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Abstract. In this paper, a new class of mapping that unifies various classes of mappings associated
with the class of asymptotically nonexpansive mappings is introduced. In addition, an iterative technique
for approximation of fixed points of this class of mappings is introduced and studied in the setting of
uniformly convex real Banach space. Moreover, Demiclosedness principle for the class of mapping under
study is proved; in addition, weak and strong convergence theorems are obtained. The theorems obtained
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used is of independent interest.
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1. Introduction

A lot of work cum research had been carried out (in recent past) on several classes of mappings that
are intimateely connected with the class of nonexpansive mappings and asymptotically nonexpansive
mappings (see, for example, Goebel and Kirk [12], Bruck et al. [4], Sahu [20], Alber et al. [1], Rhoades
and Temir [15], Chidume, Ofoedu and Zegeye [11], Mukhamedov and Saburov [14], Ofoedu and Madu
[16] and the references therein).

Motivated by the reseacrh of the authors mentioned above, it is our aim in this paper to study an
approximation method for approximate solution of nonlinear equations involving a new class of S-
generalized asymptoitcally nonexpansive mappings in the setting of uniformly convex real Banach
spaces. Demiclossedness principle for this class of mappings is obtained; weak and strong convergence
theorems are established under some mild conditions on iterative parameters. The results obtained
augment and unify several results in the literature.

This paper is organized as follows: in Section 2, preliminaries and a clear problem statement are pro-
vided; several definitions and explanation of concepts are presented. Demiclosedness Principle for the
new class of mapping introduced is proved. Several Lemmas that aided the establishment of the main
results obtained in this paper are presented. In Section 3, the main results of this research are presented,
and this section is broken into four subsections for sequential flow of the results obtained. Sections 4
shall take care of conclusion; followed by Declarations of conflict of interest and acknowledgments.
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2. Preliminaries

In order to put things in the right perspective, we shall commence with the following definitions and
explanation of terms and concepts that shall be encountered in the sequel:

Let E be a real normed linear space, let T : D(T ) ⊆ E → R(T ) ⊆ E be a mapping, a point
x ∈ D(T ) is called a fixed point of T if and only if Tx = x. The set of all fixed points of a mapping T
is denoted by F (T ). Thus, F (T ) = {u ∈ D(T ) : Tu = u}
A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is called a contraction if and only if there exists a constant
k ∈ [0, 1) such that for all x, y ∈ D(T ),

∥Tx− Ty∥ ≤ k∥x− y∥.

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is called nonexpansive if and only if for all x, y ∈ D(T ),

∥Tx− Ty∥ ≤ ∥x− y∥.

It is well known that every contraction is nonexpansive, but the converse is however not the case.
A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is said to be Lipschitz if and only if there exists a constant

L > 0 such that for all x, y ∈ D(T ),

∥Tx− Ty∥ ≤ L∥x− y∥.

It is easy to see that every nonexpansive mapping is Lipschitz with Lipschitz constant L = 1. Some
authors usually refer to Lipschitz mappings as L-Lipschitzian mappings (see, for example, Goebel and
Kirk [12], Chidume and Zegeye [11], Ofoedu [15].

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is said to be uniformly L-Lipschitzian if and only if
there exists a constant L > 0 such that for all x, y ∈ D(T ), ∀n ≥ 1,

∥Tnx− Tny∥ ≤ L∥x− y∥.

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is said to be asymptotically nonexpansive [12] if there
exists a sequence {kn}n≥1 ⊂ [0,∞) with lim

n→∞
kn = 1 such that for all x, y ∈ D(T ), ∀ n ≥ 1

∥Tnx− Tny∥ ≤ kn∥x− y∥.

Every asymptotically nonexpansive mapping is uniformly L- Lipschitzian thus, L- Lipschitzian and
continuous. Every nonexpansive mapping is asymptotically nonexpansive.

The following example shows that the class of asymptotically nonexpansive mappings is larger than
that of nonexpansive mappings:

Example 2.1. (Goebel andKirk, [12]). LetC denote the unit ball of the space l2 := {x = (x1, x2, x3, · · · ) :
xi ∈ R,

∞∑
n=1

|xi|2 < ∞} endowed with the norm , ∥.∥l2 giving by ∥x∥l2 = (
∞∑
n=1

|xi|2)
1
2 and let

T : C → C be defined by T (x1, x2, x3, · · · ) = (0, x21, a2x2, a3x3, · · · ) for all (x1, x2, x3, · · · ) ∈ C ,

where {ai}i≥ 1 is a sequence of numbers in (0, 1) and
∞∏
i=2

ai =
1

2
. Then, T is a Lipschitz mapping,

asymptotically nonexpansive but is not nonexpansive.

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is called nearly Lipschitzian [20] if ∀n ∈ N, there exist
an, kn ∈ [0,∞) with lim

n→∞
an = 0 such that ∀x, y ∈ D(T ), ∀n ∈ N,

∥Tnx− Tny∥ ≤ kn
(
∥x− y∥+ an

)
. (2.1)
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Now, define
η(Tn) := sup

(∥Tnx− Tny∥
∥x− y∥+ an

: x, y ∈ K,x ̸= y
)

(2.2)

Observe that for any sequence {kn}n≥1 satisfying (2.1), η(Tn) ≤ kn for all n ∈ N and that

∥Tnx− Tny∥ ≤ η(Tn)
(
∥x− y∥+ an

)
∀x, y ∈ K,n ∈ N (2.3)

η(Tn) is called the nearly Lipschitzian constant. A nearly Lipschitzian mapping T is called
(i) nearly contraction if η(Tn) < 1 for all n ∈ N.
(ii) nearly nonexpansive if η(Tn) = 1 for all n ∈ N.
(iii) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and lim

n→∞
η(Tn) = 1.

(iv) nearly uniform L-Lipschitzian if there exists L ≥ 0 such that ∀n ∈ N, η(Tn) ≤ L.
(v) nearly uniform K-contraction if there exists k ∈ [0,∞) such that ∀n ∈ N, η(Tn) ≤ k.

Remark 2.1. If D(T ) is a bounded domain of an asymptotically nonexpansive mapping T , then T is
nearly nonexpansive. In fact, for all x, y ∈ D(T ) and n ∈ N, we have that

∥Tnx− Tny∥ ≤ (1 + µn)∥x− y∥
= ∥x− y∥+ un∥x− y∥

≤ ∥x− y∥+ diam
(
D(T )

)
µn

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is said to be asymptotically nonexpansive in the
intermediate sense [4] if it is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈D(T )

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0. (2.4)

Remark 2.2. Observe that if we define
an := sup

x,y∈D(T )
(∥Tnx− Tny∥ − ∥x− y∥), σn := max{0, an}

then, σn → 0 as n → ∞ and (2.4) reduces to
∥Tnx− Tny∥ ≤ ∥x− y∥+ σn,∀x, y ∈ D(T ), n ≥ 1,

which gives us nearly asymptotically nonexpansivemappingwith constant sequence {kn}n≥1 = {1}n≥1.

Remark 2.3. IfD(T ) is a bounded domain of a nearly asymptotically nonexpansive mapping T , then
T is asymptotically nonexpansive in the intermediate sense. To see this, let T be a nearly asymptotically
nonexpansive mapping with a bounded domain D(T ). Then,∀x, y ∈ D(T ), n ∈ N

∥Tnx− Tny∥ ≤ η(Tn)
(
∥x− y∥+ an

)
,

which implies that ∀n ≥ 1,
sup

x,y∈K
(∥Tnx− Tny∥ − ∥x− y∥) ≤ (η(Tn)− 1)diam(K) + η(Tn)an,

Hence,
lim sup
n→∞

sup
x,y∈K

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0.

Furthermore, we easily observe that every nearly nonexpansive mapping is nearly asymptotically non-
expansive with η(Tn) ≡ 1 for all n ∈ N.We observe from Remarks (2.1) and (2.3) that the classes
of nearly nonexpansive mappings and nearly asymptotically nonexpansive mappings are intermediate
classes between the class of asymptotically nonexpansive mappings and that of asymptotically nonex-
pansive in the intermediate sense mappings.
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Amapping T : D(T ) ⊆ E → R(T ) ⊆ E is called total asymptotically nonexpansive [15] if and
only if there exists a sequences {µn}n≥1, {ιn}n≥1 ⊂ [0,∞) with lim

n→∞
µn = 0 = lim

n→∞
ιn and a strictly

increasing continuous functionϕ : [0,∞) → [0,∞)withϕ(0) = 0 such that for all x, y ∈ D(T ),n ≥ 1,
we have

∥Tnx− Tny∥ ≤ ∥x− y∥+ µnϕ(∥x− y∥) + ιn (2.5)
If in (2.5), ιn = 0 for alln ≥ 1,andϕ : [0,∞) → [0,∞) is the identitymap, then the total asymptotically
nonexpansive mappings coincide with asymptotically nonexpansive mappings.

