
 

FIXED POINT METHODS AND OPTIMIZATION
Volume 1 (2024), No. 1, 31–46
https://doi.org/10.69829/fpmo-024-0101-ta03 Tulipa Opera Scholarum

OVERLAPPING GRID MULTIDOMIAN SPECTRAL QUASILINEARIZATION METHOD
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Abstract. In this paper, magnetohydrodynamic (MHD) heat andmass transfer of bioconvectiveWilliamson
nanofluid flow over a radially stretching sheet is studied. Microorganisms are used to stabilize the sus-
pended nanoparticles through bioconvection. The nanoparticles are accounted for using the Brownian
motion and thermophoretic phenomena. By establishing suitable similarity variables, the governing none-
linear partial differential equations modeling the flow are transformed into nonlinear systems of ordinary
differential equations (ODE’s), which are then solved numerically using the recently developed over-
lapping grid multidomian spectral quasilinearization method (OGMDSQLM) on MATLAB. The effect of
various physical parameters on the flow profiles is investigated graphically and in tables. Amongst other
findings, it is found that increasing the radiation parameter augments the temperature profile, while the
concentration of microorganisms profiles decline with a rise in the value of the chemical reaction param-
eter.
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1. Introduction

In recent years, the study of nanofluids coupled with microorganism transport has attracted consider-
able attention due to its relevance in various engineering and biological applications. Understanding
the behavior of such complex fluid systems is crucial for optimizing processes in fields ranging from
biomedical engineering to environmental science, for instance. Addition of nanometre size metallic or
non-metallic particles in a base fluid (such as water, oil and ethyl glycol), results in a mixture called
a nanofluid. The notion of nanofluid was coined by [5, 32] and they were the first to bring to the at-
tention of the scientific community the heat transfer consequences of nanofluids. Choi and Eastman
concluded that a very small volume fraction (as little as 1%) of nanoparticles added to a base fluid lead
to a significant increase in the effective thermal conductivity of the base fluid [5]. The non-homogenous
Buongiorno model attributes this enhancement of thermal conductivity to Brownian motion and ther-
mophoretic diffusion of nanoparticles [4]. These fluids have attracted tremendous research interest
and a range of applications, considering various flow regimes (two-dimensional heat and mass transfer
boundary layer flow over stretching or shrinking sheets, porous media, for instance).

As fixed-point techniques are essential for resolving iterative systems and nonlinear equations that
are frequently encountered in the study of fluid dynamics and nanofluid behavior, Fixed-point methods
iteratively apply a transformation on an initial guess with the goal of convergently arriving at a solu-
tion satisfying a specific system of equations. Numerical simulations ofWilliamson nanofluids could be
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made more accurate and performance by using optimization approaches. We maximize specific objec-
tive functions or restrictions by rephrasing the issue as an optimization work, which raises the overall
effectiveness and dependability of the simulations [29]. Adjusting the settings of the multidimensional
spectral quasi-linearization approach for the optimal results can be done with common optimization
algorithms like gradient descent, genetic algorithms, and simulated annealing. Broadly speaking, a
comprehensive approach to the analysis and optimization of Williamson nanofluid behavior can be
obtained by integrating the multidimensional spectral quasi-linearization method with optimization
techniques and fixed point methods; see [29, 11, 14].

Two-dimensional heat and mass boundary layer flow over stretching sheets applications include, en-
gineering processes, such as, extraction of polymer sheets, wire drawing, paper production and fibre-
glass production [24]. The problem of two-dimensional flow due to a stretching sheet was first formu-
lated by Crane [6]. Crane reported an exact similarity solution in closed form of this two-dimensional
problem [6]. In recent studies, Tamizharasi [31] studied the pressure in a steady two-dimensional MHD
flow of viscous incompressible fluid over a flat stretching sheet and reported a finite pressure distribu-
tion. The transition effect of boundary layer flowwith andwithout influence ofmagnetic field for steady
and unsteady flow over linearly stretching sheets along the direction of the fluid flow was examined by
Kumaran [12, 13]. Shawky [26] studied MHD Williamson nanofluid flow over a stretching sheet in a
porous media and reported that an increase in the Brownian motion parameter results in a decrease of
the nanoparticle concentration profile. Some studies involving nanofluid flow through porous media
can be found in the work of [33, 16, 20, 23, 17]. Even though nanofluids have been reported to possess
superior heat transfer characteristics to traditional base fluids, the nanoparticles are usually not stable
in the fluid [24, 25]. Furthermore, there is no universal mathematical model for nanofluids. Neverthe-
less, incorporation of motile microorganisms in the fluid are some of the efforts whose objective is to
improve the stability of nanoparticles [6]. The idea with the use of microorganisms to improve stability
of nanoparticles is to take advantage of the bioconvection phenomenon [8]. A comprehensive review
on bioconvection can be found in [7]. Recently, hybrid nanofluids are being considered to address some
of the identified challenges of nanoparticles in a base fluid [25].

