3.1 guarantee the surjectivity of the

set-valued operator (N o) + A+ ’yn,aB), in other words, the element 2z}, exists and

-1
g€ (A+ymaB+Nagy)  (¢f = Bepy), (®5)
which entails the existence of the claimed sequence (u}!),k =1,...,n.

Lemma 4.1. Assume that hypotheses (Hq), (Ha), (HB) and (H,) are made. There exists two real num-
bers cy > 0 and co > 0 such that, for any integer n > 1 the following uniform estimates hold

lznll <er and  |Jup|| <coy, k=1,...,n, (4.6)
where

1
4 2 L 41 12

o = { [( T ||B||2) (ol + K72y + (nmzo T 8+ llpsoll(lloll + KT >)]
p p p\p
2

2 4 T 4
24 2 Bl2 - ]t 2 B)2),
ol + 1812 exp (o + 5161

and

for any fixed point yy € ©(0).
Proof. The inclusion (4.1) implies that
(pp — Azp — Bujl,y — z;7) <0, foranyy € Q(t3),
which gives by (4.4)
(A2 + Bwi_y +maBzl — o), 21 —y) <0, foranyy € Q(tf),
hence
(A2 + maBzis 21) < (Azi + YnaB2,y) + () — Bog_1, 2 —y), foranyy € Q(ty),
the imposed assumptions (# 4) and (Hp) ensure that for any y € Q(t}})
pllzil? = B < (A, 21) + ma(B2i, 7)) < (A + a2y y) + (0f — Bwi_y, 2 —y)
——’
>0
< anallllegh + (U1 + T2l ) ol + 21)
= anallyllllzE | + I1Bllllylllwr—i | + 1Bl llwk-1 [z + ller 1 + ek lyll,  4.7)
where ay, o = || A|| +Yn,a||B||- On the other side, due to the classical inequality pg < %pQ +£8¢% p,q €
R, it follows that
anallyllllzE]l < THZJH + 7 =kl

1 1
1Bl lgllllwr—1] < SUBIPlyI* + 5 llwi—1]1*

1 P 1 p
1B llwr—1 Il ]l < ;HBH2IIWZ_1H2 + 1201 ekllzR] < ;||SOZ||2 + 2017
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Accordingly, the inequality (4.7) brings us to
2 4 4 4 /1
P 2 < (+82) wh 2+( ana 82>y2 ( n2+ﬁ+ n y>
Il = {5+ Z2 IBI7 )kl + { 25 IBIZ ) llyl™+ 2 Skl lexllllyll

1 2
2 4 4 /1 2
(e (3 ) (s
( P 1BI*l|lwr 1l = H 1= ) llyll ; p|| rl eyl

consequently, for any y € Q(t}),

1

2 4 4 2 4 (1 B

zil <4/ + 5 IBIPlwi_ +{<afm+82) y2+< orll® + 8+ llor y>} .
Izl < 4/ 2 + ZIBIFllwil zna T DIBIE Vvl + 2 Zlerl lerllllyll

Since the latter inequality holds true for any y € Q(¢}) then, the assumption (H¢) along with the Lemma 2.6
guarantees the existence of some y € Q(¢?) such that

llyll < llyoll + KT,  for any fixed point yg € £2(0),

this leads us to the following estimate

2 4
26l < /= + S IBIPllwi—1 [l + Tn,am0
P P
where

4 (0%
trcnan = { (G + 2IBI7) (ol + K177 +

using the latter and (4.3), we obtain

k—1
n 2 4 n e [0
12211 < 7,00 +||uO||\/ 2HBII“r%,a o olBIP 2Nzl (e = p+ 1)% = (k= p)),

p=1

1
2

4 /(1 .
. (pnsonzo T8+ Il lvoll + KT >)} ,

applying discrete gronwall’s inequality stated in Lemma 2.5 yields

. 7 4 2 1 = .
1220 < oo+ luolly /=4 51BN ) exp { ymay [ 2+ 5 1B D ((k=p+1)* = (k-p))

p=1

2 4 T 2 4
< (rmcgo + luolly /2 + = |B||2) exp (\/ 2, ||B||2) ,
( v P Pla+1)Vp  p?