If µn = 0 and ιn = 0 for all n ≥ 1, we obtain from (2.5) the class of mappings that includes the class
of nonexpansive mappings, that is, we obtain the class of mappings satisfying

∥Tnx− Tny∥ ≤ ∥x− y∥

As observed by Chidume and Ofoedu [10], if ϕ is identity mapping, then (2.5) reduces to

∥Tnx− Tnx∥ ≤ (1 + µn)(∥x− y∥) + ιn (2.6)

Shahzad and Zegeye [24] called anymappings satisfying (2.6) generalized asymptotically nonexpansive
mapping.Thus, the class of generalized asymptotically nonexpansive mapping is a subclass of total
asymptotically nonexpansive mappings with ϕ(t) = t. If ∀ t ∈ [0,∞), ϕ(t) = 0, then (2.5) reduces to

∥Tnx− Tnx∥ ≤ ∥x− y∥+ ιn (2.7)

So that the class of total asymptotically nonexpansive mappings include the class of asymptotically
nonexpansive mappings in the intermediate sense.

A mapping T : D(T ) ⊆ E → R(T ) ⊆ E is called total asymptotically weakly contractive [20]
if and only if there exists sequences {µn}n≥1, {ιn}n≥1 ⊂ [0,∞) with lim

n→∞
µn = 0 = lim

n→∞
ιn and a

strictly increasing continuous functions Φ,Ψ : [0,∞) → [0,∞) with Φ(0) = 0 = Ψ(0) such that for
all x, y ∈ D(T ),n ≥ 1, we have

∥Tnx− Tny∥ ≤ ∥x− y∥+ µnΦ(∥x− y∥)−Ψ
(
∥x− y∥

)
+ ιn (2.8)

Let T : D(T ) ⊆ E → R(T ) ⊆ E and I : D(I) ⊆ E → R(I) ⊆ E be two mappings.The map T is
called I-nonexpansive [15] if and only if D(T ) ∩D(I) ̸= ∅ and ∀x, y ∈ D(T ) ∩D(S),

∥Tx− Ty∥ ≤ ∥Ix− Iy∥.

Let T : D(T ) ⊆ E → R(T ) ⊆ E and I : D(I) ⊆ E → R(I) ⊆ E be two mappings.The map T
is called asymptotically I- nonexpansive [23] if and only if D(T ) ∩ D(I) ̸= ∅ and there exists a
sequence {µn}∞n=1 ⊂ [0,∞)with lim

n→∞
µn = 0 such that for all x, y ∈ D(T )∩D(I), ∀ n ≥ 1, we have,

∥Tnx− Tny∥ ≤ (1 + µn)∥Inx− Iny∥.

Let T : D(T ) ⊆ E → R(T ) ⊆ E and I : D(I) ⊆ E → R(I) ⊆ E be two mappings.The map
T is called total asymptotically I-nonexpansive [14] if and only if D(T ) ∩ D(S) ̸= ∅ and there
exists a sequences {µn}n≥1, {ιn}n≥1 ⊂ [0,∞) with lim

n→∞
µn = 0 = lim

n→∞
ιn and a strictly increasing

continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that for all x, y ∈ D(T ), ∀n ≥ 1, we
have,

∥Tnx− Tnx∥ ≤ ∥Inx− Iny∥+ µnϕ(∥Inx− Iny∥) + ιn

We now define a new class of mapping studied in this paper.
Let T : D(T ) ⊆ E → R(T ) ⊆ E and S : D(S) ⊆ E → R(S) ⊆ E be two mappings.The

map T is called S−generalized asymptotically nonexpansive if and only if D(T ) ∩ D(S) ̸= ∅ and
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there exists real sequences {µn}∞n=1 and {λn}∞n=1 in [0,+∞) with lim
n→∞

µn = 0 = lim
n→∞

λn such that
∀x, y ∈ D(T ) ∩D(S), ∀n ∈ N,

∥Tnx− Tny∥ ≤ ∥x− y∥+ µn∥Snx− Sny∥+ λn (2.9)

Remark 2.1. If S = I , the identity map on D(T ) ∩D(S), then (2.9) reduces to

∥Tnx− Tny∥ ≤ (1 + µn)∥x− y∥+ λn

which is the class of generalized asymptotically nonexpansivemappings studied by Zegeye and Shahzad
[24].

Definition 2.1. Two mappings T, S : C → C are said to satisfy condition (B) if there is a nondecreasing
continuous function f : [0,+∞) → [0,+∞) with f(0) = 0, f(r) > 0, for all r ∈ [0,+∞) such
that 1

2(∥x − Tx∥ + ∥x − Sx∥) ≥ f(d(x, F )) for all x ∈ C , where d(x, F ) = inf{∥x − p∥ : p ∈ F =
F (T ) ∩ F (S)}.

Let C be a nonempty subset of a Banach space E. Let T be an S−generalized asymptotically non-
expansive and S a generalized asymptotically nonexpansive self-mappings of C . Let {αn}∞n=1 and
{βn}∞n=1 in [0, 1]. Let x1 ∈ C , then the sequence {xn}∞n=1 is generated as follows:

yn = (1− βn)xn + βnT
nxn

xn+1 = (1− αn)xn + αnS
nyn, n ≥ 1 (2.10)

The aim of this paper is to prove theweak and strong convergence of explicit iterative sequence {xn}∞n=1

defined by (2.10) to a fixed point S−generalized asymptotically nonexpansive mappings in Banach
space.

Definition 2.2. A mapping T : D(T ) ⊂ E → R(T ) ⊂ E is said to be demiclosed at u0 if for any se-
quence {xn}∞n=1 inD(T ) such that {xn}∞n=1 converges weakly to x0 ∈ D(T ) and {T (xn)}∞n=1 converges
strongly to u0, then Tx0 = u0. Thus, if u0 = 0, we say that T is demiclosed at 0.

Definition 2.3. Let T : D(T ) ⊂ E → R(T ) ⊂ E be a mapping. A sequence {xn}∞n=1 inD(T ) is called
an approximate fixed point sequence of the operator T if and only if

lim
n→∞

∥xn − Txn∥ = 0.

Definition 2.4. A function f : D(f) ⊂ E → R(f) ⊂ E is said to be lower semicontinuous at x0 ∈ D(f)
if and only if for any sequence {xn}∞n=1 in D(f) that converges to x0, we have that

f(x0) ≤ lim inf
n→∞

f(xn)

Definition 2.5. A function f is said to be weakly lower semicontinuous at u0 ∈ D(f) for any sequence
{un}∞n=1 in D(f) that converges weakly to u0, then

f(u0) ≤ lim inf
n→∞

f(un)

Definition 2.6. Recall that a Banach space E is said to satisfy Opial’s condition [7] if, for each sequence
{xn}∞n=1 in E, the condition xn ⇀ x implies that either

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥ ∀ x, y ∈ E with y ̸= x

or
lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥ ∀ x, y ∈ E with y ̸= x
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Definition 2.7. A Banach space E is said to satisfy the Generalized Gossez–Lami Dozo property (GGLD-
property) if

lim sup
n→∞

∥xn∥ < lim sup
m→∞

lim sup
n→∞

∥xm − xn∥

whenever {xn} is a weak null sequence which is not norm convergent.

Notation: If a sequence {xn}∞n=1 converges weakly to x∗ in E, we write xn ⇀ x∗ as n → ∞. If
{xn}∞n=1 converges strongly to x0 ∈ E, we write xn → x0 as n → ∞
In order to prove the main results of this paper, we need the following Lemmas:

Lemma 2.1. ([12]). Let {an}, {bn} and {σn} be sequences of nonnegative real sequences satisfying

the following conditions: ∀n ≥ 1, an+1 ≤ (1 + σn)an + bn. If
∞∑
n=1

σn < +∞ and
∞∑
n=1

bn < +∞, then

lim
n→∞

an exists.

Lemma 2.2. ([9]). Let C be a nonempty closed bounded convex subset of a uniformly convex Banach
space E and {αn} a sequence in [δ, 1− δ], for some δ ∈ (0, 1). Let {xn} and {yn} be two sequences in
C such that lim sup

n→∞
∥xn∥ ≤ k,

lim sup
n→∞

∥yn∥ ≤ k, and lim sup
n→∞

∥αxn + (1− α)yn∥ = k holds for some k ≥ 0.

Then lim
n→∞

∥xn − yn∥ = 0.

