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Abstract. In this paper, we investigate the existence and uniqueness of fixed points for almost contrac-
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1. Introduction and Preliminaries

The F -contraction is introduced by Wardowski [13] in order to generalize the Banach contraction
principle.

The family of all functions F : (0,+∞) → R that satisfy the following conditions:
(F1) F is strictly increasing,
(F2) for every sequence {αn} in (0,+∞) we have limn→∞ F (αn) = −∞ iff limn→∞ αn = 0,
(F3) there exists a number k ∈ (0, 1) such that limα→0+ αkF (α) = −∞,

is denoted byF (see, [13]) and the collection of all functions F : (0,+∞) → R satisfying the following
conditions:
(G1) F is strictly increasing,
(G2) there exists a sequence {αn} in (0,+∞) such that limn→∞ F (αn) = −∞, or inf F = −∞,
(G3) F is a continuous map,

is denoted by G ([11]).
We need the following definitions in the sequel.

Definition 1.1. [13] Let (X, d) be a metric space. The mapping T : X → X is called an F -contraction,
if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0 we have

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Definition 1.2. [10, 4] Let α : X ×X → (0,+∞) be a given mapping. The mapping T : X → X is
said to be an α-admissible, whenever α(Tx, Ty) ≥ 1 provided α(x, y) ≥ 1 and x, y ∈ X .

Definition 1.3. [1] An α-admissible map T is said to have the K-property, while for each sequence
{xn} ⊆ X with α(xn, xn+1) ≥ 1 for all n ∈ N0, the nonnegative integer numbers, there exists a
positive integer number k such that α(Txn, Txm) ≥ 1, for allm > n ≥ k.
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The following lemmas play crucial role in proving main results.

Lemma 1.4. [9] Let F : (0,+∞) → R be an increasing function and {αn} be a sequence of positive real
numbers. Then the following holds:

(a) if limn→∞ F (αn) = −∞, then limn→∞ αn = 0,
(b) if inf F = −∞, and limn→∞ αn = 0, then limn→∞ F (αn) = −∞.

Lemma 1.5. [3] Let (X, d) be a metric space, and {xn} be a sequence in X such that
limn→∞ d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence then there exists ϵ > 0 and two sequences of
positive integers {nk} and {mk} with nk > mk > k such that d(xmk

, xnk
) > ϵ, d(xmk

, xnk−1) < ϵ and

(1) limk→∞ d(xmk
, xnk

) = ϵ.
(2) limk→∞ d(xmk−1, xnk

) = ϵ.
(3) limk→∞ d(xmk

, xnk+1) = ϵ.
(4) limk→∞ d(xmk−1, xnk+1) = ϵ.

In [7, 6, 8] the simulation function introduced as follows

Definition 1.6. Let ζ : [0,∞) × [0,∞) → R be a mapping, then ζ is called a simulation function if
satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0 and tn < sn for all

n ∈ N, then
lim sup

n→∞
ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z .

2. Main Results

The next result provides sufficient conditions for existing a fixed point.

Theorem 2.1. Let (X, d) be a complete metric space, α : X × X → (0,+∞) be a symmetric function
and T : X → X be a mapping which there exist F ∈ F , τ > 0, L ≥ 0 and simulation function ζ such
that for all x, y ∈ X and d(Tx, Ty) > 0,

ζ(τ + α(x, y)F (d(Tx, Ty)), F (m(x, y) + LN1(x, y))) ≥ 0, (2.1)

where

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
and

N1(x, y) = min{d(x, Ty), d(y, Tx)},
and satisfying the following conditions:

(i): T is α-admissible,
(ii): there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

Then, T has a fixed point if at least one of the following cases holds:
(a) T is continuous.
(b) F is continuous and

(iii): if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all
n ∈ N0 = N ∪ {0}, then α(xn, x) ≥ 1 for all n ∈ N0.
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Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N0, define:
xn+1 = T (xn).

If xn0+1 = xn0 for some n0 ∈ N0 then xn0 is a fixed point of T . So, we can assume that xn+1 ̸= xn for
each n ∈ N0. Since T is α-admissible, then

α(xn, xn+1) ≥ 1, ∀n ∈ N0. (2.2)
Now, if d(Tx, Ty) > 0, from (2.1) and (ζ2), then

0 ≤ ζ(τ + α(x, y)F (d(Tx, Ty)), F (m(x, y) + LN1(x, y)))

≤ F (m(x, y) + LN1(x, y))− (τ + α(x, y)F (d(Tx, Ty))).