finally, the sequence (2} )1<k<n, is uniformly bounded and

4 4
|z7:||§<{(p2am ||B||2)<||yo||+/m>2 p(||<P||2+/6’+||<Poo||(||y0||+’CTa))}

2 T« 2 4
21 2 RBl2 _ 2 22 =
Hluolly 2+ 1812 ) exp sy 2 + 5181 ) =5

On the other side, the right boundedness property in (4.6) is a direct consequence of the last estimate and (4.2),
and therefore we are done with the proof of this lemma. O

After sequences (u}}) and (2}) are introduced via (4.2) and (4.5) respectively, we are now in a position
to define the sequences of functions u,(-) and z,(-) as follows: u,(0) = 0 and

un(t) =uy, 2zp(t) =2z;, foreveryte|ty_i,t7], 1<k<n. (4.8)
It is obvious that z,(-) € L*°([0, T'|; H) and then, according to Proposition 2.1, the mapping 'z, (-) is
well-defined and [z, (0) = 0.

We consider the function 6,,(-) defined by 6,,(t) := ¢} for any ¢ €]t} _,,¢}] with 6,,(0) = 0. It is not
difficult to show that

sup [0,(t) —t| <0, — 0asn — 0.
te[0,7)
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Finally, we introduce the function ,, : [0, 7] — H that will play the role of the approximate solutions
of the problem (ZFSP):
U (t) = uo + I§zn(t), forallt e [0,T). (4.9)

Lemma 4.2. Foranyt € [0,T]( and thent €]t]}_,,t}] for some1 < k < n), one has

k—1
-~ 1 n n (0% n ny« n (0%
Un(t) :Uo—i‘m 2 (t =t _y) _pz:lzp[(t_tp) —(t—=t0)° |, (4.10)
in particular
un () = up. (4.11)

Proof. Lett € [0,T] andlet k € {1,...,n} be such that ¢ €]t}_,,t}] then

t
1
Un(t) =uo + I§zn(t) =uo+ = /(t —5)* 12, (s)ds
0

I(a)
1 ko1 p ¢
= up + (o) (t —5)* 1z,(s)ds + / (t —5)*12,(s)ds
Pl ti
1 k—1 ty t
_U0+@ ZZIT)L (t—S)a 1d8+2’g /(t—S)a 1d8 s
p=1 tn tn
p—1 k—1
thus
1 k-1
Up(t) = uo + TatD 2 (t—t3_1)" — ; [t =) =t —t,_1) |
which gives the desired formula of %, (t), as well as the relationship (4.11). O

Lemma 4.3. Assume that hypotheses (Hq), (HA), (HB) and (H,) are made. The following assertions
hold

(zn)n converges weakly to some z(-) in L°°([0, 7']; H) (4.12)
(un(t)) converges weakly in H to ug + I z(t), forall ¢t € [0, 7] (4.13)
ILm (un(t) — up(t)) = 0. (4.14)
Here, the convergence of (zy,)n, to z(-) is considered in the weak star topology of L°°([0, T']; H), that is
T T
i [ (a0, CO)t = [ (0,cO)e, forany € L'(0. 7] ).

Proof. The claimed properties follow directly from the proof of Theorem 3.5 in [25]. However, the
property (4.14) can be also proved as follows, lett € [0, 7] andletk € {1,...,n} suchthatt €]t} _,,}]
then

Han(t) - un(t)” = Han(t) - an(tZ)H = ”Igézn(t) - I(?Zn(tZ)” = HI(?Zn(w - Igzn(en(t))uv
by what precedes, z,(-) € L*°([0,7];H) and ||zp|/cc < c¢1, this combined with the Proposition 2.1
ensures the existence of some L, > 0 such that

|Un(t) — un(t)|| < c1Lalbn(t) —t|* - 0asn — oo.
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After establishing all the above auxiliary properties, we come to our main result in this work which
provides the well-posedness (in the sense of existence) of the inclusion (ZFSP) in a finite dimensional
Hilbert space. That will be done under the assumption that the operator A is semicoercive.