Lemma 2.3. Let C be a nonempty closed and convex subset of a reflexive real Banach space E with
Opial’s condition. Let T : C → C be a generalized asymptotically nonexpansive mapping. Suppose
{xn}∞n=1 is a sequence in C such that xn ⇀ x∗ for some x∗ ∈ C and ∀ m ∈ N xn − Tmxn →
0 as n → ∞, then Tnx∗ ⇀ x∗.

Proof. SinceT is generalized asymptotically nonexpansivemapping, then there exists sequences {µk}∞k=1

and {lk}∞k=1 with lim
k→∞

µk = lim
k→∞

lk = 0 such that ∀ k ∈ N,

∥T kxn − T kx∗∥ ≤ ∥xn − x∗∥+ µk∥xn − x∗∥+ lk. (2.11)

Since {xn}∞n=1 converges weakly to x∗, then {xn}∞n=1 is bounded; thus there exists M0 ≥ 0 such that
∀ n ∈ N, ∥xn − x∗∥ ≤ M0. So, we obtain from (2.11) that

∥T kxn − T kx∗∥ ≤ ∥xn − x∗∥+ µkM0 + lk. (2.12)

Since lim
k→∞

µk = lim
k→∞

lk = 0, then ∀ ε > 0, ∃ kε ∈ N such that ∀ k ≥ kε, µkM0 + lk < ε.

So, we obtain from (2.12) that ∀ k ≥ kε,

∥T kxn − T kx∗∥ ≤ ∥xn − x∗∥+ ε (2.13)

Now, consider the map f : E → R defined ∀ x ∈ E by f(x) = lim sup
n→∞

∥xn − x∥. If we assume

for contradiction that {Tnx∗}∞n=1 is not weakly convergent to x∗, then there exists a subsequence
{Tnjx∗}∞j=1 of {Tnx∗}∞n=1 such thatTnjx∗ ⇀ y ̸= x∗ as j → ∞. SinceE satisfies Opial’s condition,
we obtain that f(x∗) < f(y).
Thus, there exists ε0 > 0 such that 0 < ε0 < 1

2(f(y)− f(x∗)). For this ε0 > 0, we obtain from (2.13)
that there exists k0 ∈ N such that ∀ k ≥ k0,

∥T kxn − T kx∗∥ ≤ ∥xn − x∗∥+ ε0. (2.14)

By weakly-lower semi-continuity of f , we obtain that f(y) ≤ lim inf
j→∞

f(Tnjx∗).

Thus, there exists j0 ∈ N such that nj0 ≥ k0 and f(y) < f(Tnj0x∗) + ε0.
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But then

f(y) < f(Tnj0x∗) + ε0

= lim sup
n→∞

∥xn − Tnj0x∗∥+ ε0

≤ lim sup
n→∞

(∥xn − Tnj0xn∥+ ∥Tnj0xn − Tnj0x∗∥) + ε0

≤ lim sup
n→∞

∥xn − Tnj0xn∥+ lim sup
n→∞

∥Tnj0xn − Tnj0x∗∥+ ε0 (2.15)

Using the fact that lim
n→∞

∥xn − Tnj0xn∥ = 0, we obtain from (2.15) and (2.14) that

f(y) < lim sup
n→∞

∥Tnj0xn − Tnj0x∗∥+ ε0

≤ lim sup
n→∞

(∥xn − x∗∥+ ε0) + ε0

≤ lim sup
n→∞

∥xn − x∗∥+ 2ε0

= f(x∗) + 2ε0. (2.16)

But 0 < ε0 <
1
2(f(y)− f(x∗)). Thus, 2ε0 < f(y)− f(x∗). So, we obtain from (2.16) that

f(y) < f(x∗) + 2ε0

< f(x∗) + f(y)− f(x∗)

= f(y),

a contradiction. Thus, the conclusion of Lemma (2.3) holds. This completes the proof. □

Lemma 2.4. Let E be a reflexive real Banach space with GGLD and Opial’s condition. Suppose that
C, T, {xn}∞n=1 and x∗ are as in Lemma 2.3, then Tnx∗ → x∗ as n → ∞

Proof. Observe that from Lemma 2.3, Tnx∗ ⇀ x∗ as n → ∞. Suppose for contradiction that Tnx∗ ̸→
x∗ as n → ∞, thenα0 := lim inf

n→
∥Tnx∗−x∗∥ > 0; and byGGLD, 0 < α0 < lim sup

n→∞
lim sup
k→∞

∥Tnx∗−

T kx∗∥
Thus, there exists ε1 > 0 such that

α0 + ε1 < lim sup
n→∞

lim sup
k→∞

∥Tnx∗ − T kx∗∥. (2.17)

Moreover, since T is generalized asymptotically nonexpansive mapping and {Tnx∗}∞n=1 is bounded,
there exists M1 ≥ 0 and N0 ∈ N such that ∀ n ∈ N, ∥Tnx∗ − x∗∥ ≤ M1 and ∀ m ≥ N0,

∥Tmx∗ − Tm(Tnx∗)∥ ≤ ∥x∗ − Tnx∗∥+ ε1
2
. (2.18)

From (2.17), we can choose m∗ > N0 and a strictly increasing sequence {kj}∞j=0 in N such that
α0 + ε1 < ∥Tm∗

x∗ − T kjx∗∥ = ∥Tm∗
x∗ − Tm∗

(T kj−m∗
x∗)∥, so that using (2.18), we obtain that

∀ j ≥ 0

α0 + ε1 < ∥Tm∗
x∗ − Tm∗

(T kj−m∗x∗)∥

≤ ∥x∗ − T kj−m∗
x∗∥+ ε1

2
.
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Thus,

α0 + ε1 ≤ lim sup
j→∞

∥x∗ − T kj−m∗
x∗∥+ ε1

2

≤ lim sup
n→∞

∥x∗ − Tnx∗∥+ ε1
2

= α0 +
ε1
2
,

a contradiction. Hence, Tnx∗ → x∗ as n → ∞. □

Lemma 2.5. Suppose the condition of Lemma 2.4 hold and suppose that ∃ n0 ∈ N such that Tn0 is
continuous at x∗, then Tx∗ = x∗.

Proof. Since ∃ n0 ∈ N such that Tn0 is continuous at x∗, then Tn0+1 is also continuous at x∗. From
Lemma 2.4 we know that lim

n→∞
Tnx∗ = x∗.Thus, lim

n→∞
Tn0+nx∗ = x∗ = lim

n→∞
Tn0+1+nx∗.This implies

that
lim
n→∞

Tn0(Tnx∗) = x∗

and
lim
n→∞

Tn0+1(Tnx∗) = x∗,

so that by continuity of Tn0 and Tn0+1, we obtain that Tn0( lim
n→∞

Tnx∗) = x∗ = Tn0+1( lim
n→∞

Tnx∗).

Thus, Tn0x∗ = x∗ = Tn0+1x∗. This implies that Tx∗ = x∗.This completes the proof. □

Lemma 2.6. (Demiclosedness Principles) Let E be a reflexive real Banach space with GGLD and
Opial’s condition. Let C be a nonempty closed convex subset of E. Let T : C → C be a uniformly
continuous generalized asymptotically nonexpansive mapping, then I − T is demiclosed at 0, where I
is the identity mapping on E.

Proof. Let {xn}∞n=1 be a sequence in C such that xn ⇀ x∗(for some x∗ ∈ C) and
|xn−Txn∥ → 0 as n → ∞. We show that x∗−Tx∗ = 0. Since T is uniformly continuous, it follows
from the fact that lim

n→∞
∥xn − Txn∥ = 0 that for eachm ∈ N, xn − Tmxn → 0 as n → ∞.

But by Lemma 2.3, xn ⇀ x∗ and xn − Tmxn → 0 as n → ∞ implies that Tnx∗ ⇀ x∗ as n → ∞.
Thus, by Lemma 2.4, we obtain that Tnx∗ → x∗ as n → ∞.
Hence, by Lemma 2.5, we obtain that x∗ = Tx∗ ⇐⇒ x∗ − Tx∗ = 0.
So, I − T is demiclosed at 0. This completes the proof. □

Lemma 2.7. Let E be a reflexive real Banach space with GGLD and Opial’s condition. Let C be a
nonempty closed convex subset of E. Let T : C → C be a uniformly continuous S−generalized
asymptotically nonexpansive mapping. Suppose that S is generalized asymptotically nonexpansive
mapping, then I − T is demiclosed at 0.

