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Abstract. In this paper, we establish results on the existence and multiplicity of solutions for a discrete
Robin boundary value problem involving the variable exponent p(k)-Laplacian of Kirchhoff type in a
finite-dimensional Banach space. Our approach relies on variational techniques combined with tools
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1. Introduction

In this work, we consider the following discrete Robin problem of p(k)-Laplace Kirchhoff type.
−M(ζ[u])[△(a(k − 1, |△u(k − 1)|)△u(k − 1))− q(k)|u(k)|p(k)−2u(k)]

= λf(k, u(k)), k ∈ Z(1, T )
△u(0) = u(T + 1) = 0,

(1.1)

where T ≥ 2 is a fixed positive integer, Z(a, b) denotes the discrete interval {a, a+1, . . . , b−1, b} with
a and b integers such that a < b, △u(k) = u(k+1)−u(k) is the forward difference operator, λ > 0 is
a real parameter and f : Z(1, T )× R → R is a continuous function. Moreover, a(k, ·),M : [0,∞) →
[0,∞) are two continuous functions for all k ∈ Z(0, T ), t ∈ [0,∞) with the function t → M(t)
nondecreasing, ζ[u] is a nonlocal term defined by the following relation

ζ[u] =

T∑
k=1

(
A0(k − 1, |△u(k − 1)|) + q(k)

p(k)
|u(k)|p(k)

)
,

A0 : Z(1, T )×[0,∞) → [0,∞) such thatA0(k, t) =

∫ t

0
a(k, ξ)ξ dξ, the function p : Z(0, T ) → (1,∞)

is bounded. We denote it as short

p+ := max
k∈Z(0,T )

p(k), p− := min
k∈Z(0,T )

p(k),

and the function q : Z(1, T ) → (1,∞) is bounded such that

q := max
k∈Z(1,T )

q(k), q := min
k∈Z(1,T )

q(k), Q :=

T∑
k=1

q(k).
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We consider in Problem (1.1) two different boundary conditions. Neumann boundary condition
(△u(0) = 0) and Dirichlet boundary condition (u(T + 1) = 0). In the literature, the boundary
condition considered in this paper is called a mixed or Robin boundary condition.
We also suppose that a and M satisfy the following conditions.
(H1) a1 : Z(0, T ) → [0,∞) and there exists a constant a2 > 0 such that

|a(k, |ξ|)ξ| ≤ a1(k) + a2|ξ|p(k)−1,

for all k ∈ Z(0, T ) and ξ ∈ R.
(H2) For all k ∈ Z(0, T ) and ξ > 0, one has

0 ≤ a(k, |ξ|)ξ2 ≤ p+
∫ |ξ|

0
a(k, s)s ds.

(H3) There exists a positive constant c such that

min

{
a(k, |ξ|), |ξ|∂a

∂ξ
(k, |ξ|) + a(k, |ξ|)

}
≥ c|ξ|p(k)−2,

for all k ∈ Z(0, T ) and ξ ∈ R.
(H4) M : [0,∞) → [0,∞) is continuous, nondecreasing and there exist two positive constant m0

and m1 such that
m0 ≤M(t) ≤ m1 for t > 0.

Remark 1. As examples of functions A0 and a satisfying the assumptions (H1)-(H4), we can give the
following.

(i) If we set

M(A0(k, |ξ|)) =
1

p(k)
|ξ|p(k) and M(t) = 1,

then
a(k, |ξ|) = |ξ|p(k)−2, for all (k, ξ) ∈ Z(1, T )× R.

(ii) Now, if we put

M(A0(k, |ξ|)) = a+
b

p(k)

[(
1 + |ξ|2

) p(k)
2 − 1

]
and M(t) = a+ bt,

then
a(k, |ξ|) =

(
1 + |ξ|2

) p(k)−2
2 , for all (k, ξ) ∈ Z(1, T )× R.

The nonhomogeneous differential operator involved in (1.1), i.e.,
△(a(k − 1, |△u(k − 1)|)△u(k − 1)),

where a satisfies (H1)-(H4) was recently analyzed by Moussa et al (see [42]). This operator generalizes
the usual operators with variable exponent. In the particular case where

△p(k−1)u(k − 1) := △
(
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
,

the operator involved in (1.1) is the standard p(k)-Laplace difference operator. The paper includes the
case p(k)-mean curvature operator or p(k)-capillarity differential operator, such as

△
((

1 + |△u(k − 1)|2
) p(k−1)−2

2 △u(k − 1)

)
and

△

((
1 +

|△u(k − 1)|p(k−1)√
1 + |△u(k − 1)|2p(k−1)

)
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
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The presence of the nonlocal term ζ[u] is an important feature of this paper. Problem (1.1) is related
to the stationary version of the continuous Kirchhoff equation, established by Kirchhoff in 1876. To be
more precise, the following model, which is called Kirchhoff equation, was introduced in [30],

ρ
∂2u

∂t2
=

(
T0 +

Ea

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
, (1.2)

where ρ > 0 is the mass per unit length, T0 is the base tension, E is the Young modulus, a is the area
of cross section and L is the initial length of the string.

Equation (1.2) takes into account the change of the tension on the string, which is caused by the
change of its length during the vibration. After that, several physicists also considered such equations
for their research in the theory of nonlinear vibrations theoretically or experimentally (see [15, 16, 44,
46]). On the other hand, Kirchhoff’s equation received great attention only after Lions in 1978 (see
[34]) proposed an abstract framework of the problem related to the stationary analog of the equation of
Kirchhoff type. In recent years, many authors have investigated Kirchhoff-type equations, we refer the
readers to [4, 17]. We also refer the readers to the recent results of the discrete Kirchhoff type problems
[18, 26, 27, 33, 41, 45, 47, 52, 53, 54] and the references therein. In the recent work [43], the present
authors have dealt with the p(k)-Laplace Kirchhoff type equations by using the critical point theory
and mountain pass theorem.

The nonlinear difference equations arise in various research fields. Discrete boundary value problems
have received some attention because of related applications in elastic mechanics [58], electrorheologi-
cal fluids [50, 51], and image restoration [19]. In recent years, many authors have studied the existence
and multiplicity of solutions of discrete problems subject to various boundary value conditions by us-
ing different methods such as fixed point theory, the method of upper and lower solution techniques,
Rabinowitz’s global bifurcation theorem, etc. (see [2, 6, 25]). We refer to the recent monograph by
Agarwal [1] and the papers [14, 38] for more details on difference equations and their applications. The
studies for discrete p(k)-Laplacian problems have been extensively considered in many papers, see,
for example, [5, 20, 21, 22, 31, 32, 37, 48]. When the discrete p(k) is a constant, namely, the so-called
discrete p-Laplacian operator, we refer the readers to [9, 12, 13] and the references therein. The discrete
p(k)-Laplacian operator has more complicated nonlinearities than the discrete p-Laplacian operator,
for example, it is not homogeneous. Recently, boundary value problems of difference equations with
ϕ-Laplacian have received extensive attention from many researchers, see, for example, [35, 36, 49, 57].

Problem (1.1) can be seen as a discrete variant of the variable exponent anisotropic problem
−

N∑
i=1

∂

∂xi
ai

(
x,

∣∣∣∣ ∂u∂xi
∣∣∣∣) ∂u

∂xi
+ q(x)|u|pi(x)−2u = λf(x, u) in Ω,

∂u

∂n
= 0 on ∂Ω1,

u = 0 on ∂Ω2,

(1.3)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, ∂Ω1 ∪ ∂Ω2 = ∂Ω, f ∈
C
(
Ω× R,R

)
is given function that satisfy some properties, pi(x) and q(x) ≥ 1 are continuous func-

tions on Ω such that 1 < pi(x) < N and
N∑
i=1

1

p−i
> 1 for all x ∈ Ω and all i ∈ Z [1, N ], where

p−i := inf
x∈Ω

pi(x), λ > 0 is real number.
Recently, I. H. Kim and Y. H. Kim [29] studied problem (1.3) under homogeneous Dirichlet boundary

condition (u = 0 on ∂Ω).
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In a recent paper [40], by using variational methods, the present authors consider the multiplicity of
solutions of the following discrete Robin problem with p(k)-Laplacian.{

−△(a(k − 1, |△u(k − 1)|)△u(k − 1)) = λf(k, u(k)) + µg(k, u(k)), k ∈ Z(1, T )
△u(0) = u(T + 1) = 0.

