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Abstract. We introduce the concept of quasi-averaged mappings within quasi-normed linear spaces.
Employing these class of mappings, we derive fixed point theorems and demonstrate convergence results
for the Krasnoselskij iteration method associated to various types of enriched contractions. This com-
prehensive analysis encompasses a range of contraction types, such as Chatterjea, Kannan, Bianchini,
Ćirić, Hardy-Rogers contractions, and enriched almost contractions in quasi-Banach spaces. In addi-
tion, we present the definition of three distinct types of quasi-double averaged mappings associated with
weakly enriched contraction mappings. Moreover, we emphasize the presence of fixed points within these
mappings, underlining both their existence and uniqueness. Some illustrative examples are furnished to
support our theoretical results and effectual generalization. Finally, we present sufficient conditions guar-
anteeing the equivalence between the set of fixed points of the quasi-double averaged mapping associated
with a weakly enriched mapping and that of the weakly enriched contraction mapping itself.

Keywords. Fixed point, Quasi-normed linear space, Quasi-averaged mapping, Quasi-double averaged
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1. Introduction

Throughout the course of this paper, we employ the following notations:
F(T ) The set of points that are fixed under the map T .
QNLS Quasi-Normed linear space.
QBS Quasi-Banach space.
N0 N ∪ {0}.
R+ The set of nonnegative real numbers.
LHS Left-hand side.
RHS Right-hand side.
I Identity mapping.

Fixed point theory caters crucial resources for nonlinear analysis, particularly in examining the
presence and approximation of solutions for a range of nonlinear problems in variational inequalities,
nonlinear functional equations, optimization and equilibrium problems, etc. Picard operators are irre-
placeable gems in nonlinear analysis, specifically within the realm of mappings eloquently labeled as
Banach contractions in our mathematical domain and its intersecting areas. Originating from Banach’s
pioneering work in [2] within the context of a Banach space, this class of operators has emerged as a
cornerstone. Cacciopoli, in a noteworthy extension illuminated in [9], gracefully expanded Banach’s
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contraction theorem to encompass the elegance of complete metric spaces. The robust connection be-
tween the theories of metric spaces and normed spaces has given rise to several foundational concepts
initially grounded in metric spaces, later evolving to accommodate normed structures, and vice-versa.

In 2020, Berinde and Păcurar [3] introduced a groundbreaking concept—the extended Banach con-
tractive condition on normed spaces, elegantly termed as enriched contraction mappings in Banach
spaces. This innovation encompasses enriched Banach contractions, where the notion of Picard-Banach
contractions is seamlessly integrated as one of its distinctive cases. They extended the Chatterjea con-
tractions, Kannan contractive condition, Bianchini mappings in normed spaces called as enriched Chat-
terjea mappings [4], enriched Kannan contractions [5], enriched Bianchini mappings [5] respectively.
They also presented an approach to address problems on split feasibility as well as variational inequal-
ities. These studies are distinguished by two notable features. Firstly, the space under consideration is
a Banach space instead of some generalised version of a metric space. Secondly, the chosen iterative
scheme is the Krasnoselskij iterative scheme, diverging from the conventional Picard iteration scheme.
They provided a demonstration establishing both the existence and exclusivity of fixed points for these
enriched mappings within the context of Banach spaces.

Continuing the exploration of enriched contractions within the framework of Banach spaces, Nithiara
-yaphaks and Sintunavarat [17] introduced the notion of weak enriched contraction mappings, and pro-
posed a novel extension of an averaged mapping, termed the double averaged mapping. The averaged
mapping is created by a convex combination of a self-map T and the identity operator I on a normed
linear space using a constant λ ∈ (0, 1].This idea was extended to the double-averaged mapping which
contains a quadratic term T 2 and a constant λ is separated into two nonnegative constants β1 and β2.
They noted that a contraction mapping enhanced with enrichment is Lipschitz continuous, thereby
implying its continuity. Consequently, any mapping that is discontinuous cannot be considered as an
enriched contraction mapping. However, this limitation is addressed by weak enriched contraction
mappings, as there are mappings that are discontinuous that still qualify as weak enriched contraction
mappings. The duo also formulated specific conditions to demonstrate that the set of invariant points
of a double averaged mapping associated with a weakly enriched contraction mapping is equivalent to
that of the original map.

In this manuscript, we introduce the concept of quasi-averaged mappings, a pivotal notion in es-
tablishing fixed point theorems for various enriched mappings in Quasi-Banach spaces (QBSs). The
establishment of these propositions and theorems is accomplished using the nonconventional iterative
approach known as the Krasnoselskij iterative scheme. The fundamental distinction between a norm
and a quasi-norm lies in their continuity properties: the former is uniformly continuous whereas the
latter is not even continuous, as a result the topologies differ. For each type of mappings, we establish
fixed point theorems in a QBS, where suitable conditions on the parameters (dependence on the quasi-
index q of QNLS (Z, ∥ · ∥, q)) are imposed in various cases. Specifically, we introduce three types of
quasi-double averaged mappings denoted as Tβ1q,β2 , Tβ1,β2q , and Tβ1q,β2q , and establish the existence of
fixed points for each of these cases. We derive sufficient conditions that demonstrate the equivalence
between the set of fixed points of Tβ1,β2 and the set of invariant points of the self-map T , where T
operates on a closed convex subset C of a quasi-normed space (Z, ∥ · ∥, q). The exploration of these
mathematical constructs contributes to a deeper understanding of convergence patterns and fixed point
properties within the diverse scope of enriched contraction theories. For some recent papers, one can
consult [28, 29].

This paper is organized as follows. In Section 2, preliminaries and a clear problem statement are
provided. Write an outline or delineation of the paper here.
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2. Preliminaries

Definition 2.1 (QNLS). [15] Suppose that q ≥ 1 is a given real, and Z is a vector space over a field
L (= R or C). A functional ∥ · ∥ : Z → [0,∞) is said to be a quasi-norm if the following axioms are
satisfied:

Q1. ∥a∥ = 0 if and only if a = 0,
Q2. ∥ψa∥ = |ψ|∥a∥, for all ψ ∈ L, a ∈ Z ,
Q3. ∥a+ b∥ ≤ q (∥a∥+ ∥b∥ ), for all a, b ∈ Z .

Then, (Z, ∥ · ∥, q) is called a quasi-normed linear space.

Example 2.2. [19] We know Z = R2 is a real vector space. For a = (a1, a2) ∈ Z , we define

∥a∥ = (
√

|a1|+
√

|a2|)2.

Then, (Z, ∥ · ∥, 2) is a QNLS. We should note that it is not a normed linear space. Specifically, when we
consider normed linear spaces, the symbol ∥ · ∥ doesn’t function as a typical norm.

Definition 2.3 (QBS). [14] Let (Z, ∥ · ∥, q) be a QNLS. If the quasi-metric (b-metric) generated by the
quasi-norm is complete, then the space (Z, ∥ · ∥, q) is called a QBS.

Lemma 2.4. [16] In a b-metric space denoted as (Z, d, q) with a constant q ≥ 1, a sequence (zn)n∈N is
Cauchy if, for every natural number n, there exists a nonnegative constant κ < 1 such that the inequality
d(zn+1, zn) ≤ κd(zn, zn−1) holds.

In a QNLS, a quasi-norm induces a distance, called b-metric. Therefore, the following is an immediate
result from Lemma 2.4.

Lemma 2.5. A sequence (zn)n∈N composed of elements from a QNLS (Z, ∥ · ∥, q) is a Cauchy sequence if
there exists a non-negative constant κ < 1 such that for every natural number n, the following inequality
holds:

∥zn+1 − zn∥ ≤ κ∥zn − zn−1∥.

Definition 2.6 (Averaged Mapping). [1] Suppose that T is a self-map on Z , where (Z, ∥·∥) is a normed
linear space. Then the the average mapping Sλ : Z → Z is given by

Sλz = (1− λ)z + λTz for all z ∈ Z, λ ∈ (0, 1].

The averaged mapping is created by taking a convex combination of two maps namely the identity
mapping I and T using a constant λ ∈ (0, 1].

Remark 2.7. The averaged mapping possesses the characteristic that its collection of fixed points, de-
noted as F(Sλ), coincide with the set of points that are invariant or fixed with respect to the original
mapping T, expressed as F(T ).

Definition 2.8 (Double-averaged mapping). [17] In a normed linear space Z , a double averaged map-
ping is defined by considering the identity mapping I and and a self-mapping as

Tβ1,β2 := (1− β1 − β2)I + β1T + β2T
2,

where β1 > 0, β2 ≥ 0 and β1 + β2 ∈ (0, 1].

Remark 2.9. The following points connect relationships between the averaged and double-averaged
mappings:

• For β1 = λ, β2 = 0, Tβ1,0 reduces to Sλ.
• F(T ) ⊆ F((Tβ1,β2)). This inclusion can be strict.
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In the following section, we establish fixed point theorems for different enriched contraction map-
pings within a QBS framework, where the parameters of these contractions depend on the quasi-index
q.

3. Main Results

Definition 3.1 (Quasi-averaged mapping). Suppose that T is a self-map on a QNLS Z and λ ∈ (0, 1).
The quasi-averaged mapping Sλ is defined as

Sλ(z) = (1− λq)z + λqTz for all z ∈ Z. (3.1)

Remark 3.2. F(Sλ) = F(T ).

