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Abstract. Let H be a real Hilbert space and let T : H → H be a sequentially weakly continuous
operator which is non-expansive with respect to some norm on H equivalent to ∥ · ∥H . In this paper, we
provide a sufficient condition ensuring the existence of a point x̃ ∈ H such that

∥x̃− T (x̃)∥H = inf
x∈H

∥x− T (x)∥H .
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1. Introduction and Statement of The Main Result

Let (X, ∥ · ∥) be a real Banach space and C a (non-empty) subset of X . An operator T : C → X is
said to be non-expansive if

∥T (x)− T (u)∥ ≤ ∥x− u∥
for all x, u ∈ C .

The intensive study of such operators is by now 60 years old. Indeed, in 1965 [3, 6, 7], it was proved
that if X is a Hilbert space and C is closed, convex and bounded, then any non-expansive operator
T : C → C has a fixed point, that is a point x ∈ C such that x = T (x). Notice that such a result is
meaningful out of the two following situations: X is norm compact (in this case T , being continuous,
would have a fixed point by Schauder theorem); T is weakly continuous (in this case, since X is weakly
compact, T would have a fixed point by Tychonoff theorem).

Of course, non-expansiveness depends on the particular considered norm. So, the following serious
problem was formulated: if (X, ∥ · ∥) is a Hilbert space (∥ · ∥ is the norm induced by the scalar product)
and if ∥ · ∥1 is any norm equivalent to ∥ · ∥, is it true that, for every closed, convex, bounded set C ⊂ X ,
any operator T : C → C , non-expansive with respect to ∥ · ∥1, has a fixed point ? Only very partial
answers are known up to now: we refer to the recent paper [9] and to references therein.

Clearly, in the previous result, the boundedness of C is essential, as it is shown by the classical
example C = X , T (x) = x + w, where w ∈ X \ {0}. Hence, when C is unbounded, to get the
existence of fixed points for the non-expansive operator T : C → C , more assumptions on T have
necessarily to be required. In this connection, we refer to the very recent paper [4].

The number infx∈C ∥x − T (x)∥ is called the minimal displacement of T . Since [5], it has been
considered in many papers dealing with the fixed point theory of non-expansive functions (see [1, 2, 8,
10], to mention a few).

The aim of this very short note is to give a contribution on the attainment of this number when
C = X . Our result is as follows:
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Theorem 1.1. Let (X, ∥ · ∥X) be a real Banach space, let H be a real Hilbert space, let Φ : X → H be
a linear homeomorphism onto H and let Ψ : X → H be a sequentially weakly continuous operator such
that

{x ∈ X : ⟨Φ(x),Ψ(x)⟩ = c2} ⊆ {x ∈ X : ∥Ψ(x)∥H ≤ c}
for some c > ∥Ψ(0)∥H√

3
. Moreover, assume that there are a norm ∥ · ∥1 on X , equivalent to ∥ · ∥X , and a

norm ∥ · ∥2 on Y , equivalent to ∥ · ∥H , such that

∥Ψ(x)−Ψ(u)∥2 ≤
1

αΦ
∥x− u∥1

for all x, u ∈ X , where
αΦ = sup

∥y∥2≤1
∥Φ−1(y)∥1.

Then, there exists x̃ ∈ X such that

∥Φ(x̃)−Ψ(x̃)∥H = inf
x∈X

∥Φ(x)−Ψ(x)∥H .

Of course, applying Theorem 1.1 with X = H , Φ = id and ∥ · ∥1 = ∥ · ∥2, we get the following

Corollary 1.2. Let H be a real Hilbert space and let Ψ : H → H be a sequentially weakly continuous
operator. Assume that, for some c > ∥Ψ(0)∥H√

3
, the following inclusion

{x ∈ H : ⟨x,Ψ(x)⟩ = c2} ⊆ {x ∈ H : ∥Ψ(x)∥H ≤ c}

holds. Moreover, assume that there exists an equivalent norm on H with respect to which Ψ is non-
expansive.

Then, there exists x̃ ∈ H such that

∥x̃−Ψ(x̃)∥H = inf
x∈H

∥x−Ψ(x)∥H .

Our proof of Theorem 1.1 is fully based on the use of a minimax result proved in [13].
The crucial assumption of Theorem 1.1 (that is the required inclusion) just comes from this particular

approach. At present, we cannot indicate some intermediate condition ensuring that inclusion, but
supposing that supx∈H⟨Φ(x),Ψ(x)⟩ < +∞.

