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Abstract. We consider a controllability problem for a feedback control system governed by a fractional
semilinear differential inclusion with delay and a sweeping process in a Hilbert space. We define the
multioperator whose fixed points are solutions of the problem. By applying the methods of the fixed
point theory for condensing multimaps we study the properties of this multioperator, in particular, we
prove that under certain conditions it is condensing w.r.t. an appropriate measure of noncompactness.
This allows to present the controllability principle.
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1. Introduction

In modern mathematics, one of the most important areas is control theory. This is primarily due to
numerous applications in physics, chemistry and engineering associated with the modeling of various
types of processes and phenomena. From a mathematical point of view, the complexity of such models
lies in the need to use the theory of infinite-dimensional spaces. Research in this direction is relevant
and is being carried out by a large number of scientists around the world (see, e.g., the surveys [3, 26]
and the references therein).

Recently various controllability results were obtained for systems which can be described in terms
of semilinear differential and functional differential inclusions in infinite-dimensional Banach spaces
(see, among others, [5, 6, 7, 9, 14, 15, 21, 24] and the references therein). It should be mentioned that in
the works [6, 7, 21, 24] it was not supposed that the semigroup generated by the linear part of a system
is compact. It is known (see [31, 32]) that this compactness condition in the infinite-dimensional case
creates some difficulties in the investigation of the controllability problem.

In the last years the study of the controllability problem was extended to systems governed by differ-
ential equations and inclusions of a fractional order (see, e.g., [1, 2, 10, 27, 34, 36, 37] and the references
therein). In its essential part, it is caused by interesting and important applications which fractional
systems find in physics, hydrodynamics, geophysics, engineering, biology, economics and other con-
temporary branches of natural sciences (see, e.g., [4, 11, 16, 19, 25, 28, 36]).

The simulation of processes in feedback control systems by means of differential inclusions and vari-
ational inequalities of various types in finite-dimensional and infinite-dimensional spaces is an actual
problem of contemporary mathematics. In particular, the investigation of control systems whose dy-
namics is described by some differential or functional-differential equations or inclusions with a control
parameter in an infinite-dimensional Banach space is very relevant. In many cases, the feedback con-
straints imposed on the choice of control are considered as solutions of so called sweeping processes in
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Hilbert spaces depending on the state of the system. Fundamental results on the existence, uniqueness
and continuous dependence of solutions of sweeping processes were obtained by M. Kunze and M. D.
P. Monteiro Marques [20, 22], M. Valadier [33], C. Castaing and M. Monteiro Marques [8], J. F. Edmond
and L. Thibault [13], A. A. Tolstonogov [29, 30].

Let E be a Banach space and H be a Hilbert space. We consider controllability problem for a system
governed by the following differential inclusion and the sweeping process

CDα
0 x(t) ∈ Ax(t) + F (t, xt, x(t), y(t)) +Bu(t), t ∈ [0, T ], (1.1)

x(s) = ϑ(s), s ∈ [−h, 0], (1.2)
−y′(t) ∈ NC(t)(y(t)) + g(t, x(t), y(t)) + ρy(t), t ∈ [0, T ], (1.3)

y(0) = y0 ∈ C(0), (1.4)
x(T ) = x1, (1.5)

where CDα
0 , 0 < α < 1, is the Caputo fractional derivative, A : D(A) ⊂ E → E is a linear closed

operator generating an uniformly bounded C0–semigroup {U(t), t ≥ 0} in the space E, F : [0, T ] ×
C([−h, 0];E)×E×H ⊸ E is a multivalued nonlinearity and the function xt describes the prehistory
of the solution at the moment t ∈ [0, T ], i.e., xt(s) = x(t + s), s ∈ [−h, 0], 0 < h < T. A control
function u(·) belongs to the space L∞([0, T ];U), where U is a Banach space of controls, B : U → E
is a bounded linear operator. Here ρ is a positive number, C : [0, T ] ⊸ H is a multimap with closed
convex values, NC(t)(y) denotes the normal cone defined for a closed convex set C(t) ⊂ H as

