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ABsTRACT. This paper investigates the arcwise connectedness of approximate solution sets for set opti-
mization problems under the set less order relation via a scalarization approach. First, we establish the
continuity of a novel nonlinear scalarization function constructed based on the set less criterion. Next,
scalarization properties of the approximate solution sets are rigorously derived. Finally, we derive arc-
wise connectedness of weak approximate solutions for set optimization problems. These results enrich
the exploration of scalarization and connectedness under set less order relations and provide a theoretical
foundation for subsequent research.
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1. INTRODUCTION

In recent years, set optimization problems have garnered increasing attention as a fascinating re-
search area, primarily due to the prevalence of set valued mappings in numerous practical optimiza-
tion scenarios. These problems hold profound implications across both pure and applied mathematics,
spanning diverse fields such as uncertain optimization, mathematical economics, viability theory, im-
age processing, variational inequalities and fuzzy optimization. Among others, for a more detailed
exploration of set optimization problems, we refer the reader to [16, 19].

The vector method is primarily concerned with finding effective solutions to image sets. And the
set technique is based on contrasting the image sets through the set order relations. To compare sets,
numerous set order relations have been employed in existing literature [13, 15, 16, 18], including the
Minkowski order relation, the upper set less order relation, the lower set less order relation, and the
set less order relation. Among these, the set less relation is regarded as one of the most crucial due to
its significant role in practical scenarios. Inspired by this research trend, the present study focuses on
set optimization problems using the set less relation as the theoretical framework.

The scalarization method is a common approach in optimization problems because it typically trans-
forms complex problems into simpler ones. There are generally two types of scalarization functions:
linear scalarization functions and nonlinear scalarization functions. The Gerstewitz function [5] and the
signed distance function [11] are two well-known nonlinear scalarization functions that are available
in the literature. Meanwhile, as well as their many extensions, please refer to references [3, 4, 14, 17]
for details.

As we all know, studying the properties of solution sets is one of the important issues in optimiza-
tion. Like continuity, well-posedness and connectedness [20, 21, 22]. Among this, connectedness plays
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an important role, as it allows continuous movement from one solution to another. In recent years,
many scholars have conducted research on the connectedness of solutions to set optimization prob-
lems. In 2019, Han [10] studied the path connectedness of the l-minimal solutions for SOP using the
linear scalarization technique. Later in [23], Peng studied the connectedness and path-connectedness
of solution sets for weak generalized symmetric Ky Fan inequality problems with respect to addition-
invariant set. In [8], Han established the connectedness of the weak p-minimal solutions for SOP by
means of the scalarization approach. The connectedness of solution sets for generalized vector equilib-
rium problems via free-disposal sets in complete metric space is discussed in [25] by Shao. In [9], Han
studied the connectedness of the approximate solutions of the SOP using the generalized Gerstewitz
function. However, there are no articles studying the arcwise connectedness of solution sets through
set less order relations, as there is too little research on scalarization under set less order relations.

Recently, Anh in [1] introduced a scalar function which useful for comparison sets by the set less
relation and applied to investigate optimality conditions and representations for solutions of set opti-
mization problems. Naturally, it is necessary to explore the continuity of this function in [1] which is
neccessary for studying the stability of set optimization problems via scalarization method. The sec-
ond aim of this paper is to establish the arcwise connectedness of the approximate solution sets in set
optimization problems by using the new scalarization function.

This paper is organized as follows. In Section 2, we recall some definitions and properties needed
in what follows. In Section 3, we study the scalarization results for the solution sets. In Section 4, the
arcwise connectedness of the solution sets is studied. Finally, a summary of the conclusions is presented
in Section 5.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified, let X,Y be two normed vector spaces. Assume
that C C Y as C' # Y is a pointed, closed and convex cone with intC' # (). We denote by int A, cl A
the topological interior, the topological closure of A, respectively. Let R = {z € R : z > 0} and
R(jr = {z € R : z > 0} We denote by By the closed unit ball in Y. Let A and B be two nonempty
subsets of Y.

