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Abstract. This work introduces a projective double inertial Ishikawa forward-backward splitting al-
gorithm for solving variational inclusion problems in Hilbert spaces. We establish a weak convergence
theorem under suitable control conditions, ensuring the reliability of the proposed approach. Numerical
experiments, including an example in an infinite-dimensional space, demonstrate the algorithm’s effi-
ciency and validate the theoretical results. Furthermore, our study shows the effectiveness of applying
the proposed algorithm to osteoporosis prediction using a multi-layer ELM, with the 2-layer ELM config-
uration achieving the highest performance across all metrics (accuracy, precision, recall, and F1-score),
underscoring its robustness and efficiency.
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1. Introduction and Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ associated with the norm ∥ · ∥. Suppose
F : H → H is a single-valued monotone operator, and G : H → 2H is a set-valued operator. In this
work, we address the variational inclusion problem (VIP) in a real Hilbert space, which seeks to find
f̂ ∈ H such that

0 ∈ (F+G)f̂ . (1.1)

The variational inclusion problem (VIP) encompasses a wide range of problems, including convex min-
imization, equilibrium, variational inequality, and split feasibility problems [4, 7, 8, 17]. Additionally,
VIP has extensive applications across various fields such as signal processing, image reconstruction,
optimal control, quantum mechanics, and machine learning (see [2, 6, 9, 10, 16]).

The resolvent operator JG
γ associated with G and γ is the mapping JG

γ : H → H defined by

JG
γ (f) := (I + γG)−1(f), ∀f ∈ H,

where γ is a positive number and I denotes the identity operator onH, it is established that the resolvent
operator JG

γ (f) is single-valued, nonexpansive, and 1-inverse strongly monotone [5]. Furthermore, the
solution to the problem (1.1) is a fixed point of the operator JG

γ (I − γF) for all γ > 0 [14].
As a way to speed up the convergence algorithm, Moudafi and Oliny proposed an inertial forward-

backward splitting algorithm (IFBSA) for approximating a solution of the VIP (1.1) using an inertial
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technique. For two given points f0 and f1, the sequence {fk} is defined as follows:{
hk = fk + αk(fk − fk−1),

fk+1 = JG
γk(h

k − γkFhk), k ≥ 1.
(1.2)

They obtained a weak convergence result using algorithm (1.2), provided that γk < 2
L , with L being

the Lipschitz constant of F.
Recently, Jun-On and Cholamjiak [13] introduced a double relaxed inertial projective forward- back-

ward splitting algorithm for variational inclusion problems, incorporating a projection onto a nonempty
closed and convex set P . The algorithm is applied to an asymmetrical educational dataset of students
from 109 schools, utilizing nine asymmetric attributes as inputs to predict students’ mathematical in-
tegrated skills. Its performance is compared with other algorithms in the literature to demonstrate its
effectiveness. This algorithm was generated as f−1, f0, f1 ∈ H and

hk = fk + θk(fk − fk−1) + δk(fk−1 − fk−2),

gk = (1− αk)fk + αkJG
γk(I − γkF)hk,

fk+1 = PP(J
G
γk(I − γkF)gk), k ≥ 1.

(1.3)

where {αk} ⊂ (a, b) ⊂ (0, 1], {γk} ⊂ (c, d) ⊂ (0, 2β), {θk}, {δk} ⊂ (−∞,∞) such that β is the
coefficient of the operator F and the {θk} and δk satisfies the following conditions:

∞∑
k=1

|θk|∥fk − fk−1∥ < ∞ and
∞∑
k=1

|δk|∥fk−1 − fk−2∥ < ∞.

Building on previous work, we propose an algorithm that integrates a double inertial technique with
two iterative steps and a projection method for the forward-backward splitting algorithm to address
variational inclusion problems in Hilbert spaces. Under suitable conditions, we establish a weak con-
vergence theorem for the proposed approach. Additionally, we provide an example in an infinite-
dimensional space to illustrate the validity of our main theorem. As an application, we apply the algo-
rithm in a machine learning context to predict osteoporosis.