NC(t)(y) =

{
{ξ ∈ H : ⟨ξ, c− y⟩ ≤ 0 for all c ∈ C(t)}, if y ∈ C(t),

∅, if y /∈ C(t),
(1.6)

and function g : [0, T ]× E ×H → H is a nonlinear map, and ϑ ∈ C([−h, 0];E), x1 ∈ E, y0 ∈ H.
The controllability problem which we study in this paper may be formulated in the following way:

for a given ϑ, x1 we will consider a solution x ∈ C([−h, T ];E), y ∈ C([0, T ];H) of the above system
(1.1)-(1.4) and a control u ∈ L∞([0, T ];U) such that conditions (1.2) and (1.5) are satisfied.

To solve this problem, we use the methods of contemporary mathematics, which are based on the
fixed points theory.

2. Preliminaries

2.1. The fractional integral and Caputo fractional derivative. For the considering of the main
problem we need the following notions from fractional calculus (see, e.g., monographs [19, 28]).

Let E be a Banach space.

Definition 2.1. The fractional integral of an order α > 0 of a function g : [0, T ] → E is the function
Iα0 g of the following form:

Iα0 g(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s) ds,

where Γ is the Euler gamma function

Γ(α) =

∫ ∞

0
xα−1e−xdx.

Definition 2.2. The Caputo fractional derivative of an order α ≥ 0 of a function g ∈ Cn([0, T ]; E) is
the function CDα

0 g of the following form:

CDα
0 g(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(n)(s) ds,

where n and α are related by equality n = [α] + 1.
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2.2. The measure of noncompactness and multivalued maps. Let Y be a metric space. We will
use the following notation:

• P (Y ) is the collection of all nonempty subsets of Y ;
• Pb(Y ) is the collection of all nonempty bounded subsets of Y ;
• K(Y ) is the collection of all compact subsets of Y.

If Y is a normed space the symbol Kv(Y ) will denote the collection of all nonempty convex compact
subsets of Y.

Definition 2.3. (See, e.g., [18, 23]). Let E be a Banach space, (A,≥) be a partially ordered set. A
function β : Pb(E) → A is called the measure of noncompactness (MNC) in E if for each Ω ∈ Pb(E)
we have:

β(coΩ) = β(Ω),

where coΩ denotes the closure of the convex hull of Ω.

A measure of noncompactness β is called:
1) monotone if for each Ω0,Ω1 ∈ Pb(E), Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1);
2) nonsingular if for each a ∈ E and each Ω ∈ Pb(E) we have β({a} ∪ Ω) = β(Ω);

If A is a cone in a Banach space, the MNC β is called:
4) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E);
5) real if A is the set of all real numbers R with the natural ordering;
6) algebraically semiadditive if β(Ω0 +Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0,Ω1 ∈ Pb(E).

As an example of a real MNC obeying all above properties, we can consider the Hausdorff MNC
χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E }.
Notice that the Hausdorff MNC satisfies the semi-homogeneity condition:

χ(λΩ) = |λ|χ(Ω),

for every λ ∈ R and Ω ∈ P (E).
Recall that the norm of a set M ∈ Pb(E) is defined by the formula:

∥M∥ = sup
x∈M

∥x∥E

Definition 2.4 (See, e.g., [18]). Let X be a closed subset of E ; β a MNC in E . A multivalued map
(multimap) F : X → K(E) is called condensing w.r.t. β (or β-condensing) if for every Ω ∈ Pb(X)
which is not relatively compact we have:

β(F (Ω)) ̸≥ β(Ω).

Definition 2.5 (See, e.g., [18, 23]). Let X and Y be metric spaces. A multivalued map (multimap)
F : X → P (Y ) is called:

(i) upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is an open subset of X for
each open subset V ⊂ Y ;

(ii) closed if its graph ΓF = {(x, y) : y ∈ F(x)} is the closed subset of X × Y ;
(iii) compact if its range F(X) is a relatively compact subset of Y ;
(iv) quasicompact if its restriction to each compact subset A ⊂ X is compact.

We will need the following assertion.