For the above cone C, we have known the lower set less relation, upper set less relation and set less
relation (see [13, 16, 18] ) respectively by

A<'Be BCA+C,
A"B& ACB-C,
A<*B< A<'Band A <" B.
Let e € int C. For £ > 0, the e-lower relation < and the weak s-lower relation <. in [2] are defined
by
B C A+ C +ee,
B C A+ intC + ce.
Motivated by the above definitions, let e € intC' and € > 0, we give the next notion of e-set less
relation <? and the weak e-set less relation <?:

A= Bifandonlyif BC A+ C+cecand A C B—C —ce,
A <I Bifandonlyif BC A+ intC +eceand A C B — intC — ce.

Let P(Y) be the family of all nonempty subsets of Y. It is said that a set A € P(Y') is C-proper if
A+ C #Y,C-convex if A+ C is a convex set, C-bounded if for any neighbourhood U of O € Y there
exists t > 0 such that A C tU + C and C-compact if any cover of A of the form {U, + C'},c1, where
U, is open for any o € I, admits a finite subcover.
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Let I : X =2 Y be a set-valued mapping. Let M be a nonempty subset of X. Let us consider the
following set optimization problem (SOP):

min{F (z) : z € M}.

Remark 2.1. [12] Let A be a nonempty subset of Y and a € A. We say that a is a minimal point of A
with respect to C, denoted by a € Min(A), if (A — a) N (—C) = {0}. It follows from Corollary 3.8 of
[12] that if A is a compact and nonempty set, then Min(A) # (.

Definition 2.2. Fore > 0, Z € M is said to be
(i) a C-s-minimal solution of (SOP) if z € M and F' (z) <* F (%) implies F' (z) <°* F
(ii) a weak C-s-minimal solution of (SOP) if z € M and F () <° F (&) implies F' (Z)
(iii) a C-s-minimal approximate solution of (SOP) if x € M and F' (x) <2 F' () implies F (:E)
v)

(i

(z
<5F()
F(z).

a weak C-s-minimal approximate solution of (SOP) if x € M and F (z) < F (Z) implies

Let E5(F), W(F), Es(e, F') and W;(e, F') denote the C-s-minimal solution of (SOP), the weak C-s-
minimal solution of (SOP), the C-s-minimal approximate solution of (SOP) and the weak C-s-minimal
approximate solution of (SOP).

Definition 2.3. [7] Let X and Y be two topological vector spaces and C be a cone of Y. A set-valued
mapping F': X =2 Y is said to be
(i) upper semicontinuous (u.s.c.) at o € X, if for any open set V' C Y with F(xg) C V, there
exists a neighbourhood U of z¢ in X such that F/(z) C V forallz € U.
(ii) lower semicontinuous (Ls.c.) at zy € X, if for any open set V' C Y with F'(zg) NV # (), there
exists a neighbourhood U of z in X such that F/(z) NV # () forall z € U.
(iii) C-upper semicontinuous (C-u.s.c.) at 79 € X, if for any open set V' C Y with F(zg) C V,
there exists a neighbourhood U of x in X such that F'(z) CV 4+ Cforallz € U.
(iv) C-lower semicontinuous (C-ls.c.) at xg € X, if for any y € F (x() and any neighbourhood V'
of Oy, there exists a neighbourhood U (z) of x( such that

Fx)N(y+V —-C)#0, Ve e U (x9) .
Definition 2.4. [24] Let X and Y be two topological vector spaces and C' is a closed, convex and
pointed cone with nonempty interior. A set-valued mapping F': M = Y is said to be

(i) outer semicontinuous (osc) at g € X , if
limsup F(z) C F(xg).
T—T0

(ii) inner semicontinuous (isc) at zg € X, if

F(zo) C liminf F(x).

T—T0

(iii) C-outer semicontinuous (C-osc) at ¢ € X, if F'+ C'is outer semicontinuous at zg.
(iv) C-inner semicontinuous (C-isc) at g € X, if F' + C' is inner semicontinuous at zg.