The Williamson fluid model considers non-Newtonian behaviour in shear thinning fluids. First sug-
gested by Williamson [34], this model, amongst other models, has been adopted by many researchers
in numerical investigation of nanofluids [22, 27, 30]. Ayano et al. [2] investigated the effect of the
Hall parameter on the flow over a stretching boundary in a porous medium of a Casson fluid in which
gyrotactic microorganisms have been added. In this study they concluded that, a decrease in the Hall
parameter results in an increase in the heat transfer rate, the mass transfer rate, and the density of the
motile microorganisms, while on the other hand, increasing the porosity parameter reduces the skin
friction, heat transfer rate, mass transfer rate, and density of the motile microorganisms. Ibrahim and
Gamachu [9] used the spectral quasilinearization method to find numerical solutions to arising model
equations for a nonlinear convection steady, laminar flow of an electrically conducting Williamson
nanofluid past a radially stretching sheet with an electric field applied transverse to the flow. Their
main findings include, augmentation of the velocity profile when the electric field, buoyancy and non-
linear convection parameters grow in value [9]. Atif, Hussein and Sagheer [1] considered numerical
analysis of two-dimensional bioconvective MHDmixed convection flow over a stretching sheet of a mi-
cropolar nanofluid. Some of their results indicate increasingmicroorganism density profile and reduced
velocity profile when the buoyancy ratio parameter is enhanced [1]. Using the Buongiorno model to ac-
count for Brownian motion and thermophoresis, numerical results on Williamson nanofluid boundary
layer flow past a stretching sheet with velocity and thermal slips are presented by Bing Kho et al. [3].
Their results depict decreasing boundary layer as the slip parameters increase in value. Furthermore,
they (Bing Kho et al.) report enhanced temperature and concentration profiles as the Williamson pa-
rameter is increased [3]. The effect of viscous dissipation on unsteady two-dimensional boundary layer
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flow ofWilliamson nanofluid with thermal radiation and chemical reaction, past a stretching/shrinking
inclined sheet is presented by Ibrahim and Negera [10]. An upsurge of the inclination angle and un-
steady parameter resulted in an increase of the velocity profile, while the velocity profile diminished
with an increase in Williamson parameter [10]. A recent study by Zhang et al.[36] focuses on MHD
bioconvective Williamson fluid flow past a stretching vertical cylinder, highlighting a decrease in the
fluid velocity and momentum boundary layer when the magnetic parameter is increased, while the
distribution of microorganisms in the fluid varied inversely with the Pecelet number, amongst other
observations on the flow profiles [36].

The combination of nanofluids, which are colloidal suspensions containing nanoparticles, and mi-
croorganisms, such as gyrotactic microorganisms, introduces unique challenges to fluid dynamics anal-
ysis. These challenges stem from the interactions between fluid flow, heat transfer, nanoparticle dynam-
ics, and microorganism behavior, all of which occur simultaneously and influence each other. Further-
more, considering practical applications, the geometry of the flow domain may be complex, requiring
sophisticated numerical techniques for accurate modeling. In this context, the present study focuses
on the application of OGMSQM [15] to investigate the flow characteristics of Williamson nanofluid
with gyrotactic microorganisms past a radially stretching sheet. The OGMSQM approach offers several
advantages for tackling the complexities inherent in this problem. By employing overlapping grids and
spectral methods, the computational domain can be discretized efficiently while accurately capturing
the intricate features of the flow. The quasilinearization technique further enhances the computational
efficiency by iteratively solving the nonlinear governing equations, thereby reducing computational
costs without compromising accuracy.

Inspired by the above works, [34, 35, 36] through this article we aim to provide a comprehensive
overview of the OGMSQM methodology and its application to the study of Williamson nanofluid with
gyrotactic microorganisms flow past a radially stretching sheet. By elucidating the underlying prin-
ciples, numerical techniques, and computational results, we seek to contribute to the advancement
of understanding in this interdisciplinary field, with implications for both engineering and biological
sciences. To the best of the authors’ knowledge, in the existing literature a comprehensive study for
bioconvective Williamson nanofluid flow over a stretching sheet considering radiation, chemical reac-
tion, thermophoresis with slip effects not addressed. The modeled problem yield nonlinear systems of
ODE’s that is solved numerically using the overlapping grid multidomian spectral quasilinearization
method.