Lemma 2.6. If F : X → K(Y ) is a closed quasicompact multimap then F is u.s.c.
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Theorem 2.7. (Cf. [18], Corollary 3.3.1) Let M be a convex closed subset of E and F : M → Kv(M) a
u.s.c. β–condensing multimap, where β is a nonsingular MNC in E . Then the fixed point set FixF = {x :
x ∈ F(x)} is non-empty.

Recall some notions (see, e.g., [18, 23]). Let E be a Banach space.

Definition 2.8. For a given 1 ≤ p ≤ ∞, a multifunction G : [0, T ] → K(E) is called:
• Lp–integrable if it admits an Lp–Bochner integrable selection, i.e., there exists a function g ∈
Lp ((0, T );E) such that g(t) ∈ G(t) for a.e. t ∈ [0, T ];

• Lp–integrably bounded if there exists a function ξ ∈ Lp((0, T )) such that

∥G(t)∥ ≤ ξ(t)

for a.e. t ∈ [0, T ].

The set of all Lp–integrable selections of a multifunction G : [0, T ] → K(E) is denoted by Sp
G.

2.3. Sweeping process in a Hilbert space. Let M be a closed nonempty subset of a Hilbert space H
and x ∈ H, then a distance from x to M, denoted by d(x,M), is defined as

d(x,M) = inf{∥x− z∥| z ∈ M},

and the set of nearest points to x in M is given as

prM (x) = {z ∈ M | d(x,M) = ∥x− z∥}.

If z ∈ prMx and α ≥ 0, then the vector α(x− z) is called a proximal normal to M at z. The set of
all such vectors forms a cone called the proximal normal cone to M at z. It is denoted by NP

M (z). The
limiting normal cone, denoted by NL

M (z), is defined as

NL
M (z) = {η ∈ H| ηn ⇀ η, ηn ∈ NP

M (zn), zn → z}.

For a fixed r > 0, the set M is said to be r-prox-regular (or uniformly prox-regular with constant
1
r ), if for any z ∈ M and any η ∈ NL

M (z) such that ∥η∥ < 1, one has z = prM (z + rη). If M is
r-prox-regular, then the following holds (see [13]):

(i) for each z ∈ M, all the normal cones defined above coincide. In such a case, they will be denoted
by NM (z);

(ii) for each z ∈ H such that d(z,M) < r, the set prM (z) is a singleton.
In the sequel, we will use the following notation. The collection of all nonempty closed subsets of H

will be denoted by C(H),

Cb(H) = {A ∈ C(H) : A is bounded};
Cv(H) = {A ∈ C(H) : A is convex}.

Let a multifunction C : [0, T ] → C(H) be such that
(H1) for every t ∈ [0, T ], the set C(t) is an r-prox-regular;
(H2) C(t) varies in an absolutely continuous way, i.e., there exists an absolutely continuous function

ϑ : [0, T ] → R such that for each x ∈ H and s, t ∈ [0, T ] :

|d(x,C(t))− d(x,C(s))| ≤ |ϑ(t)− ϑ(s)|.

Theorem 2.9. (see [13]) Assume that the multifunction C(·) satisfies (H1) and (H2). Let h : [0, T ] → H
be an integrable map. Then, for each η0 ∈ C(0), the sweeping process with perturbation

−y′(t) ∈ NC(t)(y(t)) + h(t) a.e. t ∈ [0, T ], (2.1)

y(0) = η0, (2.2)
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has an unique absolutely continuous solution y. Moreover, the following inequality holds true

∥y′(t) + h(t)∥ ≤ ∥h(t)∥+ |ϑ′(t)| a.e. t ∈ [a, b]. (2.3)

Theorem 2.10. (see [13]) Assume that the multifunction C(·) satisfies (H1) and (H2). Let f : [0, T ]×
H → H be a map such that

(i) for each x ∈ H the function f(·, x) : [0, T ] → H is measurable;
(ii) for every δ > 0 there exists a non-negative function kδ ∈ L1[0, T ] such that for each (x, y) ∈

Bδ(0)×Bδ(0) we have

∥f(t, x)− f(t, y)∥ ≤ kδ(t)∥x− y∥, a.e. t ∈ [0, T ];

(iii) there exists a non-negative function ς ∈ L1[0, T ] such that for each x ∈ ∪s∈[0,T ]C(s) :

∥f(t, x)∥ ≤ ς(t)(1 + ∥x∥), a.e. t ∈ [0, T ].