Proof. Since T is S-generalized asymptotically nonexpansive mapping, then there exists two real se-
quences {µn}∞n=1 and {ln}∞n=1 with lim

n→∞
µn = lim

n→∞
ln = 0 such that ∀ x, y ∈ C, ∀ n ∈ N

∥Tnx− Tny∥ ≤ ∥x− y∥+ µn∥Snx− Sny∥+ ln; (2.19)

and since S is generalized asymptotically nonexpansive mapping, there exists two sequences {µ′
n}∞n=1

and {l′n}∞n=1 with lim
n→∞

µ′
n = 0 = lim

n→∞
l′n such that ∀ x, y ∈ C, ∀ n ∈ N

∥Snx− Sny∥ ≤ ∥x− y∥+ µ′
n∥x− y∥+ l′n (2.20)
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Using (2.20) in (2.20), we obtain that ∀ x, y ∈ C, ∀ n ∈ N,

∥Tnx− Tny∥ ≤ ∥x− y∥+ µn(∥x− y∥+ µ′
n∥x− y∥+ l′n) + ln

= ∥x− y∥+ (µn + µnµ
′
n)∥x− y∥+ µnl

′
n + ln

= ∥x− y∥+ αn∥x− y∥+ θn,

where αn = µn + µnµ
′
n → 0 and θn = µnl

′
n + ln → 0 as n → ∞. Thus, T is uniformly continuous

generalized asymptotically nonexpansive mapping.
Thus, by Lemma 2.6, I − T is demiclosed at 0. This completes the proof. □

Lemma 2.8. Let C be a nonempty subset of a real normed linear space E. Let T, S : C → C be two
continupus mappings, then F (T ) ∩ F (S) is closed.
Proof:

F = F (T ) ∩ F (S) = {x ∈ E : Tx = x, Sx = x}

IfF = ∅, then we are done since ∅ is closed. IfF ̸= ∅, then for any sequence {xn}∞n=1 ∈ F, T (xn) = xn
and S(xn) = xn. Thus, if xn → x∗ as n → ∞. then, lim

n→∞
xn = x∗.

lim
n→∞

xn = lim
n→∞

T (xn)

and

lim
n→∞

xn = lim
n→∞

S(xn)

By continuity of T and S, we obtain that

lim
n→∞

xn = T
(
lim
n→∞

xn
)

and

lim
n→∞

xn = S
(
lim
n→∞

xn
)

So,

x∗ = T (x∗) = S(x∗).

This implies that x∗ ∈ F . Hence, F (T ) ∩ F (S) is closed.

Lemma 2.9. Let E be a real normed linear space. Let S : D(S) ⊂ E → R(S) ⊂ E be a total asymp-
totically nonexpansive mapping with sequences {µn}∞n=1 ,{ιn}∞n=1 and gauge function φ : [0,∞) →
[0,∞). Suppose that there exists constants M0 > 0,M1 > 0 such that ∀ t > M0, φ(t) ≤ M1t, then S
is a generalized asymptotically nonexpansive mapping.

Proof: SinceS is total asymptotically nonexpansivewith sequences {µn}∞n=1 ,{ιn}∞n=1 andφ : [0,∞) →
[0,∞), then ∀x, y ∈ D(S),∀n ∈ N,

∥Snx− Sny∥ ≤ ∥x− y∥+ µnφ
(
∥x− y∥

)
+ ιn.

Since φ is continuous, then ∃M2 > 0 such that ∀ t ∈ [0,M0], φ(t) ≤ M2; and since ∀ t > M0, φ(t) ≤
M1t, then ∀ t ∈ [0,∞), φ(t) ≤ M2 +M1t.This implies that ∀x, y ∈ D(S),

φ
(
∥x− y∥

)
≤ M2 +M1∥x− y∥
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Thus, ∀n ∈ N,∀x, y ∈ D(S),

∥Snx− Sny∥ ≤ ∥x− y∥+ µnφ
(
∥x− y∥

)
+ ιn.

≤ ∥x− y∥+ µn

[
M2 +M1∥x− y∥

]
+ ιn

= ∥x− y∥+ µnM1∥x− y∥+ µnM2 + ιn

= (1 + µnM1)∥x− y∥+ µnM2 + ιn

= (1 + σn)∥x− y∥+ θn

where σn = µnM1 → 0 and θn = µnM2 + ιn → 0 as n → ∞. Thus, S is generalized asymptotically
nonexpansive mapping.

Lemma 2.10. Let E be a real Banach space and C be a nonempty subset of E. Let S : C → C be
a totally asymptotically I− nonexpansive mapping with sequences {µn}∞n=1 ,{ιn}∞n=1 with a gauge
function ϕ : [0,∞) → [0,∞) and I : C → C be a total asymptotically nonexpansive mapping
with sequences {µ∗

n}∞n=1 ,{ι∗n}∞n=1 with a gauge function Ψ : [0,∞) → [0,∞). Suppose that there
exists constants M1 > 0,M∗

1 > 0, M2 > 0,M∗
2 > 0, such that ∀ q > M1, Φ(q) ≤ M∗

1 q,and
∀ t > M2, Ψ(t) ≤ M∗

2 t then S is a generalized asymptotically nonexpansive mapping.

Proof: Since I is total asymptotically nonexpansivewith sequences {µ∗
n}∞n=1 ,{ι∗n}∞n=1 andΨ : [0,∞) →

[0,∞), then ∀x, y ∈ C,∀n ∈ N,

∥Inx− Iny∥ ≤ ∥x− y∥+ µ∗
nΨ

(
∥x− y∥

)
+ ι∗n.

SinceΨ is continuous, then ∃M0 > 0 such that ∀ t ∈ [0,M2], Ψ(t) ≤ M0; and since ∀ t > M2, Ψ(t) ≤
M∗

2 t, then ∀ t ∈ [0,∞),Ψ(t) ≤ M0 +M∗
2 t. This implies that ∀x, y ∈ C ,

Ψ
(
∥x− y∥

)
≤ M0 +M∗

2 ∥x− y∥

Thus, ∀n ∈ N,∀x, y ∈ C ,

∥Inx− Iny∥ ≤ ∥x− y∥+ µ∗
nΨ

(
∥x− y∥

)
+ ι∗n.

≤ ∥x− y∥+ µ∗
n

[
M0 +M∗

2 ∥x− y∥
]
+ ι∗n

= ∥x− y∥+ µ∗
nM

∗
2 ∥x− y∥+ µ∗

nM0 + ι∗n

= (1 + µ∗
nM

∗
2 )∥x− y∥+ µ∗

nM0 + ι∗n

∴ ∥Inx− Iny∥ ≤ (1 + µ∗
nM

∗
2 )∥x− y∥+ µ∗

nM0 + ι∗n (2.21)

Also, since S is total asymptotically I-nonexpansive mapping with sequences {µn}∞n=1 ,{ιn}∞n=1 and
Φ : [0,∞) → [0,∞), then ∀x, y ∈ K,∀n ∈ N,

∥Snx− Sny∥ ≤ ∥Inx− Iny∥+ µnΦ
(
∥Inx− Iny∥

)
+ ιn.

Since Φ is continuous, then ∃M∗
0 > 0 such that ∀ q ∈ [0,M1], Φ(q) ≤ M∗

0 ; and since ∀ q >
M1, Φ(q) ≤ M∗

1 q, then ∀ q ∈ [0,∞), Φ(q) ≤ M∗
0 +M∗

1 q.This implies that ∀x, y ∈ C ,

Φ
(
∥Inx− Iny∥

)
≤ M∗

0 +M∗
1 ∥Inx− Iny∥
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Thus, ∀n ∈ N,∀x, y ∈ K ,

∥Snx− Sny∥ ≤ ∥Inx− Iny∥+ µnΦ
(
∥Inx− Iny∥

)
+ ιn.

≤ ∥Inx− Iny∥+ µn

(
M∗

0 +M∗
1 ∥Inx− Iny∥

)
+ ιn.

≤ (1 + µ∗
nM

∗
2 )∥x− y∥+ µ∗

nM0 + ι∗n + µn

[
M1 +M∗

1 (1 + µ∗
nM

∗
2 )∥x− y∥

+ µ∗
nM0 + ι∗n

]
+ ιn.

= ∥x− y∥+
[
µ∗
nM

∗
2 + µnM

∗
0 (1 + µ∗

nM
∗
2 )
]
∥x− y∥+ µ∗

nM0 + ι∗n + µnµ
∗
nM0

+ µnι
∗
n + µnM

∗
0 + ιn.

=
[
1 + µ∗

nM
∗
2 + µnM

∗
0 (1 + µ∗

nM
∗
2 )
]
∥x− y∥+ µ∗

nM0 + ι∗n + µnµ
∗
nM0

+ µnι
∗
n + µnM

∗
0 + ιn.

= (1 + αn)∥x− y∥+ θn

whereαn = µ∗
nM

∗
2 +µnM

∗
0 (1+µ∗

nM
∗
2 ) → 0 and θn = µ∗

nM0+ι∗n+µnµ
∗
nM0+µnι

∗
n+µnM

∗
0 +ιn → 0

as n → ∞. Thus, S is generalized asymptotically nonexpansive mapping.