Hence
τ + α(x, y)F (d(Tx, Ty)) ≤ F (m(x, y) + LN1(x, y)). (2.3)

Therefore, by (2.2) and (2.3)
τ + F (d(Txn, Txn+1)) ≤ τ + α(xn, xn+1)F (d(Txn, Txn+1))

≤ F (m(xn, xn+1) + LN1(xn, xn+1))
≤ F (m(xn, xn+1) + Ld(xn+1, Txn))
= F (m(xn, xn+1) + 0)
= F (m(xn, xn+1)),

Hence we have
τ + F (d(xn+1, xn+2) ≤ F (m(xn, xn+1)). (2.4)

But
m(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn,Txn+1)+d(xn+1,Txn)
2

}
= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn,xn+2)
2

}
≤ max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn,xn+1)+d(xn+1,xn+2)
2

}
≤ max{d(xn, xn+1), d(xn+1, xn+2)}.

If d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N0, then
m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,
F (m(xn0 , xn0+1)) ≤ F (d(xn0+1, xn0+2)).

So, it follow from (2.4) that
τ + F (d(xn0+1, xn0+2) ≤ F (d(xn0+1, xn0+2)).

So, τ ≤ 0, which is a contradiction. Consequently

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N0. (2.5)
Hence, from (2.4) and (2.5) we have

τ + F (d(xn+1, xn+2) ≤ F (d(xn, xn+1)),

or,
F (d(xn+1, xn+2) ≤ F (d(xn, xn+1))− τ.

In general, one can get
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F (d(xn+1, xn+2) ≤ F (d(x0, x1))− nτ. (2.6)
Hence,

lim
n→∞

F (d(xn, xn+1)) = −∞.

So, from (F2) we have
lim
n→∞

d(xn, xn+1) = 0.

Therefore, with notice to (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(d(xn, xn+1))
kF (d(xn, xn+1)) = 0.

Now, (2.6) implies that

(d(xn, xn+1))
kF (d(xn, xn+1)) ≤ (d(xn, xn+1))

k(F (d(x0, x1))− nτ).

Then, it can be easily seen that
lim
n→∞

n(d(xn, xn+1))
k = 0.

So, there exists n0 ∈ N0 such that

d(xn, xn+1) ≤
1

n
1
k

, ∀n ≥ n0.

Consequently, ifm > n > n0, then
d(xn, xm) ≤

∑m
i=n d(xi, xi+1) ≤

∑m
i=n

1

i
1
k
≤

∑∞
i=n0

1

i
1
k
.

Since k ∈ (0, 1), the series
∑∞

i=n0

1

i
1
k
is convergent. Therefore {xn} is a cauchy sequence, and sinceX

is complete, there exists u ∈ X such that xn → u as n → ∞. We claim that u is a fixed point of T .
Now, we show that u is a fixed point of T under any of the cases (a) and (b).

First, we suppose that T is continuous case (a), then we have

u = lim
n→∞

xn+1 = lim
n→∞

Txn = T (u),

and so u is a fixed point of T . This completes the proof of Theorem by using case (a).
Now, suppose that case (b) is true. If Tu ̸= u, then there exists n0 ∈ N0 such that Txn ̸= Tu, for all

n ≥ n0 (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness of the limit concludes
that Tu = u). From (iii) and (2.3), we have

τ + F (d(Txn, Tu)) ≤ τ + α(xn, u)F (d(Txn, Tu))
≤ F (m(xn, u) + LN1(xn, u))
≤ F (m(xn, u) + Ld(Txn, u))
= F (m(xn, u) + Ld(xn+1, u)))

And since F is continuous, as n → ∞ we get

τ + F (d(u, Tu)) ≤ F ( lim
n→∞

(m(xn, u) + Ld(xn+1, u))), (2.7)

where
m(xn, u) = max

{
d(xn, u), d(xn, xn+1), d(u, Tu),

d(xn, Tu) + d(u, xn+1)

2

}
.

So,

lim
n→∞

m(xn, u) = max

{
0, 0, d(u, Tu),

d(u, Tu) + 0

2

}
= d(u, Tu).

Also, we have
lim
n→∞

Ld(xn+1, u) = 0.



EXISTENCE AND UNIQUENESS OF FIXED POINTS 63

Therefore, from (2.7) we have

τ + F (d(u, Tu)) ≤ F (d(u, Tu)),

which is a contradiction as τ > 0. So d(u, Tu) = 0, i.e., Tu = u. □

Example 2.2. Let X = {(0, 0), (0, 5), (5, 0), (5, 6)} be endowed with the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.