3.1. Enriched contraction.

Definition 3.3 (Enriched contraction). Let (Z, ∥·∥, q) be a QNLS. A mapping T : Z → Z is referred to
as an enriched contraction if we can find g ∈ [0,∞) and τ ∈ [0, g+1) so that the following inequality
is true:

∥g(y − z) + Ty − Tz∥ ≤ τ∥y − z∥, for all y, z ∈ Z. (3.2)
To designate the scalars g and τ associated to (3.2), we name T as an enriched contraction with param-
eters g and τ .

Example 3.4. Let Z = l
1
2 be endowed with quasi-norm given by

∥z∥ =
( ∞∑
j=1

|zj |
1
2
)2
, z ∈ l

1
2 .

Let u = (1, 1
24
, 1
34
, . . .) ∈ l

1
2 be a fixed vector and T : Z → Z be defined by

Tz = u− z, for all z ∈ Z.

Then, ∥Tz1 − Tz2∥ = ∥z1 − z2∥. This means that T is a non-expansive mapping. In particular, it is
an isometry.
Demonstrating that T is an enriched contraction in l

1
2 is equivalent to establishing the following in-

equality:

∥(g − 1)(z1 − z2)∥ ≤ τ∥z1 − z2∥, for all z1, z2 ∈ l
1
2 .

The above inequality is true for all z1, z2 ∈ l
1
2 if we choose g ≥ 1 and τ = g − 1. Therefore, for any

g ∈ [1,∞), T is an enriched contraction with parameters g and g − 1. Note that T has only one fixed
point.

Remark 3.5. (1) For g = 0, we get a contraction T with parameters 0 and θ, where τ ∈ [0, 1).
(2) Following Example 3.4, let us show that T is not considered a contraction. If it were a contrac-

tion, we must find a constant τ ∈ [0, 1) satisfying

∥z1 − z2∥ ≤ τ∥z1 − z2∥ for all z1, z2 ∈ l
1
2 .

For any pair of distinct z1, z2, we have 1 ≤ τ < 1, which is a contradiction.
(3) In a QBS, a contraction is always an enriched contraction, although the converse need not hold.
(4) For T in the above example, the Picard iteration generated by sequence (zn)n∈N connected with

T , specifically, the sequence whose recurrence relation is given by zn+1 = 1− zn, n ≥ 0, fails
to converge for any initial guess z0 which is not equal to u

2 , which is the sole element of F(T ).
(5) In the preceding example, it is noteworthy to observe that the map T despite not qualifying the

test of a contraction map, F(T ) consists of a single element.
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Theorem 3.6. Let (Z, ∥ · ∥, q) be a QBS, where q ≥ 1, and T : Z → Z be a (τ, g) enriched contraction.
Then, we have the following results:

• F(T ) = {ϑ};
• With λ = 1

q(1+g) ∈ (0, 1), the sequence (zn)∞n=0 generated by the iterative method

zn+1 = (1− λq)zn + λqTzn, n ∈ N0, (3.3)
converges to ϑ, for any z0 ∈ Z .

Proof. Our proof consists of two cases.
Case 1. g is positive. Denote λ = 1

q(1+g) ∈ (0, 1). The enriched contraction rule (3.2) becomes

∥( 1

λq
− 1)(y − z) + Ty − Tz∥ ≤ τ∥y − z∥ for all y, z ∈ Z,

which is rewritten as
∥Sλy − Sλz∥ ≤ f∥y − z∥ for all y, z ∈ Z. (3.4)

Here, f = λqτ = qτ
q(g+1) ∈ [0, 1). Therefore, the quasi-averaged mapping is an f -contraction.

Following the definition of the averaged mappingSλ, the Krasnoselskij iterative scheme (zn)n∈N
defined by (3.3) precisely represents the Picard iteration associated with Sλ, that is,

zn+1 = Sλzn, n ∈ N0. (3.5)
Substituting y = zn and z = zn−1 in (3.4) gives

∥zn+1 − zn∥ ≤ f∥zn − zn−1∥, n ≥ 1. (3.6)
From Lemma 2.5, (zn)n∈N is a Cauchy sequence. Consequently, it exhibits convergence within
the space Z with a limit denoted as ϑ. In order to show that ϑ is in F(Sλ), utilizing relaxed
triangle inequality and (3.4) yields:

∥ϑ− Sλϑ∥ ≤ q[∥ϑ− zn+1∥+ ∥zn+1 − Sλϑ∥]
≤ q[∥ϑ− zn+1∥+ f∥zn − ϑ∥].

As n→ ∞, we get ∥ϑ− Sλϑ∥ = 0, i.e., ϑ ∈ F(Sλ).

Next, we prove that ϑ is the only element of F(Sλ). On the contrary, assume that ϑ ̸= ϑ̃ ∈
F(Sλ). Then, by (3.4), we have

0 < ∥ϑ− ϑ̃∥ ≤ f∥ϑ− ϑ̃∥ < ∥ϑ− ϑ̃∥, (3.7)
which is untrue. Hence, F(Sλ) = {ϑ}.
Since F(Sλ) = F(T ), F(T ) = {ϑ}.

Case 2. g is zero. Under this scenario, the map boils down to a usual Banach contraction. The proof is
immediate.

□

3.2. Enriched Chatterjea mapping.

Definition 3.7 (Enriched Chatterjea mapping). Consider (Z, ∥·∥, q) as a QNLS. A mapping T : Z → Z
earns the designation of an enriched Chatterjea map if we can find a nonnegative k and τ ∈ [0, 12) for
which the following condition is true:

∥k(y − z) + Ty − Tz∥ ≤τ [∥(k + 1)(y − z) + z − Tz∥

+ ∥(k + 1)(z − y) + y − Ty∥],
(3.8)

for all y, z ∈ Z . To emphasise two real scalars in (3.8), we term T as an enriched Chatterjea map with
parameters k and τ .
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Remark 3.8. For k = 0, the above map becomes a Chatterjea mapping in a QBS.

Example 3.9. Consider the space Z = lp, where p = 1
2 . This space is equipped with the quasi-norm

∥x∥ =
(∑∞

j=1 |xj |
1
2

)2
, and it has a quasi-index denoted as q = 2

1
p = 4.

Let T : Z → Z be defined by Tz = u− z, where u = (1, 1
24
, 1
34
, . . .) ∈ l

1
2 , for all z ∈ Z.

The simplified expression for the LHS expression of (3.8) is

∥k(y − z) + Ty − Tz∥ = |(k − 1)|∥y − z∥.

The RHS of (3.8) is given by

τ [∥(k + 1)(y − z) + z − Tz∥ + ∥(k + 1)(z − y) + y − Ty∥]

= τ [∥(k + 1)y − (k − 1)z − u∥+ ∥(k + 1)z − (k − 1)y − u∥].

For T to qualify as a quasi-enriched Chatterjea mapping, it is necessary for there to exist values
0 ≤ τ < 1

2 and 0 ≤ k <∞ such that the condition expressed in (3.8) is satisfied, which is identical to:

|(k − 1)|∥y − z∥ ≤ τ [∥(k + 1)y − (k − 1)z − u∥+ ∥(k + 1)z − (k − 1)y − u∥]. (3.9)

In light of the following inequality,

2k∥y − z∥ =∥[(k + 1)y − (k − 1)z − u]− [(k + 1)z − (k − 1)y − u]∥

≤q∥(k + 1)y − (k − 1)z − u∥+ ∥(k + 1)z − (k − 1)y − u∥,

(3.9) to be satisfied for all y, z ∈ l
1
2 , it is essential that |k−1|

2k
≤ τ

q holds for a specific τ ∈ [0, 12).

One possibility is to have 1
1+ 1

q

< k ≤ 1 and (1−k)q

2k
≤ τ < 1

2 . By selecting (1−k)q

2k
= τ , we can take

k = 1
2τ
q
+1

. Consequently, for any τ ∈ [0, 12), T qualifies as a ( 1
2τ
q
+1
, τ)-quasi-enriched Chatterjea

mapping, and F(T ) = u
2 .

In the alternative scenario, it is required that 1 ≤ k < 1
1− 1

q

. By choosing k = 1
1− 2τ

q

, for any τ ∈ [0, 12),

T becomes a ( 1
1− 2τ

q

, τ)-quasi-enriched Chatterjea contraction, and it possesses a unique fixed point u
2 .

Theorem 3.10. Consider (Z, ∥ · ∥, q) as a QBS, where q ≥ 1. Let T : Z → Z be an enriched Chatterjea
mapping with parameters k and τ . If τ < min{ 1

q3
, 1
2q2

}, then

• F(T ) = {ϑ};
• With λ = 1

q(k+1)
, the sequence (zn)∞n=0 generated by the iterative method

zn+1 = (1− λq)zn + λqTzn, n ≥ 0, (3.10)

converges to ϑ, for any z0 ∈ Z.