Theorem 4.4. Assume that hypotheses (Hq), (H'y), (Hp) and (H,) are satisfied. Then, for any initial
condition ug € H, the implicit fractional sweeping process (LFSP) has at least one a-Holderian solution
w: [0,T) — H satisfying

u(-) € {uo} +Z%(L>([0,T7); H)), (4.15)
“Du(t) € Qt) aet € [0,T], (4.16)

and
|“D§u(t)|| <1 aet € [0,T]. (4.17)

Proof. The proof will be divided into several steps.
Step 1: We prove that

(Un(t)) converges in H to u(t) := ug + I z(t), forallt € [0,T). (4.18)

Due to the inequality (4.6), it results that for any ¢ € [0, T, ||@,(¢)|| < |Juo|l + FT&) This means that
(since dim(H) < +o00) the set {u,(t),n € N} is relatively compact in H for every ¢ € [0,T]. On the

other hand, by (a) of Proposition 2.1, one can find some real L, > 0 such that for all ¢, s € [0, T']
[n(t) = Un(s)l| = [[1g2n (1) = I5za ()| < e1Lalt = s[%,

then, for any ¢ > 0 there exists some real d(¢) := (¢/(c1Lq)) 1/ 5 0 such that all t,s € [0,T] and for
anyn € N
[t = sl <d(e) = l[un(t) —un(s)ll <e,
which translates the equicontinuity of the family {z,(-),n € N}. Getting all the above together and
using Arzela-Ascoli’s theorem, we deduce that (u,(+)),, has a subsequence (not relabeled) converging
uniformly to a mapping u(-) € C([0,T]; H) with «(0) := wg. Pick an arbitrary time ¢ € [0, 7] then
[u(t) = uo = Ig (1) < [lu(t) = un ()] + [[un(t) — un(®)] + llun(t) —uo — I52()]|,

since dim(H) < oo, it results form (4.13) and (4.14), after passing to the limit as n — +oo, that
u(t) = up + I§'2(t), which gives the inclusion (4.15). Furthermore, the assertion (b) of Proposition 2.2
allows us to get

“Deu(t) = 2(t), aete[0,T].
Bearing in mind that “D§ 7, (t) = 2, (t) a.e t € [0, T] so, the weak convergence of “D7,, (+) to “Dgu(-)
in L*°(]0, T]; H) is a direct consequence of (4.12). On the other hand, for all ¢, s € [0, T

Ju(t) —u(s)l| = Tm |[un(t) = Un(s)l| < c1lalt —s|% (4.19)

n—-+00

which translates the a-Holder property of u(+). By what precedes, for almost every t € [0, 7]
IDgu(t)] < Dl oz < liminf D moryen < o1

this ensures the claimed inequality (4.17).

Step 2: We show that “Dgu(t) € Q(t) for almost every ¢ € [0, 7.
According to the above analysis and by virtue of Mazur’s lemma, for each n € N there exists some
sequence of convex combinations of the form

K(n) K(n)
< Z akmC]D)S‘ﬂk) with Ok.n >0 and Z Okn = 1,
k=n n k=n
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converging strongly to “D§u in L>([0, T']; H). Extracting a subsequence, we may suppose that there
K(n)

exists some negligible set N C [0, T'| such that < > ok “Dg g (t)> converges in H to “Dgu(t) as
k=n n

n — +oo forall t € [0, T]\N. The inclusion “D§7i,(t) € Q(6,(t)) a.e t € [0,T] with the help of

[15, Proposition 2.6] and the convexity of €(6,,(t)) entails that for all ¢ € [0, T]\N (without loss of
generality, we keep the same negligible set \V)

Zakn D§ax(t) € Q0,(t)),

this yields, for all ¢ € [0, T\N

K(n K(n)
dowy (“Dgu(t)) = dogy (‘D u( (Z ohn Dk (¢ ) + doyp (Z ok DY U (¢ ))

k=n

— da(6,(1)) (Z Ohn D T (¢ )

Z@mmW]me O,

letting n — oo and taking the closedness of 2(¢) into account, we obtain that “Dgu(t) € Q(t) for
almost every t € [T, T.
Step 3 We prove that

ADSu(t) 4+ Bu(t) € —Now) (“Dgu(t)) + o(t) aet € [0,T].