Let T be self-mappings on X as follow:

T (x1, x2) = (min{x1, x2}, 0).

Also, suppose that α(x1, x2) = L = 1, 0 < τ < 0.033 and for x ∈ (0,+∞), F (x) = lnx, and for all
ζ ∈ Z , defined ζ(t, s) = 11

12s− t. Therefore all the hypothesis of Theorem 2.1 are verified.

The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → X be a mapping for which there exist
F ∈ F , τ > 0, L ≥ 0 and simulation function ζ such that d(Tx, Ty) > 0 implies that

ζ(τ + α(x, y)F (d(Tx, Ty)), F (m(x, y) + LN2(x, y))) ≥ 0, (2.8)

where m(x, y) is defined as in Theorem 2.1 and

N2(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}.

We further assume that α(x, y) ≥ 1 for each x, y ∈ Fix(T ). Then if T is satisfied the conditions (i), (ii)
and (iii) of Theorem 2.1 and T or F is continuous then T has a unique fixed point.

Proof. By Theorem 2.1, T has a fixed point. Now, suppose that u and v are two fixed point of T . If
u ̸= v then d(Tu, Tv) > 0. Also α(u, v) ≥ 1, because u, v ∈ Fix(T ), then by (2.8) and (ζ2)

0 ≤ ζ(τ + α(u, v)F (d(Tu, Tv)), F (m(u, v) + LN2(u, v)))

≤ F (m(u, v) + LN2(u, v))− (τ + α(u, v)F (d(Tu, Tv))).

Therefore,
τ + α(u, v)F (d(Tu, Tv)) ≤ F (m(u, v) + LN2(u, v)). (2.9)

Hence, (2.9) implies that

τ + F (d(u, v)) = τ + F (d(Tu, Tv))
≤ τ + α(u, v)F (d(Tu, Tv))
≤ F (m(u, v) + LN2(u, v))
≤ F (m(u, v) + Ld(u, Tu))
= F (m(u, v) + 0)
= F (m(u, v)),

where
m(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)

2

}
= max{d(u, v), 0, 0, d(u,v)+d(v,u)

2 }
= d(u, v).

So, we have
τ + F (d(u, v)) ≤ F (d(u, v)),

which is a contradiction, as τ > 0. So, u = v. □
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Theorem 2.4. Let (X, d) be a complete metric space and T : X → X be a mapping which there exist
F ∈ G, τ > 0 and the simulation function ζ such that for all x, y ∈ X with Tx ̸= Ty and 1

2d(x, Tx) ≤
d(x, y) implies that

ζ(τ + α(x, y)F (d(Tx, Ty)), F (m(x, y))) ≥ 0 (2.10)
where m(x, y) is defined as in Theorem 2.1, satisfying the following conditions:

(i): T is α-admissible,
(ii): there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(iii): if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all n ∈ N0,

then α(xn, x) ≥ 1 for all n ∈ N0,
(iv): T has the K-property.

Then, T has a fixed point in X .

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N0, define
xn+1 = T (xn).

Since T is α-admissible, one can easily obtain that
α(xn, xn+1) ≥ 1, ∀n ∈ N0. (2.11)

If xn0+1 = xn0 for some n0 ∈ N0, then xn0 is a fixed point of T . So, we can assume that xn+1 ̸= xn
for each n ∈ N0, i.e., d(xn, xn+1) > 0 and so

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) < d(xn, xn+1). (2.12)

Now from (2.10) and (ζ2), there exist F ∈ G and τ > 0 such that if d(Tx, Ty) > 0, then 1
2d(x, Tx) ≤

d(x, y) implies that
0 ≤ ζ(τ + α(x, y)F (d(Tx, Ty)), F (m(x, y)))

≤ F (m(x, y))− (τ + α(x, y)F (d(Tx, Ty))).

Then,
1
2d(x, Tx) ≤ d(x, y) =⇒ τ + α(x, y)F (d(Tx, Ty)) ≤ F (m(x, y)), (2.13)

wherem(x, y) is defined as in Theorem 2.1. Therefore, by (2.12) and (2.13)
τ + F (d(Txn, Txn+1)) ≤ τ + α(xn, xn+1)F (d(Txn, Txn+1))

≤ F (m(xn, xn+1)),
(2.14)

in which

m(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn,Txn+1)+d(xn+1,Txn)
2

}
= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn,xn+2)
2

}
≤ max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn,xn+1)+d(xn+1,xn+2)
2

}
≤ max{d(xn, xn+1), d(xn+1, xn+2)}.