Proof. With Remark 3.8, the map is a Chatterjea mapping for k = 0. Therefore, we only discuss the
case for k > 0. If k is positive in (3.8), then set λ = 1

q(k+1)
. Evidently, 0 < λ ≤ 1 and (3.8) becomes

∥( 1

λq
− 1)(y − z) + Ty − Tz∥ ≤τ [∥ 1

λq
(y − z) + z − Tz∥

+ ∥ 1

λq
(z − y) + y − Ty∥] for all y, z ∈ Z,

which is equivalent to
∥(1− λq)(y − z) + λq(Ty − Tz)∥ ≤ τ [∥y − z + λq(z − Tz)∥

+ ∥z − y + λq(y − Ty)∥] for all y, z ∈ Z.
(3.11)
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The last inequality can be expressed more succinctly as

∥Sλy − Sλz∥ ≤ τ [∥y − Sλz∥+ ∥z − Sλy∥], (3.12)

for all y, z ∈ Z. The iterative scheme produced by (zn)n∈N according to (3.10) corresponds to the
Picard iteration associated with the quasi-averaged operator, specifically,

zn+1 = Sλzn, n ∈ N0.

Select y = zn and z = zn−1 and substitute in (3.12) so that

∥zn+1 − zn∥ ≤ qτ (∥zn − zn∥+ ∥zn−1 − zn+1∥)
≤ q2τ [∥zn−1 − zn∥+ ∥zn − zn+1∥].

After simplification, it reduces to

∥zn+1 − zn∥ ≤ q2τ

1− q2τ
∥zn−1 − zn∥, n ∈ N.

Denoting δ = q2τ
1−q2τ

, we have 0 ≤ δ < 1. It follows from the following.

Case 1. 1 < q < 2. Then, τ < 1
2q2

.
Now,

1

δ
=

1− q2τ

q2τ
=

1

q2τ
− 1 > 1.

Therefore, 0 < δ < 1.

Case 2. q > 2. Then, τ < 1
q3

=⇒ τq2 < 1
q <

1
2 .

Now,
1

δ
=

1

q2τ
− 1 > 1.

Thus, (zn)n∈N follows the following inequality:

∥zn+1 − zn∥ ≤ δ∥zn − zn−1∥, n ∈ N.

Thus, (zn)n∈N is Cauchy in Z . Since (Z, ∥ · ∥, q) is a QBS, (zn)n∈N converges to some element (say ϑ)
in (Z, ∥ · ||, q).

We first prove that ϑ ∈ F(Sλ). We have
∥ϑ− Sλϑ∥ ≤q [∥ϑ− zn+1∥+ ∥zn+1 − Sλϑ∥]

=q [∥ϑ− zn+1∥+ ∥Sλzn − Sλϑ∥].
(3.13)

From (3.12), we have that

∥Sλzn − Sλϑ∥ ≤ qτ [∥zn − Sλϑ∥+ ∥ϑ− Sλzn∥].

Again arriving at (3.13),

∥ϑ− Sλϑ∥ ≤ q ∥ϑ− zn+1∥+ q2τ [∥zn − Sλϑ∥+ ∥ϑ− Sλzn∥]
= (q + q2τ)(∥ϑ− zn+1∥) + q2τ∥zn − Sλϑ||
≤ (q + q2τ)∥ϑ− zn+1∥ + q3τ [∥zn − ϑ∥+ ∥ϑ− Sλϑ∥]

=⇒ (1− q3τ)∥ϑ− Sλϑ∥ ≤ (q + q2τ)∥zn+1 − ϑ∥+ q3τ∥zn − ϑ∥.

With τ < min{ 1
q3
, 1
2q2

}, it follows that (1 − q3τ) > 0. Thus, we get ||ϑ − Sλϑ|| = 0 as n → ∞. This
implies Sλϑ = ϑ.
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We now aim to prove that F(Sλ) contains only ϑ. If not, let ϑ̂( ̸= ϑ) be another element of F(Sλ).
Then, by (3.12),

∥ϑ− ϑ̂∥ ≤ 2τ∥ϑ− ϑ̂∥ =⇒ ∥ϑ− ϑ̂∥ = 0.

Hence, F(Sλ) = {ϑ} and since F(T ) = F(Sλ), our claim is proven. □

3.3. Enriched Kannan mapping.

Definition 3.11 (Enriched Kannan mapping). Consider a Quasi-Normed Linear Space (Z, ∥·∥, q). A
mapping T : Z → Z earns the title of an enriched Kannan mapping if there exist nonnegative k and
a ∈ [0, 12) such that the inequality

∥ k(y − z) + Ty − Tz∥ ≤ a[∥y − Ty∥+ ∥z − Tz∥], (3.14)

holds for all y, z ∈ Z . To highlight the scalars in the inequality, we designate T as an enriched Kannan
mapping with parameters k and a.

Example 3.12. Consider the space Z = lp, where p = 1
2 . It is equipped with the quasi-norm ∥x∥ =(∑∞

j=1 |xj |
1
2

)2
, and it has a quasi-index q = 4.

Define T : Z → Z as Tx = u− x, where u = (1, 1
24
, 1
34
, . . .) ∈ l

1
2 , for all x ∈ Z.

The simplified expression for the LHS of (3.14) is

∥k(y − z) + Ty − Tz∥ = |(k − 1)|∥y − z∥.

The RHS expression of (3.14) is given by

a(∥y − Ty∥+ ∥z − Tz∥) = a[∥2y − u∥+ ∥2z − u∥].

To establish T as an enriched Kannan mapping, it is imperative to find values for a ∈ [0, 12) and k ∈
[0,∞) such that inequality expressed in (3.14) is satisfied for the above map. This can be reformulated
as

|(k − 1)|∥y − z∥ ≤ a[∥2y − u∥+ ∥2z − u∥]. (3.15)

As

2∥y − z∥ ≤ q[∥2y − u∥+ ∥2z − u∥]

holds for all y, z ∈ Z, it is worth noting that (3.15) holds for any a ∈ [0, 12) if we take k = 1 − 2a
q ∈

(1 − 1
q , 1]. Hence, for any a ∈ [0, 12), the mapping T qualifies as an enriched Kannan mapping with

parameters 1− 2a
q and a, and F(T ) = {u

2}.
If we take k = 1 + 2a

q ∈ [1, 1 + 1
q ), (3.15) holds for any a ∈ [0, 12). Therefore, T is characterized as an

enriched Kannan mapping with parameters 1 + 2a
q , a and F(T ) = u

2 .

Example 3.13. Let Z = R2 be endowed with the quasi-norm given by ∥(a, b)∥ = (
√
|a| +

√
|b|)2,

with the quasi-index q = 2.
Let T : Z → Z be defined by Tx = u − x, where u = (ζ, ζ) is a fixed element of R2. Here T
satisfies (14) for certain values of k̄ and a. In particular, if take a = 0.2, u = (3, 3), y = (1, 2) and
z = (a1, a2), the LHS of ((3.14)) reduces to 0.2(

√
a1 − 1+

√
a2 − 2)2 and the RHS of ((3.14)) reduces to

0.2[4+(
√
|2a1 − 3|+

√
|2a2 − 3|)2, and they are plotted in Figure 1. Here, in general T is an enriched

Kannan mapping with parameters k̄ = 1− 2a
q and a.

Remark 3.14. We have observed two interesting instances. In Example 3.12, the space is infinite dimen-
sional, while in Example 3.13, T acts on a finite-dimensional space.
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Figure 1. Verification of the inequality associated with Kannan enriched mapping

Theorem 3.15. Let (Z, ∥ · ∥, q) be a QBS. Suppose that T : Z → Z is an enriched Kannan mapping with
parameters k and a. If a < 1

q , then

(1) F(T ) = {p̃};
(2) For any initial value z0 ∈ Z , there exists a λ ∈ (0, 1] such that the iterative process (zn)n∈N

defined through

zn+1 = (1− λq)zn + λqzn, n ∈ N0, (3.16)

converges to p̃.

Proof. We will partition our proof into two cases: one for positive values of k and other when k is zero.

Case 1. k > 0.
Let λ equal 1

q(k+1)
. Clearly, λ ∈ (0, 1] and (3.14) becomes

∥( 1

λq
− 1)(y − z) + Ty − Tz∥ ≤ a[∥y − Sλy

λq
∥+ ∥z − Sλz

λq
∥]

which is

∥(1− λq)(y − z) + λq(Ty − Tz)∥ ≤ a[∥y − Sλy∥+ ∥z − Sλz∥]. (3.17)

The aforementioned inequality can be succinctly expressed as

∥Sλy − Sλz∥ ≤ a[∥y − Sλy∥+ ∥z − Sλz∥], (y, z ∈ Z). (3.18)

In consideration of (3.1), the iterative scheme generated by (zn)n∈N given by (3.16) is the
Picard scheme related to Sλ, equivalently,

zn+1 = Sλzn, n ∈ N0.
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Selecting y = zn and z = zn−1 and substituting in (3.18) yields
∥zn+1 − zn∥ ≤ a[∥zn − zn+1∥+ ∥zn − zn−1∥]

=⇒ ∥zn+1 − zn∥ ≤ a

1− a
∥zn − zn−1∥.

By defining δ = a
1−a , where 0 ≤ δ < 1, (zn)n∈N complies with the following

∥zn+1 − zn∥ ≤ δ∥zn − zn−1∥, n ∈ N. (3.19)
Consequently, (zn)n∈N is Cauchy, implying its convergence in (Z, ∥ · ∥, q). Let us designate

p̃ = lim
n→∞

zn.