2. Model description and mathematical formulation

Figure 1. Flow geometry

We considered steady, two-dimensional, incompressible viscous, MHDWilliamson nanofluid flow em-
bedded in a medium filled with fluid in a suspension of gyrotactic microorganisms over a radially
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stretching plate. The sheet is stretching linearly with a velocity Uw(r) = ar in the r−direction as
shown in Figure 1, where a is a non-negative rate of stretching of the surface. A uniform strength of
magnetic field Bo is applied perpendicular to the flow direction (parallel to z axis) and small magnetic
Reynolds number is assumed so that the induced magnetic field is neglected. At the surface prescribed
temperature or heat flux, velocity and thermal slip is assumed. The temperature variation is assumed
sufficiently weak so that it does not kill microorganisms and gyrotactic behavior. Furthermore, den-
sity differences in the fluid are taken to be negligible so that the Boussinesq approximation is valid
in the mathematical model. In the Cauchy stress tensor equation [28], the extra stress tensor S for a
Williamson fluid is defined as shown in Equation 2.1 [34]. The parameters µ0, µ∞, Γ > 0 and the ma-
trix vectorA1 in (2.1) represent the limiting viscosity at zero (0) shear rate, limiting viscosity at infinite
shear rate, a time constant and the Rivlin-Erickson stress tensor, respectively [9].

S =

[
µ∞ +

µ0 − µ∞
1− Γγ̇

]
A1 (2.1)

The shear rate is given by (2.2), where π is the second invariant of strain rate tensor

γ̇ =

√
π

2
, where π =

1

2
trace(A2

1) (2.2)

Considering the Williamson fluid constitutive equation for µ∞ = 0 [34, 9], (2.1) reduces to (2.3).

S =

[
µ0

1− Γγ̇

]
A1 (2.3)

A binomial expansion of 1
1−Γγ̇ , taking Γγ̇ ≪ 1, so that higher order terms can be neglected in the

formulation, is shown in (2.4).

1

1− Γγ̇
=

∞∑
n=0

(Γγ̇)n = 1 + Γγ̇ + (Γγ̇)2 + · · · (2.4)

From (2.4), neglecting higher order terms, the extra stress tensor for a pseudoplastic fluid can be ap-
proximated by (2.5).

S ≈ µ0(1 + Γγ̇)A1 (2.5)
Following the above constraints, formulation and the work of [9], the governing equations for the
model considered are outlined in (2.6)-(2.10).

∂u

∂r
+

u

r
+

∂w

∂z
= 0 (2.6)

u
∂u

∂r
+ w

∂u

∂z
=

µ

ρ

∂2u

∂z2
+ Γν

(
∂u

∂z

)(
∂2u

∂z2

)
+ g(βt(T − T∞)− γw△ρn)− σB2

0

ρ
u (2.7)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρCp

∂2T

∂z2
+ τ

[
DB

∂C

∂z

∂T

∂z
+

DT

T∞

(
∂T

∂z

)
− 1

ρCp

∂qr
∂z

+

]
+

σB2
0

ρCp
u2 (2.8)

u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+

DT

T∞

∂2T

∂z2
− k1(C − C∞) (2.9)

u
∂n

∂r
+ w

∂n

∂z
= Dm

∂2n

∂z2
− bwc

Cw − C∞

∂

∂z

(
n
∂C

∂z

)
(2.10)

The boundary conditions for the governing equations are [1]:

u(r, z) = Uw(r) +A
∂u

∂z
, w(r, z) = 0, −k

∂T

∂y
= hf (Tf − T ), C = Cw n = nw, at z = 0

u(r, z) → 0; w → 0; T → T∞, C → C∞, as z → ∞. n → n∞, as z → ∞ (2.11)
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In (2.6), qr is the Rosseland radiative heat flux and is defined in (2), where σ∗ is the Steffen-Boltzmann
constant and k∗ is the mean absorption coefficient.

qr = −4σ∗

k∗
∂T 4

∂r
(2.12)

Assuming the difference between the temperature value close to the boundary (T ) and far away from
the boundary (T∞) is small, T 4 in (2) is linearized using Taylor series about T∞ as shown in (2). In (2.6),
n represents the density of motile microorganisms, b is the chemotaxis constant, wc is the maximum
speed of microorganism in the fluid, Dm is the microorganism diffusion coefficient, bwc

Cw−C∞
∂C is the

velocity related to microorganism swimming.