(1.4)

Here, we will generalize this result.
Motivated by the above papers and the results in [3, 11, 24] and [28], this paper aims to establish the

existence and multiplicity of problem solutions (1.1), via variational methods and critical point theory.
The organization of the paper is as follows. In Section 2, we establish the variational framework

associated with problem (1.1). Some preliminary results are also stated in this section. In Section 3, we
apply a result of Bonanno et al. ( see [8]), to prove the existence of at least one nontrivial solution of
problem (1.1). In Section 4, one uses a result of Bonanno and D’Aguı́ (see [7]), to prove the existence
of at least two nontrivial solutions of problem (1.1). Finally, in Section 5, one uses a result of Bonanno
(see [10]) to prove the existence of at least three solutions of problem (1.1).

2. Variational Framework and Preliminary Results

In this section, we establish a variational framework associated with problem (1.1). We consider the
T -dimensional Banach space

S = {u : Z(0, T + 1) → R such that △u(0) = u(T + 1) = 0}

endowed with the norm

∥u∥ =

(
T∑

k=1

(
|△u(k)|p− + q(k)|u(k)|p−

))1/p−

.

On the space S, we also introduce the following norm

∥u∥p+ =

(
T∑

k=1

(
|△u(k)|p+ + q(k)|u(k)|p+

))1/p+

and the Luxemburg norm

∥u∥p(·) = inf

{
µ > 0 :

T∑
k=1

(∣∣∣∣△u(k)µ

∣∣∣∣p(k) + q(k)

∣∣∣∣u(k)µ
∣∣∣∣p(k)

)
≤ 1

}
.

We will use the following inequality

L∥u∥ ≤ ∥u∥p+ ≤ 2
p+−p−

p−p+ L∥u∥, (2.1)

where L = (2max{T,Q})
p−−p+

p−p+ . Indeed, by weighted Hölder’s inequality (see [39]), we get

T∑
k=1

|△u(k)|p
−

≤

(
T∑

k=1

1
p+

p+−p−

) p+−p−

p+
(

T∑
k=1

(
|△u(k)|p

−
) p+

p−

) p−

p+

≤ T
p+−p−

p+

(
T∑

k=1

|△u(k)|p+
) p−

p+

.
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We obtain, in a similar way as before,

T∑
k=1

q(k) |u(k)|p
−
≤ Q

p+−p−

p+

(
T∑

k=1

q(k)|u(k)|p+
) p−

p+

.

Combining the above inequalities with p−

p+
≤ 1, we obtain

∥u∥p− ≤ (max{T,Q})
p+−p−

p+ ×

( T∑
k=1

|△u(k)|p+
) p−

p+

+

(
T∑

k=1

q(k)|u(k)|p+
) p−

p+


≤ 2

1− p−

p+ (max{T,Q})
p+−p−

p+ ×

(
T∑

k=1

|△u(k)|p+ +

T∑
k=1

q(k)|u(k)|p+
) p−

p+

= L−p−∥u∥p
−

p+
.

Consequently, L∥u∥ ≤ ∥u∥p+ .

On the other hand, we get from the fact that p
+

p−
≥ 1, the following.

∥u∥p
+

p+
≤ (max{T,Q})

p−−p+

p− ×

( T∑
k=1

|△u(k)|p−
) p+

p−

+

(
T∑

k=1

q(k)|u(k)|p−
) p+

p−


≤ (max{T,Q})

p−−p+

p− ×

(
T∑

k=1

|△u(k)|p− +
T∑

k=1

q(k)|u(k)|p−
) p+

p−

= 2
p+−p−

p− Lp+∥u∥p+ .

Consequently, ∥u∥p+ ≤ 2
p+−p−

p−p+ L∥u∥. Therefore, we obtain that (2.1) holds.
We consider another norm in S, that is,

∥u∥∞ := max{|u(k)| : k ∈ Z(1, T )}, for all u ∈ S.

For every u ∈ S and p− > 1, the following relation

∥u∥∞ ≤ κ∥u∥ (2.2)

holds, where

κ :=

T
p−−1

p− if 0 ≤ q ≤ T 1−p− ,

q−1/p− if q ≥ T 1−p− .

Indeed, let τ ∈ Z(1, T ) such that

|u(τ)| = max
k∈Z(1,T )

|u(k)|.

For 0 ≤ q ≤ T 1−p− , by Hölder inequality, we get

∥u∥∞ = |u(τ)| ≤
T∑

k=1

|△u(k)|+
T∑

k=1

|u(k)|

≤ T
p−−1

p−

(
T∑

k=1

|△u(k)|p
−

) 1
p−

+ T
p−−1

p−

(
T∑

k=1

|u(k)|p
−

) 1
p−
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≤ T
p−−1

p−

( T∑
k=1

|△u(k)|p
−

) 1
p−

+

(
T∑

k=1

q(k) |u(k)|p
−

) 1
p−


≤ T
p−−1

p−

(
T∑

k=1

(
|△u(k)|p− + q(k)|u(k)|p−

)) 1
p−

= T
p−−1

p− ∥u∥

and for q ≥ T 1−p− , we obtain

min
k∈Z(1,T )

q(k)|u(τ)|p− ≤
T∑

k=1

q(k) |u(k)|p
−

≤
T∑

k=1

|△u(k)|p− +
T∑

k=1

q(k)|u(k)|p− .

Hence,

∥u∥∞ ≤ 1

q1/p−
∥u∥ for all u ∈ S,

where q := min
k∈Z(1,T )

q(k). Therefore, we obtain that (2.2) holds.

Since on S, all norms are equivalent, there exist constants 0 < K1 < K2 such that

K1∥u∥p(·) ≤ ∥u∥ ≤ K2∥u∥p(·). (2.3)

Now, let φ : S → R be given by

φ(u) =

T∑
k=1

|△u(k)|p(k). (2.4)

It is easy to check that for all u, un ∈ S, the following properties hold.

If ∥u∥p(·) > 1, then ∥u∥p
−

p(·) ≤ φ(u) +
T∑

k=1

q(k)|u(k)|p(k) ≤ ∥u∥p
+

p(·). (2.5)

If ∥u∥p(·) < 1, then ∥u∥p
+

p(·) ≤ φ(u) +
T∑

k=1

q(k)|u(k)|p(k) ≤ ∥u∥p
−

p(·). (2.6)

Next, we introduce the functionals Φ,Ψ : S → R defined by

Φ(u) =M̂(ζ[u]), (2.7)

Ψ(u) =

T∑
k=1

F (k, u(k)), (2.8)

where M̂(t) =

∫ t

0
M(ξ) dξ and F (k, t) =

∫ t

0
f(k, ξ) dξ.

