
 

FIXED POINT METHODS AND OPTIMIZATION
Volume 1 (2024), No. 1, 1–16
https://doi.org/10.69829/fpmo-024-0101-ta01 Tulipa Opera Scholarum

ANALYSIS OF RELAXED INERTIAL METHOD FOR NON-CONVEX MIXED VARIATIONAL
INEQUALITIES

CHIBUEZE CHRISTIAN OKEKE1,∗ AND ABDULMALIK USMAN BELLO2

1School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
2Mathematics Institute African University of Science and Technology, Abuja, Nigeria

Abstract. This paper extends inertial forward-backward-forward splitting method already studied by
several authors for solving convex variational inequalities to solving non-convex mixed variational in-
equalities and obtain appropriate convergence results under some conditions. Next, we propose another
inertial forward-backward-forward splitting method for which the inertial factor θ is chosen in [0, 1] with
θ = 1 possible. As far as we know, the choice θ = 1 has not been considered before in the literature for in-
ertial forward-backward-forward splitting method for solving non-convex mixed variational inequalities.
Numerical illustrations are given to confirm the theoretical analysis.
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1. Introduction

Suppose C is a non-empty subset of Rn,F : Rn → Rn, a given operator and h : C → R a real-valued
function. A mixed varitional inequality problem or variational inequality of the second kind (MVI, for
short) is defined by

find x̄ ∈ C : ⟨F(x̄), y − x̄⟩+ h(y)− h(x̄) ≥ 0, ∀ y ∈ C. (1.1)

Let us denote the set of solutions of MVI (1.1) by Ω. Problems arising from continuous optimization and
variational analysis like minimization problems, linear complementary problems, vector optimization
problems or variational inequalities which are applied in economics, engineering, physics, mechanics
and electronics (see [7, 8, 9, 10, 19, 27, 28, 29, 31] among others) are special cases of MVI (1.1). Further-
more, MVI (1.1) can be seen as a reformulation of a Walrasian equilibrium model or of an oligopolistic
equilibrium model (see, for example, [19, Section 2]), where F in MVI (1.1) stands for the demand and
h stands for supply (see also [26]). Furthermore, in [9, 10], MVI (1.1) is applied to electrical circuits.
Also, in [31] a dual variational formulation for strain of an elastoplasticity model with hardening is
reformulated as MVI (1.1) and in [23] the frictional contact of an elastic cylinder with a rigid obstacle
in the antiplane framework is recast as MVI (1.1).

We observe that if h ≡ 0 in MVI (1.1), then MVI (1.1) becomes the variational inequality problem (see
[7, 8, 18]). Also, if F ≡ 0 in MVI (1.1), then MVI (1.1) reduces to the constrained optimization problem
of minimizing h over C. Note that MVI (1.1) is a convex mixed variational inequality problem when
h is convex, for which one can find various (proximal point type) algorithms in the literature to solve
it, see, for instance, [4, 21, 32, 34, 37, 38, 39]. However, when h in MVI (1.1) is non-convex, MVI (1.1)
becomes a non-convex mixed variational inequality problem and it is harder to solve. This is because
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the solution set may be empty even when K is a compact and convex set (see [25, Example 3.1], [16,
page 127] and [12] for more details).

Recently, existence results for MVI (1.1) involving quasi-convex functions are obtained in [15, 16] and
this raises the quest for numerical iterative methods to solve non-convex MVI (1.1). Iterative methods
for solving convex MVI (1.1) have been obtained and studied in [27, 28, 29], where the involved h is
continuous and the methods proposed are either implicit methods or only conceptual methods with
no numerical implementations. The proposed methods in [27, 28, 29] also involve inner loops or two
forward steps per iteration. Our approach in this paper is to propose and study a numerical method
to solve non-convex MVI (1.1) for which h is a non-continuous non-convex function which further
extends the results on minimization of quasi-convex functions obtained in [20, 30].

Quite recently, Grad and Lara [12] applied the Malitsky’s Golden Ratio Algorithm to solve non-
convex MVI (1.1). They proposed the following method:

Algorithm 1.1. Golden Ratio Algorithm (GRA)

(1) Choose u0, u1 ∈ C such that u0 ̸= u1, let ϕ = 1+
√
5

2 , z0 = u1 and k = 0.

(2) If un+1 = un = zn, then STOP: un ∈ Ω. Otherwise, go to Step 3.
(3) Take n = n+ 1, and

zn = (1− 1

ϕ
)un +

1

ϕ
zn−1,

un+1 = Proxh+ιC

(
un − 1

α
Fun

)
, (1.2)

and go to Step 2.