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞) +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 + · · · (2.13)

The acceleration due to gravity is denoted with g in the momentum equation ((2.6)), u,w are the
velocity components of the flow along the r and z directions, respectively, T is the temperature, C is
the nanoparticles volume fraction, Γ is is a time constant,

βT is the coefficient of thermal expansion, △ρ is the density difference between a cell and fluid,
T∞ is reference temperature, C∞, n∞ is the reference concentration of nanoparticles and reference
concentration of the microorganisms, respectively, DT and BD are the coefficient of thermophoretic
diffusion and Brownian diffusion, respectively, τ =

(ρc)p
(ρc)f

is the ratio of heat capacity of nanofluid to
base fluid, σ is electric conductivity and B0 is a constant Magnetic field.
The governing partial differential equations are then transformed into a system of ordinary differential
equations (2.17)-(2.18) using the similarity variables (2).

u(r, z) = arf ′(η), w(r, z) = −2
√
aνf(η), T − T∞ = θ(Tf − T∞),

C − C∞ = ϕ(Cw − C∞), n− n∞ = χ(nw − n∞), η =

√
a

nu
z (2.14)

f ′′′ (1 +Wef ′′)+ ff ′′ − f ′2 + λ(θ −Rabχ)−Mf = 0 (2.15)

1

Pr

(
1 +

4

3
Rd

)
θ′′ +Nbϕ

′θ′ +Ntθ
′2 + 2fθ′ = 0 (2.16)

ϕ′′ + 2LePrfϕ′ +
Nt

Nb
θ′′ − LeKϕ = 0 (2.17)

χ′′ + Sbχ
′f ′ − Peχ′ϕ′Pe(χ−B)ϕ′ = 0 (2.18)

Following the transformation of PDE’s to ODE’s above, the boundary conditions become (see Equations
19):

f = 0, f ′ = 1 + γf ′′, θ′ = −Bt(1− θ), ϕ = 1, χ = 1, at η = 0

f ′ → 0, θ → 0, ϕ → 0, χ → 0, as η → ∞. (2.19)

Referring to the system ODE’s and the associated boundary conditions above, λ =
Gr(r)

Rer
is mixed

convection parameter, Gr(r) = (gβt(Tf − T∞)r3)/ν2 is local Grashoff number, Rer = aUw/ν is local
Reynolds number, M = σB2

0/aρ is magnetic parameter, Rd = 4σ∗T 3
∞/kk∗ is radiation parameter,

K = k/αa is chemical reaction parameter, Pe = bWe/Dn is Peclet number, Sb = ν/Dn is the
Schmidt number, Nt = τDT (Tf − T∞)/T∞ν is thermophoresis parameter, Nb = τDB(Cw − C∞) is
Brownian motion,Bt =

a
νhf is Biot number, γ = A

√
aν is first order slip.
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Physical quantities of engineering interest considered in this study are, the skin friction (Cf ), the Nus-
selt number (Nu) and the Sherwood number (Sh), defined as shown in (2), where τwr , qw and jm are
expressed in (2).

Cf =
τwr

1
2ρ(ar)

2
, Nur =

qw
k(Tf − T∞)

, Shr =
jm

Cw − C∞
(2.20)

where;

τwr = µ

[
∂u

∂z
+

Γ√
2

(
∂u

∂z

)2]
z=0

, qw = −k

(
∂T

∂z

)
z=0

, jm = −DB

(
∂C

∂z

)
z=0

(2.21)

Using (2) the dimensionless form of skin friction, local Nusselt number, local Sherwood number become
(see (2.22)):

CfRe1/2r = 2

(
1 +

We

2
f ′′(0))f ′′(0)

)
, NurRe−1/2

r = −θ′(0), ShrRe−1/2
r = −ϕ′(0) (2.22)

3. Implementation of the numerical method

Numerical solutions were then found using the overlapping grid multidomain spectral quasilineariza-
tion method, which was developed byMkhatshwaM. P. [15]. The solution algorithm of the overlapping
grid multidomain spectral quasilinearization method utilizes the following ideas that are prominent in
numerical approximation of solution: quasilinearisation method (QLM), spectral collocation, multido-
main overlapping grid and Lagrange interpolation polynomials with Gauss-Lobatto discretization. Es-
sentially, the overlapping grid spectral quasilinearization method is dividing the domain of integration
([0, η∞]), into finite overlapping subintervals of equal length as shown in Figure 2 [15]. As shown in
this figure, the domain of integration is divided into p ∈ N subintervals, with each subinterval further
discretized into Nη + 1 collocation points. The spectral quasilinearization method (SQLM) [18] is then
applied in each subinterval, with the approximate solution(s) of a previous subinterval set as starting
values for SQLM iterations in the next interval. Below, the system of nondimensional differential equa-
tions, as well as the boundary conditions, are conveniently written with subscripts l (see (3.1)-(3.4)),
which denotes a subinterval, in order to provide some main steps of the numerical method as applied
in this present study. For rigorous details and background on this method, reference is made to [15].