The energy functional Iλ : S → R corresponding to problem (1.1) is

Iλ(u) = Φ(u)− λΨ(u), for all u ∈ S. (2.9)

Throughout this paper, we recall that u ∈ S is a (weak) solution of problem (1.1) if

M (ζ[u])

T∑
k=1

[
a(k, |△u(k)|)△u(k)△v(k) + q(k)|u(k)|p(k)−2u(k)v(k)

]
= λ

T∑
k=1

f(k, u(k))v(k),(2.10)
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for any v ∈ S.
It is easy to see that Φ and Ψ are two functionals of class C1(S,R) whose Gâteaux derivatives at the
point u ∈ S are given by〈

Φ′(u), v
〉
=M (ζ[u])

T∑
k=1

[
a(k, |△u(k)|)△u(k)△v(k) + q(k)|u(k)|p(k)−2u(k)v(k)

]
(2.11)

and 〈
Ψ′(u), v

〉
=

T∑
k=1

f(k, u(k))v(k), (2.12)

for all u, v ∈ S.
From (2.11) and (2.12), we observe that Iλ is of class C1(S,R) and its derivative is given by〈

I ′λ(u), v
〉
=
〈
Φ′(u), v

〉
− λ

〈
Ψ′(u), v

〉
,

for all u, v ∈ S. Note that as △u(0) = u(T + 1) = 0, one has
T∑

k=1

a(k, |△u(k)|)△u(k)△v(k) = −
T∑

k=1

△(a(k − 1, |△u(k − 1)|)△u(k − 1))v(k)

and thus, 〈
I ′λ(u), v

〉
=

T∑
k=1

[
−M(ζ[u])[△(a(k − 1, |△u(k − 1)|)△u(k − 1))

−q(k)|u(k)|p(k)−2u(k)]− λf(k, u(k))

]
v(k).

Hence, the critical points of Iλ are exactly the solutions of problem (1.1).
Now, we will use the following auxiliary result.

Lemma 1. (i) Let u ∈ S and ∥u∥ > 1. Then,
T∑

k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≥ ∥u∥p− − (1 + q)T.

(ii) Let u ∈ S and ∥u∥ < 1. Then,
T∑

k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≥ Lp+∥u∥p+ .

(iii) Let u ∈ S. Then,
T∑

k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≤ 2

p+−p−

p− Lp+∥u∥p+ + (1 + q)T.

Proof. Let u ∈ S be fixed. By a similar argument as in [22], we define

βk :=

{
p+ if |△u(k)| ≤ 1

p− if |△u(k)| > 1
and δk :=

{
p+ if |u(k)| ≤ 1

p− if |u(k)| > 1,

for each k ∈ Z(1, T ).
(i) For u ∈ S with ∥u∥ > 1, one has

T∑
k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≥

T∑
k=1,βk=p+

|△u(k)|p
+

+

T∑
k=1,βk=p−

|△u(k)|p
−
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+
T∑

k=1,δk=p+

q(k) |u(k)|p
+

+
T∑

k=1,δk=p−

q(k) |u(k)|p
−

=
T∑

k=1

|△u(k)|p− −
T∑

k=1,βk=p+

(
|△u(k)|p− − |△u(k)|p+

)

+

T∑
k=1

q(k)|u(k)|p− − q

T∑
k=1,δk=p+

(
|u(k)|p− − |u(k)|p+

)

≥
T∑

k=1

|△u(k)|p− − T +

T∑
k=1

q(k)|u(k)|p− − qT

= ∥u∥p− − (1 + q)T.

(ii) As |△u(k)| < 1 and |u(k)| < 1 for each k ∈ Z(1, T ) since ∥u∥ < 1, we deduce that
T∑

k=1

|△u(k)|p(k) ≥
T∑

k=1

|△u(k)|p+ and
T∑

k=1

q(k)|u(k)|p(k) ≥
T∑

k=1

q(k)|u(k)|p+ .

Hence, by the above inequalities and the relation (2.1), we obtain
T∑

k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≥

T∑
k=1

[
|△u(k)|p+ + q(k)|u(k)|p+

]
= ∥u∥p

+

p+

≥ Lp+∥u∥p+ .

(iii) Indeed, we deduce by relation (2.1) that
T∑

k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≤

T∑
k=1,βk=p−

|△u(k)|p
+

+

T∑
k=1,βk=p+

|△u(k)|p
−

+
T∑

k=1,δk=p−

q(k) |u(k)|p
+

+

T∑
k=1,δk=p+

q(k) |u(k)|p
−

=
T∑

k=1

|△u(k)|p+ +
T∑

k=1,βk=p+

(
|△u(k)|p− − |△u(k)|p+

)

+

T∑
k=1

q(k)|u(k)|p+ + q

T∑
k=1,δk=p+

(
|u(k)|p− − |u(k)|p+

)

≤
T∑

k=1

|△u(k)|p+ + T +
T∑

k=1

q(k)|u(k)|p+ + qT

= ∥u∥p
+

p+
+ (1 + q)T ≤ 2

p+−p−

p− Lp+∥u∥p+ + (1 + q)T.

Proposition 2.1. Assume that the condition (H3) is fulfilled. Then, the following estimate

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩

≥

{
c (|u|+ |v|)p(k)−2 |u− v|2 if 1 < p(k) < 2

42−p+c|u− v|p(k) if p(k) ≥ 2
(2.13)
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holds true for all u, v ∈ R and k ∈ Z(1, T ) with (u, v) ̸= (0, 0).

Proof. Let u, v ∈ R such that (u, v) ̸= (0, 0). Let us define ψ(k, u) = a(k, |u|)u. Let u in R \ {0}.
From (H3), we obtain

∂ψ(k, u)

∂u
= |u|∂a

∂u
(k, |u|) + a(k, |u|)

≥ c|u|p(k)−2. (2.14)

Note that

ψ(k, u)− ψ(k, v) =

∫ 1

0

∂ψ(k, v + t(u− v))

∂u
(u− v) dt. (2.15)

Let k ∈ Z(0, T ) with p(k) ≥ 2. Then, by (2.14) and (2.15), we get

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ =

∫ 1

0

∂ψ

∂u
(k, v + t(u− v))(u− v)(u− v) dt

≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2 dt.

Without loss of generality, we may assume that |u| ≤ |v|. Then, |u− v| ≤ |u|+ |v| ≤ 2|v|.
For any t ∈ [0, 1/4], one has

|v| ≤ |v + t(u− v)|+ t|u− v|

≤ |v + t(u− v)|+ 1

4
|u− v|

and so

|v + t(u− v)| ≥ |v| − 1

4
|u− v| ≥ 1

4
|u− v|.

Therefore

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2 dt

≥ 42−p+c|u− v|p(k).

For k ∈ Z(0, T ) with 1 < p(k) < 2. As before, we deduce by (H3) that, for all u ∈ R \ {0},

∂ψ(k, u)

∂u
= |u|∂a

∂u
(k, |u|) + a(k, |u|)

≥ c|u|p(k)−2.

Using the fact that |tu+ (1− t)v| ≤ |u|+ |v|, we infer that

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2 dt

≥ c (|u|+ |v|)p(k)−2 |u− v|2.

The proof of Proposition 2.1 is complete.

Lemma 2. Assume that (H1) and (H3)-(H4) hold. Then, the operator Φ′ : S → S∗ is strictly monotone
onS and a mapping of type (S+), i.e., if un ⇀ u inS asn→ ∞ and lim sup

n→∞
⟨Φ′(un)−Φ′(u), un−u⟩ ≤ 0,

then un → u in S as n→ ∞. Here, ⟨·, ·⟩ denotes the duality pairing between S∗ and S.
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Proof. Firstly, we prove that Φ′ is a strictly monotone operator.
We consider the functional ϕ : S → R defined by

ϕ(u) = ζ[u] =
T∑

k=1

(∫ |△u(k)|

0
a(k, s)s ds+

q(k)

p(k)
|u(k)|p(k)

)
, for all u ∈ S.