Grad and Lara [12] proved that the sequences {un} and {zn} generated by Algorithm 1.1 converge
to a solution of non-convex MVI (1.1). As far as we know, the Algorithm 1.1 proposed in [12] is the first
iterative method in the literature to solve non-convex MVI (1.1).

In 2022, Shehu et al. [17] studied the follwing forward-reflected-backward iterative method to solve
the non-convex MVI (1.1).

Algorithm 1.2. Forward-Reflected-Backward Method
(1) Choose u0, u1 ∈ Rn and set n = 1.
(2) Given un−1 and un, compute un+1 as follows:

un+1 = Proxh+ιC

(
un − 1

α

(
2Fun −Fun−1

))
. (1.3)

If un+1 = un = un−1, then STOP: un ∈ Ω.
(3) Set n← n+ 1, and go to Step 2.

Convergence results and numerical experiments are given for this proposed method under some
appropriate conditions.

In this paper, we apply the forward-backward-forward splitting method with inertial extrapolation
step to solve non-convex mixed variational inequalities. Our results extend the usage of forward-
backward-forward splitting method from convex variational inequality problem already studied in
[3, 35, 36] to non-convex MVI (1.1)

2. Preliminaries

The indicator function ιC of a nonempty set C ⊆ Rn is defined by

ιC(x) :=

{
0 if x ∈ C
+∞ otherwise.
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Given any x, y, z ∈ Rn and α, β ∈ R, we have

⟨x− z, y − x⟩ = 1

2
∥z − y∥2 − 1

2
∥x− z∥2 − 1

2
∥y − x∥2, (2.1)

∥αx+ βy∥2 = α(α+ β)∥x∥2 + β(α+ β)∥y∥2 − αβ∥x− y∥2 (2.2)

and

∥βx+ (1− β)y∥2 = β∥x∥2 + (1− β)∥y∥2 − β(1− β)∥x− y∥2. (2.3)

Given any function h : Rn → R̄ := R ∪ {±∞}, the effective domain of h is defined by domh := {x ∈
Rn : h(x) < +∞}. It is said that h is a proper function if h(x) > −∞ for every x ∈ Rn and dom h is
nonempty (clearly, h(x) = +∞ for every x /∈ domh). By arg

Rn
minh we mean the set of all minimizers

of h in this paper.

A function h with a convex domain is said to be
(a) convex if, given any x, y ∈ domh, then

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y) ∀ λ ∈ [0, 1]; (2.4)

(b) quasi-convex if, given any x, y ∈ domh, then

h(λx+ (1− λ)y) ≤ max{h(x), h(y)} ∀ λ ∈ [0, 1]. (2.5)

Clearly, every convex function is quasi-convex. However, the converse fails. Take, for example, h :
R→ R with h(x) = x3, is quasi-convex but not convex. Also, we have

h is convex ⇐⇒ epi h is a convex set;
h is quasi-convex ⇐⇒ Sλ(h) is a convex set, for all λ ∈ R,

where epi h := {(x, t) ∈ Rn ×R : h(x) ≤ t} is the epigraph of h and Sλ(h) := {x ∈ Rn : h(x) ≤ λ}
its sublevel set at the height λ ∈ R.

The proximity operator Proxγh : Rn ⇒ Rn of a function h : Rn → R̄ at x ∈ Rn with parameter
γ > 0 is defined by

Proxγh(x) := arg min
y∈Rn

{
h(y) +

1

2γ
∥y − x∥2

}
. (2.6)

Suppose C is a closed and convex subset of Rn with h : C → R̄ with C ∩ domh ̸= ∅ a proper function,
and f : C × C → R be a real-valued bifunction. We say that f is

(a) monotone on C, if for every x, y ∈ C

f(x, y) + f(y, x) ≤ 0; (2.7)

(b) h-pseudomonotone on C, if for every x, y ∈ C

f(x, y) + h(y)− h(x) ≥ 0 =⇒ f(y, x) + h(x)− h(y) ≤ 0. (2.8)

From the above definitions, we see that every monotone bifunction is h-pseudomonotone, but the con-
verse statement is not true in general. Also, if h ≡ 0, then h-pseudomonotonicity becomes pseu-
domonotonicity [13].

In [11], a new class of generalized convex functions (which includes quasiconvex functions and
weakly convex functions) was introduced.