We first establish the inclusion of p̃ in F(Sλ). One has
∥p̃− Sλp̃∥ ≤ q[∥p̃− zn+1∥+ ∥zn+1 − Sλp̃∥]

= q[∥p̃− zn+1∥+ ∥Sλzn − Sλp̃∥]
(3.20)

By replacing y = zn and z = p̃ into (3.18), we obtain
∥Sλzn − Sλp̃∥ ≤ a [∥zn − zn+1∥+ ∥p̃− Sλp̃∥].

Attention to the last inequality in view of (3.18), one has
∥p̃− Sλp̃∥ ≤ q∥p̃− zn+1∥+ qa[∥zn − zn+1∥+ ∥p̃− Sλp̃∥]

=⇒ (1− qa)∥p̃− Sλp̃∥ ≤ q∥p̃− zn+1∥+ qa∥zn − zn+1∥.
Since (1− qa) > 0, we obtain

∥p̃− Sλp̃∥ ≤ q

1− qa
∥p̃− zn+1∥+

qa

1− qa
∥zn − zn+1∥, n ∈ N0.

Now, by tending n to ∞, ||p̃ − Sλp̃|| = 0. Thus, p̃ ∈ F(Sλ). We will now present a proof
establishing that p̃ is the unique fixed point of Sλ. Let’s assume the existence of another fixed
point p̂ (distinct from p̃). Then, by (3.18),

||p̂− p̃|| ≤ a[||p̃− p̃||+ ||p̂− p̂||] = 0,

which is not valid unless both coincide. Thus, F(Sλ) contains only p̃.
Since F(Sλ) = F(T ), our T has only one fixed point.

Case 2. k = 0. In this case, the map simplifies to a Kannan mapping. The fixed-point theorem for a
Kannan mapping is available in the literature.

3.4. Enriched Bianchini mapping.

Definition 3.16 (Enriched Bianchini mapping). Let (Z, ∥ · ∥, q) be a QNLS. A mapping T : Z → Z is
referred to as an enriched Bianchini mapping with parameters k and h if we can find nonnegative k
and h ∈ [0, 1) satisfying the following inequality for all y, z ∈ Z :

∥k(y − z) + Ty − Tz∥ ≤ hmax{∥y − Ty∥, ||z − Tz∥}. (3.21)

Remark 3.17. (1) Any enriched Kannan mapping with parameters k and a is an enriched Bianchini
mapping (parameters are k and h) , with h = 2a, in light of the result s+t

2 ≤ max{s, t}.
(2) If s, t ≥ 0, then max{s, t} ≤ s+ t.
(3) An enriched Bianchini mapping is essentially a form of enriched Kannan mapping, provided

h ∈ [0, 12), mindful of the following fact:
If s, t ≥ 0, then max{s, t} ≤ s+ t.

Theorem 3.18. Let (Z, ∥·∥, q) be a Quasi-Banach Space and T : Z → Z an enriched Bianchini mapping
with parameters k and h. If h < 1

q , then the following hold:
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(1) F(T ) = {ϑ};
(2) There exists a positive λ, not larger than one, such that the recursive scheme generated by (zn)n∈N,

defined through

zn+1 = (1− λq)zn + λqzn, n ∈ N0, (3.22)

converges to ϑ, for any initial z0 ∈ Z .

Proof. Likewise in preceding theorems, we only analyse situation for positive values of k. We focus on
the averaged mapping Sλ for λ = 1

(k+1)q
as 0 < λ < 1. Inequality (3.21) becomes

||( 1

λq
− 1)(y − z) + Ty − Tz|| ≤ hmax{||y − Sλy

λq
||, ||Z − SλZ

λq
||},

for all y, z ∈ Z. Rewriting the above equivalently as

∥Sλy − Sλz∥ ≤ hmax{∥y − Sλy∥, ∥z − Sλz∥}, (y, z ∈ Z). (3.23)

In accordance with (3.1), (3.22) reduces to zn+1 = Sλzn, n ∈ N0.
Selecting y = zn and z = zn−1 and substituting in (3.23) yields

∥zn+1 − zn∥ ≤ hmax{∥zn − zn+1∥, ∥zn−1 − zn∥}.

If

max{∥zn − zn+1∥, ∥zn−1 − zn∥} = ∥zn − zn+1∥,

then

∥zn+1 − zn∥ ≤ h∥zn − zn+1∥ < ∥zn − zn+1∥.

This statement presents a contradictory assertion. If

max{∥zn − zn+1∥, ∥zn−1 − zn∥} = ∥zn − zn−1∥,

then

∥zn+1 − zn∥ ≤ h∥zn − zn−1∥. (3.24)

Given that 0 ≤ h < 1, the sequence (zn)n ∈ N is Cauchy. With the assumption that Z is a QBS, there
exists a ϑ ∈ Z such that lim

n→∞
zn = ϑ. Let us demonstrate that ϑ is an element of F(Sλ).

We have

∥ϑ− Sλϑ∥ ≤ q [∥zn+1 − ϑ∥+ ∥Sλϑ− Sλzn∥]. (3.25)

By (3.23),

∥Sλzn − Sλϑ∥ ≤ hmax{∥zn − Sλzn∥, ∥ϑ− Sλϑ∥}

Now, if

max{∥zn − Sλzn∥, ∥ϑ− Sλϑ∥} = ∥zn − Sλzn∥,

then one has

∥Sλzn − Sλϑ∥ ≤ h ∥zn − Sλzn∥
= h ∥zn − zn+1∥.

By (3.25), one obtains

∥ϑ− Sλϑ∥ ≤ q ∥zn+1 − ϑ∥+ qh ∥zn+1 − zn∥, n ∈ N0.

Tending n to infinity in the above inequality, we have ||ϑ− Sλϑ|| = 0, that is, ϑ ∈ F(Sλ).
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If
max{∥zn − Sλzn∥, ∥ϑ− Sλϑ∥} = ∥ϑ− Sλϑ∥,

Then, by (3.25), we obtain
∥ϑ− Sλϑ∥ ≤ q∥zn+1 − ϑ∥+ qh∥ϑ− Sλϑ∥

=⇒ (1− qh)∥ϑ− Sλϑ∥ ≤ q∥zn+1 − ϑ∥

=⇒ ∥ϑ− Sλϑ∥ ≤ q

(1− qh)
∥zn+1 − ϑ∥, n ≥ 0,

As n→ ∞, we get
∥ϑ− Sλϑ∥ = 0 =⇒ ϑ ∈ F(Sλ).

To prove the unique invariant point of Sλ as ϑ, if not let ϑ̂ ̸= ϑ be a different element of F(Sλ).
Then, by (3.23),

||ϑ− ϑ̂|| ≤ h[ ||ϑ− ϑ||+ ||ϑ̂− ϑ̂|| ] = 0,

which can not be true. Hence, F(Sλ) = {ϑ}.
Since F(Sλ) = F(T ), our T has only one fixed point. □

3.5. Enriched Hardy-Rogers contraction.

Definition 3.19 (Enriched Hardy-Rogers contraction). Let (Z, ∥ · ∥, q) be a QNLS, a, b, c, d, e, k ∈ R+.
If T : Z → Z satisfies

∥k(y − z) + Ty − Tz∥ ≤a∥y − z∥+ b∥y − Ty∥+ c∥z − Tz∥+ d∥(k + 1)(y − z)

+ z − Tz∥+ e∥(k + 1)(z − y) + y − Ty∥ ∀ y, z ∈ Z,
(3.26)

then T is called an enriched Hardy-Rogers contraction.

Example 3.20. Let Z = lp, where p = 1
2 , be equipped with the quasi-norm ∥x∥ = (

∑
j
|xj |

1
2 )2 with

the quasi-index q = 4. Define T : Z → Z as Tx = −x, for all x ∈ Z.
The simplified expression for the LHS of inequality (3.26) is |(k−1)|∥y− z∥. The RHS of (3.26) is given
by
a∥y − z∥+ b∥y − Ty∥+ c∥z − Tz∥+ d∥(k + 1)(y − z) + z − Tz∥+ e∥(k + 1)(z − y) + y − Ty∥

=a∥y − z∥+ b∥2y∥+ c∥2z∥+ d∥(k + 1)(y − z) + 2z∥+ e∥(k + 1)(z − y) + 2y∥.

ForT to be classified as an enriched Hardy-Rogers mapping, it is necessary for there to exist k, a, b, c, d,
e ∈ R+ such that (3.26) holds, which is equivalent to

|(k − 1)|∥y − z∥ ≤ a∥y − z∥+ b∥2y∥+ c∥2z∥+ d∥(k + 1)(y − z) + 2z∥

+ e∥(k + 1)(z − y) + 2y∥.
(3.27)

It is very true that (3.27) holds if |(k − 1)| ≤ a.
Now, taking k = (1+a) ∈ [1,∞), our mapping T qualifies as a quasi-enriched Hardy-Rogers contrac-
tion with parameters 1 + a and a.