Then, ϕ ∈ C1(S,R) and its Gâteaux derivative at the point u ∈ S is

〈
ϕ′(u), v

〉
=

T∑
k=1

a(k, |△u(k)|)△u(k)△v(k) +
T∑

k=1

q(k)|u(k)|p(k)−2u(k)v(k),

for all u, v ∈ S.
For all u, v ∈ S such that u ̸= v, we obtain

⟨ϕ′(u)− ϕ′(v), u− v⟩ =

T∑
k=1

(a(k, |△u(k)|)△u(k1)− a(k, |△v(k)|)△v(k))△(u− v)(k)

+
T∑

k=1

q(k)
(
|u(k)|p(k)−2u(k)− |v(k)|p(k)−2v(k)

)
(u(k)− v(k)) .

By using (2.13) and taking into account the following well-known inequality, for any ξ, η ∈ R,(
|ξ|p(k)−2ξ − |η|p(k)−2η

)
(ξ − η)

≥

{
c1 (|ξ|+ |η|)p(k)−2 |ξ − η|2 if 1 < p(k) < 2,

c2|ξ − η|p(k) if p(k) ≥ 2,
(2.16)

we see that for all u, v ∈ S with u ̸= v,

⟨ϕ′(u)− ϕ′(v), u− v⟩

≥


min {c, c1}

T∑
k=1

û(k)p(k)−2|△u(k)−△v(k)|2 > 0 if 1 < p(k) < 2,

min
{
42−p+c, c2

} T∑
k=1

|△u(k)−△v(k)|p(k) > 0 if p(k) ≥ 2,

where û(k) = |△u(k)|+ |△v(k)|. This implies that ϕ′ is strictly monotone. Thus, by Proposition 25.10

of [55], ϕ is strictly convex. On the other hand, sinceM is nondecreasing, M̂ is convex in (0,∞). Then,
for all u, v ∈ S with u ̸= v and each s, t ∈ (0, 1) with s+ t = 1, we have

M̂ (ϕ(su+ tv)) < M̂ (sϕ(u) + tϕ(v)) ≤ sM̂ (ϕ(u)) + tM̂ (ϕ(v)) .

Therefore, we obtain that Φ is strictly convex and thus Φ′ is strictly monotone in S.
Now, we prove that the operator Φ′ is of type (S+). Let {un} ⊂ S be a sequence such that un ⇀ u in
S as n→ ∞ and

lim sup
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

We will prove that un → u in S.
The above inequality and the strictly monotonicity of Φ′ imply that

⟨Φ′(un)− Φ′(u), un − u⟩ → 0 as n→ ∞.

So,

⟨Φ′(un), un − u⟩ → 0 as n→ ∞,
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which means that, as n→ ∞,

(ζ[un])

[ T∑
k=1

a(k, |△un(k)|)△un(k)△(un − u)(k) +

T∑
k=1

q(k)|un(k)|p(k)−2un(k)(un − u)(k)

]
→ 0. (2.17)

Thus, by (H1), (2.2) and Lemma 1(iii), we get that

ζ[un] =

T∑
k=1

(∫ |△un(k)|

0

a(k, s)s ds+
q(k)

p(k)
|un(k)|p(k)

)

≤
T∑
k=1

a1(k)|△un(k)|+
T∑
k=1

a2
p(k)

|△un(k)|p(k) +
T∑
k=1

q(k)

p(k)
|un(k)|p(k)

≤ a1

T∑
k=1

|△un(k)|+
max{1, a2}

p−

(
2

p+−p−

p− Lp
+

∥un∥p
+

+ (1 + q)T

)

≤ 2a1κT∥un∥+
max{1, a2}

p−
(1 + q)T +

2
p+−p−

p− Lp
+

max{1, a2}
p−

∥un∥p
+

.

So, we infer that (ζ[un])n≥1 is bounded.
Since M is continuous, up to a subsequence, there is t0 ≥ 0 such that

M (ζ[un]) →M(t0) ≥ m0 as n→ ∞. (2.18)
Thus, it follows from (2.17) and (2.18) that, as n→ ∞,[ T∑

k=1

a(k, |△un(k)|)△un(k)△(un − u)(k) +

T∑
k=1

q(k)|un(k)|p(k)−2un(k)(un − u)(k)

]
→ 0.

Since un → u, one has
T∑
k=1

a(k, |△un(k)|)△un(k)△(un − u)(k) → 0 as n→ ∞. Then,

T∑
k=1

q(k)|un(k)|p(k)−2un(k)(un − u)(k) → 0 as n→ ∞ (2.19)

since q is bounded. Consequently,
⟨ϕ′(un), un − u⟩ → 0 as n→ ∞.

So,
⟨ϕ′(un)− ϕ′(u), un − u⟩ → 0 as n→ ∞. (2.20)

Now, we show that φ(un − u) +

T∑
k=1

q(k)|un(k)− u(k)|p(k) → 0 as n→ ∞. That is,

T∑
k=1

|△un(k)−△u(k)|p(k) → 0 as n→ ∞ (2.21)

and
T∑
k=1

q(k)|un(k)− u(k)|p(k) → 0 as n→ ∞. (2.22)

Furthermore, by (2.16) and Proposition 2.1, we have
⟨ϕ′(un)− ϕ′(u), un − u⟩

≥


min {c, c1}

T∑
k=1

ŭ(k)p(k)−2|△un(k)−△u(k)|2 if 1 < p(k) < 2,

min
{
42−p

+

c, c2

} T∑
k=1

|△un(k)−△u(k)|p(k) if p(k) ≥ 2,

(2.23)
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with ŭ(k) = |△un(k)|+ |△u(k)|.

By using the discrete Hölder inequality (see [23]), we get
T∑
k=1

|△un(k)−△u(k)|p(k) =

T∑
k=1

ŭ(k)
p(k)(2−p(k))

2

(
ŭ(k)

p(k)(p(k)−2)
2 |△un(k)−△u(k)|p(k)

)
≤ 2∥ŭ

p(·)(2−p(·))
2 ∥ 2

2−p(·)
∥ŭ

p(·)(p(·)−2)
2 |△un(k)−△u(k)|p(·)∥ 2

p(·)

≤ 2∥ŭ∥σp(·)

(
T∑
k=1

ŭ(k)p(k)−2|△un(k)−△u(k)|2
)γ

,

where σ is either p−(2− p̃)/2 or p̃(2− p−)/2 and γ is either p−/2 or p̃/2 with p̃ = sup
{k∈Z:1<p(k)<2}

p(k). Then,

the above inequality combined with (2.20) and (2.23) imply that
T∑
k=1

|△un(k)−△u(k)|p(k) → 0 as n→ ∞. (2.24)

Next, we will prove that
T∑
k=1

q(k)|un(k)|p(k)−2un(k)(un − u)(k) → 0. We first suppose that k ∈ Z(0, T ) such

that p(k) ≥ 2. For any u, un ∈ S, we get by (2.16) that(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k)) ≥ c2|un(k)− u(k)|p(k).