Figure 2. Overlapping grid [15].

f ′′′
l +Wef ′′

l f
′′′
l + 2flf

′′
l − f ′2

l + λ [θ −Nrϕ−Rbχ]−Mf ′
l = 0 (3.1)

θ′′l + PrNbθ′lϕ
′
l + PrNtθ′

2

l + 2Prflθ
′
l +Rdθ′′l = 0 (3.2)

ϕ′′
l + 2LePrflϕ

′
l +

Nt

Nb
θ′′l − LeKϕl = 0 (3.3)
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χ′′
l + Sbχlfl − Peχ′

lϕ
′
l − Pe [χl +B]ϕ′

l = 0 (3.4)
The boundary conditions for (3.1)-(3.4) then become

fl(η) = 0, f ′
l (η) = 1 + γf ′′

l , θ′l(η) = −Bt (1− θl(η)) ,

ϕl(η) = χl(η) = 1 at η = 0

f ′
l (η) → 0, θl(η) → 0, ϕl(η) → 0,

χl(η) → 0, as η → ∞.

(3.5)

3.1. Implementation of the overlapping gridmultidomian spectral quasilinearizationmethod.
Using the QLM scheme, the linearized form of (3.1)-(3.4) is shown below (3.6).

a
(3,l)
1,1 f ′′′

l(r+1) + a
(2,l)
1,1 f ′′

l(r+1) + a
(1,l)
1,1 f ′

l(r+1)

+a
(0,l)
1,1 fl(r+1) + a

(0,l)
1,2 θl(r+1) + a

(0,l)
13 ϕl(r+1) + a

(0,l)
14 χl(r+1) = R1,l

a
(2,l)
2,2 θ′′l(r+1) + a

(1,l)
2,2 θ′l(r+1) + a

(1,l)
2,3 ϕ′

l(r+1) + a
(0,l)
2,1 fl(r+1) = R2,l

a
(2,l)
3,3 ϕ′′

l(r+1) + a
(1,l)
3,3 ϕ′

l(r+1) + a
(0,l)
3,1 fl(r+1) + a

(2,l)
3,2 θ′′l(r+1) + a

(0,l)
3,3 ϕl(r+1) = R3,l

a
(2,l)
4,4 χ′′

l(r+1) + a
(1,l)
4,4 χ′

l(r+1) + a
(0,l)
4,4 χl(r+1) + a

(0,l)
4,1 fl(r+1) + a

(1,l)
4,3 ϕ′

l(r+1) = R4,l



(3.6)

Following from the spectral quasilinearization method technique [18], the variable coefficients, as well
as the boundary conditions, are written in accordance with the overlapping grid OGMDSQLM notation
in (3.1), respectively.

a
(3,l)
1,1 = 1 +Wef ′′

lr,

a
(2,l)
1,1 = Wef ′′′

lr + 2flr, a
(1,l)
1,1 = −2f ′

lr, a
(0,l)
1,1 = 2f ′′

lr,

a
(0,l)
1,2 = λ, a

(0,l)
1,3 = −λNr, a

(0,l)
1,4 = −λRb, a

(2,l)
2,2 = 1 +Rd,

a
(1,l)
2,2 = PrNbϕ′

lr + 2PrNtθ′lr + 2Prflr,

a
(1,l)
2,3 = PrNbθ′lr, a

(0,l)
2,1 = 2Prθ′lr, a

(2,l)
3,3 = 1,

a
(1,l)
3,3 = 2LePrflr, a

(0,l)
3,1 = 2LePrϕ′

lr, a
(2,l)
3,2 =

Nt

Nb
,

a
(0,l)
3,3 = −LeK, a

(2,l)
4,4 = 1,

a
(1,l)
4,4 = −Peϕ′

lr,

a
(0,l)
4,4 = Sbflr − Peϕ′

lr,

a
(0,l)
4,1 = Sbχlr, a

(1,l)
4,3 = −Peχ′

lr − Peχlr − PeB



(3.7)

The boundary conditions now become;
fl(r+1) = 0, f ′

l(r+1) = 1 + γf ′′
l(r+1), θ

′
l(r+1) = −Bt

(
1− θl(r+1)

)
,

ϕl(r+1) = χl(r+1) = 1 at η = 0

f ′
l(r+1) → 0, θl(r+1) → 0, ϕl(r+1) → 0,

χl(r+1) → 0, as η → ∞

 (3.8)
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Applying the Chebyshev differentiation matrix to the linearized system of equations, we write (3.1)
compactly as shown in (3.8) which can further be written as a matrix equation in (3.1). The elements of
the coefficient matrix are listed in (3.1).