Now, we present definitions and lemmas used in this article.

Definition 1.1. Suppose that F : H → H is said to be
1. F is a monotone mapping if the following hold:

⟨Ff − Fh, f − h⟩ ≥ 0.

2. F is L-Lipschitz continuous if there is a constant L > 0, as follows:

∥Ff − Fh∥ ≤ L∥f − h∥.

If L = 1, then F is called nonexpansive.
3. F is firmly nonexpansive if

∥Ff − Fh∥2 ≤ ∥f − h∥2 − ∥(I − F)f − (I − F)h∥2,

or equivalently
⟨Ff − Fh, f − h⟩ ≥ ∥Ff − Fh∥2.

4. β-cocoercive or β-inverse strongly monotone if βF is firmly nonexpansive when β > 0.

Lemma 1.2. [11] Assume that F : H → H is a nonexpansive mapping with Fix(F) ̸= ϕ. If there
exists a sequence {fk} in H, the following implications hold: fk ⇀ f ∈ H and ∥fk − Ffk∥ → 0
=⇒ f ∈ Fix(F).
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Lemma 1.3. [15] Let F : H → H be β-cocoercive mapping and G : H → 2H a maximal monotone
mapping. Then, we have

1. for γ > 0, Fix(JG
γ (I − γF)) = (F+G)−1(0);

2. for 0 < γ < γ and f ∈ H, ∥f − JG
γ (I − γF)f∥ ≤ 2∥f − JG

γ (I − γF)f∥.

Lemma 1.4. [18] Let Ψ be a nonempty subset of H and {fk} be a sequence in H. Then, the following
conditions holds:

1. For all f ∈ Ψ, lim
k→∞

∥fk − f∥ exists.

2. Every sequential weak cluster point of {fk} belongs to Ψ.
Then {fk} converges weakly to a point in Ψ.

2. Weak Convergence Results

In this section, let P be a nonempty, closed and convex subset of a Hilbert space H. Let F : H → H
be a β-inverse strongly monotone operator and G : H → 2H be a maximal monotone operator such
that (F+G)−1(0) ∩ P ̸= ∅, and let PP be a metric projection on P .

Algorithm 2.1. Projective Double Inertial Ishikawa Forward-Backward Splitting algorithm (PDI-IFBS)
Initialization: Select arbitrary points f0, h−1, h0 ∈ H, {αk}, {βk} ⊂ (a, b] ⊂ (0, 1], {γk} ⊂ (c, d) ⊂
(0, 2β), and {θk}, {δk} ⊂ (−∞,∞).
Iterative Steps: Set k = 0, compute {fk+1} as following steps:
Step 1: Compute

gk = (1− αk)fk + αkJkfk.

Step 2: Compute
hk+1 = (1− βk)fk + βkJkgk.

Step 3: Compute
fk+1 = PP(h

k+1 + θk(hk+1 − hk) + δk(hk − hk−1)),

where Jk = JG
γk(I − γkF). Set k = k + 1 and return to Step 1.

Theorem 2.2. The sequence {fk} generated by Algorithm 2.1 converges weakly to an element in (F +
G)−1(0) ∩ P . Suppose also the conditions below hold:

∞∑
k=1

|θk|∥hk+1 − hk∥ < ∞ and
∞∑
k=1

|δk|∥hk − hk−1∥ < ∞.