Lemma 2.11. Let E be a real normed linear space. Let S : D(S) ⊂ E → R(S) ⊂ E be a to-
tal asymptotically weakly contractive mapping with sequences {µn}∞n=1 ,{ιn}∞n=1 and gauge func-
tions Φ,Ψ : [0,∞) → [0,∞). Suppose that there exists constants M0 > 0,M1 > 0 such that
∀ t > M0, Ψ(t) ≤ M1t, then S is a generalized asymptotically nonexpansive mapping.
Proof: Since S is total asymptotically weakly contractive mapping with sequences {µn}∞n=1 ,{ιn}∞n=1

and Φ,Ψ : [0,∞) → [0,∞), then ∀x, y ∈ K,∀n ∈ N,

∥Snx− Sny∥ ≤ ∥x− y∥+ µnΦ
(
∥x− y∥

)
−Ψ

(
∥x− y∥) + ιn.

SinceΦ is continuous, then ∃M2 > 0 such that ∀ t ∈ [0,M0], Φ(t) ≤ M2; and since ∀ t > M0, Φ(t) ≤
M1t, then ∀ t ∈ [0,∞),Φ(t) ≤ M2 +M1t. This implies that ∀x, y ∈ D(S),

Φ
(
∥x− y∥

)
≤ M2 +M1∥x− y∥

Thus, ∀n ∈ N, ∀x, y ∈ D(S),

∥Snx− Sny∥ ≤ ∥x− y∥+ µnΦ
(
∥x− y∥

)
−Ψ

(
∥x− y∥) + ιn.

≤ ∥x− y∥+ µn

[
M2 +M1∥x− y∥

]
−Ψ

(
∥x− y∥) + ιn

≤ ∥x− y∥+ µn

[
M2 +M1∥x− y∥

]
+ ιn

= ∥x− y∥+ µnM1∥x− y∥+ µnM2 + ιn

= (1 + µnM1)∥x− y∥+ µnM2 + ιn

= (1 + σn)∥x− y∥+ θn

where σn = µnM1 → 0 and θn = µnM2 + ιn → 0 as n → ∞. Thus, S is generalized asymptotically
nonexpansive mapping. This completes the proof.

3. MAIN RESULTS

The main results of this paper are now presented as follows:

3.1. Necessary and sufficient convergence results.

Theorem 3.1. LetE be a uniformly convex real Banach space,C be a nonempty closed convex subset ofE,
T : C → C anS-generalized asymptotically nonexpansivemappingwith sequences {µn}∞n=1, {λn}∞n=1 ⊆
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[0,+∞) such that
∞∑
n=1

µn < +∞,

∞∑
n=1

λn < +∞. Suppose thatS is generalized asymptotically nonexpan-

sivemappingwith sequences {µ′
n}∞n=1 and {λ′

n}∞n=1 such that
∞∑
n=1

µ′
n < +∞,

∞∑
n=1

λ′
n < +∞ and that F =

F (T ) ∩ F (S) ̸= ∅. Let {αn}∞n=1, {βn}∞n=1 ⊆ [δ, 1 − δ] for some δ ∈ (0, 1), then iterative sequence
{xn}∞n=1 generated by (2.10) converges strongly to some point in F if and only if lim inf

n→∞
d(xn, F ) = 0.

Proof. Let p ∈ F = F (T ) ∩ F (S), then
∥xn+1 − p∥ = ∥(1− αn)xn + αnS

nyn − p∥
≤ (1− αn)∥xn − p∥+ αn∥Snyn − p∥
≤ (1− αn)∥xn − p∥+ αn

[
∥yn − p∥+ µ′

n∥yn − p∥+ λ′
n

]
= (1− αn)∥xn − p∥+ αn

[
(1 + µ′

n)∥yn − p∥+ λ′
n

]
(3.1)

∥yn − p∥ = ∥(1− βn)xn + βnT
nxn − p∥

≤ (1− βn)∥xn − p∥+ βn∥Tnxn − p∥
≤ (1− βn)∥xn − p∥+ βn

[
∥xn − p∥+ µn∥Snxn − p∥+ λn

]
≤ (1− βn)∥xn − p∥+

βn
[
∥xn − p∥+ µn(∥xn − p∥+ µ′

n∥xn − p∥+ λ′
n) + λn

]
= (1− βn)∥xn − p∥+

βn
[
∥xn − p∥+ µn∥xn − p∥+ µnµ

′
n∥xn − p∥+ µnλ

′
n + λn

]
= (1 + βnµn + βnµnµ

′
n)∥xn − p∥+ βn(µnλ

′
n + λn) (3.2)

Using (3.2) in (3.1) gives
∥xn+1 − p∥ ≤ (1− αn)∥xn − p∥+

αn

[
(1 + µ′

n){(1 + βn(µn + µnµ
′
n))∥xn − p∥+ βn(µnλ

′
n + λn)}+ λ′

n

]
= [1 + αn

(
µ′
n + βn(µn + µnµ

′
n)
)
]∥xn − p∥+ αn[βn(µnλ

′
n + λn) + λ′

n]

= (1 + ρn)∥xn − p∥+ σn (3.3)
where ρn := αn (µ

′
n + βn(µn + µnµ

′
n)) , σn := αn[βn(µnλ

′
n + λn) + λ′

n].

Since ∀ n ∈ N, αn, βn ∈ [δ, 1 − δ] for some δ ∈ (0, 1) and
∞∑
n=1

µn < ∞,
∞∑
n=1

ln < ∞,
∞∑
n=1

µ′
n <

∞,

∞∑
n=1

l′n < ∞, it then implies that
∞∑
n=1

ρn < ∞ and

∞∑
n=1

σn < ∞. Since by (3.3) we have that

∀ n ∈ N,

∥xn+1 − p∥ ≤ (1 + ρn)∥xn − p∥+ σn, (3.4)
then by Lemma 2.7, we obtain that lim

n→∞
∥xn − p∥ exists. ∀ p ∈ F.Moreover, it is easy to see from (3.4)

that
d(xn+1, F ) ≤ (1 + ρn)d(xn − F ) + σn.

Thus, by Lemma 2.7, lim
n→∞

d(xn, F ) exists.
Now, suppose ∃ p∗ ∈ F such that xn → p∗ as n → ∞ then ∥xn − p∗∥ → 0 as n → ∞. But

0 ≤ d(xn, F ) = inf
p∈F

∥xn − p∥ ≤ ∥xn − p∗∥
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So, by sandwish theorem, lim
n→∞

d(xn, F ) = 0 = lim inf
n→∞

d(xn, F ).

On the other hand, if lim inf
n→∞

d(xn, F ) = 0, then ∃ a subsequence {xnk
}∞k=1 of {xn}∞n=1 such that

lim
k→∞

d(xnk
, F ) = 0. But lim

n→∞
d(xn, F )} exists. Thus, lim

k→∞
d(xnk

, F ) = 0 =⇒ lim
n→∞

d(xn, F ) = 0.

Next, we show that the sequence {xn}∞n=1 is Cauchy. Observe that from (3.4) ∀ p ∈ F, ∀ n,m ∈ N,

∥xn+m − p∥ ≤ (1 + ρn+m−1)∥xn+m−1 − p∥+ σn+m−1

≤ (1 + ρn+m−1)
(
(1 + ρn+m−2)∥xn+m−2 − p∥σn+m−2

)
+σn+m−1

= (1 + ρn+m−1)(1 + ρn+m−2)∥xn+m−2 − p∥
+(1 + ρn+m−1)ρn+m−2 + ρn+m−1

...

≤
n+m−1∏
j=n

(1 + ρj)∥xn − p∥+

n+m−1∑
j=n

σj

 n+m−1∏
j=n

(1 + ρj)

≤ exp

n+m−1∑
j=n

ρj

 ∥xn − p∥+

n+m−1∑
j=n

σj

 exp

n+m−1∑
j=n

ρj


≤ M∥xn − p∥+

n+m−1∑
j=n

σj

 exp

n+m−1∑
j=n

ρj



∴ ∥xn+m − p∥ ≤ M∥xn − p∥+

n+m−1∑
j=n

σj

 exp

n+m−1∑
j=n

ρj

 (3.5)

Since
∞∑
n=1

σn < ∞, and
∞∑
n=1

ρn < ∞, then ∀ ε > 0, ∃ nε ∈ N such that ∀ n ≥ nε,

exp

 ∞∑
j=n

ρj

 ∞∑
j=n

σj <
ε

3
,

and since lim
n→∞

d(xn, F ) = 0, ∃ n′
ε ∈ N such that ∀ n ≥ n′

ε, d(xn, F ) < ε
3(M+1) .