Theorem 3.21. Let (Z, ∥ · ∥, q) be a Quasi-Banach space, and T : Z → Z be an enriched Hardy-Rogers
contraction. If b+ eq < 1, aq + d+ e < 1, (1− cq − dq2) > 0 and aq + b+ c+ 2eq < 1, then

(1) F(T ) = {p};
(2) we can find a λ ∈ (0, 1] for which the iterative scheme (zn)n∈N prescribed by

zn+1 = (1− λq)zn + λqTzn, n ∈ N0, (3.28)
is convergent to p, for any z0 ∈ Z.
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Proof. If k is positive in (3.26), then choose k = 1
λq − 1. Obviously, 0 < λ < 1. Thus equation (3.26)

becomes

∥( 1

λq
− 1)(y − z) + Ty − Tz∥ ≤ a∥y − z∥+ b∥y − Ty∥+ c∥z − Tz∥

+ d∥ 1

λq
(y − z) + z − Tz∥+ e∥ 1

λq
(Z − y) + y − Ty∥,

for all y, z ∈ Z. Whence

∥Sλy − Sλz∥ ≤ aλq∥y − z∥+ b∥y − Sλy∥+ c∥z − Sλz∥+ d∥y − Sλz∥+ e∥z − Sλy∥.

Since aλ ≤ a, we have

∥Sλy − Sλz∥ ≤ aq∥y − z∥+ b∥y − Sλy∥+ c∥z − Sλz∥+ d∥y − Sλz∥+ e∥z − Sλy∥, (3.29)

for all y, z ∈ Z. According to the definition of the averaged mapping, the iterative process of the
sequence (zn)n∈N defined by (3.28) corresponds to the Picard iteration associated with Sλ, equivalently,

zn+1 = Sλzn, n ∈ N0.

Plugging y = zn and z = zn−1 into (3.29), we can deduce that

∥zn+1 − zn∥ ≤aq∥zn − zn−1∥+ b∥zn − zn+1∥+ c∥zn−1 − zn∥
+ d∥zn − zn∥+ e∥zn+1 − zn−1∥

=⇒ (1− b)∥zn+1 − zn∥ ≤(aq + c)∥zn − zn−1∥+ e∥zn+1 − zn−1∥
=⇒ (1− b− qe)∥zn+1 − zn∥ ≤(aq + c)∥zn − zn−1∥+ eq∥zn − zn−1∥)
=⇒ (1− b− qe)∥zn+1 − zn∥ ≤(aq + c+ eq)∥zn − zn−1∥)

=⇒ ∥zn+1 − zn∥ ≤δ∥zn − zn−1∥),

where δ = (aq+c+eq)
(1−b−eq) < 1. Hence, the sequence (zn)n∈N is Cauchy in Z . As Z is a QBS, it converges in

Z , and let the limit be p. To demonstrate that p is an element of F(Sλ), let us analyse the expression:
∥p− Sλp∥ ≤ q[∥p− zn+1∥+ ∥zn+1 − Sλp∥]

= q∥p− zn+1∥+ q∥Sλzn − Sλp∥.
(3.30)

We substitute y = zn and z = p in (3.29), we have
∥Sλzn − Sλp∥ ≤aq∥zn − p∥+ b∥zn − zn+1∥+ c∥p− Sλp∥+ d∥zn − Sλp∥

+ e∥p− zn+1∥.

∥Sλzn − Sλp∥ ≤aq∥zn − p∥+ b∥zn − zn+1∥+ c∥p− Sλp∥+ dq(∥zn − p∥+ ∥p− Sλp∥)
+ e∥p− zn+1∥.

(3.31)

Again, employing (3.31) in (3.30), we get,
∥p− Sλp∥ ≤q∥p− zn+1∥+ q[aq∥zn − p∥+ b∥zn − zn+1∥+ c∥p− Sλp∥+ dq∥zn − p∥

+ dq∥p− Sλp∥+ e∥p− zn+1∥].

Taking the limit as n→ ∞ on both sides, we obtain

∥p− Sλp∥ ≤ cq∥p− Sλp∥+ dq2∥p− Sλp∥
=⇒ (1− cq)∥p− Sλp∥ ≤ dq2(∥p− Sλp∥

=⇒ (1− cq − dq2)∥p− Sλp∥ ≤ 0.
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Since (1− cq − dq2) > 0, p is an element of F(Sλ).
We now establish that p is the only point that is invariant under Sλ. Assume that p̂ ̸= p is another
element of F(Sλ). Then, owing to (3.29),

∥p− p̂∥ = ∥Sλp− Sλp̂∥
≤ qa∥p− p̂∥+ b∥p− Sλp∥+ c∥p̂− Sλp̂∥+ d∥p− Sλp̂∥+ e∥p̂− Sλp∥
= (a · q + d+ e)∥p− p̂∥.

Since q ≥ 1 and a, c, e are nonnegative,

∥p− p̂∥ < ∥p− p̂∥,

which can not be true. Hence, F(Sλ) = {p}. As F(T ) = F(Sλ), it follows that T has a unique fixed
point.

□4. Weakly Enriched Mapping

In this section, we explore the concept of points that are fixed under a weakly enriched mapping,
which serves as a generalization encompassing both contraction mappings in a Banach space and en-
riched contraction mappings in a QNLS. This is done with quasi-double averaged mappings defined on
convex subsets.

Definition 4.1 (Weakly enriched mapping). Consider a convex subset C of a Quasi-normed linear
space denoted by (Z, ∥ · ∥, q). Let T be a self-mapping on C. If there exist nonnegative real numbers
A, B, and µ ∈ [0, 1 +A+ B) such that T adheres to the inequality

∥A(y − z) + Ty − Tz + B(T 2y − T 2z)∥ ≤ µ∥y − z∥, ∀ y, z ∈ C, (4.1)

then T is termed as a weakly enriched mapping with parameters A,B, and µ.

Remark 4.2. On setting B = 0 in (4.1), the inequality boils down to an enriched contraction mapping.

Now, let us see an example of a weakly enriched contraction mapping in a QNLS.

Example 4.3. Let Z = R2 be equipped with the quasi-norm given by ∥(a1, a2)∥ = (
√
|a1|+

√
|a2|)2,

with the quasi-index q = 2.
Consider a convex subset of R2 as C = [−1, 1]× [−1, 1]. Define T : Z → Z as

T (a1, a2) =

{
(0, a22), if (a1, a2) ∈ [−1, 1]× [−1, 0),

(0, 1− a2), if (a1, a2) ∈ [−1, 1]× [0, 1].

We claim that T functions as a weakly enriched mapping for A = 1, B = 1 and any µ ∈ [1,A+B+1].
Now, we consider three cases for y = (a1, a2) and z = (c1, c2).

Case 1. Take y, z ∈ [−1, 1]× [−1, 0]. We have
∥A(y − z) + Ty − Tz + B(T 2y − T 2z∥ = ∥(y − z) + ((0, a22)− (0, c22)) + ((0, 1− a22)− (0, 1− c22))∥

≤ µ∥y − z∥.

Case 2. Take y, z ∈ [−1, 1]× [0, 1]. One has

∥A(y − z) + Ty − Tz + B(T 2y − T 2z∥ = ∥(y − z) + ((0, 1− a2)− (0, 1− c2)) + ((0, a2)− (0, c2))∥
≤ µ∥y − z∥.

Case 3. Take y ∈ [−1, 1]× [−1, 0) and z ∈ [−1, 1]× [0, 1].

We have
∥A(y − z) + Ty − Tz + B(T 2y − T 2z∥ = ∥(y − z) + ((0, a22)− (0, 1− c2)) + ((0, 1− a22)− (0, c2))∥

≤ µ∥y − z∥.
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Case 4. Take z ∈ [−1, 1]× [−1, 0) and y ∈ [−1, 1]× [0, 1].

We follow the same steps as we did in Case 3.
Fixing the values of A, B and µ, inequality (4.1) is verified numerically in the following two figures:

Figure 2. 3D plot of LHS and RHS of (4.1) with y = (0, 1) and z = (a1, a2)

Figure 3. 3D plot of LHS and RHS of (4.1) with y = (1/2,−1/2) and z = (a1, a2)

Ergo, it follows that T can be regarded as a gracefully weakly enriched contraction mapping, where
the parameters A and B are both assigned the value of 1. This holds true for any µ falling within the
captivating range of [0, A+ B + 1).

4.1. Quasi-double averaged mapping of type -I.

Definition 4.4. Suppose that C is a convex subset of Z , where (Z, ∥ · ∥, q) is a QNLS. We define a new
self-mapping on C as

Tqβ1,β2(x) := (1− qβ1 − β2)x+ qβ1Tx+ β2T
2x,
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where β1 > 0, β2 ≥ 0 and β1 + β2 ∈ (0, 1].

Remark 4.5. For q = 1, Tqβ1,β2 becomes a double-averaged mapping Tβ1,β2 in a normed linear space
[17].

Remark 4.6. For β1 = λ, q = 1, β2 = 0, Tqβ1,β2 reduces to Sλ in a normed linear space, that is, Tqβ1,β2

is a generalization of Sλ.

Remark 4.7. If β2 = 0, Tqβ1,β2 becomes a quasi-averaged mapping Sλ in a QNLS.

In the upcoming theorem, we establish the existence and uniqueness of an invariant point for Tqβ1,β2 .