Then, for each η0 ∈ C(0), the following perturbed sweeping process

−y′(t) ∈ NC(t)(y(t)) + f(t, y(t)), a.e. t ∈ [0, T ], (2.4)

y(0) = η0, (2.5)

has a unique absolutely continuous solution y.

For a multifunction C : [0, T ] → Cv(H) consider the following sweeping process with perturbation

−y′(t) ∈ NC(t)(y(t)) + h(t) + ρy(t), (2.6)

where h : [0, T ] → H is a bounded measurable function and ρ > 0.
We will assume that the multifunction C satisfies the following properties

(H2′) C is Lipschitz, i.e., there exists LC > 0 such that for all t1, t2 ∈ [0, T ] we have

dH(C(t1), C(t2)) ≤ LC |t1 − t2|, (2.7)

where the Hausdorff distance dH(C1, C2) between two closed sets C1, C2 ⊂ H is defined as

dH(C1, C2) = max{ sup
a∈C2

d(a,C1), sup
b∈C1

d(b, C2)};

(H3) the set
⋃

t∈[0,T ]C(t) is a relatively compact.
Notice that condition (H2′) is a particular case of (H2), when v(t) = LCt.
Under condition (H2′) for initial condition y(0) ∈ C(0), the sweeping process (2.6) admits a unique

absolutely continuous solution y(t) satisfying (2.6) for almost all t ∈ [0, T ] (Theorem 2.10).
Let the map g satisfy the following conditions:
(g1) for all (x, y) ∈ E ×H, the function g(·, x, y) : [0, T ] → E is measurable map;
(g2) there exist constants m1,m2 > 0, such that for all t ∈ R and x1, x2 ∈ E, y1, y2 ∈ H we have

∥g(t, x1, y1)− g(t, x1, y1)∥H ≤ m1∥x1 − x2∥E +m2∥y1 − y2∥H ;

(g3) there exists a function σ ∈ L1
+([0, T ]) such that

∥g(t, x, y)∥H ≤ σ(t)(1 + ∥x∥E + ∥y∥H), for a.e. t ∈ [0, T ].

From Theorems 2.9, 2.10 it follows that under conditions (H1), (H2′), (H3), (g1) − (g3) for each
x ∈ C([−h, T ];E) problem (1.3)-(1.4) has a unique solution yx ∈ C([0, T ];H).
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3. Main Result

Let E be a separable Banach space and C := C([−h, 0];E). We will suppose that the following
assumptions hold true.

(A) the operator A : D(A) ⊂ E → E is an infinitesimal generator of an uniformly bounded
C0-semigroup {U(t)}t≥0 of linear operators in E. Denote by M = sup {∥U(t)∥ ; t ≥ 0} .

The multimap F satisfy the following conditions:
(F1) for each (ξ, x, y) ∈ C × E × H the multifunction F (·, ξ, x, y) : [0, T ] → Kv (E) admits a

measurable selection;
(F2) for a.e. t ∈ [0, T ] the multimap F (t, ·, ·, ·) : C × E ×H → Kv (E) is u.s.c.;
(F3) for each r > 0 there exists a function ωr ∈ L∞

+ ([0, T ]) such that
∥F (t, ξ, x, y)∥E ≤ ωr(t), a.e. t ∈ [0, T ]

for all (ξ, x, y) ∈ C × E ×H , ∥ξ∥C ≤ r ∥x∥E ≤ r, ∥y∥H ≤ r;
(F4) there exists a function µ ∈ L∞

+ ([0, T ]) such that for each bounded set Ω ⊂ E,∆ ⊂ C and every
y ∈ H we have:

χE(F (t,∆,Ω, y)) ≤ µ(t)(χE(Ω) + φ(∆)), a.e. t ∈ [0, T ],

where φ(∆) = sups∈[−h,0] χE(∆(s)), χE is the Hausdorff MNC in E,∆(s) = {y(s) : y ∈ ∆} .
For a given x ∈ C([−h, T ];E) consider the multifunction

Φ : [0, T ] → Kv(E), Φ(t) = F (t, xt, x(t), yx(t)).