Fix any integer n € N, the inclusion (4.1) along with the the above considerations bring us to the
inclusion

P(On(t)) = Azn(t) — Bun(6n(t)) € N o,z (2n(t)),
the application of (2.3) gives
o(Q20n(t)),&n(t)) = (€n(t), 2n(t)), aet e 0,17, (4.20)
where &, (t ) = (0,(t)) — Az (t) — Bty (0,,(t)). Further, according to the Holderian behavior of the
sets (t),t € [0, T] with the help of the equality (2.4) one has, for any a € H

o(Q(t),a) = sup (y,a) < sup {y,a) = o(Q0.(1)) + [t = 0a(1)["B, a)
yeQ(t) YO (1)) +]t—0n (1) B

= 0(Q0n(1)),a) + o (|t — 0n(1)|"B; a)
< o(Q0n(t)), a) + [t = On(B)|*[|al],
which yields by (4.11) and (4.20)
o (Qt), &n(t)) < o (Q0n(1)), En(t)) + vn(t) = (En(t), 2 (1)) + va(t), (4.21)
where
vn(t) = ([#lloo + crllAll + c2l BIDIE = 0n ()| — 0 as n — +oc.
Integrating the inequality (4.21) brings us to

T T
/<dmm&mww&@@ﬁmﬁs/“%mw
0 0
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passing to the inferior limit when n — 400 in the previous inequality and using the Lebesgue Domi-
nated Theorem, one gets

T T
lim inf (/0 a(Q(t), & (t))dt —|—/0 <—§n(t),zn(t)>dt> <0. (4.22)

n——+00

Recalling that the mapping

T
¢ e L2(0,T]; H) o / o (8, C(1))dt,
0

is lower semicontinuous with respect to the weak topology of L%([0,7]; H) thanks to [20, Corollary
p227] (one can also consult [6] for various extensions in more general settings). Further, it is not difficult
to check that &, (-) converges to {(-) := ¢(-) —Az(-) —Bu(-) in the weak star topology of L*°([0, T|; H),
which in turn implies its weak convergence in L2([0, T']; H). Consequently

T T
/ o (Qt), £())dt < liminf / o (QUt), &,(1))dt. (4.23)
0 0

n——+oo

On the other side, since the operator A is semi-definite and symmetric, one gets

T T T
2lim inf /0 (A2(t), 2 ()t — /0 (A=(t), 2(t))dt < lim inf /O (A (t), 2n(8))

n—-+o0o n—-+o0o

this yields
T T
/ (Ax(t), 2(8))dt < Timint [ (Azn(t), 2 (t))dt, (4.24)
0

n—-+oo 0

the last inequality being due to the weak convergence of z,(-) to z(+) in L>°([0, T']; H). By the previous
development, we have

T
\ [ (B0, 20000 - <Bu<t>7z<t>>)dt\
T
- \ [ B060,0) = Butt) 200 + (Butt) ale) — =) dt]

T T
<allB] [ 100 — )l + } [ a0 - z<t>>dt1, (.25)

by passage to the limit as n — oo with the use of the weak convergence of z, (-) to z() and the uniform
convergence of U, (+) to u(-), we deduce that

T T
lim [ (Bin(0a(t)), 2o(t))dt = /O (Bu(t), (t))dt. (4.26)

n—-+o0o 0

By what precedes, z,(-) converges weakly to z(-) in L*°([0, T'|; H) and ¢(6,,(-)) converges strongly to
@(+) in L1 ([0, T]; H), it follows directly that
T

T
lim [ (o6 (t)), 2a(t))dt = /0 (o (), 2(1)).