Proof. Let f∗ ∈ (F + G)−1(0) ∩ P . Since {γk} ⊂ (0, 2β), Jk is nonexpansive mapping by [21] and
science PP is also nonexpansive, we have
∥fk+1 − f∗∥ = ∥PP(h

k+1 + θk(hk+1 − hk) + δk(hk − hk−1))− f∗∥
≤ ∥hk+1 + θk(hk+1 − hk) + δk(hk − hk−1)− f∗∥
≤ ∥hk+1 − f∗∥+ |θk|∥hk+1 − hk∥+ |δk|∥hk − hk−1∥
= ∥(1− βk)fk + βkJkgk − f∗∥+ |θk|∥hk+1 − hk∥+ |δk|∥hk − hk−1∥
≤ (1− βk)∥fk − f∗∥+ βk∥Jkgk − f∗∥+ |θk|∥hk+1 − hk∥+ |δk|∥hk − hk−1∥
≤ (1− βk)∥fk − f∗∥+ βk∥gk − f∗∥+ |θk|∥hk+1 − hk∥+ |δk|∥hk − hk−1∥
= (1− βk)∥fk − f∗∥+ βk∥(1− αk)fk + αkJkfk − f∗∥+ |θk|∥hk+1 − hk∥

+|δk|∥hk − hk−1∥
≤ (1− βk)∥fk − f∗∥+ βk

(
(1− αk)∥fk − f∗∥+ αk∥Jkfk − f∗∥

)
+ |θk|∥hk+1

−hk∥+ |δk|∥hk − hk−1∥
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≤ ∥fk − f∗∥+ |θk|∥hk+1 − hk∥+ |δk|∥hk − hk−1∥

By our conditions, it follows form the Lemma in [3], we obtain lim
k→∞

∥fk− f∗∥ exists. This implies that

{fk} is bounded. So, the sequences {gk} and {hk} are also bounded. Since JG
τk

is a firmly nonexpansive
mapping, let Kk = hk+1 + θk(hk+1 − hk) + δk(hk − hk−1) then we have

∥fk+1 − f∗∥2

= ∥PP(h
k+1 + θk(hk+1 − hk) + δk(hk − hk−1))− f∗∥2

≤ ∥hk+1 + θk(hk+1 − hk) + δk(hk − hk−1)− f∗∥2

≤ ∥hk+1 − f∗∥2 + 2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
= ∥(1− βk)fk + βkJkgk − f∗∥2 + 2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
≤ (1− βk)∥fk − f∗∥2 + βk∥Jkgk − f∗∥2 + 2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
≤ (1− βk)∥fk − f∗∥2 + βk∥gk − f∗∥2 + 2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
= (1− βk)∥fk − f∗∥2 + βk∥(1− αk)fk + αkJkfk − f∗∥2

+2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
≤ (1− βk)∥fk − f∗∥2 + βk

(
(1− αk)∥fk − f∗∥2 + αk∥Jkfk − f∗∥2

)
+2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩

≤ (1− βk)∥fk − f∗∥2 + βk

(
(1− αk)∥fk − f∗∥2 + αk

(
∥fk − γkFfk − f∗ + γkFf∗∥2

−∥fk − γkFfk − Jkfk − f∗ + γkFf∗ + Jkf∗∥2
))

+2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩

≤ (1− βk)∥fk − f∗∥2 + βk

(
(1− αk)∥fk − f∗∥2 + αk

(
∥fk − f∗∥2 − 2γk⟨fk − f∗,Ffk − Ff∗⟩

+(γk)2∥Ffk − Ff∗∥2 − ∥fk − γkFfk − Jkfk − f∗ + γkFf∗ + Jkf∗∥2
))

+2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩
≤ ∥fk − f∗∥2 + 2⟨θk(hk+1 − hk) + δk(hk − hk−1),Kk − f∗⟩

−βkαk

(
γk(2β − γk)∥Ffk − Ff∗∥2 + ∥fk − γkFfk − Jkfk − f∗ + γkFf∗ + Jkf∗∥2

)
.

This implies that

βkαk

(
γk(2β − γk)∥Ffk − Ff∗∥2 + ∥fk − γkFfk − Jkfk + γkFf∗∥2

)
(2.1)

≤ ∥fk − f∗∥2 − ∥fk+1 − f∗∥2 + 2⟨θk(bk+1 − bk) + δk(bk − bk−1), ck+1 − a∗⟩.