Let D ⊂ C([0, T ];E) be a convex closed subset given as
D = {ξ ∈ C([0, T ];E), ξ(0) = ϑ(0)}

and, for a given ξ ∈ D, define a function ξ[ϑ] ∈ C([−h, T ];E) by

ξ[ϑ](t) =

{
ϑ(t), t ∈ [−h, 0],
ξ(t), t ∈ [0, T ].

From above conditions (F1)–(F3), it follows (see, e.g., [18] Theorem 1.3.5) that the multifunction Φ
is L∞–integrable and, therefore, the superposition multioperator P∞

F : D → P (L∞([0, T ];E)) can be
defined in the following way:

P∞
F (x) = {f ∈ L∞([0, T ];E) : f(t) ∈ F (t, x[ϑ]t, x(t), yx(t)) a.e. t ∈ [0, T ]}.

Following monograph [18], we give the next definition of a mild solution to problem (1.1)-(1.2).

Definition 3.1. A mild solution to problem (1.1)-(1.2) on the interval [−h, T ] is a function
x ∈ C([−h, T ];E) of the following form:

x(t) =


ϑ(t), t ∈ [−h, 0],

G(t)ϑ(0) +
∫ t
0 (t− s)α−1T (t− s)f(s)ds+

+
∫ t
0 (t− s)α−1T (t− s)Bu(s)ds, t ∈ [0, T ],

where
G(t) =

∫ ∞

0
ξα(θ)U(tαθ)dθ, T (t) = α

∫ ∞

0
θξα(θ)U(tαθ)dθ,

ξα(θ) =
1

α
θ−1− 1

αΨα(θ
−1/α),

Ψα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−αn−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ R+,

and f ∈ P∞
F (x), u ∈ L∞([0, T ];U).
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Remark 3.2. ξα (θ) ≥ 0,
∫∞
0 ξα (θ) dθ = 1,

∫∞
0 θξα (θ) dθ = 1

Γ(α+1) .

Lemma 3.3. (see [36]) The operators G and T obey the following properties:
(1) for each t ∈ [0, T ], G(t) and T (t) are bounded linear operators and, moreover,

∥G(t)x∥E ≤ M ∥x∥E ; ∥T (t)x∥E ≤ M

Γ(α)
∥x∥E ;

(2) the operator functions G(t) and T (t) are strongly continuous for t ∈ [0, T ].

Towards our goal we will suppose the usual assumption on the controllability of the corresponding
linear problem. More exactly, we assume that the linear controllability operator W : L∞([0, T ];U) →
E given by

Wu =

∫ T

0
(T − s)α−1T (T − s)Bu(s)ds

has a bounded right inverse W−1 : E → L∞([0, T ];U) (cf. [3]).
We will assume that the operator W−1 satisfies the following regularity condition:
(W ) there exists a function γ ∈ L∞

+ ([0, T ]) such that for each bounded set Ω ⊂ E we have:

χU

(
W−1(Ω)(t)

)
≤ γ(t)χE(Ω) for a.e. t ∈ [0, T ],

where χU is the Hausdorff MNC in U.

Let M1, M2 be positive constants such that
∥B∥ ≤ M1,

∥∥W−1
∥∥ ≤ M2.

We will need the operator S : L∞([0, T ];E) → C([0, T ];E),

S(f)(t) =

∫ t

0

(t− s)α−1T (t− s)f(s)ds

+

∫ t

0

(t− s)α−1T (t− s)

[
BW−1

(
x1 − G(T )ϑ(0)−

∫ T

0

(T − τ)α−1T (T − τ)f(τ)dτ

)
(s)

]
ds.