n——+0oo 0

Combining the latter equality with (4.22), (4.23), (4.24) and (4.26) to obtain

T
[ @) - o). Dguion) e <o @z
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bearing in mind that “Dgu(t) € Q(¢) for a.e t € [0, 7], so a(Q(t), £(t)) — (£(2), “Dgu(t)) > 0 for ae
t € [0,7] and then

T

T
/0 (0 (1), (1)) — (€(t), D u(t))) dt Z/ (o(Q(1),£()) — (£(t), “DEu(t))) dt > 0, forall 7 € [0, T],

0
taking (4.27) into account, we get

/OT (a(Q(t), £(1)) — (1), “DEu(t))) dt = 0, forall 7 € [0, T

= (1), £(1) = (£(t), DEu(t)), aet €[0,T],
with the above notations and through the equality (2.3), we conclude that
A“DGu(t) + Bu(t) € Ny (“Dgu(t)) + ¢(t) ae t € [0,T).
This completes the proof of the theorem. O

Remark 4.5. As we see in (4.25), the strong convergence of U, (t) to u(t) is required to prove that

T
/0 (0 (£)) — u(t)dt — 0. (4.28)

So, contrary to what is known in classical sweeping process with the usual derivative #(t), the weak
convergence of Uy, (t) to u(t), which can be proved in the setting of an infinite dimensional Hilbert
space with fractional derivative, is not sufficient to get the convergence in (4.28). This comes down
to the fact that the operator A is semi-coercive, which prevents us from using the Cauchy approach
(see the next section). To get around this difficulty, we have assumed that dim H < oo which allows
us to benefit from the Arzela-Ascoli’s theorem. Aiming to highlight this situation in the usual setting,
i.e., where we deal with the classical implicit sweeping process, see for example [2] or [3], the weak
convergence of u, (t) to u(t) is sufficient to obtain the inequality (4.26). Indeed, in such a case, one has

1

T
/ (Bu(t), D))t = L (Bu(T), u(T)) ~ £ (Bu(0), u(0))
0

< liminf <;<Bun(T),un(T)> — ;<Bun(0)vun(0)>>

n—-+o00

T
:liminf/o (Buy, (), (t))dt,

n—+o0o

where these estimates are due to the following famous rule (given by an equality, see [11])

d 9o  d .

— o7 = —(v(t), v(t)) = 2(v(t), 0(1)), (4.29)

dt dt
for some absolutely continuous mapping v(-). Whereas, in the fractional framework, as mentioned
above in (2.5), the equality (4.29) becomes an inequality and then we cannot benefit from the inferior
limit.

The next proposition presents a uniqueness result related to Theorem 4.4 in the case where the linear

operator B is coercive.

Proposition 4.6. In addition to the assumptions imposed in Theorem 4.4, we assume that the operator B
is coercive, that is, for allx € H : (Bx,x) > pl|z||* for some j1 > 0. Then, the sweeping process (ZFSP)
admits one and only one «-Hélderian solution.

Proof. Since the existence result is established in Theorem 4.4, we only prove the uniqueness of solution.
To this end, let u;(-) : [0,7] — H, ¢ = 1, 2 be two solutions of (ZFSP) with initial conditions u (0) =
u2(0) = ug. Then, for a.e t € [0,T]

{p(t) — ADSu,(t) — Buy(t), ¢ — C]D)g‘ui(t» <0, forany ¢ € Q(t).
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Taking into account the inclusions “D§u;(t) € Q(t),i = 1,2 aet € [0,T] and applying the last
inequality one time with ¢ = “Dguy(t) and i = 1 and another time with ¢ = “D§u; (t) and i = 2 and
adding the resulting inequalities, we get for a.e ¢ € [0, T

(DGua(t) — D ua(t), A (Dfu (t) — Diuz(t)))+(Dui () — Diua(t), B (ur(t) — ua(t))) <0,
using the fact A is semi-definite yields
(DEua(t) = Dua(t), B (ur(t) — ua(t))) < 0. (4.30)
Setting [0, 7] 5 ¢ — W(t) := (B(u1(t) — ua(t)), u1(t) — ua(t)), that is
U(t) = V(ui(t) —ua(t)) where V(x):= (Bx,z), Vo € H.