It follows from our conditions and lim
k→∞

∥fk − f∗∥ exists, we have

lim
k→∞

∥Ffk − Ff∗∥ = lim
k→∞

∥fk − γkFfk − Jkfk + γkFf∗∥ = 0.

This implies that

lim
k→∞

∥fk − Jkfk∥ = 0. (2.2)
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Since lim inf
k→∞

γk > 0, there is γ > 0 such that γk > γ. Lemma 1.3 (ii), we obtain

∥fk − JG
γ (I − γF)fk∥ ≤ 2∥fk − Jkfk∥ = 0. (2.3)

Then, by (2.2) and (2.3), we obtain

lim
k→∞

∥fk − JG
γ (I − γF)fk∥ = 0.

Since {fk} is bound, we can let f̃ be a sequential weak cluster point of {fk}. By Lemma 1.2, we
deduce that f̃ belongs to the fixed point set Fix(JG

γ (I−γF)), which is equivalent to the set (F+G)−1(0).
Given that f̃ is a sequence in P , and P is a nonempty, closed, and convex subset, it follows that f̃ ∈
(F+G)−1(0)∩P . By employing Opial’s Lemma (Lemma 1.3), we can establish that f̃ weakly converges
to an element in (F+G)−1(0) ∩ P . □

Remark 2.3. (i) If αk = 1, Algorithm 1 reduces to following algorithm:
Projective Double Inertial Two-step Forward-Backward Splitting algorithm I (PDI-TFBS(I)):

gk = Jkfk,

hk+1 = (1− βk)fk + βkJkgk,

fk+1 = PP(h
k+1 + θk(hk+1 − hk) + δk(hk − hk−1));

(ii) If βk = 1, Algorithm 1 reduces to following algorithm:
Projective Double Inertial Two-step Forward-Backward Splitting algorithm II (PDI-TFBS(II)):

gk = (1− αk)fk + αkJkfk,

hk+1 = Jkgk,

fk+1 = PP(h
k+1 + θk(hk+1 − hk) + δk(hk − hk−1));

(iii) If αk = 1 and βk = 1, Algorithm 1 reduces to following algorithm:
Projective Double Inertial Two-step Forward-Backward Splitting algorithm III (PDI-TFBS(III)):

gk = Jkfk,

hk+1 = Jkgk,

fk+1 = PP(h
k+1 + θk(hk+1 − hk) + δk(hk − hk−1));

We shall give an example in the infinitely dimension spaceL2[0, 1] = {f(t) :
∫ 1
0 f(t)dt < ∞}where

such that ∥.∥ is L2-norm defined by ∥f∥ =
√∫ 1

0 |a(t)|2dt and the inner product ⟨f, h⟩ =
∫ 1
0 f(t)h(t)dt

for supporting our main theorem.

Example 2.4. Let H = L2[0, 1], Ff(t) = 3f(t) and Gf(t) = 4f(t) where f(t) ∈ L2[0, 1].

In our experiments, we use the Cauchy errors ∥fk−fk+1∥2 < 10−5 to stop the iteration. To meet the
highest performance of the our algorithm, we shall consider the necessary parameters of the algorithm
when

θk =

{
0.99

∥hk+1−hk∥k3 , if hk+1 ̸=k and k > M

0.99 , otherwise
(2.4)

and

δk =

{
−0.1

∥hk−hk−1∥k3 , if hk ̸= hk−1 and k > M

−0.1 , otherwise
(2.5)

where M is the iteration number that we want to stop, and we choose γk = 1.99
3 , αk = βk = k

1.5k+1 .
Table 1 shows the numerical results for difference parameters of our algorithm and Cauchy errors of
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them are show in Figure 1.