Definition 2.5. [16] Let M be a nonempty convex subset of X, F': M =2 Y be a set-valued mapping,
C is a closed, convex and pointed cone with nonempty interior. We say that F' is C'-convex on M if for
each x1,29 € M and \ € [0, 1], we have

FAz1 + (1 = XNz2) P AF(21) + (1 = N F(x2).
Lemma 2.6. Assume that xo € M and F(x) is C-proper and C-closed.

(i) Fore >0,z € Eq(e, F) if and only if there is noy € M satisfying F(y) <2 F(xo).
(ii) The inclusion o € Wy(e, F) if and only if there is noy € M satisfying F(y) <2 F(xo).
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Proof. (i) If there is no x € M satisfying F' (z) <2 F' (z0), then g € Ws(e, F') by definition. Now, we
prove the “only if ” part. Assume on the contrary that there exists © € M satisfying F' (z) <5 F ().
Then F (z¢) < F (x) because xg € F,(e, F). Using the above two relations we get

F(z0) € F(x) 4+ intC + ee C F(xg) + intC 4 intC + ee C F(xq) + intC. (2.1)
This implies that
F(xo)+C C F(x9) + C 4+ intC = F(xq) + intC. (2.2)

It is impossible as F'(xg) is C-proper and C-closed.
The proof of (ii) is similar to the proof of (i) and so we omit it here. O

Definition 2.7. [1] For e € intC, we consider a function ¢, : P(Y) x P(Y) — RU{+o0} defined by
ve(A,B) =inf{A\eR| A’ e+ B} VA BeP(Y),
we define ¢ : M x M — R U {£o0} by
(. y) = pe(F(2), F(y), V(r,y) e M x M.

Lemma 2.8. [1] Let A, B, D be given in P(Y') and A € R. The function . has following properties:

(i) @e(A+ Xe,B) = pc(A,B) + A\
(i) Ifpe(A, B) < A, then A <° \e + B. The converse statement holds if A is —C'-compact and B is
C-compact.
(iii) IfA is —C-compact, B is C-compact and D is C'-bounded, then

A=<"B = ‘Pe(AvD) < (pe(B,D).
(iv) If A is C-closed, B is —C'-closed and p.(A, B) € R. Then
A %% @e(A, B)e + B.

Lemma 2.9. Let A, B be given in P(Y') and A € R. If A is C-closed, B is —C'-closed and p.(A, B) € R,
ve(A, B) < Xifand only if A <* e + B.

Proof. If (A, B) < A, we have A <® Ae + B by Lemma 2.8(ii). Then A <* Ae + B holds. When
ve(A,B) = A we get p.(A,B) = X from Lemma 2.8(iv). Conversely, if p.(A, B) < A, then A
<% Ae + B by definition. O

Lemma 2.10. [1] Let A be nonempty C-convex and B be nonempty —C-convex. For Ay, As, By, Bs €
P(Y) andt € [0, 1], we have the following statements.

() (1 =1)A1 + 1Az, B) < (1 = t)@e(A1, B) + tpe(Az, B).
(ii) SDe(Aa (1 - 75)B1 + tBQ) < (1 - t)soe(Av Bl) + t@e(Aa BZ)'

Lemma 2.11. If F' is +C-outer semicontinuous and £C-inner semicontinuous on M with nonempty and
+C-compact values, then 1 is continuous on M x M.

Proof. Step 1: Lower semicontinuity of v
To show 1 is lower semicontinuous, fix 7 € R and define

L={(z,y) € M x M | ¢p(z,y) <r}.
We prove that L is closed. Let {(zy,, yn)} C L with (., yn) — (20, o). By Lemma 2.9,
F(zn) Cre+ F(yn) — C. (2.3)
Take any zg € F'(z¢). By the —C-inner semicontinuity of F at x,
20 € thI_l>lmI;f(F($) - 0).
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Thus, for x,, — x¢, there exist z,, € F(z,,) — C such that z,, — 2. For sufficiently large n and any

e >0,
20 € zp +ce C F(x,) — C + ce.