In particular, the present note aims to stimulate further studies in this direction.

2. Abstract Results and Proof of Theorem 1.1

We start proving the following

Theorem2.1. LetX be a topological space, let I ⊆ R be an interval, let {In} be a non-decreasing sequence
of compact intervals such that I = ∪n∈NIn, and let f : X×I → R be a an upper semicontinous function
such that f(·, λ) is continuous for all λ ∈ I . Moreover, assume that:
(a1) there exists a set D ⊂ I , dense in I , such that f(·, λ) is inf-connected for all λ ∈ D;
(a2) for each x ∈ X and each n ∈ N, the set of all global maxima of the restriction to In of the function
f(x, ·) is connected;
(a3) there exists (a possibly different) topology τ1 one X such that the function f(·, λ) is τ1 sequentially
lower semicontinuous for all λ ∈ I and sequentially τ1 inf-compact for some λ0 ∈ I ;
(a4) for some x0 ∈ X , the function f(x0, ·) is sup-compact.

Then, there exist x̃ ∈ X and λ̃ ∈ I such that

f(x̃, λ̃) = inf
x∈X

f(x, λ̃) = sup
λ∈I

f(x̃, λ). (2.1)
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Proof. Fix n ∈ N. Thanks to (a1) and (a2), we can apply Theorem 1.2 of [13]. Accordingly, we have

sup
In

inf
X

f = inf
X

sup
In

f.

Now, (a3) allows us to apply Proposition 2.2 of [12], and so we obtain

sup
I

inf
X

f = inf
X

sup
I

f. (2.2)

Consider the functions α : X →]−∞,+∞] and β : I → [−∞,+∞[ defined by

α(x) = sup
λ∈I

f(x, λ)

for all x ∈ X ,
β(λ) = inf

x∈X
f(x, λ)

for all λ ∈ I . Of course, by (a3), α is τ1 sequentially lower semicontinuous and τ1 sequentially inf-
compact, while, by (a4), β is upper semicontinuous and sup-compact. Consequently, there exist x̃ ∈ X

and λ̃ ∈ I such that
α(x̃) = inf

X
α (2.3)

β(λ̃) = sup
I

β. (2.4)

Now, (2.1) follows from (2.2), (2.3) and (2.4). □

From Theorem 2.1, we get

Theorem 2.2. LetX,Y be two topological spaces, let φ : Y → R be a continuous inf-connected function,
let I ⊆ R be an interval, let {In} be a non-decreasing sequence of compact intervals such that I =
∪n∈NIn, and let γ : I → R, g : X × I → Y be two continuous functions. Assume that:
(b1) there exists a set D ⊆ I , dense in I , such that, for each λ ∈ I , the function g(·, λ) is surjective and
open, and there exists a set Aλ, dense in Y , such that the set {x ∈ X : g(x, λ) = y} is connected for each
y ∈ Aλ;
(b2) for each x ∈ X and each n ∈ N, the set of all global maxima of the restriction to In of the function
φ(g(x, ·)) + γ(·) is connected;
(b3) there exists (a possibly different) topology τ1 oneX such that the functionφ(g(·, λ)) is τ1 sequentially
lower semicontinuous for all λ ∈ I and sequentially τ1 inf-compact for some λ0 ∈ I ;
(b4) for some x0 ∈ X , the function φ(g(x0, ·)) + γ(·) is sup-compact.

Then, there exist x̃ ∈ X and λ̃ ∈ I such that

φ(g(x̃, λ̃)) = inf
x∈X

φ(g(x, λ̃)) = sup
λ∈I

(φ(g(x̃, λ)) + γ(λ))− γ(λ̃).

Proof. Consider the continuous function f : X × I → R defined by

f(x, λ) = φ(g(x, λ)) + γ(λ)

for all (x, λ) ∈ X × I . Fix λ ∈ D and r ∈ R so that f(x, λ) < r for some x ∈ X . We have

{x ∈ X : f(x, λ) < r} = g−1(φ−1(]−∞, r − γ(λ)[), λ).