[
a
(3,l)
1,1 D3 + a

(2,l)
1,1 D2 + a

(1,l)
1,1 D+ a

(0,l)
1,1 I

]
Fl(r+1)+

a
(0,l)
1,2 IΘl(r+1) + a

(0,l
1,3 IΦl(r+1)

+a
(0,l)
1,4 Iχl(r+1) = R1,l

[
a
(2,l)
2,2 D2 + a

(1,l)
2,2 D

]
Θl(r+1) + a

(1,l)
2,3 DΦl(r+1)+

a
(0,l)
2,1 IFl(r+1) = R2,l

[
a
(2,l)
3,3 D2 + a

(1,l)
3,3 D+ a

(0,l)
3,3 I

]
Φl(r+1) + a

(0,l)
3,1 IFl(r+1)+

a
(2,l)
3,2 D2Θl(r+1) = R3,l

[
α
(2,l)
4,4 D2 + α

(1,l)
4,4 D+ α

(0,l)
4,4 I

]
χl(r+1) + α

(2,l)
4,3 D2Θl(r+1)+[

α
(1,l)
4,1 D+ α

(0,l)
4,1 I

]
Fl(r+1) = R4,l



(3.9)


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



Fl
r+1

Θl
r+1

Φl
r+1

χl
r+1

 =


Rl

1

Rl
2

Rl
3

Rl
4

 (3.10)

A11 =
[
a
(3,l)
1,1 D3 + a

(2,l)
1,1 D2 + a

(1,l)
1,1 D+ a

(0,l)
1,1 I

]
,

A12 = a
(0,l)
1,2 I, A13 = a

(0,l
1,3 I, A14 = a

(0,l)
1,4 I,

A21 = a
(0,l)
2,1 I, A22 =

[
a
(2,l)
2,2 D2 + a

(1,l)
2,2 D

]
,

A23 = a
(1,l)
2,3 D, A24 = 0

A31 = a
(0,l)
3,1 I, A32 = a

(2,l)
3,2 D2,

A33 =
[
a
(2,l)
3,3 D2 + a

(1,l)
3,3 D+ a

(0,l)
3,3 I

]
, A34 = 0

A41 =
[
α
(1,l)
4,1 D+ α

(0,l)
4,1 I

]
,

A42 = 0, A43 = α
(2,l)
4,3 D2, A44 =

[
α
(2,l)
4,4 D2 + α

(1)
4,4D+ α

(0,l)
4,4 I

]

(3.11)
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Applying the pseudospectral method [15] at the boundaries, (3.1) is the result.

fr+1(zNη) = 0,

Nη∑
j=0

DN,jfj(r+1) = 1 + γ

Nη∑
j=0

D2
N,jfj(r+1),

Nη∑
j=0

DN,jθj(r+1) = −Bt(1− θ), ϕ(zNη) = χ(zNη) = 1 at η = 0

Nη∑
j=0

D0,jfj(r+1)(z0) → 0, θj(r+1)(z0) → 0,

ϕj(r+1)(z0) → 0, χj(r+1)(z0) → 0, as η → ∞



(3.12)

The matrix in (3.1) is solved iteratively on MATLAB, with the boundary conditions implemented ac-
cordingly, in the first and last rows of the diagonal sub-matrices, A11, A22, A33 and A44. In order to
begin the iteration, the initial solutions approximations are chosen such that they satisfy the boundary
conditions of the problem (see (3.1)).

f0(η) =
1− exp(−η)

1 + γ

θ0(η) =
Bt(exp(−η))

1 +Bt
ϕ0(η) = exp(−η)

χ0(η) = exp(−η)

(3.13)

4. Results and discussion

To verify our numerical scheme results are compared with previously published paper. The results
are found in an excellent agreement and presented in Table 1.

Table 1. Comparison of results for -θ′(0) and −ϕ′(0) with previous published works
for: Nr = We = γ = Nt = λ = Rb = Rd = Pe = 0;Pr = 1;Nt = Nb =
0.1;Bt = 0.5

−θ′(0) −ϕ′(0)
Le Mustafa et al.[19] Present results Mustafa et al. [19] Present results
0.4 0.310557 0.31055736 0.193614 0.19361505
2 0.305905 0.30590476 1.160300 1.16030084
10 0.303021 0.30302120 3.222890 3.22288667

4.1. Effect of We. The effect of the Williamson parameter (We) on the velocity (f ′(η)) and temper-
ature (θ(η)) profiles was studied and the results are shown in Figure 3 and 4, respectively. Figure 3
depicts a decrease in the velocity profile as well as the momentum boundary layer thickness with in-
crease in We. The Williamson parameter is a measure of the time fluid particles take to revert to their
original configuration following a disturbance by some force [34]. Therefore, when theWe is increased,
the viscosity of the fluid also increases, hence the observed decrease in the fluid velocity and the mo-
mentum boundary layer thickness shrinking shown in Figure 3. In Figure 4, the temperature profile
follows an increasing trend as the Williamson parameter is augmented. The increase in the viscosity
of the fluid produces drag that causes the nanoparticles and the overall fluid to accumulate near the
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Figure 3. Effect ofWe on f ′(η).
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Figure 5. Effect ofWe on ϕ(η)
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Figure 6. Effect ofWe on χ(η)