Table 1. Numerical results for difference parameters of our algorithm.
Initialization Algorithm Number of Iterations CPU Time

f0 = t2 − 4t, h−1 = sin(t)
2 ,

PDI-IFBS 30 3.9676
PDI-TFBS(I) 20 2.6233

h0 = sin(t), P = {f : ⟨2t2, f⟩ ≤ 5} PDI-TFBS(II) 30 3.8276
PDI-TFBS(III) 20 2.6901

f0 = t+ log(t+ 1)2, h−1 = sin(t+ 1), PDI-IFBS 38 4.9603
PDI-TFBS(I) 19 2.6120

h0 = sin(t), P = {f : ⟨2et, f⟩ ≤ 5} PDI-TFBS(II) 38 4.8947
PDI-TFBS(III) 19 2.5999
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Figures 1. Cauchy errors plots of all our algorithms in Table 1 for initialization f0 = t2 − 4t,
h−1 = sin(t)

2 , h0 = sin(t) and P = {f : ⟨2t2, f⟩ ≤ 5}
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Figures 2. Cauchy errors plots of all our algorithms in Table 1 for initialization f0 = t+ log(t+ 1)2,
h−1 = sin(t+ 1), h0 = sin(t) and P = {f : ⟨2et, f⟩ ≤ 5}.
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From Table 1 and Figures 1-2, errors decrease with increasing iterations across all algorithms, show-
ing convergence. The PDI-TFBS(III) algorithm demonstrates superior error reduction and efficiency
performance, particularly for challenging initialization setups. This suggests that the inertial and strate-
gies employed in PDI-TFBS(III) contribute to improved convergence in solving the given problem.

3. Applications

In this section, inspired by the Extreme Learning Machine (ELM) framework initially introduced by
Huang et al. [12], we extend the architecture to a 2-layer ELM with two hidden layers, as illustrated in
Figure 3. Our newly proposed algorithm serves as the optimizer for this multi-layer ELM, applied to
assess osteoporosis risk using a comprehensive dataset from Kaggle (https://www.kaggle.com/datasets/
amitvkulkarni/lifestyle-factors-influencing-osteoporosis). This dataset provides extensive information
on osteoporosis-related health factors, including demographic details, lifestyle choices, medical history,
and bone health indicators. The rich dataset supports the development of machine learning models
capable of accurately identifying high-risk individuals by analyzing age, gender, hormonal changes,
and lifestyle habits. Our approach advances osteoporosis management and prevention strategies by
enabling early diagnosis and timely interventions, ultimately reducing fracture risk, improving patient
outcomes, and optimizing healthcare resource allocation.

Figures 3. Structure of a feedforward neural network with an input layer consisting of 6 nodes
(green), two hidden layers, and an output layer with 2 nodes (red). The first hidden layer contains 4

nodes (dark blue), and the second hidden layer contains 4 nodes (light blue).

In our experiment, the neural network architecture consists of an input layer with 14 nodes (repre-
senting the features of the dataset), a first hidden layer with 500 nodes, a second hidden layer with 10
nodes, and an output layer with 2 nodes (representing the target values of the dataset). The dataset is
split into 80% for training and 20% for validation.

For the 2-layer Extreme Learning Machine (ELM) process, we consider N distinct samples, where
the training set S := {(fk, tk) : fk ∈ Rn, tk ∈ Rm, k = 1, 2, . . . , N} consists of input data fk and
corresponding target outputs tk. The output function for the first hidden layer (depicted as the blue
layer in Figure 3) at the j-th hidden node of the 2-layer ELM with M hidden nodes is mathematically
represented as:
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O1j =
M∑
i=1

β1i
1

1 + e−(w1ifj+b1i)
,

where w1i is a randomly initialized weight, and b1i is a randomly initialized bias for the i-th hidden
node. When the hidden matrix of the first layer can be formulated as:

H1 =


1

1+e−(w11f
1+b11)

· · · 1

1+e−(w1Mf1+b1M )

... . . . ...
1

1+e−(w11f
N+b11)

· · · 1

1+e−(w1MfN+b1M )

 .