Now, if d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N0, then
m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,
F (m(xn0 , xn0+1)) ≤ F (d(xn0+1, xn0+2)).
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Therefore, by (2.14)
τ + F (d(xn0+1, xn0+2)) ≤ F (d(xn0+1, xn0+2)).

So, τ ≤ 0, which is a contradiction. Consequently,

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N0. (2.15)

Therefore,
m(xn, xn+1) ≤ d(xn, xn+1), ∀n ∈ N0. (2.16)

So, from (2.14) and (2.15) one can obtain that

τ + F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1)),

or,
F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ.

In general, one can get
F (d(xn+1, xn+2)) ≤ F (d(x0, x1))− nτ.

Hence,
lim
n→∞

F (d(xn, xn+1)) = −∞,

which together with (G2) and Lemma 1.4, gives

lim
n→∞

d(xn, xn+1) = 0.

Now, we claim that {xn} is a Cauchy sequence. If it is not true, then by Lemma 1.5, there exists ϵ0 > 0
and two sequences of positive integers {nk} and {mk} with nk > mk > k such that d(xmk

, xnk
) >

ϵ0, d(xmk
, xnk−1) < ϵ0 and

(L1) limk→∞ d(xnk
, xmk

) = ϵ0,
(L2) limk→∞ d(xnk

, xmk−1) = ϵ0,
(L3) limk→∞ d(xnk+1, xmk

) = ϵ0,
(L4) limk→∞ d(xnk+1, xmk−1) = ϵ0.

Therefore, with notice to definition ofm(x, y) we have:

limk→∞m(xnk
, xmk−1) = limk→∞max

{
d(xnk

, xmk−1), d(xnk
, xnk+1),

d(xmk−1, xmk
),

d(xnk
,xmk

)+d(xmk−1,xnk+1))

2

}
= max{ϵ0, 0, 0, ϵ0+ϵ0

2 }
= ϵ0.

So,
lim
k→∞

m(xnk
, xmk−1) = ϵ0. (2.17)

On the other hand, since limk→∞ d(xnk
, xmk−1) = ϵ0 > 0, and limk→∞ d(xnk

, xnk+1) = 0, with
considering a subsequence if it is needed, one can assumed that, there exist k1 ∈ N such that for any
k > k1 and nk > mk > k

d(xnk
, xnk+1) ≤ d(xnk

, xmk−1).

So, it is clear that for all k > k1 and nk > mk > k,
1

2
d(xnk

, Txnk
) =

1

2
d(xnk

, xnk+1) < d(xnk
, xmk−1). (2.18)

Also, using the K-property, there exist k2 ∈ N such that

α(xnk
, xmk−1) ≥ 1, ∀k > k2. (2.19)
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Let k ≥ max{k1, k2}, then from (2.19) and (2.13) we have
τ + F (d(Txnk

, xmk−1)) ≤ τ + α(xnk
, xmk−1)F (d(Txnk

, Txmk−1))
≤ F (m(xnk

, xmk−1)).

Letting n → ∞, since F is continuous, by (L1) and (2.17) we have
τ + F (ϵ0) ≤ F (ϵ0),

which is a contradiction, as τ > 0. Consequently, {xn} is a Cauchy sequence in the complete metric
space X . So there exists u ∈ X such that xn → u, as n → ∞. To complete the proof, we show that u
is a fixed point of T . At first, we claim that for all n ≥ 0

1

2
d(xn, xn+1) ≤ d(xn, u) or

1

2
d(xn+1, xn+2) ≤ d(xn+1, u). (2.20)

In fact, If for some n0 ≥ 0, both of them are false then we will have
1

2
d(xn0 , xn0+1) > d(xn0 , u) and

1

2
d(xn0+1, xn0+2) > d(xn0+1, u).

So, with notice to (2.15) we have
d(xn0 , xn0+1) ≤ d(xn0 , u) + d(u, xn0+1)

< 1
2d(xn0 , xn0+1) +

1
2d(xn0+1, xn0+2)

≤ 1
2d(xn0 , xn0+1) +

1
2d(xn0 , xn0+1)

= d(xn0 , xn0+1).