4 C. C. OKEKE AND A. U. BELLO

Definition 2.1. Let C be a closed set in Rn and h : Rn → R̄ be a proper function such that C∩domh ̸=
∅. We say that h is prox-convex on C (with prox-convex value α) if there exists α > 0 such that for
every z ∈ C, Proxh+ιC(z) ̸= ∅, and

x̄ ∈ Proxh+ιC(z) =⇒ h(x̄)− h(x) ≤ α⟨x̄− z, x− x̄⟩, ∀x ∈ C. (2.9)

The article [11] gave some properties of prox-convex functions. We list some of them here for the
sake of completeness.

Lemma 2.2. [22] Let {φn}, {δn} and {θn} be sequence in [0,+∞) such that

φn+1 ≤ φn + θn(φn − φn−1) + δn, ∀n ≥ 1,

∞∑
n=1

δn < +∞

and there exists a real number θ with 0 ≤ θn ≤ θ < 1 for all n ∈ N.Then the following hold:

(a)
∑∞

n=1[φ
n − φn−1]+ <∞ where [t]+ := max{t, 0};

(b) there exists φ∗ ∈ [0,+∞) such that limn→∞ φn = φ∗.

3. Proposed Method

We give the following assumptions in order to obtain our convergence analysis.

Assumption 3.1. (A1) F is anL-Lipschitz-continuous operator on C,whereL > 0; that is, there exists
L > 0 such that ∥Fx−Fy∥ ≤ L∥x− y∥ for all x, y ∈ C;

(A2) h is a lower semicontinuous prox-convex function on C with prox-convex value α > 0;
(A3) F and h satisfy the following generalized monotonicity condition on C (cf. [12, 21, 33])

⟨F(y), y − x̄⟩+ h(y)− h(x̄) ≥ 0, ∀ y ∈ K, ∀ x̄ ∈ Ω; (3.1)

(A4) Ω ̸= ∅;
(A5) α > L.

Algorithm 3.2. Inertial Non-convex Modified Forward-Backward-Forward Method

(1) Choose θ ∈ [0, 1) and 0 < ρ < 2
1+L/α . Let u

0, u1 ∈ Rn be a given starting point. Set n := 1.

(2) Given un−1 and un, compute un+1 as follows:
zn = un + θ(un − un−1)

yn = Proxh+iC(z
n − 1

αF(z
n)),

un+1 = (1− ρ)zn + ρ(yn + 1
α(F(z

n)−F(yn)))
(3.2)

(3) Set n← n+ 1 and go to Step 2.

Lemma 3.3. Suppose the Assumptions 3.1 (A1)-(A5) are satisfied and let x̄ ∈ Ω. Suppose {un} is generated
by Algorithm 3.2. Then the following holds:

∥un+1 − x̄∥2 ≤ ∥zn − x̄∥2 −

(
2

ρ
(
1 + L

α

) − 1

)
∥un+1 − zn∥2.

Proof. From

yn = Proxh+iC(z
n − 1

α
F(zn))

we obtain using (2.9) that ∀y ∈ C

h(yn)− h(y) ≤ α⟨yn − zn +
1

α
F(zn), y − yn⟩ (3.3)
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Thus,

0 ≤ α⟨yn − zn +
1

α
F(zn), y − yn⟩+ h(y)− h(yn) ∀y ∈ C.

Replacing y = x̄ ∈ Ω, we have from the last inequality

0 ≤ α < yn − zn +
1

α
F(zn), x̄− yn⟩+ h(x̄)− h(yn). (3.4)

Since F satisfied Assumption 3.1 (A3), we obtain
⟨F(y), y − x̄⟩+ h(y)− h(x̄) ≥ 0, ∀y ∈ C.

In particular
⟨F(yn), y − x̄⟩+ h(y)− h(x̄) ≥ 0. (3.5)

Combining (3.4) and (3.5), we get
−⟨F(yn), x̄− yn⟩+ h(y)− h(x̄) + α⟨yn − zn + 1

αF(z
n), x̄− yn⟩+ h(x̄)− h(yn) ≥ 0.

That is

α⟨yn − zn +
1

α
F(zn)−F(yn), x̄− yn⟩ ≥ 0. (3.6)

Letting
vn := yn +

1

α
(F(zn)−F(yn)) ∀n ̸= 1.

We have from (3.6) that
α⟨vn − zn, x̄− yn⟩ ≥ 0.