Thus, summing up k from 1 to T , we get
T∑
k=1

q(k)|un(k)− u(k)|p(k) ≤ c2

T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k)) . (2.25)

From (2.19) and (2.25), we obtain

lim
n→∞

T∑
k=1

q(k)|un(k)− u(k)|p(k) = 0. (2.26)

Next, for k ∈ Z(0, T ) such that 1 < p(k) < 2, from (2.16), we see that
T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k))

≥ c1

T∑
k=1

q(k)ǔ(k)p(k)−2|un(k)− u(k)|2, (2.27)

with ǔ(k) = |un(k)|+ |u(k)|.
The discrete Hölder inequality (see [23]) implies that

T∑
k=1

q(k)|un(k)− u(k)|p(k) =

T∑
k=1

q(k)ǔ(k)
p(k)(2−p(k))

2

(
ǔ(k)

p(k)(p(k)−2)
2 |un(k)− u(k)|p(k)

)
≤ 2∥q(k)ǔ

p(·)(2−p(·))
2 ∥ 2

2−p(·)
∥q(k)ǔ

p(·)(p(·)−2)
2 |un(k)− u(k)|p(·)∥ 2

p(·)

≤ 2∥ǔ∥νp(·)

(
T∑
k=1

q(k)û(k)p(k)−2|un(k)− u(k)|2
)ς

, (2.28)

where ν is either p−(2− p̂)/2 or p̂(2− p−)/2 and ς is either p−/2 or p̂/2 with

p̂ = max
{k∈Z(0,T ):1<p(k)<2}

p(k).
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Then, using (2.19), (2.27) and (2.28), we deduce that

lim
n→∞

T∑
k=1

q(k)|un(k)− u(k)|p(k) = 0. (2.29)

Relations (2.5), (2.6) combined with (2.24), (2.26) and (2.29) imply that ∥un − u∥ → 0 as n→ ∞. Hence, Φ′

is of type (S+). The proof of Lemma 2 is complete.

Lemma 3. Assume that the hypotheses (H1) and (H3)-(H4) are satisfied. Then, the functional Φ : S → R is
weakly lower semicontinuous, i.e., un ⇀ u in S as n→ ∞ implies that Φ(u) ≤ lim inf

n→∞
Φ(un).

Proof. Suppose that un ⇀ u in S as n → ∞. Then, by (2.11) and Lemma 2, we obtain that Φ is convex
(see[56, Proposition 42.6] ) and thus for any n ∈ N,

Φ(un) ≥ Φ(u) + ⟨Φ′(u), un − u⟩.

So,

lim inf
n→∞

Φ(un) ≥ Φ(u) + lim inf
n→∞

⟨Φ′(u), un − u⟩ = Φ(u).

This proves that Φ is weakly lower semicontinuous, and the proof is complete.

3. Existence of At Least One Nontrivial Solution of (1.1)

In this section, one uses the following result due to Bonanno et al. (see [8]).

Theorem 1. [8] Let X be a finite dimensional Banach space and let Iλ : X → R be a function satisfying the
following structure hypothesis.

(Ĥ) Iλ(u) = Φ(u) − λΨ(u) for all u ∈ X , where Φ,Ψ : X → R are two functions of class C1 on X with Φ

coercive, such that

inf
X

Φ = Φ(0) = Ψ(0) = 0,

and λ is a real positive parameter.

Then, let r > 0, for each λ ∈

0, r

sup
u∈Φ−1(0,r)

Ψ(u)

, the function Iλ admits at least a local minimum ū ∈ X such

that Φ(ū) < r, Iλ(ū) ≤ Iλ(u) for all u ∈ Φ−1(0, r) and I ′λ(ū) = 0.

We have the following.

Theorem 2. Let ε be a positive constant. Suppose that f(k, 0) ̸= 0 for each k ∈ Z(1, T ). Then, for each

λ ∈

0,
m0 min {1, c}
p+κp∗Kp∗

εp
∗

T∑
k=1

max
|t|≤ε

F (k, t)

 ,

problem (1.1) has at least one nontrivial solution u ∈ S such that ∥u∥∞ < ε.

Proof. Let us apply Theorem 1 to problem (1.1). Take X = S and put Φ, Ψ and Iλ as in (2.7), (2.8) and (2.9),
respectively. We know that the functionals Φ and Ψ are of class C1 and by the definitions of Φ and Ψ, one has
inf
S

Φ = Φ(0) = Ψ(0) = 0. Moreover, Φ is coercive. Indeed, for u ∈ S such that ∥u∥ > 1, Using (2.3)-(2.5) and
(H2)-(H4), we get

Φ(u) ≥ m0

∫ ζ[u]

0

dξ ≥ m0 min {1, c}
p+Kp−

2

∥u∥p
−
→ ∞, as ∥u∥ → ∞.

So, Iλ satisfies condition (Ĥ) in Theorem 1. Note that the critical points of Iλ are exactly the solutions of problem
(1.1).
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Now, we denote

r :=
m0 min{1, c}
p+κp∗Kp∗

εp
∗

and we also use the following notations.

αp∗ :=

{
αp

− if α > 1,

αp
+ if α < 1

and K :=

{
K1 if ∥u∥ < K1,

K2 if ∥u∥ > K2.
(3.1)

Let u ∈ S such that u ∈ Φ−1(0, r), by (H2)-(H4), (2.2)-(2.6) and (3.1), it follows that

∥u∥∞ ≤ κK

(
rp+

m0 min {1, c}

)1/p∗

= ε,

for all u ∈ S such that

∥u∥ ≤ K

(
rp+

m0 min {1, c}

)1/p∗

.

Hence, we infer that

sup
u∈Φ−1(0,r)

Ψ(u) = sup
u∈Φ−1(0,r)

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤ε

F (k, t).

Thus, one has

sup
u∈Φ−1(0,r)

Ψ(u)

r
≤ p+κp

∗
Kp∗

m0 min {1, c}

T∑
k=1

max
|t|≤ε

F (k, t)

εp∗
<

1

λ
.

Consequently, owing to Theorem 1, for every

λ ∈

0,
m0 min {1, c}
p+κp∗Kp∗

εp
∗

T∑
k=1

max
|t|≤ε

F (k, t)

 ⊂

0,
r

sup
u∈Φ−1(0,r)

Ψ(u)

 ,

the functional Iλ admits one critical point u ∈ S such that Φ(u) < r and therefore u is a nontrivial solution of
(1.1) such that ∥u∥∞ ≤ ε.
We have the following.

Theorem 3. Assume that there exist ε, bn > 0 with lim
n→∞

bn = 0 such that(
m1p

+(2a1p
−bn + bp

−

n max{1, a2}(2 +Q))

m0p− min{1, c}

)1/p∗

κK < ε, (3.2)

for each n ∈ Z(1, T ) and

lim sup
|t|→0

T∑
k=1

F (k, t)

|t|p−
= ∞ for any k ∈ Z(1, T ). (3.3)

Then, for every

λ ∈

0,
m0 min {1, c}
p+κp∗Kp∗

εp
∗

T∑
k=1

F (k, ε)

 ,

problem (1.1) has at least one nontrivial solution u ∈ S such that ∥u∥∞ < ε.
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Proof. The functionals Φ in (2.7) and Ψ given by (2.8) satisfy the regularity conditions in Theorem 1. Similarly
to the proof of Theorem 2, setting

r :=
m0 min{1, c}
p+κp∗Kp∗

εp
∗
. (3.4)

For all u ∈ S such that Φ(u) < r, we obtain
∥u∥∞ ≤ ε.

Hence, we get

sup
u∈Φ−1(0,r)

Ψ(u) = sup
u∈Φ−1(0,r)

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤ε

F (k, t) =

T∑
k=1

F (k, ε).

Then, one has

sup
u∈Φ−1(0,r)

Ψ(u)

r
≤ p+κp

∗
Kp∗

m0 min {1, c}

T∑
k=1

F (k, ε)

εp∗
.

Therefore, from Theorem 1, for each

λ <
m0 min {1, c}
p+κp∗Kp∗

εp
∗

T∑
k=1

F (k, ε)

≤ r

sup
u∈Φ−1(0,r)

Ψ(u)
,

the problem (1.1) admits a solution uλ ∈ S which is a global minimum of the restriction of the functional Iλ to
Φ−1(−∞, r).
Now, we prove that uλ is nontrivial. Indeed, choose a real number

ρ >
m1 max{1, a2}(2 +Q)

λp−
.

Since lim sup
|t|→0

T∑
k=1

F (k, t)

|t|p−
= ∞, there exists a sequence {bn} of positive numbers with bn ∈ (0, 1) and bn → 0

as n→ ∞ such that

lim
n→∞

T∑
k=1

F (k, bn)

|bn|p−
= ∞.