Which is a contradiction and the claim is proved.
Well, let us begin with the first part of (2.20), i.e. suppose that

1

2
d(xn, xn+1) ≤ d(xn, u),

and in contrary, assume that Tu ̸= u. Without lose of generality, one can assume that Txn ̸= Tu,
for all n ∈ N0. (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness of the limit
concludes that Tu = u).
Then, from (2.13) and (iii) we get

τ + F (d(xn+1, Tu)) = τ + F (d(Txn, Tu))
≤ τ + α(xn, u)F (d(Txn, Tu))
≤ F (m(xn, u)),

and since F is continuous on (o,+∞), and d(u, Tu) > 0, as n → ∞, we get
τ + F (d(u, Tu)) ≤ F ( lim

n→∞
(m(xn, u)). (2.21)

But
m(xn, u) = max

{
d(xn, u), d(xn, xn+1), d(u, Tu),

d(xn, Tu) + d(u, xn+1)

2

}
.

So we have
lim
n→∞

m(xn, u) = max{0, 0, d(u, Tu), d(u, Tu) + 0

2
} = d(u, Tu).

Therefore, if d(u, Tu) ̸= 0, then from (2.21) we have
τ + F (d(u, Tu)) ≤ F (d(u, Tu)),

which is a contradiction, as τ > 0. So d(u, Tu) = 0, i.e. Tu = u. Finally, if we assume that the second
part of (2.20) is true, i.e.

1

2
d(xn+1, xn+2) ≤ d(xn+1, u).

Then, as the same manner, we can prove that d(u, Tu) = 0, i.e. Tu = u. □



EXISTENCE AND UNIQUENESS OF FIXED POINTS 67

Theorem 2.5. Suppose that all the conditions of Theorem 2.4 are satisfied. In addition, assume that
α(x, y) ≥ 1, for all x, y ∈ Fix(T ). Then T has a unique fixed point.

Proof. Suppose that u and v are two fixed point of T . If u ̸= v then d(Tu, Tv) > 0. Also α(u, v) ≥ 1,
because u, v ∈ Fix(T ). Also, it is clear that 1

2d(u, Tu) = 0 < d(u, v). Hence, (2.13) implies that

τ + F (d(u, v)) = τ + F (d(Tu, Tv))
≤ τ + α(u, v)F (d(Tu, Tv))
≤ F (m(u, v)),

where
m(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)

2

}
= max{d(u, v), 0, 0, d(u,v)+d(v,u)

2 }
= d(u, v).

So, we have
τ + F (d(u, v)) ≤ F (d(u, v)),

which is a contradiction, as τ > 0. So u = v. □

In the next result we obtain a new version of Theorem 2.6 of [6].

Corollary 2.6. Let (X, d) be a complete metric space and T : X → X be mapping such that for all

x, y ∈ X ,
1

2
d(x, Tx) ≤ d(x, y) implies that

ζ(d(Tx, Ty),m(x, y)) ≥ 0,

where ζ ∈ Z andm(x, y) is defined as inTheorem 2.1. In addition, assume that α(x, y) ≥ 1 and condition
(2.10) is true. Then T has a unique fixed point.

Proof. Since α(x, y) ≥ 1, it follows from condition (2.10) that
F (d(Tx, Ty)) ≤ τ + F (d(Tx, Ty))

≤ τ + α(x, y)F (d(Tx, Ty))

≤ F (m(x, y))

Then,
F (d(Tx, Ty)) ≤ F (m(x, y)).

Now, since F is strictly increasing, so d(Tx, Ty) ≤ m(x, y). Hence all the hypothesis of Theorem 2.6
of [6] is right. Therefore, the desired result is obtained. □

Example 2.7. Let X = {0, 1, 2} be endowed with the metric d defined by d(x, y) = |x − y|, and
T : X → X is defined as follows:

T (1) = T (2) = 1, T (0) = 2.

Furthermore, suppose that α(x, y) = 1 for all x, y ∈ X , 0 < τ ≤ ln 2 and for x ∈ (0,∞), F (x) = lnx,
and for all ζ ∈ Z , defined ζ(t, s) = 11

12s − t . Therefore all the hypothesis of Theorem 2.5 are verified.
Hence u = 1 is the unique fixed point of T .

3. Conclusion

The existence and uniqueness of a fixed point of almost contractions via simulation functions in
metric spaces are investigated. Some examples and applications to illustrate the reality of our gener-
alizations and usability the results are given. One can consider the article as the extended simulation
version of the paper published in Carpathian Mathematical Publications 11 (2) (2019).
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