This further implies that
⟨vn − x̄, vn − zn⟩ ≤ ⟨vn − yn, vn − zn⟩

= ∥vn − zn∥2 + ⟨zn − yn, vn − zn⟩

= ∥vn − zn∥2 + ⟨zn − yn, yn +
1

α
(F(zn)−F(yn))− zn⟩

= ∥vn − zn∥2 − ∥zn − yn∥2 + 1

α
⟨zn − yn,F(zn)−F(yn)⟩. (3.7)

Also, we obtain from (2.1) that
2⟨vn − x̄, vn − zn⟩ = ∥vn − x̄∥2 − ∥zn − x̄∥2 + ∥vn − zn∥2. (3.8)

If we combine (3.7) and (3.8), we get
∥vn − x̄∥2 ≤ ∥zn − x̄∥2 + ∥vn − zn∥2 − 2∥zn − yn∥2

+
2

α
⟨zn − yn,F(zn)−F(yn)⟩. (3.9)

Using the fact that F is L-Lipschitz continuous, we get

∥vn − zn∥2 = ∥yn +
1

α
(F(zn)−F(yn))− zn∥2

= ∥yn − zn∥2 + 2

α
⟨yn − zn,F(zn)−F(yn)⟩+ 1

α2
∥F(zn)−F(yn)∥2

≤ ∥yn − zn∥2 + 2

α
⟨yn − zn,F(zn)−F(yn)⟩+ L2

α2
∥zn − yn∥2. (3.10)

We obtain from (3.9) and (3.10) that

∥vn − x̄∥2 ≤ ∥zn − x̄∥2 −
(
1− L2

α2

)
∥yn − zn∥2. (3.11)
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Consequently,

∥un+1 − x̄∥2 = ∥ρ(vn − x̄) + (1− ρ)(zn − x̄)∥2

= ρ∥vn − x̄∥2 + (1− ρ)∥zn − x̄∥2 − ρ(1− ρ)∥vn − zn∥2. (3.12)

Using (3.11) and (3.12) we have

∥un+1 − x̄∥2 ≤ρ∥zn − x̄∥2 − ρ

(
1− L2

α2

)
∥yn − zn∥2 − (1− ρ)∥zn − x̄∥2 − ρ(1− ρ)∥vn − zn∥2

=∥zn − x̄∥2 − ρ

(
1− L2

α2

)
∥yn − zn∥2 − (1− ρ)∥zn − x̄∥2 − ρ(1− ρ)∥vn − zn∥2.

(3.13)

From the definition of {un+1}, we obtain

∥vn − zn∥2 = 1

ρ2
∥un+1 − zn∥2 (3.14)

Putting (3.14) in (3.13) gives

∥un+1 − x̄∥2 ≤ ∥zn − x̄∥2 − ρ

(
1− L2

α2

)
∥yn − zn∥2 − 1− ρ

ρ
∥un+1 − zn∥2 (3.15)

By Algorithm (3.2) and using the fact that F is Lipschitz continuous, we obtain
1

ρ
∥un+1 − zn∥ = ∥vn − zn∥ ≤ ∥vn − yn∥+ ∥yn − zn∥

=
1

α
∥F(zn)−F(yn)∥∥yn − zn∥

≤ L

α
∥yn − zn∥+ ∥yn − zn∥

=

(
1 +

L

α

)
∥yn − zn∥.

Therefore

−∥yn − zn∥2 ≤ − 1

ρ2
(
1 + L

α

)2 ∥un+1 − zn∥2. (3.16)

Substituting (3.16) into (3.14), we get

∥un+1 − x̄∥2 ≤ ∥zn − x̄∥2 −


(
1− L2

α2

)
ρ2
(
1 + L

α

)2 +
1− ρ

ρ

 ∥un+1 − zn∥2

= ∥zn − x̄∥2 −

(
2

ρ
(
1 + L

α

) − 1

)
∥un+1 − zn∥2. (3.17)

This completes the proof. □

Lemma 3.4. Suppose Assumption 3.1 is fulfilled. Then {un} generated by Algorithm 3.2 above is bounded.

Proof. Let x̄ ∈ Ω, By (2.2) and Algorithm 3.2, we get

∥zn − x̄∥2 = ∥un + θ(un − un−1)− x̄∥2

= ∥(1 + θ)(un − x̄)− θ(un−1 − x̄)∥2

= (1 + θ)∥un − x̄∥2 − θ∥un−1 − x̄∥2 + θ(1 + θ)∥un − un−1∥2. (3.18)
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Observe that

∥un+1 − zn∥2 = ∥(un+1 − un)− θ(un − un−1)∥2

= ∥un+1 − un∥2 + θ2∥un − un−1∥2 − 2θ⟨un+1 − un, un − un−1⟩
≥ (1− θ)∥un+1 − un∥2 + (θ2 − θ)∥un − un−1∥2. (3.19)