boundary layer. Since in the vicinity of the boundary layer the temperature is higher than the ambient
temperature, the fluid temperature rises as observed in Figure 4. Figures 5 and 6 show the effect of
the Williamson parameter on the concentration of nanoparticles (ϕ(η)) and gyrotactic microorganisms
(χ(η)), respectively. It can be seen in these figures that a rise in the value of theWe causes the nanopar-
ticle and microorganisms concentration profiles to grow. As mentioned earlier, increasing the value of
the We has the effect of inducing more drag within the fluid. This drag force makes the nanoparticles
as well as the microorganisms to saturate in the boundary layer.

4.2. Effect of Nt. Variation of the thermophoresis parameter (Nt) with temperature, nanoparticle
concentration, velocity and concentration of microorganisms profiles is depicted in Figures 7, 8, 9 and
10, respectively. Thermophoresis refers to the movement of particles down a temperature gradient
(that is, movement of particles from a hot surface to a cold surface) [21]. Figures 7, 8 and 10 depict
increasing trends for the temperature, concentration of nanoparticles and concentration of gyrotactic
microorganisms profiles, respectively, as the thermophoresis parameter is increased. On a physical
perspective, the growing temperature gradient forces particulate matter in the fluid to migrate away
from the hotter surface to colder ambient environment. The decrease in velocity profile in Figure 9 as
the thermophoresis parameter is increased may be due to, the thermophoretic force enhancing random
motion and collisions of nanoparticles and microorganisms, thus introducing additional drag in the
fluid, which leads to the reduction of the overall fluid velocity.

4.3. Effect of Nb. Brownian motion describes the random motion of particles and or matter, often
accompanied by collisions, which are also random. In this present numerical study of the Williamson
nanofluid, Brownian motion is represented by the parameter Nb in the model equations. The effect of
Nb on the concentration of nanoparticles, concentration of microorganisms, velocity and temperature
profiles is shown in Figures 11-14. As the value of Nb is increased, the concentration distribution of
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Figure 7. Effect of Nt on θ(η).
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Figure 8. Effect of Nt on ϕ(η).

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

f
′
(η
)

 

 

0.01

1.5

2

3

Nt
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Figure 10. Effect of Nt on χ(η)

nanoparticles and concentration of microorganisms profiles decreases (see Figures 11 and 12, respec-
tively). This observed trend on the concentration of nanoparticles and concentration of microorganisms
is caused by enhancement of random motion and subsequent collisions amongst nanoparticles and mi-
croorganisms as Nb is increased [35]. Furthermore, the enhanced random motion of particles slightly
accelerates the fluid near the boundary layer (see Figure 13). It can be seen in Figure 14 of this present
study that the thermal profile increases with an increase in the Brownian motion parameter, which is
not in agreement with most studies. In addition to recent numerical models (momentum, temperature
and concentration of nanoparticles equations) on MHD flow of Williamson nanofluid over a stretching
sheet, this present study includes conservation of microorganisms in fluid model equations (see (2.6)).

4.4. Slips effect. Following consideration of the effects of velocity and temperature slips (γ and Bt
(Biot number), respectively) on the velocity and temperature proles, Figures 15 and 16 are displayed.
Figure 15 portrays a decreasing velocity, as well as the boundary layer as γ is increased. The rising value
of the first order slip parameter (γ) introduces some drag (friction) on the fluid flow. This frictional force
in turn pushes more fluid to flow past the surface, thus retardation of the fluid flow. On another note, we
found that the temperature profile and the thermal boundary layer thickness increase asBt is increased
(see Figure 16). Physically, this means, the fluid’s convective heat transfer at the surface improves with
increasing Bt.

4.5. Effect of Rd. The distributions of the temperature, concentration of nanoparticles, velocity and
concentration of microorganisms, with variation of the radiation parameter (Rd) are depicted in Fig-
ures 17-20, respectively. For prescribed values of the ambient fluid temperature (T∞) and radiation
absorptivity (k) in the expression of the radiation parameter (Rd = 4σ∗T 3

∞
kk∗ ), implies a decrease in the

k∗ (the Rosseland radiation absorptivity). This decrease in k∗ causes the divergence of the radiative
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Figure 11. Effect of Nb on ϕ(η).
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Figure 12. Effect of Nb on χ(η).
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Figure 13. Effect of Nb on f ′(η)
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Figure 14. Effect of Nb on θ(η)
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Figure 15. Effect of γ on f ′(η).
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Figure 16. Effect of Bt on θ(η).

heat flux (qr) to increase, hence the observed growth in the temperature profile and the thermal bound-
ary layer in Figure 4.30, as the radiation parameter is increased. Furthermore, this additional heat into
the fluid (in the form of radiative heat flux), enhances the buoyancy force, which in turn leads to the
acceleration of the fluid and expansion of the velocity boundary layer as shown in Figure 17. Both
the nanoparticles concentration and concentration of microorganisms profiles (see Figures 18 and 20,
respectively) decreased with augmentation of the radiation parameter, owing to thermophoretic forces
escalating the random motion of particulate matter (nanoparticles and microorganisms) in the fluid.