Combining (2.3) and (2.4), for large n,
20 € F(yn) + (r+e)e—C.
Hence,

20 — (r+¢)e € limsup(F(yn) — C).

Yn—Yo

By the —C-outer semicontinuity of F at yo,
20— (r+e)ee€ F(y) — C.
Since F'(yo) — C'is closed, letting ¢ — 0, we get z9 € F(yp) — C + re. Then
F(z0) € F(yo) — C +re,
and similarly F'(yo) + re C F(xo) + C. By Lemma 2.9, (z9, yo) € L, proving L is closed.
Step 2: Upper semicontinuity of v
Define for r € R,
L' ={(x,y) € M x M | ¢(x,y) > r}.
Suppose {(xn, yn)} C L' with (2, yn) — (0,y0). Assume (x0,y0) ¢ L. Then,
F(x9) Cre+ F(yp) — int C.

By the —C-outer semicontinuity of F" at xy, we have

lim sup(F(z,) — C) C F(xg) — C.

In—T0

By the —C-inner semicontinuity of F' at yy, we have
F(yo) — C C liminf(F(yy) — C).
Y

n Yo

It follows from (2.6) and (2.7), for sufficiently large n, we have

F(z,) —C C F(x9) — C + By,
F(yo) —C —¢eBy C F(y,) — C,

where By is the closed unit ball in Y. Combining this with (2.5), we obtain

F(zy,) Cre+ F(y,) — intC,

(2.4)

(2.5)

(2.6)

(2.7)

implying ¥ (zy,, y,) < r. This contradicts {(x,,y,)} € L'. Hence, (z9,yo) € L', proving L’ is closed.

This completes the proof.

0

Lemma 2.12. [6] Let X be a paracompact Hausdorff arcwise connected space and let Y be a Banach

space. Assume that

(i) F': X 2Y is a lower semicontinuous set-valued mapping.
(ii) foreachz € X, F(x) is nonempty, closed and convex.

Then, F'(X) is an arcwise connected set.
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3. SCALARIZATION RESULTS FOR THE SOLUTION SETS

In this section, we derive some scalarization results for the sets of weak s-minimal approximate
solutions for set optimization problem.
We define the set-valued mapping I' : M — P(M) as follows:
D(e,z) = {u€ M : vy, z) + ¢ = d(uz), Yy € M}, V(e,z) € Rs x M
={u e M:¢e(F(y), F(x)) +& = pe(F(u), F(z)), Vy € M}

Theorem 3.1. Lete > 0. Assume that F'(x) is C-compact for any x € M. Then

Wi(e,F) = ] T'(c,2).
reM

Proof. Let x* € Wi(e, F'). By Lemma 2.6, there exists no xg € M such that

F(J}o) _<g F(l’*)7

or equivalently, Flao) + ce <° F(a*)
xo Ee e .

Applying Lemma 2.8, we have

SDE(F(:EO) + ¢€e, F(CC*)) < @e(F(I*)’F(CL‘*))a
this implies that there is no 9 € M such that

e (F(:L"o), F(x*)) + e < e (F(ac*), F(x*))
Negating this inequality, we obtain for all z € M,

pe(F(2), F(z")) +e = pe(F(a"), F(z7)).
Thus, z* € I'(e,2*) € U en (e, 2).
Conversely, Let v € |, ,, I'(¢, z). Then there exists Z € M such that v € I'(¢, 7), i.e.,

pe(F(y), F(Z)) + & = ¢ (F(0), F(T)),Vy € M. (3.1)
Suppose for contradiction that v ¢ Wy (e, F'). By Lemma 2.6, there exists § € M such that

F(y) <2 F(v), orequivalently, F(y)+ ce <° F ().
Together with 2.8, this implies
pe(F(y), F(Z)) + & < ¢e(F(0), F(T)),
which directly contradicts (3.1). Hence, v € Wy(e, F'). The proof is completed. U

Theorem 3.2. Let M is nonempty and compact and x € M. Assume that F' is =C-outer semicontinuous
and +C-inner semicontinuous on M with nonempty and C-compact values. Then I'(e,z) # 0 for any
e >0.