Using (3.18) and (3.19) in (3.17), we get

∥un+1 − x̄∥2 ≤ (1 + θ)∥un − x̄∥2 − θ∥un−1 − x̄∥2 + θ(1 + θ)∥un − un−1∥2

−(1− θ)

[
2

ρ (1 + L/α)
− 1

]
∥un+1 − un∥2

−(θ2 − θ)

[
2

ρ (1 + L/α)
− 1

]
∥un − un−1∥2. (3.20)

Rearranging gives us

∥un+1 − x̄∥2 − θ∥un − x̄∥2 + θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un − un−1∥2

≤ ∥un − x̄∥2 − θ∥un−1 − x̄∥2 + θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un+1 − un∥2

−θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un+1 − un∥2

−(1− θ)

[
2

ρ (1 + L/α)
− 1

]
∥un+1 − un∥2. (3.21)

Define

Υn := ∥un − x̄∥2 − θ∥un−1 − x̄∥2 + θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un − un−1∥2

and

σ := (1− θ)

[
2

ρ (1 + L/α)
− 1

]
− θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
.

From (3.21), we obtain

Υn+1 −Υn ≤ −σ∥un+1 − un∥2. (3.22)

By the condition θ ∈ [0, 1) α > L and 0 < ρ < 2
1+L/α , we get that σ > 0. Therefore {Υn} is

non-increasing. Similarly,

Υn := ∥un − x̄∥2 − θ∥un−1 − x̄∥2 + θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un − un−1∥2

≥ ∥un − x̄∥2 − θ∥un−1 − x̄∥2. (3.23)

Fromn(3.23), we have

∥un − x̄∥2 ≤ θ∥un−1 − x̄∥2 +Υn

≤ θ∥un−1 − x̄∥2 +Υ1

...
≤ θn∥u0 − x̄∥2 + (1 + · · ·+ θn−1)Υ1

≤ θn∥u0 − x̄∥2 + Υ1

1− θ
. (3.24)
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Now that

Υn+1 = ∥un+1 − x̄∥2 − θ∥un − x̄∥2θ [1 + θ − (θ − 1)]

[
2

ρ (1 + L/α)
− 1

]
∥un+1 − un∥2

≥ −θ∥un − x̄∥2

and this means from (3.24) that

−Υn+1 ≤ θ∥un − x̄∥2

...

≤ θn+1∥u0 − x̄∥2 + θΥ1

1− θ
. (3.25)

By (3.22) and (3.25), we get

σ

k∑
n=1

∥un+1 − un∥2 ≤ Υ1 −Υk+1 ≤ θk+1∥u0 − x̄∥2 + Υ1

1− θ
.

This implies
∞∑
n=1

∥un+1 − un∥2 ≤ Υ1

σ(1− θ)
< +∞. (3.26)

Therefore

lim
n→∞

∥un+1 − un∥ = 0 (3.27)

and

lim
n→∞

∥Fun+1 −Fun∥ = 0 (by the fact that F is Lipschtz continuous).

From Algorithm 3.2, we get

∥zn − un∥ = θ∥un − un−1∥ → 0, n→∞. (3.28)

Also

∥un+1 − zn∥ ≤ ∥zn − un∥+ ∥un+1 − un∥ → 0, n→∞

and

∥vn − zn∥ = 1

ρ
∥un+1 − zn∥ → 0, n→∞. (3.29)

From (3.20), we get

∥un+1 − x̄∥2 ≤ (1 + θ)∥un − x̄∥2 − θ∥un−1 − x̄∥2

+θ

[
1 + θ − (θ − 1)

(
2

ρ (1 + L/α)
− 1

)]
∥un − un−1∥2. (3.30)

Using Lemma 2.2 in (3.30) (noting (3.26)), we get

lim
n→∞

∥un − x̄∥ = ℓ < +∞.

Hence {∥un − x̄∥} is bounded. Therefore {un} is bounded. It is clear to see that the boundedness of
{un} implies that {vn}, {zn} and {yn} are bounded. □

Our global convergence result for Algorithm 3.2 is given next.