Hence, there exists N ∈ N such that for any n > N , one has
T∑
k=1

F (k, bn) ≥ ρ|bn|p
−
.

We define a sequence {vn} in S by vn(k) = bn for every k ∈ Z(1, T ) and △vn(0) = vn(T + 1) = 0. It is easy
to see that

Φ(vn) ≤ m1

(
2a1bn +

1

p−
max {1, a2}

(
bp(0)n + bp(T )

n +

T∑
k=1

q(k)bp(k)n

))

≤ m1

(
2a1bn +

bp
−

n max {1, a2} (2 +Q)

p−

)
.

Moreover, one has

Ψ(vn) =

T∑
k=1

F (k, bn) ≥ ρ|bn|p
−
.
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Hence, from the condition (3.2), we get

Φ(vn) < r.

Therefore, we obtain

Ψ(vn)

Φ(vn)
≥ p−ρ|bn|p

−

m1(2a1p−bn + bp
−
n max{1, a2}(2 +Q))

→ ∞ as n→ ∞.

Then, there exists a sequence {wn} in S with wn → 0 as n→ ∞ such that, for n sufficiently large, one has

wn ∈ Φ−1(−∞, r) and Φ(wn)/Ψ(wn) < λ

which implies that

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Note that uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), then one has

Iλ(uλ) ≤ Iλ(wn) < 0 = Iλ(0).

Therefore, uλ is nontrivial.
Finally, we show that ∥uλ∥∞ < ε.
Note that Φ(uλ) < r, then by (H2)-(H4), (2.3)-(2.6) and (3.1), one has

r > Φ(uλ) ≥
m0 min {1, c}

(
φ(uλ) +

T∑
k=1

q(k)|uλ(k)|p(k)
)

p+

≥
m0 min {1, c} ∥uλ∥p

∗

p(·)

p+
≥ m0 min {1, c} ∥uλ∥p

∗

p+Kp∗
,

which implies that

∥uλ∥ < K

(
rp+

m0 min {1, c}

)1/p∗

. (3.5)

Thus, by (2.2), (3.4) and (3.5), one has

∥uλ∥∞ < ε.

The proof is thus complete.

4. Existence of At Least Two Nontrivial Solutions of (1.1)

In this section, one uses the following theorem due to Bonanno and D’Aguı́ (see [7]).

Theorem 4. [7] Let X be a real finite dimensional Banach space and let Φ,Ψ : X → R be two continuously
Gâteaux differentiable functionals such that inf

u∈X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there exist r ∈ R and

ũ ∈ X , with 0 < Φ(ũ) < r, such that

(i) σ =
1

r
sup

u∈Φ−1(]−∞,r])

Ψ(u) <
Ψ(ũ)

Φ(ũ)
= ρ,

(ii) for each λ ∈ Λ := ( 1ρ ,
1
σ ), the functional Iλ := Φ − λΨ satisfies the (PS)-condition and it is unbounded

from below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points uλ,1, uλ,2 such that I(uλ,1) <
0 < I(uλ,2).

We denote

λ∗ :=
(2T )

p+−p−

p− Lp
+

m1 max {1, a2}
(
2p

−
+ q
)p+/p−

(σ − ε)p−
,
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where

0 < ε < σ −
(2T )

p+−p−

p− Lp
+

m1 max {1, a2}
(
2p

−
+ q
)p+/p−

λp−

and we make the following additional assumptions.

(H5) There exists σ with σ >
(2T )

p+−p−

p− Lp
+

m1 max {1, a2}
(
2p

−
+ q
)p+/p−

λp−
such that

lim inf
|t|→∞

F (k, t)

|t|p+
≥ σ for any k ∈ Z(1, T ).

(H6)

T∑
k=1

max
|t|≤M

|f(k, t)| <∞ for all M > 0.

Lemma 4. Suppose that (H1), (H4)-(H6) hold. Then, for any λ > λ∗, the functional Iλ defined in (2.9) is
unbounded from below and satisfies the (PS)-condition.

Proof. Let us fix λ > λ∗ and let

0 < ε < σ −
(2T )

p+−p−

p− Lp
+

m1 max {1, a2}
(
2p

−
+ q
)p+/p−

λp−
.

Since lim inf
|t|→∞

F (k, t)

|t|p+
≥ σ for any k ∈ Z(1, T ), there exists τ > 0 such that

F (k, t) ≥ (σ − ε)|t|p
+

for all k ∈ Z(1, T ) and all t ∈ R with |t| > τ.

Moreover, since t→ F (k, t)− (σ − ε)|t|p+ is continuous on [−τ, τ ], there exists Cτ > 0 such that

F (k, t)− (σ − ε)|t|p
+

≥ −Cτ for all k ∈ Z(1, T ) and all t ∈ [−τ, τ ] .

Therefore, we get

F (k, t) ≥ (σ − ε)|t|p
+

− Cτ for all (k, t) ∈ Z(1, T )× R. (4.1)

Thus, by (4.1), (H1) and Lemma 1(iii), one has

Iλ(u) ≤ m1

∫ ζ[u]

0

dξ − λ

T∑
k=1

(
(σ − ε)|u(k)|p

+

− Cτ

)
≤ m1

(
2a1

T∑
k=1

|u(k)|+ max {1, a2}
p−

(
2

p+−p−

p− Lp
+

∥u∥p
+

+ (1 + q)T

))

−λ(σ − ε)

T∑
k=1

|u(k)|p
+

+ λCτT. (4.2)

Since

∥u∥p
−

≤ 2p
−

T∑
k=1

|u(k)|p
−
+ q

T∑
k=1

|u(k)|p
−

≤
(
2p

−
+ q
)
T

p+−p−

p+

(
T∑
k=1

|u(k)|p
+

)p−/p+
,

then,
T∑
k=1

|u(k)|p
+

≥ ∥u∥p+

T
p+−p−

p−
(
2p− + q

)p+/p− . (4.3)
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From (2.2), (4.2) and (4.3), we see that

Iλ(u) ≤ 2m1a1Tκ∥u∥+

m1 max {1, a2} 2
p+−p−

p− Lp
+

p−
− λ

σ − ε

T
p+−p−

p−
(
2p− + q

)p+/p−
 ∥u∥p

+

+
m1 max {1, a2} (1 + q)T

p−
+ λCτT

=
(σ − ε)(λ∗ − λ)

T
p+−p−

p−
(
2p− + q

)p+/p− ∥u∥p
+

+ 2m1a1Tκ∥u∥+
m1 max {1, a2} (1 + q)T

p−
+ λCτT.

Since λ∗ − λ < 0, then Iλ(u) → −∞ whenever ∥u∥ → ∞. Hence, Iλ is unbounded from below.
To see that the (PS)-condition is fulfilled, notice that Jλ = −Iλ. We see that Jλ is coercive. Let us take a

sequence {un} ⊂ S such that {Jλ(un)} is bounded and ∥J ′
λ(un)∥S∗ → 0 as n→ ∞. Since Jλ is coercive, {un}

is bounded in S. Hence, by passing to a subsequence, we may assume that there exists u ∈ S such that un ⇀ u

weakly in S. Now, we will prove that un → u in S. Note that Iλ = Φ− λΨ, one has

⟨Φ′(un), un − u⟩ = −⟨J ′
λ(un), un − u⟩+ λ ⟨Ψ′(un), un − u⟩ .

Since ∥J ′
λ(un)∥S∗ → 0 and {un − u} is bounded in S, then by the inequality

| − ⟨J ′
λ(un), un − u⟩ | ≤ ∥J ′

λ(un)∥S∗∥un − u∥

we get

−⟨J ′
λ(un), un − u⟩ → 0 as n→ ∞.