Then the output of the first layer will be the input data of the second layer such that

H1β1 = O1, (3.1)

where β1 = [βT
11, . . . , β

T
1M ]T is output weight and O1 = [OT

11, . . . , O
T
1N ]T is the output of the first

layer. The output function for the second hidden layer (light blue layer in Figure 3) at kth hidden node
of 2-layer ELM with D hidden nodes is mathematically represented as:

O2k =
D∑
i=1

β2i
1

1 + e−(w2iO1k+b2i)
,

where w2i is a randomly initialized weight, and b2i is a randomly initialized bias for the i-th hidden
node. The goal is to find the optimal output weights β2i such that

H2β2 = T, (3.2)

where β2 = [βT
21, . . . , β

T
2D]

T is the vector of optimal output weights of the second layer and T =

[t1
T
, . . . , tN

T
]T . When the hidden matrix of the second layer can be formulated as:

H2 =


1

1+e−(w21O11+b21)
· · · 1

1+e−(w2DO11+b2D)

... . . . ...
1

1+e−(w21O1N+b21)
· · · 1

1+e−(w2DO1N+b2D)

 .

The system of linear equations (3.1) and (3.2) can be solved using a least squares approach, partic-
ularly when the Moore-Penrose generalized inverses of H1 and H2 are challenging to compute. To
prevent overfitting, stabilize the solution, reduce variance, and control model complexity-resulting in
models that perform well on new data-we employ the well-known Least Absolute Shrinkage and Se-
lection Operator (LASSO) method [19]: for λ1, λ2 > 0

min
β∈RM

1

2
∥H1β1 −O1∥22 + λ1∥β1∥1 (3.3)

and

min
β2∈RD

1

2
∥H2β2 − T∥22 + λ2∥β2∥1. (3.4)

By applying Algorithm 2.1 to solve the problem (3.3) and (3.4), we set Fβ ≡ ∇(12∥H1β − O1∥22),
Gβ ≡ ∂(λ1∥β∥1) with λ1 = 0.01 for (3.3) and Fβ ≡ ∇(12∥H2β − T∥22), Gβ ≡ ∂(λ2∥β∥1) with
λ2 = 0.01 for (3.4).

We assessed the performance of the classification algorithms using four evaluation metrics: accuracy,
precision, recall, and F1-score [20]. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%;
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Precision =
TP

TP + FP
× 100%;

Recall = TP

TP + FN
× 100%;

F1-score =
2× (Precision × Recall)

Precision + Recall .

In these formulas, TP represents True Positives, TN True Negatives, FP False Positives, and FN
False Negatives.

Additionally, we used binary cross-entropy loss [1] to evaluate the model’s ability to distinguish
between two classes in binary classification tasks. This loss is computed as the average:

Loss = −
N∑
i=1

φi log φ̄i + (1− φi) log(1− φ̄i),

where φ̄i represents the predicted probability for the i-th instance, φi is the corresponding true label,
and N is the total number of instances. For the comparison of our Algorithm (2.1) with Algorithm (1.3),
we choose γk = 0.999

∥H1∥2 /
0.999
∥H2∥2 , αk = 0.8, βk = 0.9, and P = {f : ∥f∥2 ≤ 5} where

θk =

{
0.999

k2∥hk+1−hk∥ if hk+1 ̸= hk and k > N,

0.999 otherwise;

δk =

{
−0.001

k2∥hk−hk−1∥ if hk ̸= hk−1 and k > N,

−0.001 otherwise

such that N is the number if we want to stop. The results are presented in Table 2.5
Table 2. Numerical results for different configurations of the proposed algorithm applied to 1-Layer

and 2-Layer Extreme Learning Machine (ELM) models.
1-Layer ELM 2-Layer ELM
500 nodes 500 nodes, 10 nodes
Algorithm 2.1 Algorithm 1.3 Algorithm 2.1 Algorithm 1.3