Theorem 3.5. Suppose that Assumption 3.1 are satisfied, then {un} generated by Algorithm 3.2 converges
to a solution of MVI (1.1).
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Proof. By Lemma 3.4, we have that {un} is bounded. Let v∗ be an accumulating point of {un}. By (3.3),
we have ∀y ∈ C

h(yn)− h(y) ≤ α⟨yn − zn +
1

α
F(zn), y − yn⟩. (3.31)

From (3.11) (
1− L2

α2

)
∥yn − zn∥2 ≤ ∥zn − x̄∥2 − ∥vn − x̄∥2

= (∥zn − x̄∥ − ∥vn − x̄∥)(∥zn − x̄∥+ ∥vn − x̄∥)
≤ M(∥zn − x̄∥ − ∥vn − x̄∥)
≤ M∥zn − vn∥,

whereM := supn≥1(∥zn−x̄∥+∥vn−x̄∥) <∞. Since both {vn} and {zn} are bounded By Assumption
3.1 (A5) and (3.29), one derives that

lim
n→∞

∥yn − zn∥ = 0 (3.32)

This implies that

∥un+1 − yn∥ ≤ ∥yn − zn∥+ ∥un+1 − zn∥ → 0, n→∞. (3.33)

Because v∗ is an accumulating point of {un}, by (3.28) and (3.32), it is also accumulating point of {yn}
and of {zn}. Also h is lower semicontinuous and F is L-Lipschitz continuous. By taking the limit in
(3.31) (passing to subsequence if neccessary), we have noting (3.32),(3.33) and (3.27) that

h(v∗)− h(y) ≤ ⟨F(v∗), y − v∗⟩ ∀ y ∈ C.

Thus, v∗ ∈ Ω. Hence every cluster point (accumulation point) of {un} is a solution to MVI. □

4. Second Proposed Method

Our aim in this section is to modify Algorithm 3.2 such that the upper condition θn ≤ θ < 1, ∀n ≥ 1
in (3.2) can be extended to 0 ≤ θn ≤ 1, ∀n ≥ 1. We obtain the global convergence result of our
proposed algorithm under standard assumptions. The proposed iterative method is given below:

Algorithm 4.1. (1) Choose θ ∈ [0, 1] and 0 < ρ < 1
2 . Let u

0, u1 ∈ Rn be a given starting point. Set
n := 1.

(2) Given un−1 and un, compute un+1 as follows:
zn = un + θ(un − un−1)

yn = Proxh+iC(z
n − 1

αF(z
n)),

un+1 = (1− ρ)un + ρ(yn + 1
α(F(z

n)−F(yn)))
(4.1)

(3) Set n← n+ 1 and go to Step 2.

Remark 4.2. Suppose θ = 1 and ρ = 0 in Algorithm 3.2. Then zn = 2un − un−1 is the reflected step.
Therefore, our Algorithm (3.2) covers the reflected version Algorithm 1.2 studied by Shehu et al. in [17]
for solving Non-convex MVI (1.1).

Using Algorithm 4.1, we obtain the following results.

Lemma 4.3. Suppose Assumption 3.1 is fulfilled. Then {un} generated by Algorithm 4.1 above is bounded.
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Proof. Let
vn := yn +

1

α
(F(zn)−F(yn)), ∀n ̸= 1.

From (3.11), we get

∥vn − x̄∥2 ≤ ∥zn − x̄∥2 −
(
1− L2

α2

)
∥yn − zn∥2

≤ ∥zn − x̄∥2. (4.2)
Let x̄ ∈ Ω. Using Algorithm 4.1, we get

∥un+1 − x̄∥2 = ∥(1− ρ)(un − x̄) + ρ(vn − x̄)∥2

= (1− ρ)∥un − x̄∥2 + α∥vn − x̄∥2 − ρ(1− ρ)∥un − vn∥2, (4.3)
which by (4.2) implies that

∥un+1 − x̄∥2 ≤ (1− ρ)∥un − x̄∥2 + ρ∥zn − x̄∥2 − ρ(1− ρ)∥un − vn∥2. (4.4)
Note that

un+1 = (1− ρ)un + ρvn

and this implies

vn − un =
1

ρ
(un+1 − un), ∀n. (4.5)

Using (4.4) and (4.5), we get

∥un+1 − x̄∥2 ≤ (1− ρ)∥un − x̄∥2 + ρ∥zn − x̄∥2 − (1− ρ)

ρ
∥un+1 − un∥2. (4.6)

Also, by (3.18) and (4.6), we get
∥un+1 − x̄∥2 ≤ (1− ρ)∥un − x̄∥2 + ρ(1 + θ)∥un − x̄∥2 − ρθ∥un−1 − x̄∥2

+ρθ(1 + θ)∥un − un−1∥2 − 1− ρ

ρ
∥un+1 − un∥2

= (1 + ρθ)∥un − x̄∥2 − ρθ∥un−1 − x̄∥2 + ρθ(1 + θ)∥un − un−1∥2

−1− ρ

ρ
∥un+1 − un∥2. (4.7)

Define
Υn := ∥un − x̄∥2 − ρθ∥un−1 − x̄∥2 + ρθ(1 + θ)∥un − un−1∥2, n ≥ 1.