Thus, ∀ n ≥ n′
ε, inf

p∈F
d(xn, p) <

ε

3(M + 1)
. But by definition of inf

p∈F
d(xn, p), we obtain that

∀ ε > 0, ∃ pε ∈ F such that

inf
p∈F

d(xn, p) ≤ d(xn, pε) < inf
p∈F

d(xn, p) +
ε

3(M + 1)

Setting Nε = max{nε, n
′
ε} ∈ N, we obtain that ∀n ≥ Nε,

∥xn − pε∥ = d(xn, pε) < inf
p∈F

d(xn, p) +
ε

3(M + 1)

<
ε

3(M + 1)
+

ε

3(M + 1)
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So, ∀ n ≥ Nε, ∀m ≥ 1, we obtain using ( 3.5)that

∥xn+m − xn∥ ≤ ∥xn+m − pε∥+ ∥xn − pε∥

≤ M∥xn − pε∥+

 ∞∑
j=n

σj

 exp

 ∞∑
j=n

ρj

+ ∥xn − pε∥

= (M + 1)∥xn − pε∥+

 ∞∑
j=n

σj

 exp

 ∞∑
j=n

ρj


< (M + 1)

(
2ε

3(M + 1)

)
+

ε

3
= ε.

So ∀n ≥ Nε, ∀ m ∈ N,
∥xn+m − xn∥ < ε.

Thus, the sequence {xn}∞n=1 is a Cauchy sequence in C and since E is complete and C is closed subset
of E, ∃ p∗ ∈ C such that xn → p∗ as n → ∞. Since lim

n→∞
d(xn, F ) = 0, then d(p∗, F ) = 0. Thus, by

Lemma(2.8) F is closed, thus p∗ ∈ F = F (T ) ∩ F (S). This completes the proof. □

Corollary 3.1. Let E be a real Banach Space, C be a nonempty closed convex subset of E, T be S-
generalized asymptotically nonexpansive self-mappings of C with sequence {µ′

n}n≥1 and {ι′n}n≥1 such

that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞. Suppose that S is a total asymptotically nonexpansive self mapping of

K with sequences {µn}∞n=1 ,{ιn}∞n=1 and gauge function φ : [0,∞) → [0,∞). Suppose that there exists
constantsM0 > 0,M1 > 0 such that ∀ t > M0, φ(t) ≤ M1t, and thatF := F (T )∩F (S) ̸= ∅. Then, the
explicitly iterative sequence {xn} defined by (2.10) converges to some element of F := F (T ) ∩ F (S).

Proof. By Lemma 2.9; S is a generalized asymptotically nonexpansive mapping. By Theorem 3.1, the
result follows. □

Corollary 3.2. Let E be a real Banach Space, K be a nonempty closed convex subset of E, T be S-
generalized asymptotically nonexpansive self-mappings of K with sequence {µ′

n}n≥1 and {ι′n}n≥1 such

that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞ . Suppose that S is a totally asymptotically I- nonexpansive self

mappings of K with sequences {µn}∞n=1 ,{ιn}∞n=1 with a gauge function ϕ : [0,∞) → [0,∞) where I :
C → C be a total asymptotically nonexpansive mapping with sequences {µ∗

n}∞n=1 ,{ι∗n}∞n=1 with a gauge
function Ψ : [0,∞) → [0,∞).Suppose that there exists constants M1 > 0,M∗

1 > 0, M2 > 0,M∗
2 > 0,

such that ∀ q > M1, Φ(q) ≤ M∗
1 q,and ∀ t > M2, Ψ(t) ≤ M∗

2 t and that F := F (T ) ∩ F (S) ̸= ∅.
Then, the explicitly iterative sequence {xn} defined by (2.10) converges to some element of F := F (T ) ∩
F (S).

Proof. By Lemma 2.10; S is a generalized asymptotically nonexpansive mapping. By Theorem 3.1, the
result follows. □

Corollary 3.3. Let E be a real Banach Space, K be a nonempty closed convex subset of E, T be S-
generalized asymptotically nonexpansive self-mappings of K with sequence {µn}n≥1 and {ιn}n≥1 such

that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. Suppose that S is a total asymptotically weakly contractive self

mappings of K with sequences {µ′
n}∞n=1 ,{ι′n}∞n=1 and gauge functions Φ,Ψ : [0,∞) → [0,∞). Suppose

that there exists constants M0 > 0,M1 > 0 such that ∀ t > M0, Ψ(t) ≤ M1t, and that F := F (T ) ∩
F (S) ̸= ∅. Then, the explicitly iterative sequence {xn} defined by (2.10) converges to some element of
F := F (T ) ∩ F (S).
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Proof. By Lemma 2.11; S is a generalized asymptotically nonexpansive mapping. By Theorem 3.1, the
result follows. □

3.2. Approximate fixed point sequence.

Theorem 3.2. Let E be a uniformly convex real Banach space, C be a nonempty closed subset of E,
T : C → C a uniformly continuous S-generalized asymptotically nonexpansive mapping with sequences

{µn}∞n=1, {ln}∞n=1 ⊆ [0,+∞) such that
∞∑
n=1

µn < ∞,
∞∑
n=1

ln < ∞. Suppose that S : K → K is a

uniformly continuous generalized asymptotically nonexpansive mapping with
∞∑
n=1

µ′
n < ∞,

∞∑
n=1

l′n < ∞

and that F = F (T ) ∩ F (S) ̸= ∅. Let {αn}∞n=1, {βn}∞n=1 ⊆ [δ, 1− δ] for some δ ∈ (0, 1). Suppose
that for any given x ∈ K , the sequence {xn}∞n=1 is generated by (2.10) then {xn}∞n=1 - is an approximate
fixed point sequence of T and S; that is ,

lim
n→∞

∥Txn − xn∥ = lim
n→∞

∥Sxn − xn∥ = 0.

Proof. ByTheorem 3.1, for any p ∈ F = F (T )∩F (S), lim
n→∞

∥xn−p∥ exists. Let lim
n→∞

∥xn−p∥ = d.

If d = 0, by uniform continuity of T and S, the proof is complete.
Now, suppose d > 0, then

∥yn − p∥ = ∥(1− βn)xn + βnT
nxn − p∥

≤ (1− βn)∥xn − p∥+ βn∥Tnxn − p∥
≤ (1− βn)∥xn − p∥+ βn (∥xn − p∥+ µn∥Snxn − p∥+ ln)

≤ (1− βn)∥xn − p∥+
βn∥xn − p∥+ βnµn

(
∥xn − p∥+ µ′

n∥xn − p∥+ l′n
)
+ βnln

= (1− βn)∥xn − p∥+ βn∥xn − p∥
+βnµn∥xn − p∥+ βnµnµ

′
n∥xn − p∥+ βnµnl

′
n + βnln

= ∥xn − p∥+ βnµn∥xn − p∥+ βnµnµ
′
n∥xn − p∥+ βnµnl

′
n

+βnln

This implies that
∥yn − p∥ ≤

[
1 + βn(µn + µnµ

′
n)
]
∥xn − p∥+ βnµnl

′
n + βnln (3.6)

Taking lim sup on both sides in (3.6), we have
lim sup
n→∞

∥yn − p∥ ≤ d (3.7)

Since S is generalized asymptotically nonexpansive self-mapping on C , we obtain that,
∥Snyn − p∥ ≤ ∥yn − p∥+ µ′

n∥yn − p∥+ l′n

= (1 + µ′
n)∥yn − p∥+ l′n.

Taking lim sup
n→∞

and using (3.7) gives lim sup
n→∞

∥Snyn − p∥ ≤ d.

Moreover, since lim
n→∞

∥xn − p∥ = d it follows that

lim
n→∞

∥xn+1 − p∥ = d = lim sup
n→∞

∥xn+1 − p∥.

But, lim sup
n→∞

∥xn+1 − p∥ = d means that

lim sup
n→∞

∥(1− αn)xn + αnS
nyn − p∥ = lim sup

n→∞
∥(1− αn)(xn − p) + αn(Syn − p)∥ = d. It therefore
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follows from Lemma 2.2 that

lim
n→∞

∥Snyn − xn∥ = 0. (3.8)

Furthermore,

∥xn+1 − xn∥ = ∥αn(S
nyn − xn)∥

≤ αn∥Snyn − xn∥. (3.9)

Thus using (3.8) in (3.9) we obtain that

lim
n→∞

∥xn=1 − xn∥ = 0. (3.10)

Next,

∥xn − p∥ ≤ ∥xn − Snyn∥+ ∥Snyn − p∥
≤ ∥xn − Snyn∥+ ∥yn − p∥+ µ′

n∥yn − p∥+ l′n (3.11)
= ∥xn − Snyn∥+ (1 + µ′

n)∥yn − p∥+ l′n.