Theorem 4.8. Consider a closed convex subset C of a QBS (Z, ∥·∥, q). Suppose that T is a weakly enriched
contraction mapping on C. Then, we can find constants β1 > 0 and β2 ≥ 0 with β1q + β2 ∈ (0, 1] for
which the following results are valid:

A. F(Tqβ1,β2) contains only one element.
B. For any given z0 ∈ C, (zn) ⊂ C defined by the iteration:

zn = (1− qβ1 − β2)zn−1 + qβ1Tzn−1 + β2T
2zn−1, n ∈ N

converges to the only member of F(Tqβ1,β2).

Proof. In the context of T being a weakly enriched contraction, there exist nonnegative constants A, B
satisfying equation (4.1). In the case B = 0, T transforms into an enriched contraction mapping in a
QNLS. The objective is to prove this for nonnegative values of A and positive values of B. Set β1 :=

1
q(A+B+1) > 0 and β2 := B

A+B+1 ≥ 0. Then, (4.1) becomes∥∥(1− β1q1 − β2)(y − z) + β1q(Ty − Tz) + β2(T
2y − T 2z)

qβ1

∥∥ ≤ µ∥y − z∥.

Since qβ1 > 0, the above inequality becomes

∥(1− β1q1 − β2)(y − z) + β1q(Ty − Tz) + β2(T
2y − T 2z)∥ ≤ qβ1µ∥y − z∥.

Expressing the above inequality in terms of double averaged mapping, we get

∥Tqβ1,β2y − Tqβ1,β2z∥ ≤ ζ∥y − z∥ (y, z ∈ C), (4.2)

where 0 ≤ ζ = qβ1µ < 1.
Given an initial point z0 in the closed convex subset C, we define a sequence (zn)n∈N ⊆ C as follows

zn = Tqβ1,β2zn−1, n ∈ N.

For each natural number n, we have

∥zn+1 − zn∥ = ∥Tqβ1,β2zn − Tqβ1,β2zn−1∥ ≤ ζ∥zn − zn−1∥.

Iteratively, we obtain

∥zn+1 − zn∥ ≤ ζn∥z1 − z0∥ (n ∈ N).

This inequality indicates that (zn)n∈N forms a Cauchy sequence in C. Considering C to be complete,
there exists a point x∗ ∈ C such that zn converges to x∗ as n→ ∞.

Let us establish that x∗ is an element of F(Tqβ1,β2). Implementing (4.2), we have

∥x∗ − Tqβ1,β2x
∗∥ ≤ q[∥x∗ − zn+1∥+ ∥Tqβ1,β2zn − Tqβ1,β2x

∗∥
≤ q[∥x∗ − zn+1∥+ ζ∥zn − x∗∥].

As we take the limit as n approaches infinity on both sides of the given inequality, the expression
|x∗ − Tqβ1,β2x

∗| = 0.
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Now, we aim to show that the quasi-double averaged mappingF(Tqβ1,β2) contains only one element.
We assume thatF(Tqβ1,β2) contains not less than two distinct elements, represented x∗ and z∗. By (4.2),
we obtain

∥x∗ − z∗∥ = ∥Tqβ1,β2x
∗ − Tqβ1,β2z

∗∥ ≤ ζ∥x∗ − z∗∥ < ∥x∗ − z∗∥,

which is not true. Thus, F(Tqβ1,β2) contains only one element. □

Remark 4.9. In Example 4.3, set β1 = 1
q(1+A+B) = 1

6 and β2 = 1
1+A+B = 1

3 . With these choices, it
is obvious that β1q + β2 < 1, therefore |F(Tqβ1,β2)| = 1. Moreover, consider the following iterative
sequence

zn = (1− β1q − β2)zn−1 + β1qTzn−1 + β2T
2zn−1, n ∈ N.

This iteration starts from the initial point z0 ∈ [−1, 1].This sequence converges to the unique invariant
element of Tq 1

6
, 1
3
.

4.1.1. Adequate Conditions for F(T ) = F(Tqβ1,β2). The preceding section unveils the presence and
uniqueness of an invariant point of Tqβ1,β2 (type -I) linked with a weakly enriched mapping. This
section is dedicated to giving adequate conditions for the equivalence of F(Tqβ1,β2) and F(T ).

Theorem 4.10. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Let T be a self-map defined on C.
Suppose that we can find β1 > 0 and β2 ≥ 0 with qβ1 + β2 ∈ (0, 1] for which the following result holds:
(I.1) If for each j ∈ [0, 1) and u ∈ F(Tqβ1,β2), one has

∥u− Tu∥ ≤ ∥u− (1− j)Tu− jT 2u∥. (4.3)

Then, F(Tqβ1,β2) = F(T ).

Proof. By observation, F(T ) ⊆ F(Tqβ1,β2). Also, this inclusion can be strict. If F(Tqβ1,β2) = ∅, then
F(T ) = ∅ and therefore F(T ) ⊆ F(Tqβ1,β2). In the remaining proof, we assume that F(Tqβ1,β2) ̸= ∅.
Let u ∈ F(Tqβ1,β2). Putting j := β2

qβ1+β2
∈ (0, 1) in (4.3), we have∥∥u− Tu∥ ≤ ∥u− qβ1
qβ1 + β2

Tu− β2
qβ1 + β2

T 2u
∥∥

=
1

qβ1 + β2
∥u− (1− qβ1 − β2)u− qβ1Tu− β2T

2u∥

=
1

qβ1 + β2
∥u− Tqβ1,β2u∥

=⇒ ∥u− Tu∥ = 0.

Hence, F(Tqβ1,β2) ⊆ F(T ). Therefore, F(T ) = F(Tqβ1,β2). □

Theorem 4.11. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Let T be a self-mapping with
positive β1 and nonnegative β2 satisfying β1 + β2 ∈ (0, 1]. The assertion
(I.2)

∥Tqβ1,β2x− Tx∥ ≤ k∥x− Tx∥, ∀x ∈ C, (4.4)

holds for a nonnegative k < 1. Then, F(T ) = F(Tqβ1,β2).

Proof. If F(Tqβ1,β2) = ∅, then F(T ) = ∅ and we get F(Tqβ1,β2) = F(T ). Now, suppose that
F(Tβ1,β2) ̸= ∅. Now, for each z ∈ F(Tβ1,β2), we have

∥Tqβ1,β2z − Tz∥ ≤ k∥z − Tz∥ =⇒ z ∈ F(T ).

Therefore, F(Tqβ1,β2) = F(T ). □
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Theorem 4.12. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Suppose that T is a self-mapping
defined on C, β1 > 0 and β2 ≥ 0 and β1 + β2 ∈ (0, 1] for which F(Tβ1,β2) ̸= ∅ and the following
assertion holds:
(I.3) for every x ∈ F(Tqβ1,β2), we can find a closed convex subset B ⊆ C containing x so that T (B) ⊆ B
and T exhibits inequality (4.4) only on set B.
Then, the sets F(T |B) and F(Tqβ1,β2 |B) are equal.

Proof. The result can readily be obtained when T acts solely on set B. □

In the forthcoming theorem, we will utilize the aforementioned results to establish the fixed-point
theorem for weakly enriched contraction mappings.

Theorem 4.13. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Suppose that T is a self-mapping
defined on C satisfying (4.1). Then the associated quasi-double averaged mapping of type-I contains only
one element in its set of fixed points. Moreover, if T, β1, β2 obey (I.1) or (I.2) or (I.3), then

(1) F(T ) contains only one element.
(2) For any given z0 ∈ C, (zn) ⊆ C whose iterative scheme is given by

zn = (1− qβ1 − β2)zn−1 + qβ1Tzn−1 + β2T
2zn−1, n ∈ N (4.5)

converges to the member of set F(T ).

Proof. With reference to Theorem 4.8, there exist values for β1, β2 ∈ (0, 1] such that A, B hold. That
is, F(Tqβ1,β2) has only one element and the iterative scheme in (4.5) converges to the element of
F(Tqβ1,β2). Since β1, β2 satisfy (I.1) or (I.2) or (I.3), the results are guaranteed by the adequate con-
dition theorems which are Theorem 4.10, Theorem 4.11, Theorem 4.12 respectively. □

4.2. Quasi-double averaged mapping of type -II.

Definition 4.14. Let (Z, ∥ · ∥, q) be a QNLS. Suppose that C is a convex subset of Z . We define a new
mapping

Tβ1,qβ2(x) := (1− β1 − qβ2)x+ β1Tx+ qβ2T
2x,

where β1 > 0, β2 ≥ 0 and β1 + β2 ∈ (0, 1].

Remark 4.15. For q = 1, Tβ1,qβ2 becomes a double-averaged mapping in an NLS [17].

Remark 4.16. For β1 = λ, β2 = 0, Tβ1,qβ2 reduces to Sλ, that is, Tqβ1,β2 is a generalization of Tλ.

In the subsequent theorem, we show that F(Tβ1,qβ2) is nonempty, and we further establish that it
does not have more than one element.

Theorem 4.17. Consider a closed convex subset C of a Quasi-Banach space (Z, ∥ · ∥, q). Suppose that
T : C → C satisfies (4.1). Then, there exist β1 > 0 and β2 ≥ 0 with β1 + β2q ∈ (0, 1] such that the
following statements are valid:

C. F(Tβ1,β2) contains only one element.
D. For any given z0 ∈ C, the iteration (zn) ⊂ C generated from

zn = (1− β1 − qβ2)zn−1 + β1Tzn−1 + qβ2T
2zn−1, n ∈ N

converges to the only element of F(Tβ1,qβ2).