Number of Iterations 28 25 19 21
CPU Time 0.9740 0.9072 0.6723 0.7327
Accuracy 84.81 84.56 84.81 84.81
Precision 87.24 85.20 87.24 87.75
Recall 83.00 83.91 83.00 82.69
F1-score 85.07 84.55 85.07 85.14
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Figures 4-5: Training and validation performance of our Algorithm 2.1 on the 1-layer ELM: (Left)
Accuracy stabilizes over iterations, (Right) Loss decreases, showing effective learning.
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Figures 6-7: Training and validation performance of Algorithm 1.3 on the 1-layer ELM: (Left)
Accuracy stabilizes across iterations, (Right) Loss decreases, indicating effective learning and

convergence.
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Figures 8-9: Training and validation performance of our Algorithm 2.1 on the 2-layer ELM: (Left)
Accuracy rises quickly, then stabilizes; (Right) Loss decreases overall, with fluctuations after 15

iterations, indicating model adaptation.
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Figures 10-11: Training and validation performance of Algorithm 1.3 on the 2-layer ELM: (Left)
Accuracy shows high fluctuation, (Right) Loss decreases gradually with post-10 iteration fluctuations.
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Figures 12-13: ROC curves for our Algorithm 2.1 applied to the 1-layer ELM (left) and 2-layer ELM
(right).
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Figures 14-15: ROC curves for Algorithm 1.3 applied to the 1-layer ELM (left) and 2-layer ELM
(right).

Remark 3.1. (1) From Table 2, the 2-layer ELM models offer improved efficiency (lower iterations and
CPU time) while maintaining comparable performance metrics (accuracy, precision, recall, and F1-
score) relative to the 1-layer ELM models.
(2) From Figures 4-7, both algorithms demonstrate stable accuracy and decreasing loss, indicating effi-
cient learning and convergence in the 1-layer ELM model.
(3) From Figures 8-11, our Algorithm 2.1 demonstrates stable accuracy and effective learning, while
Algorithm 1.3 shows fluctuating accuracy with a slower convergence in the 2-layer ELM model.
(4) From Figures 12-15, both algorithms (2.1 and 1.3) achieve high AUC values in both 1-layer and
2-layer ELM models, reflecting effective classification capabilities.

4. Conclusions

This work introduced a projective double inertial Ishikawa forward-backward splitting algorithm for
addressing variational inclusion problems in Hilbert spaces. We proved a weak convergence theorem
under suitable control conditions, demonstrating the reliability of our approach. Numerical experi-
ments, including an example in infinite-dimensional space, confirmed the algorithm’s efficiency and
supported the theoretical findings.
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Our study highlights the successful application of this algorithm to osteoporosis prediction using
a multi-layer Extreme Learning Machine (ELM). The results indicate that the 2-layer ELM config-
uration outperformed the 1-layer model across all metrics-accuracy, precision, recall, and F1-score-
demonstrating its robustness and efficiency. Specifically, the results from Figures 4-7 show that both
algorithms exhibit stable accuracy and a downward trend in loss, suggesting effective learning and
convergence in the 1-layer ELM model. In the 2-layer ELM model, Algorithm 2.1 achieved stable accu-
racy with faster convergence, while Algorithm 1.3 showed more fluctuation and slower convergence,
potentially indicating a higher sensitivity to overfitting.

Moreover, both algorithms attained high AUC values in the 1-layer and 2-layer ELM models (Figures
12-15), underscoring their strong classification performance. This study demonstrates that the proposed
algorithm is theoretically sound and practical for machine learning applications like osteoporosis pre-
diction, providing a reliable tool for high-dimensional data focusing on minimizing overfitting and
maximizing predictive accuracy.

Data Availability

The data are available in Kaggle website (https://www.kaggle.com/datasets/amitvkulkarni/lifestyle-
factors-influencing-osteoporosis).
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