Notice that the set φ−1(] − ∞, r − γ(λ)[) is non-empty, open and connected, since φ is continuous
and inf-connected. Since λ ∈ D, the multifunction y → g−1(y, λ) is non-empty valued and lower
semicontinuous in Y . Notice that the set Aλ∩φ−1(]−∞, r−γ(λ)[) is dense in φ−1(]−∞, r−γ(λ)[).
Consequently, by Proposition 5.6 of [11], the set g−1(φ−1(]−∞, r − γ(λ)[), λ) is connected. In other
words, we have shown that the function f(·, λ) is inf-connected. So, f satisfies each assumption of
Theorem 2.1, and the conclusion follows. □
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Theorem 2.3. Let X be a topological space, let Y be a set in a real inner product space H , with 0 ∈ Y ,
such that its intersection with any open ball, centered at 0, is connected. Let Φ,Ψ : X → H be two
continuous operators satisfying the following conditions:
(c1) for each λ ∈]−1, 1[, (Φ−λΨ)(X) = Y , the functionΦ−λΨ is open with respect to relative (norm)
topology of Y , and there exists a set Aλ ⊆ Y , dense in Y , such that the set (Φ − λΨ)−1(y) is connected
for each y ∈ Aλ;
(c2) there exists (a possibly different) topology τ1 on X such that the function ∥Φ(·) − λΨ(·)∥H is τ1
sequentially lower semicontinuous for all λ ∈ [−1, 1] and sequentially τ1 inf-compact for some λ0 ∈
[−1, 1];
(c3) there exists c > 1√

3
infx∈X ∥Φ(x) + Ψ(x)∥ such that

{x ∈ X : ⟨Φ(x),Ψ(x)⟩ = c2} ⊆ {x ∈ X : ∥Ψ(x)∥H ≤ c}.

Then, there exists x̃ ∈ X such that

∥Φ(x̃)−Ψ(x̃)∥H = inf
x∈X

∥Φ(x)−Ψ(x)∥H .

Proof. We are going to apply Theorem 2.2 considering Y with the relative norm topology. We then
take:

I = In = [−1, 1],

φ(y) = ∥y∥2H ,

g(x, λ) = Φ(x)− λΨ(x),

γ(λ) = c2(2λ− λ2).

Of course, (c1) implies directly (b1) (taking D =]− 1, 1[); (c2) implies directly (b3); (b4) holds since I
is compact. Finally, let us show that (b2) holds. For all x ∈ X , λ ∈ [−1, 1], we have

φ(g(x, λ)) + γ(λ) = ∥Φ(x)− λΨ(x)∥2H + c2(2λ− λ2)

= ∥Φ(x)∥2H + (∥Ψ(x)∥2H − c2)λ2 − 2(⟨Φ(x),Ψ(x)⟩ − c2)λ.

Fix x ∈ X . We distinguish two cases. First, assume that ∥Ψ(x)∥H ≤ c. In this case, the function
φ(g(x, ·)) + γ(·) is concave in [−1, 1], and so the set of its global maxima is connected. Now, suppose
that ∥Ψ(x)∥H > c. In this case, the function φ(g(x, ·)) + γ(·) is strictly convex in [−1, 1] and so it
attains its maximum either at −1 or at 1. In view of (c3), we have

⟨Φ(x),Ψ(x)⟩ ≠ c2

and so
φ(g(x,−1)) + γ(−1) ̸= φ(g(x, 1)) + γ(1).

Consequently, the function φ(g(x, ·)) + γ(·) has a unique global maximum in [−1, 1]. Now, Theorem
2.2 ensures the existence of (x̃, λ̃) ∈ X × [−1, 1] such that

∥Φ(x̃)− λ̃Ψ(x̃)∥2H = inf
x∈X

∥Φ(x)− λ̃Ψ(x)∥2H = sup
λ∈[−1,1]

(∥Φ(x̃)− λ̃Ψ(x̃)∥2H + γ(λ))− γ(λ̃). (2.5)

We claim that λ̃ = 1. Arguing by contradiction, suppose that λ̃ ∈ [−1, 1[. We distinguish two cases.
First, assume that λ̃ ∈]− 1, 1[. Then, in view of (c1), we would have (Φ− λ̃Ψ)(X) = Y , and so

inf
x∈X

∥Φ(x)− λ̃Ψ(x)∥H = 0

since 0 ∈ Y . Consequently, (2.5) would give

γ(1) = sup
λ∈[−1,1]

γ(λ) ≤ sup
λ∈[−1,1]

(∥Φ(x̃)− λΨ(x̃)∥2H + γ(λ)) = γ(λ̃) < γ(1).
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Now, assume that λ̃ = −1. By the choice of c, we have

∥Φ(x̃) + Ψ(x̃)∥2H + γ(−1) < 0.