Proof. In (4.1), for B = 0, T is an enriched contraction mapping. We need to verify the result for
nonegative A and positive B. Denote β1 := 1

(A+B+1) > 0 and β2 := B
q(A+B+1) ≥ 0. Then, (4.1)

becomes ∥∥(1− β1 − qβ2)(y − z) + β1(Ty − Tz) + qβ2(T
2y − T 2z)

β1

∥∥ ≤ µ∥y − z∥.
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Since β1 > 0, the above inequality becomes∥∥(1− β1q1 − β2)(y − z) + β1q(Ty − Tz) + β2(T
2y − T 2z)

∥∥ ≤ β1µ∥y − z∥.

Expressing the above inequality in terms of double averaged mapping, we get

∥Tβ1,qβ2y − Tβ1,qβ2z∥ ≤ ζ∥y − z∥, (4.6)

where 0 ≤ ζ = µβ1 < 1, for every x, y. For a pre-assigned z0 ∈ C, construct a sequence (zn) ⊆ C
designed as zn = Tβ1,β2zn−1 for n ∈ N. Consequently, one has

∥zn+1 − zn∥ = ∥Tβ1,qβ2zn − Tβ1,qβ2zn−1∥
≤ ζ∥zn − zn−1∥.

Iteratively, we obtain

∥zn+1 − zn∥ ≤ ζn∥z1 − z0∥ (n ∈ N)

entailing that (zn)n∈N is eligible to be Cauchy in C. Furthermore, the completeness of C guarantees the
existence of x∗ ∈ C, which serves as the converging limit of zn(→ x∗).

Let us show that x∗ ∈ F(Tβ1,qβ2). Making use of (4.6), we have

∥x∗ − Tβ1,qβ2x
∗∥ ≤ q[∥x∗ − zn+1∥+ ∥Tβ1,qβ2zn − Tβ1,qβ2x

∗∥
≤ q[∥x∗ − zn+1∥+ ζ∥zn − x∗∥].

Tending n to ∞ , we obtain
∥x∗ − Tβ1,qβ2x

∗∥ = 0.

Next, we demonstrate the uniqueness of the fixed point for the double-averaged mapping Tβ1,qβ2 . Let’s
assume the contrary, that F(Tβ1,qβ2) is not a singleton set and contains two distinct elements x∗ and
z∗. Indeed, using (4.6), we get

∥x∗ − z∗∥ ≤ ζ∥x∗ − z∗∥ < ∥x∗ − z∗∥,

which is not true. Thus, F(Tβ1,qβ2) = 1. □

Remark 4.18. Again referring to Example 4.3, we can define β1 = 1
(1+A+B) =

1
3 and β2 = B

q(1+A+B) =
1
6 . Then, β1 + β2q < 1 which implies that Tβ1,qβ2 has a unique fixed point.

4.2.1. Adequate Conditions for Equality of F(T ) and F(Tβ1,qβ2). The preceding segment establishes
the presence and sole existence of an invariant point of Tβ1,qβ2 (of type -II) linked to a weakly enriched
mapping. This section devotes to giving adequate conditions for the equivalence between F(T ) and
F(Tβ1,qβ2).

Theorem 4.19. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q), and assume that T is a self-map
on C. If for β1 > 0, β2 ≥ 0, β1 + qβ2 ∈ (0, 1], the following condition is valid:
(II.1) for every nonnegative j (not larger than one) and u ∈ F(Tβ1,qβ2), one has

∥u− Tu∥ ≤ ∥u− (1− j)Tu− jT 2u∥. (4.7)

Then, F(Tβ1,qβ2) = F(T ).

Proof. From the definition of the double-averaged mapping of the above type , F(T ) ⊆ F(Tβ1,qβ2). If
F(Tβ1,β2) = ∅, then F(T ) = ∅, and therefore F(T ) ⊆ F(Tβ1,qβ2). Navigating through the remaining
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proof, we assume that F(Tβ1,qβ2) ̸= ∅. Let u ∈ F(Tβ1,qβ2). Putting j := qβ2

β1+qβ2
∈ [0, 1) in (4.7), we

have

∥u− Tu∥ ≤
∥∥u− β1

β1 + qβ2
Tu− qβ2

β1 + qβ2

∥∥
=

1

β1 + qβ2
∥u− (1− β1 − qβ2)u− β1Tu− qβ2T

2z∥

=
1

β1 + qβ2
∥u− Tβ1,qβ2u∥

= 0

=⇒ u ∈ F(T ) =⇒ F(Tβ1,qβ2) ⊆ F(T ).

Therefore, F(Tβ1,qβ2) and F(T ) coincide. □

Theorem 4.20. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Assume that T is a self-map on
C, there are β1 > 0 and β2 ≥ 0 with β1 + qβ2 ∈ (0, 1] for which the succeeding condition holds:
(II.2) We can find k in [0, 1) such that

∥Tβ1,qβ2x− Tx∥ ≤ k∥x− Tx∥ for all x ∈ C. (4.8)

Then, the sets F(Tβ1,qβ2) and F(T ) coincide.

Proof. IfF(Tβ1,qβ2) = ∅, thenF(T ) = ∅ and we getF(Tβ1,β2) = F(T ). Now, suppose thatF(Tβ1,β2) ̸=
∅. Now, for each z ∈ F(Tβ1,qβ2), we have

∥z − Tz∥ ≤ k∥z − Tz∥ =⇒ (1− k)∥z − Tz∥ ≤ 0.

As a consequence, z ∈ F(T ). Thus, F(T ) = F(Tβ1,qβ2). □

Theorem 4.21. Consider a closed convex subset C of a Quasi-Banach space (Z, ∥ · ∥, q). Assume that T
is a self-map on C, there are β1 > 0 and β2 ≥ 0, β1 + qβ2 ∈ (0, 1] for which F(Tβ1,qβ2) ̸= ∅ and the
succeeding assertion holds:
(II.3) for every x ∈ F(Tβ1,qβ2), there exists a closed convex subset B ⊆ C containing x such that T (B) ⊆
B and T adheres to inequality (4.8) only on set B.
Then, F(T |B) = F(Tβ1,qβ2 |B).

Proof. The result can readily be obtained when T acts solely on set B. □

Theorem 4.22. Consider a closed convex subset C of a Quasi-Banach space (Z, ∥ · ∥, q). Assume that T
is a self-map on C such that it is a weakly enriched contraction mapping. Then, the corresponding quasi-
double averged mapping of type-III namely Tβ1,qβ2 has a unique fixed point with the convergence of the
sequence (zn)n∈N (given by D). Moreover, if T and the coreesponding scalars in the quasi-double averaged
mapping of type-II namely β1, β2 satisfy (II.1) or (II.2) or (II.3), then

(1) F(T ) contains a single element.
(2) For any initial z0 ∈ C, (zn) ⊆ C whose iterative scheme is given by

zn = (1− β1 − qβ2)zn−1 + β1Tzn−1 + qβ2T
2zn−1, n ∈ N, (4.9)

converges to an element of F(T ).

Proof. In accordance with Theorem 4.17, there exist β1, β2 ∈ (0, 1] such that C,D hold. That is, Tβ1,qβ2

possesses a unique point that is fixed, and the iterative scheme prescribed by (zn)n∈N in (4.9) converges
to the single point of F(Tβ1,qβ2). Since β1, β2 satisfy (II.1) or (II.2) or (II.3), the results follow from
Theorem 4.19, Theorem 4.20, Theorem 4.21 respectively. □
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4.3. Quasi-double averaged mapping of type -III.

Definition 4.23. Consider a closed convex subset C of a QNLS (Z, ∥ · ∥, q). We define a new mapping

Tqβ1,qβ2 := (1− qβ1 − qβ2)x+ qβ1Tx+ qβ2T
2x,

where β1 > 0, β2 ≥ 0 and β1 + β2 ∈ (0, 1].

Remark 4.24. For q = 1, Tqβ1,qβ2 becomes a double-averaged mapping [17].

Remark 4.25. For β1 = λ, q = 1, β2 = 0, Tqβ1,qβ2 reduces to Sλ, that is, Tqβ1,qβ2 is a generalization of
Sλ.

In the following theorem, we illustrate that F(Tqβ1,qβ2) isa singleton set.

Theorem 4.26. Consider a closed convex subset C of a QBS (Z, ∥ · ∥, q). Assume that T is a self-map on
C, there are β1 > 0 and β2 ≥ 0, qβ1 + qβ2 ∈ (0, 1] for which the following statements hold:

E . F(Tqβ1,qβ2) has a single element.
F . For any initial z0 ∈ C, (zn) ⊂ C whose iterative scheme is given by

zn = (1− qβ1 − qβ2)zn−1 + qβ1Tzn−1 + qβ2T
2zn−1, n ∈ N

converges to the element of F(Tβ1,β2).