Effect ofK. A graphic description of the effect of the chemical reaction parameter (K) on the concen-
tration of nanoparticles and concentration of microorganisms profiles is presented in Figures 21 and 22,
respectively. As shown in these figures, all the flow profiles and their boundary layer thicknesses depict
a decreasing trend when the destructive chemical reaction parameter (K > 0) is increased. An increase
in the chemical reaction parameter means the particulate matter (nanoparticles and microorganisms)
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Figure 18. Effect of Rd on ϕ(η).
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Figure 19. Effect of Rd on f ′(η)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

η

χ
(η
)

 

 

0

1

3

5

Rd

Figure 20. Effect of Rd on χ(η)
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Figure 21. Effect ofK on ϕ(η).
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Figure 22. Effect ofK on χ(η).

in the fluid decreases as it undergoes chemical transformation, hence the suppression of the concen-
tration profile (ϕ(η)) and concentration of microorganisms (χ(η)), as well as the associated boundary
layer thicknesses (see Figures 21 and 22, respectively).

4.6. Numerical values for the local skin friction (Cf ), local Nusselt number (−θ′(0)) and local
Sherwood number (−ϕ′(0)). Calculations ofCf ,−θ′(0) and−ϕ′(0) for varying values ofRd,K and
λ are displayed in Table 1. In view of the tabular results, the local Nusselt number decreases when the
values of Rd and λ are augmented, while a direct proportion is observed with K . The skin friction
decreases with a rise in the values ofRd andK , while it increases with the growing values of λ. When
the values ofRd andK are engorged, the local Sherwood number increased in value. A declining trend
on the local Sherwood number is observed for augmentation of λ values.



44 T. N. KHUMALO, M. S. AYANO, AND V. M. MAGAGULA

Table 2. Numerical values for the skin friction, local Nusselt number and local Sher-
wood number forRb = 0.6 ; Sb = 4;B = 2; γ = 0.1;We = 0.2;Nr = 0.6;Nb = 0.4;
Nt = 0.2; Bt = 0.2; Le = 2; M = 0.5; Pr = 0.71; Pe = 0.5;

Rd K λ Cf −θ′(0) −ϕ′(0)

0.2 0.1 0.5 2.40432 0.13267 0.97768
0.5 0.1 0.5 2.39258 0.12782 0.99170
0.8 0.1 0.5 2.38301 0.12373 1.00288
0.6 0.2 0.5 2.38485 0.12672 1.10388
0.6 0.4 0.5 2.37861 0.12713 1.28735
0.6 0.7 0.5 2.37228 0.12746 1.51542
0.6 0.1 0.3 2.35499 0.12684 1.00804
0.6 0.1 0.5 2.38919 0.12639 0.99568
0.6 0.1 0.8 2.44749 0.12535 0.97393

5. Conclusion

A steady, incompressible Williamson nanofluid with suspension of gyrotactic microorganisms on a
non-porous radially stretching sheet under the influence of a magnetic field has been studied. Follow-
ing similarity transformations, the coupled system of governing nonlinear partial differential equations
was reduced to a system of nonlinear ordinary differential equations. The effects of various parameters
on velocities, temperature, concentration, and density of motile microorganisms were studied graphi-
cally. In addition, engineering insights were examined by computations of numerical values of the local
skin friction, local Nusselt number and local Sherwood number and presented in tabular format. The
highlights of the study are:

• The velocity decreases with rise in values of the Williamson parameter.
• The skin friction increases as the values of Williamson parameter and mixed convection param-
eter increase.

• The temperature increases with the rise in values of radiation and Williamson parameters.
• Increasing the destructive chemical reaction parameter reduces the concentration of nanopar-
ticles and gyrotactic microorganisms.

• A rise in the value of the first order slip parameter augments the gyrotactic microorganisms
concentration.

• The local Nusselt number decreases when the values of radiation parameter (Rd) and mixed
convection parameter (λ) are augmented, while it increases with the chemical reaction param-
eter (K).

• The skin friction decreases with a rise in the values of Rd and K , while it increases with the
growing values of λ.

• When the values of Rd andK are engorged, the local Sherwood number increased in value.
• A declining trend on the local Sherwood number is observed for augmentation of λ values.
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