Having in hand these notations and the inclusion wu;(-) — ug(-) € Z%(L*°(]0,T]);H)), we are in a
position to apply [8, Lemma 4.1] to conclude that U(-) € Z*(L*°([0,7]); H)) and

DEW(t) <(VV (ur(t) —uz(t)), Dfui (t) — DEua(t)),
this combined with (4.30) entails
DF (Bur(t) —ua(t)), ur (t) — uz(t)) < 2(Dfus(t) — Dua(t), Blua (1) — uz(1)) <0,
by virtue of (a2) of Proposition 2.2 and the coercivity of B, it follows that
pllut (t) — ug(t)]|? < (Bui(t) — ug(t)), ui(t) — ua(t)) <0, forallt € [0,7],

which ensures the equality u(-) = uz(-) and translates the claimed uniqueness. O

5. COERCIVITY SETTINGS

In this section, we are going to strengthen the hypothesis (3.1) imposed on A by assuming that A4 is
p-coercive. More precisely, in place of (H 4), we will consider the assumption (#’,), that is

(Az,2) > pllz||?, Yz € C(0) for some p > 0. (5.1)

In such a case, some nice properties can be obtained concerning the approximate solutions (uy(+))n
and the approach used along the paper as well.

Proposition 5.1. LetH be an dimensional Hilbert space. Assume that the conditions (Hq), (H'4), (HB)
and (H,) are made. Then (Uy, )y, is a Cauchy sequence in C([0, T|; H) converging uniformly in C([0, T']; H)
to a solution u : [0, T] — H and satisfying the properties (4.15), (4.15) and (4.17).

Proof. Let us fix n, m € N, the inclusion (4.1) along with the formulas of %, 2z, and 6,, bring us to the
inclusions

P(On(t)) = Azn(t) = Bun(0n(t)) € N o, 1) (2n(t))

,aet e [0,7], (5.2)
(O (t)) — Azm(t) — Bum(0m(t)) € Na,, 1) (2m(t))
making use of the definition of the normal cone, we get
<¢(0n(t)) - Azn(t) - Ban(en(t))v y1 — Zn(t» <0,Vy € Q(en(t))v (5.3)
and
(@O (1) — Az (1) — Bum (0 (t)), y2 — 2m(t)) < 0,Vy2 € Q0 (1)). (5.4)

The implicit constraints in (5.2) combined with the assumptlon (HQ) give
zZn(t) € QOn(t)) C QOm (1)) + K|0n(t) — 6 (t)|"B
Zm(t) € QOm(t)) C QO (t)) + Kb (t) — O (1)|"B,
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coming back to (5.3) and (5.4) we obtain that for any vy, v, € B
(Azn(t), 20(t) = 2m(t)) < (Bun(0n(t)) — @(0n(t)), 2m(t) — 2u(t))
+ ,C|9n(t) - em(t)|a<90(9n(t)) - Azn(t) - Ban(‘gn(t))v Ul)
and
(=Azm(t), 2n(t) — 2m(t)) < (Btm (Om (1)) — (0 (1)), 2n(t) — 2m (1))
+ K[ (t) = 0 ()" (0(Om () — Az (t) = Buim (0m (1)), v2),

putting these last two inequalities together and using the coercivity of A and the inclusions z,(t) €
Q(0,(t)), zm(t) € Q0 (1)), we observe after simplifying

pllzn(t) — Zm(t)H2 < (Bt (0 (t)) — Bn(0n(t)), 2n(t) — 2m(t))
+ <90(9n(t)) - ‘;D(em(t))a Zn(t) - Zm(t)> + Qn,m(t)a
where
Qnmn(t) = K|0n(t) — 0 (8)|* (@(On (1)) — Azn(t) — Bun(0n(t)), v1)
+ ]C’@n(t) - Hm(t)|a<90(0m(t)) - Azm(t) - Bam(am(t))’ U2>'