Proof. Given T satisfies (4.1), there exist constants A, B satisfying (4.1). Likewise preceding theorems,
we need to prove for nonnegativeA and positiveB.Define β1 := 1

q(A+B+1) > 0 and β2 := B
q(A+B+1) ≥

0. Then, (4.1) becomes∥∥(1− β1q1 − β2)(y − z) + β1q(Ty − Tz) + β2(T
2y − T 2z)

qβ1

∥∥ ≤ µ∥y − z∥.

Since qβ1 > 0, the above inequality becomes

∥(1− β1q − β2q)(y − z) + β1q(Ty − Tz) + β2q(T
2y − T 2z)∥ ≤ qβ1µ∥y − z∥.

Expressing the above inequality in terms of double averaged mapping, we get

∥Tqβ1,qβ2y − Tqβ1,qβ2z∥ ≤ ζ∥y − z∥, (4.10)

where 0 ≤ ζ = qµβ1 < 1, for all x, y ∈ C. Initialising from a z0 ∈ C, define a sequence (zn) (whose
components are in C) is given by zn = Tqβ1,qβ2zn−1, n ∈ N. For each n ∈ N, we have

∥zn+1 − zn∥ = ∥Tqβ1,qβ2zn − Tqβ1,qβ2zn−1∥
≤ ζ∥zn − zn−1∥

Iterating n-times yields

∥zn+1 − zn∥ ≤ ζn∥z1 − z0∥.

According to Lemma 2.4), (zn)n∈N fulfills to be Cauchy in C, and the existence of x∗ = lim
n→∞

zn ∈ C is
confirmed by the the completeness of C.

We aim to prove that x∗ ∈ F(Tqβ1,qβ2) using (4.10). We have

∥x∗ − Tqβ1,qβ2x
∗∥ ≤ q[∥x∗ − zn+1∥+ ∥Tqβ1,qβ2zn − Tqβ1,qβ2x

∗∥]
≤ q[∥x∗ − zn+1∥+ ζ∥zn − x∗∥].

Tending n to infinity, we obtain
∥x∗ − Tqβ1,qβ2x

∗∥ = 0.
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Now, let us move on proving the distinctiveness of the fixed point of Tqβ1,qβ2 . Assuming that Tqβ1,qβ2

has at least two fixed points, denoted x∗ and z∗ as elements of F(Tqβ1,qβ2) such that x∗ ̸= z∗. In view
of inequality (4.10), we obtain

∥x∗ − z∗∥ ≤ ζ∥x∗ − z∗∥ < ∥x∗ − z∗∥,

which is untrue. Thus, |F(Tqβ1,qβ2)| = 1. □

Remark 4.27. We can define β1 = 1
q(1+a+b) = 1

6 and β2 = b
q(1+a+b) = 1

6 . Then, Tβ1,β2 has a unique
invariant point.

4.3.1. Adequate Conditions for Equality of F(T ) and F(Tqβ1,qβ2). The prior segment shows that the set
F(Tqβ1,qβ2) (of type -III) associated with a weakly enriched mapping contains a single element. The
subsequent division is devoted to deriving adequate conditions for the Equality of F(Tqβ1,qβ2) (of type
-III) and the collection of invariant points of the corresponding weakly enriched mapping. Note that
F(T ) ⊆ F(Tqβ1,qβ2), but this inclusion can be strict.

Theorem 4.28. Suppose a closed convex subset C of a QNLS (Z, ∥ · ∥, q) is given. Assume that T is a
self-map on C, there are β1 > 0 and β2 ≥ 0, qβ1 + qβ2 ∈ (0, 1] for which the following holds:
(III.1) for each j ∈ [0, 1) and u ∈ F(Tqβ1,qβ2), one has

∥u− Tu∥ ≤ q∥u− (1− j)Tu− jT 2u∥. (4.11)

Then, the sets F(T ) and F(Tqβ1,qβ2) coincide.

Proof. It is straight forward to observe that F(T ) ⊆ F(Tqβ1,qβ2). If F(Tqβ1,qβ2) = ∅, then F(T ) = ∅,
and thus F(T ) ⊆ F(Tqβ1,qβ2). In the subsequent proof, we assume that F(Tqβ1,qβ2) ̸= ∅. Let u ∈
F(Tqβ1,qβ2). Putting j := β2

β1+β2
∈ [0, 1) in (4.11), we have

∥u− Tu∥ ≤ q∥u− β1
β1 + β2

Tu− β2
β1 + β2

∥

=
1

β1 + β2
∥u− (1− qβ1 − qβ2)u− qβ1Tu− qβ2T

2z∥

=
1

β1 + β2
∥u− Tqβ1,qβ2u∥

= 0.

Therefore, F(T ) = F(Tqβ1,qβ2). □

Theorem 4.29. Consider a closed convex subset C of a QNLS (Z, ∥ · ∥, q). Assume that T is a self-map
on C, there are β1 > 0 and β2 ≥ 0, qβ1 + qβ2 ∈ (0, 1] for which the following assertion is valid:

∥Tqβ1,qβ2x− Tx∥ ≤ k∥x− Tx∥ (x ∈ C). (4.12)

Then, F(Tqβ1,qβ2) and F(T ) contain same elements.

Proof. IfF(Tβ1,β2) = ∅, thenF(T ) = ∅ and we getF(Tβ1,β2) = F(T ). Now, suppose thatF(Tβ1,β2) ̸=
∅. Now, for each z ∈ F(Tβ1,β2), we have

∥z − Tz∥ = ∥Tβ1,β2z − Tz∥ ≤ k∥z − Tz∥ =⇒ (1− k)∥z − Tz∥ ≤ 0.

Therefore, F(T ) = F(Tβ1,β2). □

Theorem 4.30. Consider a closed convex subset C of a QNLS (Z, ∥ · ∥, q). Assume that T is a self-map
on C, there are β1 > 0 and β2 ≥ 0, qβ1 + qβ2 ∈ (0, 1] for which F(Tqβ1,qβ2) ̸= ∅ and the following
inequality verifies:
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(III.3) For each x ∈ F(Tqβ1,qβ2), we can get a closed convex subset B ⊆ C which possesses x such that
T (B) ⊆ B and T obeys (4.12) only on set B.
Then, F(Tqβ1,qβ2 |B) = F(T |B).

Proof. The result can readily be obtained when T acts solely on set B. □

Theorem 4.31. Consider a closed convex subset C of a QNLS (Z, ∥ · ∥, q). Assume that T is a self-map
on C, such that it satisfies the condition of a weakly enriched contraction mapping. Then, there exist a
positive β1 and a nonnegative β2 with qβ1 + qβ2 ≤ 1 for which E and F in Theorem 4.26 hold. Moreover,
if T, β1, β2 satisfy (III.1) (Theorem 4.28) or (III.2) (Theorem 4.29) or (III.3) (Theorem 4.30) , then

(1) |F(T )| is one;
(2) for any initial z0 ∈ C, (zn) ⊆ C given by

zn = (1− qβ1 − qβ2)zn−1 + qβ1Tzn−1 + qβ2T
2zn−1, n ∈ N, (4.13)

converges to the only element of F(T ).

Proof. In view of Theorem 4.26, there exist β1, β2 ∈ (0, 1] such that E ,F hold. That is, the quasi-double
averaged mapping of type -III has a single fixed point and the iterative scheme in (4.13) converges to the
invariant point of Tqβ1,qβ2 . Since β1, β2 satisfy (III.1) or (III.2) or (III.3), the results follow from Theorem
4.28, Theorem 4.29, Theorem 4.30 respectively. □

5. Conclusion

In this manuscript, we have coined the averaged mapping and double-averaged mapping in the frame
work of QBS, referred to as quasi-averaged mapping and quasi-double averaged mapping (of three types
) respectively. With these mappings, we discuss the fixed point theorems of various contractions - en-
riched contraction, enriched Chatterjea mapping, enriched Kannan mapping, enriched Bianchini map-
ping, enriched Ćirić mapping, enriched Hardy-Rogers mapping, enriched almost contractions. Some
of these results are well-known in b-metric space settings but we know that it is possible to add any
two points and multiply a vector by a scalar in a QNLS. This structure allows us for the creation of
generalised contraction conditions (here we call them enriched versions) and the construction of more
iterative schemes in a QNLS. The fixed point theorems are meticulously crafted, incorporating refined
conditions on the parameters of various enriched maps, interwined with the quasi-index of the space.
In particular, we work with Krasnoselskij iterative scheme for quasi-averaged mapping and the Kirk’s
iterative scheme of order two for quasi-double averaged mapping in QBSs. The limited applicability of
enriched contractions and weakly enriched contractions in a normed linear space is addressed in this
paper by generalizing them to a QNLS (for example in L

1
2 ).

Our findings present various opportunities to explore the feasibility of identifying less stringent
conditions. These conditions can aim to establish that invariant points of a quasi-double averaged
mapping coincide with those of its initial mapping. Additionally, we are delving into the application
of quasi-double averaged mappings to develop fresh contractive conditions, eliminating the necessity
for relying on sufficient conditions for the existence and uniqueness of fixed points. Extensions of this
nature can offer new perspectives on the characteristics and dynamics of contractive mappings within
these spaces, shedding light on their potential applications across diverse mathematical domains.
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[3] V. Berinde and M. Păcurar. Approximating fixed points of enriched contractions in Banach spaces. Journal of Fixed Point

Theory and Applications , 22:Article ID 38, 2020.
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