But
sup

λ∈[−1,1]
(∥Φ(x̃)− λΨ(x̃)∥2H + γ(λ) ≥ ∥Φ(x̃)∥2H ≥ 0

against (2.5). So, it remains proved that

∥Φ(x̃)−Ψ(x̃)∥H = inf
x∈X

∥Φ(x)−Ψ(x)∥H

and the proof is complete. □

Remark 2.4. From the proof of Theorem 2.3, it follows that when the inclusion

{x ∈ X : ∥Ψ(x)∥H > c} ⊆ {x ∈ X : ⟨Φ(x),Ψ(x)⟩ > c2}

holds, we have Ψ(x̃) ≤ c.

Now, we can prove Theorem 1.1.

Proof. We are going to apply Theorem 2.3 takingY = H . Fixλ ∈]−1, 1[. Then, sinceΦ−1 is Lipschitzian
(from (Y, ∥ · ∥2) to (X, ∥ · ∥1)), with constant αΦ, the operator Φ−1 ◦ λΨ turns out to be a contraction
on (X, ∥ · ∥1). In turn, this classically implies that the operator Φ− λΨ is a homeomorphism between
(X, ∥ ·∥1) and (Y, ∥ ·∥2). Therefore, the operator Φ−λΨ is a homeomorphism between (X, ∥ ·∥X) and
(Y, ∥ · ∥Y ), due to the equivalence of the norms, and so (c1) is satisfied. Finally, consider (c2). Since
Ψ is assumed to be sequentially weakly continuous (and also Φ is so being linear and continuous), the
function ∥Φ− λΨ∥H is sequentially weakly lower semicontinuous for all λ ∈ R. Moreover, since Φ is
a linear homeorphism between X and H , X is reflexive and we have

lim
∥x∥X→+∞

∥Φ(x)∥H = +∞.

Consequently, (c2) is satisfied (with λ0 = 0) taking the weak topology, and the conclusion follows. □

An interesting consequence of Theorem 1.1 is as follows:

Theorem 2.5. Let the assumptions of Theorem 1.1 be satisfied. In addition, suppose that Ψ is C1.
Then, there exists x̃ ∈ X such that either Φ(x̃) = Ψ(x̃) or Φ−Ψ′(x̃) is not surjective.

Proof. Since Ψ is C1, the function ∥Φ(·)−Ψ(·)∥2H is C1 too and we have
d

dx
(∥Φ(x)−Ψ(x)∥2H)(u) = 2⟨Φ(x)−Ψ(x),Φ(u)−Ψ′(x)(u)⟩

for all x, u ∈ X . Now, let x̃ ∈ X be a point satisfying the conclusion of Theorem 1.1. So, according to
Fermat theorem, x̃ is a critical point of ∥Φ(·)−Ψ(·)∥2H . Therefore

2⟨Φ(x̃)−Ψ(x̃),Φ(u)−Ψ′(x̃)(u)⟩ = 0

for all u ∈ X , and the conclusion follows. □

We conclude with a consequence of Corollary 1.2.

Theorem 2.6. Let H be a real Hilbert space and let let J : H → R be a C1 functional such that J ′ is
sequentially weakly continuous. Moreover, assume that:
(d1) there exists β > 0 such that

J(x) ≤ 1

2
∥x∥2 + β

for all x ∈ H ;
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(d2) there exists c > ∥J ′(0)∥H√
3

such that

{x ∈ H : ⟨x, J ′(x)⟩ = c2} ⊆ {x ∈ H : ∥J ′(x)∥H ≤ c};
(d3) there exists an equivalent norm on H with respect to which J ′ is non-expansive.

Then, J ′ has a fixed point.

Proof. It suffices to observe that, in view of (d1), the functional 1
2∥ · ∥

2 − J(·) is bounded below. Then,
from a classical consequence of Ekeland variational principle it follows that

inf
x∈H

∥x− J ′(x)∥H = 0

and so the conclusion follows directly from Corollary 1.2. □
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