Using (3.11) and (3.7), we obtain that

d = lim inf
n→∞

∥xn − p∥ ≤ lim inf
n→∞

∥yn − p∥

≤ lim sup
n→∞

∥yn − p∥ ≤ d.

Thus, lim
n→∞

∥yn − p∥ = d.
Besides,

∥Tnxn − p∥ ≤ ∥xn − p∥+ µn∥Snxn − p∥+ ln

≤ ∥xn − p∥+ µn(∥xn − p∥+ µ′
n∥xn − p∥+ l′n) + ln

= (1 + µn(1 + µ′
n))∥xn − p∥+ µnl

′
n + ln

This implies that

∥Tnxn − p∥ ≤ (1 + µn(1 + µ′
n))∥xn − p∥+ µnl

′
n + ln. (3.12)

So, we obtain from (3.12) that

lim sup
n→∞

∥Tnxn − p∥ ≤ d.

Since,

lim sup
n→∞

∥βn(Tnxn − p) + (1− βn)(xn − p)∥ = lim sup
n→∞

∥yn − p∥ = lim
n→∞

∥yn − p∥ = d.

We obtain by Lemma (2.2) that

lim
n→∞

∥Tnxn − xn∥ = 0. (3.13)
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In addition,

∥Snxn − xn∥ = ∥Snxn + Snyn − Snyn − xn∥
≤ ∥Snxn − Snyn∥+ ∥Snyn − xn∥
≤ ∥xn − yn∥+ µ′

n∥xn − yn∥+ l′n + ∥Snyn − xn∥
= (1 + µ′

n)∥xn − yn∥+ ∥Snyn − xn∥+ l′n

= (1 + µ′
n)∥xn − [(1− βn)xn + βnT

nxn]∥+ ∥Snyn − xn∥+ l′n

= (1 + µ′
n)∥βn(Tnxn − xn)∥+ ∥Snyn − xn∥+ l′n

= (1 + µ′
n)βn∥Tnxn − xn∥+ ∥Snyn − xn∥+ l′n

∴ ∥Snxn − xn∥ ≤ (1 + µ′
n)βn∥Tnxn − xn∥+ ∥Snyn − xn∥+ l′n (3.14)

Thus from (3.8) ,(3.13) and (3.14), we obtain that

lim
n→∞

∥Snxn − xn∥ = 0. (3.15)

We now show that

lim
n→∞

∥Txn − xn∥ = lim
n→∞

∥Sxn − xn∥ = 0.

But since

∥Sn−1xn − xn∥ = ∥Sn−1xn − Sn−1xn−1 + Sn−1xn−1 − xn−1 + xn−1 − xn∥
≤ ∥Sn−1xn − Sn−1xn−1∥+ ∥Sn−1xn−1 − xn−1∥+ ∥xn−1 − xn∥
≤ (1 + µn−1)∥xn − xn−1∥+ ln−1 + ∥Sn−1xn−1 − xn−1∥+ ∥xn−1 − xn∥,

we obtain from (3.10) and (3.15) that

lim
n→∞

∥Sn−1xn − xn∥ = 0 (3.16)

Thus,

∥xn − Sxn∥ ≤ ∥xn − Snxn∥+ ∥Snxn − Sxn∥
= ∥xn − Snxn∥+ ∥S

(
Sn−1xn

)
− Sxn∥. (3.17)

Since S is uniformly continuous we obtain using (3.15) and (3.16) in (3.17) that

lim
n→∞

∥xn − Sxn∥ = 0. (3.18)

Also,

∥Tn−1xn − xn∥ = ∥Tn−1xn − Tn−1xn−1 + Tn−1xn−1 − xn−1 + xn−1 − xn∥
≤ ∥Tn−1xn − Tn−1xn−1∥+ ∥Tn−1xn−1 − xn−1∥+ ∥xn−1 − xn∥
≤ ∥xn − xn−1∥+ µn−1∥Sn−1xn − Sn−1xn−1∥+ ln−1

+∥Tn−1xn−1 − xn−1∥+ ∥xn−1 − xn∥ (3.19)
≤ ∥xn − xn−1∥+ µn−1

(
(1 + µ′

n−1)∥xn − xn−1 + l′n−1

)
+∥Tn−1xn−1 − xn−1∥+ ∥xn−1 − xn∥+ ln−1

=
[
1 + µn−1(1 + µ′

n−1)
]
∥xn − xn−1∥+ ∥Tn−1xn−1 − xn−1∥

+∥xn−1 + xn∥+ µn−1l
′
n−1 + ln−1

Using (3.10) and (3.13) in (3.19) we have that

lim
n→∞

∥Tn−1xn − xn∥ = 0. (3.20)
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But,

∥xn − Txn∥ = ∥xn − Tnxn + Tnxn − Txn∥
≤ ∥xn − Tnxn∥+ ∥Tnxn − Txn∥
= ∥xn − Tnxn∥+ ∥T (Tn−1xn)− Txn∥ (3.21)

Again since T is uniformly continuous, then using (3.13) and (3.20) in (3.21) we obtain that lim
n→∞

∥Txn−
xn∥ = 0.
Hence , lim

n→∞
∥Txn − xn∥ = 0 = lim

n→∞
∥Sxn − xn∥.This completes the proof. □

3.3. Weak convergence results.

Theorem 3.3. Let E be a uniformly convex real Banach space, C be a nonempty closed convex sub-
set of E, T : C → C be a uniformly continuous S-generalized asymptotically nonexpansive map-

ping with sequences {µn}∞n=1, {ln}∞n=1 ⊆ [0,+∞) such that
∞∑
n=1

µn < ∞,
∞∑
n=1

ln < ∞. Suppose

that S is a uniformly continuous generalized asymptotically nonexpansive mapping with with sequences

{µ′
n}∞n=1, {l′n}∞n=1 ⊆ [0,+∞) such that

∞∑
n=1

µ′
n < ∞,

∞∑
n=1

l′n < ∞ and that F = F (T ) ∩ F (S) ̸= ∅.

Let {αn}∞n=1, {βn}∞n=1 ⊆ [δ, 1 − δ] for some δ ∈ (0, 1). Then the sequence {xn}∞n=1 generated by
(2.10) converges weakly to a common fixed point of T and S.

Proof. As in the proof of Theorem 3.1, it follows that p ∈ F , lim
n∞

∥xn − p∥ exists and so the sequence
{xn}∞n=1 is bounded. Since E is uniformly convex, and thus reflexive, there exists a subsequence
{xσ(n)}∞n=1 of {xn}∞n=1 such that {xσ(n)}∞n=1 ⇀ p∗ as n → ∞ for some p∗ ∈ E. From Theorem
3.2 we have that

lim
n→∞

∥xn − Txn∥ = lim
n→∞

∥xn − Sxn∥ = 0.

Thus, by Lemma 2.7, we know that p∗ ∈ F = F (T ) ∩ F (S). If F = F (T ) ∩ F (S) is a singleton,
then the proof is complete. If F = F (T ) ∩ F (S) is not a singleton, we claim that p∗ is unique. If not,
let q∗ ∈ E, q∗ ̸= p∗ be another weakly limit point of {xn}∞n=1, then there exists another subsequence
{xγ(n)}∞n=1 of {xn}∞n=1 such that{xγ(n)}∞n=1 ⇀ q∗ as n → ∞ for some q∗ ∈ E. ByTheorem (3.2) and
lemma (2.7) guarantees that q∗ ∈ F (T ), q∗ ∈ F (S).Thus, q∗ ∈ F. Since p∗ ̸= q∗ and E satisfies
Opial condition, then

lim
n→∞

∥xn − p∗∥ = lim inf
n→∞

∥xn − p∗∥

= lim inf
n→∞

∥xσ(n) − p∗∥

< lim inf
n→∞

∥xσ(n) − q∗∥

= lim
n→∞

∥xσ(n) − q∗∥

= lim
n→∞

∥xγ(n) − q∗∥

= lim inf
n→∞

∥xγ(n) − q∗∥

< lim inf
n→∞

∥xγ(n) − p∗∥

. = lim
n→∞

∥xn − p∗∥,

This is a contradiction. Thus,q∗ = p∗. Hence, {xn} converges weakly to an element of F = F (T ) ∩
F (S). This completes the proof. □
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Corollary 3.4. Let E be a uniformly convex real Banach Space, K be a nonempty closed convex subset
of E, T : C → C be uniformly continuous S- generalized asymptotically nonexpansive mapping with

sequences {µn}n≥1 , {ιn}n≥1 ⊂ [0,∞) such that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. Suppose that S is a

uniformly continuous total asymptotically nonexpansive mapping of C with sequences {µ′
n}∞n=1 ,{ι′n}∞n=1

such that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞ and gauge function φ : [0,∞) → [0,∞). Suppose that there

exists constants M0 > 0,M1 > 0 such that ∀ t > M0, φ(t) ≤ M1t, and that F := F (T ) ∩ F (S) ̸=
∅.Then, the sequence {xn}∞n=1 generated by (2.10) converges weakly to a common fixed point of T and S.