Let us represent the operator S in the form S(f) = S1(f) + S2(f), where

S1(f)(t) =

∫ t

0

(t− s)α−1T (t− s)f(s)ds,

S2(f)(t) =

∫ t

0

(t− s)α−1T (t− s)

[
BW−1

(
x1 − G(T )ϑ(0)−

∫ T

0

(T − τ)α−1T (T − τ)f(τ)dτ

)
(s)

]
ds.

Lemma 3.4. (see [17]) The operator S1 obeys the following properties:
(S1) for 1/α < p < ∞, there exists a constant C ≥ 0 such that

∥S1(ξ)(t)− S1(η)(t)∥pE ≤ Cp

∫ t

0

∥ξ(s)− η(s)∥pE ds, ξ, η ∈ Lp([0, T ];E);

(S2) for every compact set K ⊂ E and bounded sequence {ηn} ⊂ L∞([0, T ];E) such that {ηn(t)} ⊂ K for
a.e. t ∈ [0, T ], the weak convergence ηn ⇀ η0 in L1([0, T ];E) implies the convergence S1(ηn) → S1(η0) in
C([0, T ];E).

We need the following assertions which follows from [17].

Lemma 3.5. . Let ∆ be a bounded subset of L∞([0, T ];E) such that

χE(∆(t)) ≤ κ(t) a.e. t ∈ [0, T ],

where κ ∈ L∞[0, T ]. Then

χE({S1∆(t)}) ≤ 2M

Γ(α)

∫ t

0

(t− s)α−1κ(s) ds.
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Lemma 3.6. . Let Ω ⊂ C([0, T ];E) ia a nonempty bounded set and Ω(t) is relatively compact set in E for each
t ∈ [0, T ]. Then the set{

S1 ◦ P∞
F (Ω)(t) =

∫ t

0

(t− s)α−1T (t− s)f(s)ds : f ∈ P∞
F (Ω)

}
is equicontinuity.

Let us mention that the operator S2 may be represented in the form:

S2(f) = S1(BW−1 (x1 − G(t)x0 −ΠS1(f))), (3.1)
where Π : C([0, T ];E) → E, Πx = x(T ) is a bounded linear operator. Taking into account that W−1, B,

and S1 are bounded linear operators, we conclude that the assertions of Lemmas 3.4, 3.5 and 3.6 are true for the
operator S2 and hence for the operator S.

Now, consider the multioperator G : D → P (D) given as
G(x) = j + S ◦ P1

F (x),

where j(t) = G(t)ϑ(0), t ∈ [0, T ].

It is clear that a function x ∈ D is a fixed point of the multioperator G if and only if the function x[ϑ] ∈
C([−h, T ];E) is a mild solution of controllability problem (1.1), (1.2), (1.5). So, our problem is reduced to the
sourcing of a fixed point of the operator G.

Theorem 3.7. The multioperator G is u.s.c.

Proof. From the representation (3.1) and properties of multivalued maps (see, e.g., [18]) it follows that it is suffi-
cient to prove the assertion for the multimap S1 ◦ P∞

F .

Let us show that the multimap S1 ◦ P∞
F is quasicompact. Take a nonempty compact set A ⊂ D and consider

any sequence {ξn} ⊂ S1◦P∞
F (A). We have ξn = S1(fn), where fn ∈ P∞

xn
for a certain sequence {xn} ⊂ A. We

assume, w.l.o.g., that xn → x0 ∈ A. From condition (F4) it follows that the sequence {fn(t)} ⊂ E is relatively
compact for a.e. t ∈ [0, T ] and hence the sequence {fn}∞n=1 is L1-semicompact. By the Diestel criterion of
weak relative compactness (see [12]), we can assume that fnk

L1

⇀ f0 for some subsequence {fnk
}. By the known

property of weak closedness of the superposition multioperator (see [18], Lemma 5.1.1) we get f0 ∈ P∞
F (x0).

Now, applying Lemma 3.4 we obtain for the corresponding subsequence ξnk
→ ξ0 = S1(f0) ∈ S1 ◦ P∞

F (x0).