Proof. Tt follows from Lemma 2.11 that ¢(-, x) is continuous on M. Since M is nonempty and compact,
it is easy to see that I'(0, z) # () by Weierstrass theorem. For any ¢ > 0, due to I'(0,z) C I'(e, ), we
have I'(e, z) # 0. O

Theorem 3.3. Assume that F is C-convex on M and I'(0,z) # (0. Then T'(-, z) is Ls.c. on RY..
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Proof. Suppose to the contrary that there exists g9 € R). such that I'(-, ) is not Ls.c. at £9. Then there
exist vy € ['(eg, x), a neighbourhood Wy of 0 € X and a sequence {&,,} C R with &, — ¢ such that

(vo+Wo)NT(ep,x) =0, VneN. (3.2)

Suppose that eg < &,,. Then vy € I'(g9,z) C I'(e,, z), which contradicts (3.2). Hence, we get that
g0 > &y, for any n € N. Due to I'(0, z) # 0, let v’ € T'(0, z), and so

Pe(F(y), F(x)) > pe(F(V'), F(2)), Yye M. (3.3)

It follows from vy € I'(gg, x) that

e(F(y), F(x)) +e0 > pe(F(v0), F(z)), Vye M. (3.4)

Since €,, — €9, there exists ng € N such that

ETLQ €0 —

Ve 1= —2vg + £0 ~ Eno v vg + m(v' — ) € vo + Wp. (3.5)
€0 €0 €0
We conclude from Lemma 2.10 that
g0 — € €
?msoe(F(v')aF(w)) + El(f@e(F(vo)aF(w)) > @e(F(ve), F(x)). (3.6)

Thanks to (3.3), (3.4) and (3.6), we have
pe(F(y), F(x)) + eng = ¢e(F(ve), F(2)), Yy €M,
which yields v, € I'(ep,, x). This together with (3.5) implies that
ve € (vo + Wo) NI (ep,, ),
which contradicts (3.2). This completes the proof. 0

Theorem 3.4. Assume that C' is nonempty and convex, F' is C-convex on M. Then T'(e, x) is convex for
any (e,z) € Ry x M.

Proof. Lett € [0, 1] and w1, us € I'(e, ). Then, for any y € M, we have

(1 =)y, z) + &) = (1 = )¢ (ug, ). (3.8)
Combining (3.7) and (3.8) , we get that
Yy, x) + & = tp(ur, ) + (1 — 1) (ug, ).
By Lemma 2.10, we have
t(ur, x) + (1 — t)(ug, z) > Y(tu; + (1 — t)ug, x).

Thus,
Uy, z) +e > Y(tur + (1 — t)ug, x),

which implies tu; + (1 — t)ug € I'(¢, z). Therefore, I'(¢, ) is convex. O
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4. ARCWISE CONNECTEDNESS OF THE SOLUTION SETS

Theorem 4.1. Let 9 > 0, X be a Banach space and M be a nonempty, convex and compact subset
of X. Assume that F' is £C-outer semicontinuous, £C-inner semicontinuous and C-convex on M with
nonempty £C'-compact values and x € M. Then

(i) T'(e0,x) is closed.
(ii) I'(eo, ) is Ls.c. on M.

Proof. (i) Let any {v,, } C I'(e9, z) with v, — vy, it suffices to prove that vy € I'(eq, x). It is clear that
vg € M. By {v,} C I'(eg, x), one has
V(y,x) +e9 > Y(vn,z), Yy € M. (4.1)
It follows from Lemma 2.11 that ¢ is continuous on M x M. Combining this with (4.1), we get
Y(y,x) +e0 > Y(vo,x), Vye M,

which implies vy € T'(gg, x).