Then we have by (4.7) that
Υn+1 −Υn = ∥un+1 − x̄∥2 − (1 + ρθ)∥un − x̄∥2 + ρθ∥un−1 − x̄∥2

+ρθ(1 + θ)∥un+1 − un∥2 − ρθ(1 + θ)∥un − un−1∥2

≤ −1− ρ

ρ
∥un+1 − un∥2 + ρθ(1 + θ)∥un+1 − un∥2

= −
(
1− ρ

ρ
− ρθ(1 + θ)

)
∥un+1 − un∥2. (4.8)

By the condition that ρ ∈ (0, 12) and θ ∈ [0, 1], we obtain

σ :=

(
1− ρ

ρ
− ρθ(1 + θ)

)
> 0. (4.9)

By (3.21), we have
Υn+1 −Υn ≤ −σ∥un+1 − un∥2 (4.10)
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Therefore, {Υn} is non-increasing. Similarly,
Υn = ∥un − x̄∥2 − ρθ∥un−1 − x̄∥2 + ρθ(1 + θ)∥un − un−1∥2

≥ ∥un − x̄∥2 − ρθ∥un−1 − x̄∥2. (4.11)
Define ϵ := ρθ < 1. From (4.11), we have

∥un − x̄∥2 ≤ ρθ∥un−1 − x̄∥2 +Υn

≤ ϵ∥un−1 − x̄∥2 +Υ1

...
≤ ϵn∥u0 − x̄∥2 + (1 + · · ·+ ϵn−1)Υ1

≤ ϵn∥u0 − x̄∥2 + Υ1

1− ϵ
. (4.12)

Note that
Υn+1 = ∥un+1 − x̄∥2 − ρθ∥un − x̄∥2 + ρθ(1 + θ)∥un+1 − un∥2 ≥ −ρθ∥un − x̄∥2

and this means from (4.13) that
−Υn+1 ≤ ρθ∥un − x̄∥2

= ϵ∥un − x̄∥2

...

≤ ϵn+1∥u0 − x̄∥2 + ϵΥ1

1− ϵ
. (4.13)

By (4.10) and (4.13), we get

σ

k∑
n=1

∥un+1 − un∥2 ≤ Υ1 −Υk+1 ≤ ϵk+1∥u0 − x̄∥2 + Υ1

1− ρ
.

This implies
∞∑
n=1

∥un+1 − un∥2 ≤ Υ1

σ(1− ϵ)
< +∞. (4.14)

Therefore
lim
n→∞

∥un+1 − un∥ = 0. (4.15)

From Algorithm 4.1, we get
∥zn − un∥ = θ∥un − un−1∥ → 0, n→ +∞. (4.16)

Also
∥un+1 − zn∥ ≤ ∥zn − un∥+ ∥un+1 − un∥ → 0, n→∞

and

∥vn − zn∥ = 1

ρ
∥un+1 − zn∥ → 0, n→∞. (4.17)

From (3.20), we get
∥un+1 − x̄∥2 ≤ (1 + ρθ)∥un − x̄∥2 − ρθ∥un−1 − x̄∥2 + 2∥un − un−1∥2. (4.18)

Using Lemma 3.4 in (4.18) (noting (4.14)), we get
lim
n→∞

∥un − x̄∥2 = ℓ <∞.
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Hence, {∥un − x̄∥} is bounded. Therefore {un} is bounded. □

Theorem 4.4. The sequence {un} generated by Algorithm 4.1 converges globaly to a point in Ω when
Assumption 3.1 is satisfied.

Proof. Following same line of arguments as in Theorem 3.5, we obtain the desired conclusion. □

5. Numerical Experiments

In this section, we provide computational experiments by comparing our proposed Algorithm 3.2 with
the existing state-of-the-art Algorithm 1.1 (proposed in [12]) and Algorithm 1.2 proposed in [17] using
test examples below. Numerical experiments were carried out on MATLAB R2015a version. All pro-
grams were run on a 64-bit OS PC with Intel(R) Core(TM) i7-3540M CPU @ 1.00GHz 1.19 GHz and 3GB
RAM. All figures were plotted using the log log plot command.