The closedness of the multioperator S1 ◦ P∞
F can be proved via similar arguments and then the assertion

follows from Lemma 2.6. □

Let us consider conditions under which the operator G is condensing. Introduce in the space C([0, T ];E) the
measure of noncompactness

ν : Pb(C([0, T ];E)) → R2
+

with the values in the cone R2
+ defined as

ν(Ω) = (φ(Ω),modC(Ω)) ,

where φ(Ω) is the module of fiber noncompactness
φ(Ω) = sup

t∈[0,T ]

χE({x(t) : x ∈ Ω})

and the second component is the equicontinuity module which is given as
modC(Ω) = lim

δ→0
sup
x∈Ω

max
|t1−t2|≤δ

∥x(t1)− x(t2)∥.

It is known (see [18]) that the MNC ν is monotone, nonsingular, algebraically semiadditive, and regular.
Now, let us formulate the following conditions under which the operator G is condensing.

Theorem 3.8. Under conditions (A), (F1) - (F4), (H1), (H2′), (H3), (W ) and condition

(C) c := 4MTα

Γ(1+α)∥µ∥∞
(
1 + 2MM1T

α

Γ(1+α) ∥γ∥∞
)
< 1

the operator G is ν-condensing.
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Proof. Let Ω ⊂ D be a nonempty bounded set, ∥Ω∥ ≤ rΩ, with rΩ > ∥ϑ∥C and yx ∈ C([0, T ];H) be a solution
of problem (1.3) - (1.4) determined by a function x ∈ D. Suppose

ν(G(Ω)) ≥ ν(Ω). (3.2)

We will show that Ω is a relatively compact set.
Since the MNC ν is nonsingular we have

ν(S ◦ P∞
F (Ω)) ≥ ν(Ω). (3.3)

From (3.3) it follows that
φ(S ◦ P∞

F (Ω)) ≥ φ(Ω). (3.4)
Applying regularity condition (F4) we will have for 0 ≤ s ≤ T the following estimate:

χE(P∞
F (Ω)(s)) =χE({f(s) : f ∈ P∞

F (Ω)})

≤µ(s) ·
(
χE({x(s) : x ∈ Ω}) + φ({x[ϑ]s : x ∈ Ω})

)
=µ(s) ·

(
χE({x(s) : x ∈ Ω}) + sup

τ∈[0,s]

χE({x(τ) : x ∈ Ω})
)

≤2µ(s)φ(Ω).

Then, by using Lemma 3.5 we get

χE (S1 ◦ P∞
F (Ω)) (t) ≤ 4M

Γ(α)

∫ t

0

(t− s)
α−1

µ(s)ds · φ(Ω) ≤ 4MTα

Γ(1 + α)
∥µ∥∞ · φ(Ω).

Further, we have the estimate

χE

({
BW−1

(
x1 − G(T )ϑ(0)−

∫ T

0

(T − τ)α−1T (T − τ)f(τ)dτ

)
(s) : f ∈ P∞

F (Ω)

})

≤M1γ(s)χE

({(∫ T

0

(T − τ)α−1T (T − τ)f(τ)dτ

)
(s) : f ∈ P∞

F (Ω)

})

≤M1 γ(s)
4MTα

Γ(1 + α)
∥µ∥∞ · φ(Ω)

≤4MM1T
α

Γ(1 + α)
∥µ∥∞∥γ∥∞ · φ(Ω).

By using this estimate, we obtain
χE (S2 ◦ P∞

F (Ω)) (t)

≤ 2M

Γ(α)
×

∫ t

0

(t− s)α−1 χE

({
BW−1

(
x1 − G(T )ϑ(0)−

∫ T

0

(T − τ)α−1T (T − τ)f(τ)dτ

)
(s) : f ∈ P∞

F (Ω)

})
ds

≤8M2M1T
2α

Γ2(1 + α)
∥µ∥∞ ∥γ∥∞ · φ(Ω).