Proof. By Lemma 2.9; S is a generalized asymptotically nonexpansive mapping. Thus, by Theorem 3.3,
the result follows. □

Corollary 3.5. Let E be a uniformly convex real Banach Space, C be a nonempty closed convex subset
of E, T : C → C be uniformly continuous S- generalized asymptotically nonexpansive mapping with

sequences {µn}n≥1 , {ιn}n≥1 ⊂ [0,∞) such that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. Suppose that S is a

uniformly continuous total asymptotically I nonexpansive self mapping of C with sequences {µ′
n}∞n=1

,{ι′n}∞n=1, a gauge function ϕ : [0,∞) → [0,∞) such that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞ where I : C →

C is a total asymptotically nonexpansive self mapping with sequences {µ∗
n}∞n=1 ,{ι∗n}∞n=1 with a gauge

functionΨ : [0,∞) → [0,∞) such that
∞∑
n=1

µ∗
n < ∞ and

∞∑
n=1

ι∗n < ∞.Suppose that there exists constants

M1 > 0,M∗
1 > 0, M2 > 0,M∗

2 > 0, such that ∀ q > M1, Φ(q) ≤ M∗
1 q,and ∀ t > M2, Ψ(t) ≤ M∗

2 t
and that F := F (T ) ∩ F (S) ̸= ∅, then, the sequence {xn}∞n=1 generated by (2.10) converges weakly to a
common fixed point of T and S.

Proof. S is a generalized asymptotically nonexpansive mapping by Lemma 2.10 and by Theorem 3.3,
the result follows. □

Corollary 3.6. Let E be a uniformly convex real Banach Space, C be a nonempty closed convex subset
of E, T : C → C be uniformly continuous S- generalized asymptotically nonexpansive mapping with

sequences {µn}n≥1 , {ιn}n≥1 ⊂ [0,∞) such that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. Suppose that S is

a uniformly continuous total asymptotically weakly contractive mapping of C with sequences {µ′
n}∞n=1

,{ι′n}∞n=1 and gauge functions Φ,Ψ : [0,∞) → [0,∞) such that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞ . Suppose

that there exists constants M0 > 0,M1 > 0 such that ∀ t > M0, Ψ(t) ≤ M1t, and that F := F (T ) ∩
F (S) ̸= ∅ .Then, the sequence {xn}∞n=1 generated by(2.10) converges weakly to a common fixed point of
T and S.

Proof. By Lemma 2.11; S is a generalized asymptotically nonexpansive mapping. Thus, byTheorem 3.3,
the result follows. □

3.4. Strong convergence results.

Theorem 3.4. Let E be a uniformly convex Banach Space, C be a nonempty closed convex subset of
E, T be a uniformly continuous S−generalized asymptotically nonexpansive self-mmapings of C with

sequences µn , ιn ⊂ [0,∞) such that
∞∑
n=1

µn < ∞,

∞∑
n=1

ιn < ∞. Suppose S is a uniformly continu-

ous generalized asymptotically nonexpansive mappings of C with sequences µ′
n, l

′
n ⊂ [0,∞) such that
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∞∑
n=1

µ′
n < ∞,

∞∑
n=1

l′n < ∞ . Suppose that T andS satisfy condition (B)and F = F (T ) ∩ F (S) ̸= ∅. Let

{αn} and {βn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1). Then the explicit iterative sequence {xn} defined by
(2.10) converges strongly to a common fixed point of T and S.

Proof. Since T and S satisfy condition (B), we obtain that there exists a nondecreasing continuous
fuction f : [0,+∞) → [0,+∞) with f(0) = 0 such that ∀ n ∈ N

1

2

(
∥xn − Txn∥+ ∥xn − Sxn∥

)
≥ f

(
xn, F )

)
≥ 0.

Since by Theorem 3.2, lim
n→∞

∥xn − Txn∥ = 0 = lim
n→∞

∥xn − Sxn∥, then we obtain by Sandwich
Theorem that lim

n→∞
f
(
d(xn, F )

)
= 0. Since f is continuous, we obtain that lim

n→∞
(d(xn, F ) = 0. Thus,

by Theorem 3.1, this implies that {xn} is convergent. This completes the proof. □

Corollary 3.7. Let E be a uniformly convex real Banach Space, C be a nonempty closed convex subset
of E, T : C → C be S- generalized asymptotically nonexpansive self- mappings of C with sequences

{µ′
n}n≥1 , {ι′n}n≥1 ⊂ [0,∞) such that

∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞. Suppose that S is a uniformly

continous total asymptotically nonexpansive self mappings of C with sequences {µn}∞n=1 ,{ιn}∞n=1 and

gauge function φ : [0,∞) → [0,∞) such that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. . Suppose that there exists

constants M0 > 0,M1 > 0 such that ∀ t > M0, φ(t) ≤ M1t. Suppose that F (T ) ∩ F (S) ̸= ∅ and
that T and S satisfy condition (B), then the explicit iterative sequence {xn}∞n=1 defined by 2.10 converges
strongly to a common fixed point of T and S.

Proof. By Lemma 2.9; S is a generalized asymptotically nonexpansive mapping, and by Theorem 3.4,
the result follows. □

Corollary 3.8. Let E be a uniformly convex real Banach Space, C be a nonempty closed convex subset
of E, T : C → C be uniformly continuous S- generalized asymptotically nonexpansive self- mappings

of C with sequences {µ′
n}n≥1 , {ι′n}n≥1 ⊂ [0,∞) such that

∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞. Suppose

that S is a uniformly continuous total asymptotical I− nonexpansive self mappings of C with sequences

{µn}∞n=1 ,{ιn}∞n=1 with a gauge function ϕ : [0,∞) → [0,∞) such that
∞∑
n=1

µn < ∞ ,
∞∑
n=1

ιn < ∞.

and I : C → C be a total asymptotically nonexpansive mapping with sequences {µ∗
n}∞n=1 ,{ι∗n}∞n=1

with a gauge function Ψ : [0,∞) → [0,∞) such that
∞∑
n=1

µ∗
n < ∞ and

∞∑
n=1

ι∗n < ∞. Suppose that

there exists constants M1 > 0,M∗
1 > 0, M2 > 0,M∗

2 > 0, such that ∀ q > M1, Φ(q) ≤ M∗
1 q,and

∀ t > M2, Ψ(t) ≤ M∗
2 t. Suppose further that and F (T )∩ F (S) ̸= ∅ and that T and S satisfy condition

(B), then the explicit iterative sequence {xn}∞n=1 defined by 2.10 converges strongly to a common fixed
point of T and S.

Proof. By Lemma 2.10; S is a generalized asymptotically nonexpansive mapping and by Theorem 3.4,
the result follows. □

Corollary 3.9. Let E be a uniformly convex real Banach Space, C be a nonempty closed convex subset of
E, T : C → C be a uniformly- continous S- generalized asymptotically nonexpansive self- mappings ofC

with sequences {µn}n≥1 , {ιn}n≥1 ⊂ [0,∞) such that
∞∑
n=1

µn < ∞ and
∞∑
n=1

ιn < ∞. Suppose that S is a

uniformly continuous total asymptotically weakly contractive self mappings ofC with sequences {µ′
n}∞n=1
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,{ι′n}∞n=1 and gauge functions Φ,Ψ : [0,∞) → [0,∞) such that
∞∑
n=1

µ′
n < ∞ and

∞∑
n=1

ι′n < ∞.. Suppose

that there exists constants M0 > 0,M1 > 0 such that ∀ t > M0, Ψ(t) ≤ M1t, Suppose further that
F (T ) ∩ F (S) ̸= ∅and that T and S satisfy condition (B). Then,the explicit iterative sequence {xn}∞n=1

defined by (2.10) converges strongly to a common fixed point of T and S.

Proof. S is a generalized asymptotically nonexpansive mapping by Lemma 2.11 and by Theorem 3.4,
the result follows. □

4. Conclusion

It is of interest to note here that extension of the results obtained in this paper to finite families of
classes ofS-generalized asymptotically nonexpansivemappings leads to no further generalization since
the method of proof displayed in this paper carries of to finite family of Mappings. Moreover, addition
of error terms to the iterative algorithm studied in this paper leads to no further generalization.
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