(ii) Suppose to the contrary that there exists o € M such that I'(g, -) is not Ls.c. at z¢. Then there
exist vg € I'(gp, x0), a neighbourhood Wy of 0 € X and a sequence {z,,} C M with z,, — z¢ such
that

(vo + Wo) NT'(g9, ) =0, VneN. (4.2)

In view of Theorem 3.2, we have I'(0, z9) # 0. It follows from Theorem 3.3 that I'(-, z¢) is Ls.c. at
go. For the above vy € T'(g¢, z¢) and the neighbourhood Wy of 0 € X, there exists a neighbourhood
U(go) of &g such that

(vo +Wo)NT(e,z0) #0, Ve € Uleo).
Choose &’ € U(gg) with 0 < &’ < g¢. Then (vg + Wy) NT(e’, xo) # 0. Let
v' € (vo + Wo) NT(, xo). (4.3)
Due to (4.3), we have
@e(F(y), F(x0)) + € > @o(F(V'), F(x0)), VYye M. (4.4)
It is claimed that there exists ng € N such that
v' € T(eo, zn), Vn > ng. (4.5)

Indeed, if not, then for any n € N, there exists n;, > n such that v" ¢ I'(eg, x5, ). Without loss of
generality, we assume that v" ¢ I'(e¢, ,,) for any n € N. Then there is y,, € M such that

Pe(F(yn), F(zn)) + €0 < ‘Pe(F(U/)7F($n))- (4.6)

Since M is compact, without loss of generality, we assume that y,, — yo € M. It follows from
Lemma 2.11 that v is continuous on M x M. Combining this with (4.6), we get

pe(F(yo), F(0)) +&" < @e(F(yo), F(w0)) + €0 < @e(F(v'), F(x0)),
which contradicts (4.4). Therefore, (4.5) holds. This together with (4.3) implies that
v' € (vo + Wo) NT(e0, Tn), Vn > ny,
which contradicts (4.2). O

Theorem 4.2. Let 9 > 0, X be a Banach space and M be a nonempty, convex and compact subset
of X. Assume that F' is £C-outer semicontinuous, £C-inner semicontinuous and C-convex on M with
nonempty £C'-compact values and x € M. Then Ws(eo, F') is arcwise connected.
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Proof. By Theorem 4.1(i), Theorem 3.2 and 3.4, we can know that I'(eg, x) is nonempty, convex and
closed for any x € M. It follows from Theorem 3.2(ii) that I'(eo, -) is Ls.c. on M. By Theorem 3.1, we
have
| T(eo, 2) = Wi(eo, F).
xeM
Therefore, we conclude from Lemma 2.12 that W(eg, F') is arcwise connected. This completes the
proof. 0

Example 4.3. Let X =R, Y = R?, M = [-5,5] and C = R%. Leteg = (1,1) € int C and gy = 1.
The set-valued mapping F' : X =2 Y is defined as follows:

F(z) = (42,222 =8z +10)+ By +C, z€ X.

M = [-5,5] is a closed interval in R, and hence M is nonempty, convex, and compact. Meanwhile,
it is easy to see that F' is £C-outer semicontinuous and +C-inner semicontinuous. By is compact,
and C is closed. Then By + C is closed and bounded in Y, and so F is C-compact. Since f(z) = 4z>
and g(z) = 222 — 8z + 10 are convex functions, Thus, F(z) is C-convex.

All conditions of Theorem 4.2 are satisfied. Therefore, W (eq, F') is arcwise connected. For instance,
x = 2 and z = 3 belong to W(eg, F'). This together with the arcwise connectedness of W(eq, F')
implies that [2, 3] C Ws(eo, F).

5. CONCLUSION

In this paper, we first obtained the continuity of the new scalarization function. Subsequently, we
studied the properties of solutions using the scalarization function, such as convexity and lower semi-
continuity. Finally, we established the arcwise connectedness of the weak approximate solutions and
provided numerical examples to verify the validity of the theorem. In the future, we will use this
scalarizing function to explore other stability aspects of the solution sets in set optimization, such as
well-posedness and Painlevé-Kuratowski convergence.
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