5.1. Application in Oligopolistic Equilibrium. The Nash-Cournot oligopolistic market equilibrium
assumes that there are n companies producing a common homogeneous commodity (see, for example,
[19, 26]). For i ∈ {1, ..., n}, company i has strategy set Di ⊆ R+, a cost function φ defined on
the strategy set D = Πn

i=1Di of the model and a profit function fi that is usually defined as price
times production minus costs (of producing the considered production). Each company is interested in
maximizing its profit by choosing the corresponding production level under knowledge on demand of
the market and of production of the competition (seen as input parameters). A commonly used solution
notion in this model is the celebrated Nash equilibrium. A point (strategy) x̄ = (x̄1, ..., x̄n)

T ∈ D
is said to be a Nash equilibrium point of this Nash-Cournot oligopolistic market model if fi(x̄) ≥
fi(x̄[xi]) ∀xi ∈ Di, i = 1, ..., n, where the vector x̄[xi] is obtained from x̄ by replacing x̄i with xi.
Using similar ideas in [12, 19, 26], the problem of determining a Nash equilibrium of a Nash-Cournot
oligopolistic market situation can be recast into a mixed variational inequality of type (1.1), where the
involved operator captures various parameters and additional information and the function h is the
sum of the cost function of the considered companies, each of them depending on a different variable
that represents the corresponding production.

Following the oligopolistic equilibrium model in [26], let us we consider a mixed variational inequal-
ity corresponding to Nash-Cournot oligopolistic market equilibrium model with 5 companies, whose
cost functions are defined as

φ1 : [0, 2]→ R, φ1(x) = −x2 − x,

φ2 : R→ R, φ2(x) = x2

φ3 : [1, 2]→ R, φ3(x) = 5x+ ln(1 + 10x),

φ4 : R→ R, φ4(x) =

{
x2

2 , if |x| ≤ 1,

|x| − 1
2 , otherwise,

φ5 : [0, 2]→ R, φ5(x) = 8− x3.

(5.1)

As explained in [12], the cost functions φ1, φ3 and φ5 are prox-convex while φ2 and φ4 are convex.
Functions φ1 and φ3 were employed in the similar application considered in [26] (following the more
applied paper [2]) as (DC) cost functions for oligopolistic equilibrium problems, while φ4 is the Hu-
ber loss function (cf. [14]) that is used in various contexts in economics and machine learning for
quantifying costs. The model also includes functions with negative values such as φ1 that quantify
the possibility of having negative costs, for instance in case of a surplus of energy on the market (as
discussed in the recent works [1, 6]). As done in [12], we consider the involved convex cost functions
defined over the whole space.

In our numerical experiments for solving MVI (1.1) (which we denote as (OMP ) in this case as called
in [12]), F(x) = Ax, x ∈ R5 with A ∈ R5×5 a real symmetric positive semidefinite matrix of norm
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1 (for simplicity) and h(x1, ..., x5) =
∑5

i=1 φi(xi). In each experiment, the matrix A is randomly gen-
erated and scaled in order to have L = 1. The proximity operator of (the separable function) h has as
components the ones of the involved functions, which are known (cf. [5, 12, 24]). Also, we consider the
following two cases of initial points:

Case A: u0 = (1, 23, 1.4, 39, 1)T , u1 = (0, 32, 1.8, 22, 0)T .

Case B: u0 = (0.1, 2, 2, 2, 0.1)T , u1 = (0, 0, 1.9, 0, 0)T .

Table 1. Computational Results
No. of Iterations Parameters ∥xn+1 − xn∥2 Time(secs)

50 α = 2; θ = 0.05; ρ = 1.3 7.91e− 08 1.5858
α = 4; θ = 0.05; ρ = 1.3 1.08e− 08 1.3530

100 α = 2; θ = 0.05; ρ = 1.3 6.55e− 09 2.9380
α = 4; θ = 0.05; ρ = 1.3 6.18e− 09 2.8734
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Figure 1. α = 2, θ = 0.005 and
ρ = 1.3
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Figure 2. α = 4, θ = 0.005 and
ρ = 1.3

6. Final Remark

In this paper we showed that forward-backward-forward splitting method with inertial extrapolation
can be adapted to solve non-convex mixed variational inequalities. Global convergence results of the
sequence of iterates generated by the proposed method is given and some numerical illustrations are
also given. It can be easily seen from the graphs that Algorithm (3.1) performs better in the long run
with a better choice of alpha. It can also be observed that appropiate choice of alpha speeds up the
convergence. Finally, One of our proposed methods contains the possibility of θ = 1 which is not
covered before in the literature.
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Figure 3. α = 2, θ = 0.005 and
ρ = 1.3
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