Therefore we get

χE (S ◦ P∞
F (Ω(t))) ≤ 4MTα

Γ(1 + α)
∥µ∥∞ · φ(Ω) + 8M2M1T

2α

Γ2(1 + α)
∥µ∥∞ ∥γ∥∞ · φ(Ω)

=
4MTα

Γ(1 + α)
∥µ∥∞

(
1 +

2MM1T
α

Γ(1 + α)
∥γ∥∞

)
· φ(Ω)

=kφ(Ω)

Hence
φ (S ◦ P∞

F (Ω)) ≤ cφ(Ω), (3.5)
with c < 1.

Comparing inequalities (3.4) and (3.5) we have

φ(Ω) ≤ cφ(Ω),
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since c < 1, then
φ(Ω) = 0.

Now, from (3.3) we obtain
modC(S ◦ Pinfty

F (Ω)) ≥ modC(Ω). (3.6)
At the same time, according to Lemma 3.6, we can assert that the set S ◦ P∞

F (Ω) is equicontinuous, therefore

modC(S ◦ P∞
F (Ω)) = 0.

From inequality (3.6) it follows that modC (Ω) = 0 that yields ν(Ω) = (0, 0) implying the relative compactness of Ω. The
assertion is proved. □

Theorem 3.9. Under assumptions (A), (F1), (F2), (F4), (H1), (H2′), (H3), (g1) − (g3), (W ), (C), suppose
that condition (F3) has the following form:

(F3′) there exists a sequence of functions {ωn} ⊂ L∞
+ [0, T ] such that

sup
∥x∥E≤n,∥y∥H≤n,∥ζ∥C≤n

∥F (t, ζ, x, y)∥ ≤ wn(t) for a.e. t ∈ [0, T ], n = 1, 2, ...

and

lim
n→∞

inf
1

n
∥ωn∥∞ = 0.

Then controllability problem (1.1)-(1.5) has a solution.

Proof. We will show that there exists a closed ball BR ⊂ C([0, T ];E) centered at the origin of a sufficiently large
radius R > ∥ϑ∥C such that G(BD

R ) ⊂ BD
R , where BD

R = BR ∩ D.
Towards this goal, notice that if n > ∥ϑ∥C then obviously condition x(·) ∈ D, ∥x∥C ≤ n implies ∥x[ϑ]t∥C ≤ n

for all t ∈ [0, T ] and hence, for such n we get the following estimate: if zn ∈ G(xn), ∥xn∥C ≤ n, then

∥zn∥C ≤ M∥ϑ(0)∥E +
MTα

Γ(1 + α)
∥ωn∥∞ +

MM1M2T
α

Γ(1 + α)

(
∥x1∥E +M∥ϑ(0)∥E +

MTα

Γ(1 + α)
∥ωn∥∞

)
. (3.7)

For convenience, rewrite this estimate as

∥zn∥C ≤ M∥ϑ(0)∥E + C1∥ωn∥∞ + C2

(
∥x1∥E +M∥ϑ(0)∥E + C1∥ωn∥∞

)
, (3.8)

where
C1 =

MTα

Γ(1 + α)
, C2 =

MM1M2T
α

Γ(1 + α)
. (3.9)

Now, supposing the contrary to our assertion, we will have sequences {xn}, {zn} ⊂ D, such that zn ∈ G(xn),

∥xn∥C ≤ n but ∥zn∥C > n for all sufficiently large n.

But then, applying (3.7), for all such n we have

1 <
∥zn∥C

n
≤ 1

n
M∥ϑ(0)∥E + C1

∥ωn∥∞
n

+ C2

( 1
n
∥x1∥E +

1

n
M∥ϑ(0)∥E + C1

∥ωn∥∞
n

)
,

giving the contradiction.
It remains to apply Theorem 2.7. □

4. Conclusion

In this paper we studied the controllability for a system governed by a fractional semilinear order functional
differential inclusion with delay and a sweeping process in a Hilbert space. We defined the multivalued operator
whose fixed points are generating solutions of the problem. By using the methods of fractional analysis and the
fixed point theory for condensing multivalued maps we studied the properties of this multioperator, in particular,
we demonstrate that under certain conditions it is condensing w.r.t. an appropriate measure of noncompactness.
This allows to present the controllability principle as the main result of the present paper.
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