Moreover, from (H6), there exists C > 0 such that

|⟨Ψ′(un), un − u⟩| ≤
T∑
k=1

max
|t|≤M

|f(k, t)| ∥un − u∥ ≤ C∥un − u∥ → 0, as n→ ∞.

Therefore,

lim sup
n→∞

⟨Φ′(un), un − u⟩ ≤ 0.

Then,

lim sup
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

By Lemma 2, one has un → u in S as n → ∞. Thus, Iλ satisfies the (PS)-condition. The proof of Lemma 4 is
complete.

Theorem 5. Assume that there exist two positive constants d and ε with

ε > κK

(
m1p

+

m0p−

)1/p∗ (
2a1dp

− + dp
∗
max{1, a2}(2 +Q)

min{1, c}

) 1
p∗

(4.4)

such that
T∑
k=1

max
|t|≤ε

F (k, t)

εp∗
<
m0 min {1, c}
p+κp∗Kp∗

min


p−

T∑
k=1

F (k, d)

m1(2a1dp− + dp∗ max{1, a2}(2 +Q))
,
1

λ∗


. (4.5)

Then, for any

λ ∈

max


m1(2a1dp

− + dp
∗
max{1, a2}(2 +Q))

p−
T∑
k=1

F (k, d)

, λ∗


,

m0 min{1, c}
p+κp∗Kp∗

εp
∗

T∑
k=1

max
|t|≤ε

F (k, t)

 ,
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problem (1.1) admits at least two nontrivial solutions.

Proof. We are going to apply Theorem 4. TakeX = S and putΦ, Ψ, Iλ as in (2.7), (2.8) and (2.9), respectively.
We know that Φ and Ψ are continuously Gâteaux differentiable. Besides, by the definitions of Φ and Ψ, one has
inf
u∈S

Φ(u) = Φ(0) = Ψ(0) = 0. Thus, the regularity assumptions required on Φ and Ψ are verified. Note that the
critical points of Iλ are exactly the solutions of problem (1.1). Put

r =
m0 min{1, c}
p+κp∗Kp∗

εp
∗
.

For all u ∈ S such that Φ(u) < r, by (H2)-(H4), (2.3)-(2.6) and (3.1), one has

r > Φ(u) = M̂(ζ[u]) ≥ m0

∫ ζ[u]

0

dξ ≥ m0 min {1, c}
p+Kp∗

∥u∥p
∗
,

which implies that

∥u∥ ≤ K

(
rp+

m0 min {1, c}

)1/p∗

.

From (2.2), we obtain

∥u∥∞ ≤ κ∥u∥ ≤ κK

(
rp+

m0 min {1, c}

)1/p∗

= ε.

Hence, we have

sup
u∈Φ−1(−∞,r)

Ψ(u) = sup
u∈Φ−1(−∞,r)

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤ε

F (k, t).

Therefore, we obtain

sup
u∈Φ−1(−∞,r)

Ψ(u)

r
≤ p+κp

∗
Kp∗

m0 min {1, c}

T∑
k=1

max
|t|≤ε

F (k, t)

εp∗
. (4.6)

On the other hand, pick ũ ∈ S, defined as follows.

ũ(k) :=

{
d if k ∈ Z(1, T ),
0 otherwise.

(4.7)

It is easy to verify that

m0 min {1, c} dp∗

p+
(2 +Q) ≤ Φ(ũ) ≤ m1

(
2a1d+

dp
∗
max {1, a2} (2 +Q)

p−

)
(4.8)

and

Ψ(ũ) =

T∑
k=1

F (k, ũ(k)) =

T∑
k=1

F (k, d). (4.9)

From the condition (4.4), we obtain 0 < Φ(ũ) < r. Moreover, we have

Ψ(ũ)

Φ(ũ)
≥

p−
T∑
k=1

F (k, d)

m1(2a1dp− + dp∗ max{1, a2}(2 +Q))
. (4.10)

So, it follows from (4.5), (4.6) and (4.10) that

σ =
1

r
sup

u∈Φ−1(]−∞,r])

Ψ(u) <
Ψ(ũ)

Φ(ũ)
= ρ.

Therefore, the assumption (i) of Theorem 4 is satisfied. Taking into account Lemma 4, all the conditions of
Theorem 4 are verified. Thus, from Theorem 4, for each λ ∈ Λ, the functional Iλ has at least two non-zero critical
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points uλ,1, uλ,2 ∈ S such that I(uλ,1) < 0 < I(uλ,2) for all λ ∈ Λ, which are nontrivial solutions of problem
(1.1).

5. Existence of At Least Three Solutions of (1.1)

In this section, one uses the following theorem due to Bonanno (see [10]).

Theorem 6. [10] Let X be a separable and reflexive real Banach space, Φ : X → R a nonnegative continuously
Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact. Assume that there exists u0 ∈ X such that Φ(u0) = Ψ(u0) = 0 and that

(i) lim
∥u∥→∞

(Φ(u)− λΨ(u)) = ∞ for all λ ∈ (0,∞);

(ii) there are r > 0, ũ ∈ X such that

r < Φ(ũ);

(iii) sup
u∈Φ−1(−∞,r)

Ψ(u) < (r/(r +Φ(ũ)))Ψ(ũ).

Then, for each

λ ∈ Λ :=

 Φ(ũ)

Ψ(ũ)− sup
u∈Φ−1(−∞,r)

Ψ(u)
,

r

sup
u∈Φ−1(−∞,r)

Ψ(u)

 , (5.1)

the equation

Φ′(u)− λΨ′(u) = 0 (5.2)

has at least three solutions in X and, moreover, for each h > 1, there exists an open interval

Λ̄ ⊆

0,
hr

r (Ψ(ũ)/Φ(ũ))− sup
u∈Φ−1(−∞,r)

Ψ(u)

 (5.3)

and a positive real number ν such that, for each λ ∈ Λ̄, (5.2) has at least three solutions in X whose norms are
less than ν.

Theorem 7. Assume that there exist constants ε, d, δ > 0 with ε < Kκ(2 + Q)1/p
∗
d and δ <

m0 min{1, c}
p+λTKp−

2 κp−

such that

(a1)

T∑
k=1

max
|t|≤ε

F (k, t) <

m0p
− min{1, c}εp∗

T∑
k=1

F (k, d)

m0p− min{1, c}εp∗ +m1p+Kp∗κp∗(2a1p−d+ dp∗ max{1, a2}(2 +Q))
;

(a2) lim sup
|t|→∞

F (k, t)

|t|p−
≤ δ for any k ∈ Z(1, T ).

Further, set

ψ1 =

p+Kp∗κp
∗

T∑
k=1

max
|t|≤ε

F (k, t)

m0 min{1, c}εp∗
,

ψ2 =

p−

[
T∑
k=1

F (k, d)−
T∑
k=1

max
|t|≤ε

F (k, t)

]
m1(2a1p−d+ dp∗ max{1, a2}(2 +Q))



MULTIPLICITY OF SOLUTIONS FOR THE DISCRETE ROBIN PROBLEM 117

and for every h > 1,

(a3) ã =
m0 min{1, c}(2 +Q)h(εd)p

∗

p+εp∗
T∑
k=1

F (k, d)−Kp∗κp
∗
p+dp

∗
(2 +Q)

T∑
k=1

max
|t|≤ε

F (k, t)

.

Then, for each

λ ∈
(

1

ψ2
,
1

ψ1

)
,

the problem (1.1) has at least three solutions in S and moreover, for every h > 1, there exists an open interval
Λ̄ ⊆ (0, ã) and a positive real number ν such that for each λ ∈ Λ̄, the problem (1.1) has at least three solutions in
S, whose norms in S are less than ν.