Let us establish an upper bound of the mapping (), ,,. This will be done by applying Proposition 2.1 as
follows

[un () < lluoll + 11520 (t) = 1520 O)]| < [luoll + Lacrt T =
for some real number L, > 0. Consequently
|Qnm ()] < 2([[@lloc + [ All + EIBINK[On(E) — Om (£)],
this leads to

len(®) — zm®)? — Bl

Un (0 (1)) — Un(0m (@) [12n(t) — 2m ()] — Enm(t) <0, (5.5)
where

2c
Ep(t) := -

(lelloe + ex ALl + ElIBINKIOR ) = Om (DI + =Zll(6n (1)) = ¢(Om(®))]

The expression (5.5) represents a quadratic inequality of the form 72 + a17 + ao < 0, its discriminant
A = a? — 4ay is nonnegative where

b\l\D

r=llzn(t) = 2m ()], a1 = —”lj”\lﬁn(en(t)) = U (O ()], a2 = —En m(1).

Then, the estimate 0 < r < %(—al + VA) is satisfied, which entails that

1
r? < Z( a1 +VA)? < (a%+A):a%—2ag,
thus

lea(t) = (O < ”W

[ (81 () = T (O ()| + 2B, (1)
HBII2

< BB (0t~ o D1 + 180 00(0) = O] + ) = B DI + 2B )
< 28,0~ I + Fom0), 5:5)
where
Fon(t) = 2”32”2 <01Lm (100 (8) — t|* + |0 () — ua))2 + 2B m(t),
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for some L1, > 0. Because of the boundedness z,(-), the Proposition 2.2 allows us to write “D§ i, (t) =
zn(t) for almost every ¢ € [0, T, which gives thanks to (5.6)

(DEtn () — DEm (1), (1) — Tm(?)) < %Ilzn(t) — zm(t)|* + %Hﬂn(t) — U ()]

BJ12 I
< <H,)2U + ;) [8(t) ~ B () + 5 Fum(®). 67)

Further, putting gy, m () := Un(t) — Um (t) = I§'(2n — 2m ) (t) where (2, — zp,) is a (uniformly) bounded
mapping. Then gy, ,,(-) € Z%(L*>°(]0, T']; H)), which in turn ensures the inclusion

gn.m()|I* € Z%(L>([0,T]; H)) according to Lemma 2.3. Keeping in mind that g, (0) = 0 and
applying Lemma 2.3 again, one obtains

D [l gnm ()I* < 2( DG gnm(t), gnm(t)), aet € [0,T],

the latter together with (5.7) gives us

D gnm (D) < (

since gnm () € Z*(L*°([0,T]; H)), the Proposition 2.2 guarantees that

218]|2
IB] +1> 1mm O & Fam(£), 53)

2(18]|?
lnm @I < ( ”p I” . 1) 181 gnm(OI2 + I ().

It is not difficult to prove that the mapping

t
[0,T] > t = hp(t) 1= 15 From(t) = / ) anm( )ds,
0 0

is nondecreasing and belongs to L!([0, T]; R). So, by applying Gronwall inequality stated in Lemma
2.4, we get the following estimate

I < B (£)E ((2”[)[’;’2 " 1) ta) < £, <(2”p‘§”2 s 1) Ta) g (1)

On the one hand, for any ¢ € [0,7] and any s € [0, ], elementary computations allow us to find some
real number R > 0 such that

1 o
@(t —5) an,m(S) <R,

on the other hand, through the continuity of ¢(-) and the convergence of 6,,(¢) to t, we see that
limy, 100 Fnm (t) = 0. Making use of the Lebesgue dominated Theorem, we obtain

lim  hy,m(t) =0,

n,m—00
which entails that limy, ;00 SUPsc(o 77 [|Un(t) — Um(?)|| = 0 and translates the Cauchy criterion of
(Un)rn in C([0,T]; H). Consequently, (), converges uniformly to some mapping v € C([0,T]; H)
which represents a solution of the main problem (ZFSP). O
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