Proof. We shall apply Theorem 6. Take X = S and put Φ, Ψ, Iλ as in (2.7), (2.8) and (2.9), respectively. We
know that Φ and Ψ are two continuously Gâteaux differentiable functionals. On the other hand, by Lemma 3,
Φ is sequentially weakly lower semicontinuous. Now, we will prove that Φ′ admits a continuous inverse on S∗.
By Lemma 2, Φ′ is strictly monotone, which yields that Φ′ is an injection. Moreover, it follows from (H3)-(H4)

and Lemma 1 that

⟨Φ′(u), u⟩ ≥ m0 min {1, c}
T∑
k=1

[
|△u(k)|p(k) + q(k)|u(k)|p(k)

]
≥ m0 min {1, c}

(
C1 min

{
∥u∥p

−
, ∥u∥p

+
}
− C2

)
→ ∞ as ∥u∥ → ∞,

where C1 and C2 are positive constants. Hence, by Minty-Browder theorem (see [55]), Φ′ is onto. Therefore,
(Φ′)

−1
: S∗ → S exists. Now, we prove that (Φ′)

−1 is continuous. Let v, vn ∈ S∗ such that vn → v in S∗.
Therefore, there exist unique u, un ∈ S such that

Φ′(u) = v and Φ′(un) = vn for all n ∈ N.

The above relations imply that

⟨Φ′(u)− Φ′(un), u− un⟩ = ⟨v − vn, u− un⟩ for all n ∈ N.

Since vn → v in S∗, by the inequality

|⟨Φ′(v)− Φ′(vn), v − vn⟩| = |⟨u− un, v − vn⟩| ≤ ∥u− un∥S∗∥v − vn∥,

we infer that

⟨Φ′(u)− Φ′(un), u− un⟩ → 0, as n→ ∞

and so

lim sup
n→∞

⟨Φ′(u)− Φ′(un), u− un⟩ ≤ 0.

From Lemma 2, we have un → u as n→ ∞. Hence, (Φ′)
−1 is continuous.

Now, we show that Ψ′ is compact. Suppose that {un} ⊂ S such that un → u in S as n → ∞. Note that f is
continuous, then by (2.8), one has Ψ(un) → Ψ(u) as n→ ∞. So, Ψ′ is compact.
Then, Φ and Ψ satisfy all regularity assumptions requested in Theorem 6. Next, choose u0(k) = 0 for each
k ∈ Z(0, T + 1), it is easy to see that u0 ∈ S and Φ(u0) = Ψ(u0) = 0. Note that the critical points of Iλ are
exactly the solutions of problem (1.1). Now, we prove that

lim
∥u∥→∞

(Φ(u)− λΨ(u)) = ∞.

Let us fix λ > 0 and let ε∞ satisfy

0 < ε∞ <
m0 min{1, c}

p+Kp−

2 λT (2T + 2)p−−1
− δ.
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From lim sup
|t|→∞

F (k, t)

|t|p−
≤ δ, there exists ϱ > 0 such that

F (k, t) ≤ (δ + ε∞)|t|p
−

for all (k, |t|) ∈ Z(1, T )× (ϱ,∞).

Since t→ F (k, t)− (δ + ε∞)|t|p− is continuous on [−ϱ, ϱ], there exists Cϱ > 0 such that

F (k, t)− (δ + ε∞)|t|p
−
≤ Cϱ for all (k, t) ∈ Z(1, T )× (−ϱ, ϱ).

Hence, we obtain

F (k, t) ≤ (δ + ε∞)|t|p
−
+ Cϱ for all (k, t) ∈ Z(1, T )× R.

For u ∈ S with ∥u∥ > 1, the above inequality and by (H2)-(H4) and (2.2)-(2.5), we obtain

Iλ(u) = M̂(ζ[u])− λ

T∑
k=1

F (k, u(k))

≥ m0

∫ ζ[u]

0

dξ − λ(δ + ε∞)

T∑
k=1

∥u∥p
−

∞ − CϱλT

≥

(
m0 min{1, c}
p+Kp−

2

− λ(δ + ε∞)Tκp
−

)
∥u∥p

−
− CϱλT → ∞,

as ∥u∥ → ∞. Then, condition (i) of Theorem 6 is satisfied.
Now, put

r =
m0 min{1, c}
p+κp∗Kp∗

εp
∗
.

For all u ∈ S such that Φ(u) < r, by (H2)-(H4), (2.3)-(2.6) and (3.1), we have

r > Φ(u) ≥ m0 min {1, c}
p+

(
φ(u) +

T∑
k=1

q(k)|u(k)|p(k)
)

≥ m0 min {1, c}
p+

∥u∥p
∗

p(·) ≥
m0 min {1, c}

p+Kp∗
∥u∥p

∗

and so

∥u∥ ≤ K

(
rp+

m0 min {1, c}

)1/p∗

.

By (2.2), we get

∥u∥∞ ≤ κ∥u∥ ≤ κK

(
rp+

m0 min {1, c}

)1/p∗

= ε.

The definition of r and the above inequality ensure that

Φ−1(−∞, r) ⊆ {u ∈ S such that ∥u∥∞ ≤ ε} .

Therefore, we obtain

sup
u∈Φ−1(−∞,r)

Ψ(u) = sup
u∈Φ−1(−∞,r)

T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤ε

F (k, t). (5.4)

Similarly as in the proof of Theorem 5, we denote ũ(k), Φ(ũ), Ψ(ũ) as in (4.7), (4.8) and (4.9), respectively.
From ε < Kκ(2 +Q)1/p

∗
d, we get

Φ(ũ) > r,
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that is, condition (ii) of Theorem 6.
Moreover, one has

rΨ(ũ)

r +Φ(ũ)
≥

m0p
− min{1, c}εp∗

T∑
k=1

F (k, d)

m0p− min{1, c}εp∗ +m1p+Kp∗κp∗(2a1p−d+ dp∗ max{1, a2}(2 +Q))
. (5.5)

By virtue of (5.4) and (5.5), taking into account (a1), we have

sup
u∈Φ−1(−∞,r)

Ψ(u) <
rΨ(ũ)

r +Φ(ũ)
.

Therefore, condition (iii) of Theorem 6 is satisfied. Furthermore, we have

Φ(ũ)

Ψ(ũ)− sup
u∈Φ−1(−∞,r)

Ψ(u)
≤ m1(2a1p

−d+ dp
∗
max{1, a2}(2 +Q))

p−

[
T∑
k=1

F (k, d)−
T∑
k=1

max
|t|≤ε

F (k, t)

] =
1

ψ2
,

r

sup
u∈Φ−1(−∞,r)

Ψ(u)
≥ m0 min{1, c}εp∗

p+Kp∗κp∗
T∑
k=1

max
|t|≤ε

F (k, t)

=
1

ψ1
.

Hence, by (a1), we get ψ1 < ψ2. Thus, for each λ ∈
(

1
ψ2
, 1
ψ1

)
, the problem (1.1) has at least three solutions in

S. On the other hand, one has
hr

r
Ψ(ũ)

Φ(ũ)
− sup

Φ(u)<r

Ψ(u)

≤ hr

m0 min{1, c}εp∗p+
T∑
k=1

F (k, d)

p+Kp∗κp∗m0 min{1, c}dp∗(2 +Q)
−

T∑
k=1

max
|t|≤ε

F (k, t)

= ã,

with ã given in (a3).
So, using Theorem 6, for each h > 1, there exist an open interval Λ̄ ⊆ [0, ã] and a positive real number ν such

that for any λ ∈ Λ̄, the equation
Φ′(u)− λΨ′(u) = 0

admits at least three solutions in S. Therefore, problem (1.1) admits at least three solutions in S, whose norms
are less than ν. The proof of Theorem 7 is complete.
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