
 

FIXED POINT METHODS AND OPTIMIZATION
Volume 1 (2024), No. 2, 101–124
https://doi.org/10.69829/fpmo-024-0102-ta02 Tulipa Opera Scholarum

FORWARD-REFLECTED-BACKWARD METHOD WITH TWO-STEP INERTIAL FOR
VARIATIONAL INEQUALITIES

CHINEDU IZUCHUKWU1 AND YEKINI SHEHU2∗

1School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa
2School of Mathematical Sciences, Zhejiang Normal University, Jinhua, 321004, People’s Republic of China

Abstract. A forward-reflected-backward splitting method of Malitsky-Tam with two-step inertial ex-
trapolation and self-adaptive step sizes is proposed to solve variational inequalities in quasi-monotone
setting. Our method features one projection onto the feasible set and one functional evaluation at each
iteration. A two-step inertial extrapolation is added to further improve on the convergence speed of the
proposed method and self-adaptive step sizes are used in order to reduce computational complexity of
our method. Weak convergence analysis are obtained under some easy to verify conditions on the iter-
ative parameters in Hilbert spaces. Preliminary numerical tests are performed to support the theoretical
analysis and show the superiority of our method over recent related methods in the literature.

Keywords. Forward-backward method, variational inequalities, quasi-monotone, two-step inertial,
weak convergence, Hilbert spaces.
© Fixed Point Methods and Optimization

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space with inner product ⟨., .⟩ and induced
norm ∥.∥. Suppose C is a nonempty, closed and convex subset of H . Given a continuous operator
A : H → H , the Variational Inequality Problem ((VIP) for short) is defined as:

Find x∗ ∈ C such that ⟨Ax∗, z − x∗⟩ ≥ 0 ∀z ∈ C. (1.1)

It has been shown in [1, 2, 11, 13, 17, 18, 28, 37], for example, that problems arising from economics, en-
gineering mechanics, mathematical programming, transportation, and other applied sciences, can be
converted to VIP (1.1). Let S represent the set of solutions to VIP (1.1).

Several projection-type iterative methods have been proposed to solve VIP (1.1) in the literature.
One of the popular methods is the extragradient method [19]: x1 ∈ C , γn ∈ (0, 1

L) and L > 0,{
yn = PC(xn − γnAxn)

xn+1 = PC(xn − γnAyn), n ≥ 1,
(1.2)

where A is (pseudo)-monotone and Lipschitz continuous in Hilbert spaces. Several versions of (1.2)
have been studied in the literature (see, e.g., [3, 14, 29, 43, 47]). The extragradient method (1.2) is com-
putationally expensive especially in cases where PC does not have a closed-form solution and A has
complex evaluation (like in problems arising from optimal control theory).

∗Corresponding author.
E-mail address: chinedu.izuchukwu@wits.ac.za (C. Izuchukwu), yekini.shehu@zjnu.edu.cn (Y. Shehu)
2020 Mathematics Subject Classification: 47H05, 47J20, 47J25, 65K15, 90C25.
Accepted November 21, 2024.

101

https://tulipa-os.com/jdmh/volumes_articles.php
https://doi.org/10.69829/fpmo-024-0102-ta02
https://tulipa-os.com/


102 CHINEDU IZUCHUKWU AND YEKINI SHEHU

The iterative method: x1, y1 ∈ C and γn ∈ (0, 1
3L ],{

xn+1 = PC(xn − γnAyn)

yn+1 = PC(xn+1 − γnAyn), n ≥ 1,
(1.3)

was proposed by Popov [33] and weak convergence results were obtained whenA is (pseudo)-monotone
and Lipschitz continuous in Hilbert spaces (see, e.g., [12, 27]). The method (1.3) is computationally
cheaper than the extragradient method (1.2) because (1.3) requires one (rather than two) functional
evaluation of A at each iteration. However, (1.3) involves two PC per iteration.

The subgradient extragradient method [4]: x1 ∈ H, γn ∈ (0, 1
L) and L > 0,

yn = PC(xn − γnAxn)

Tn := {w ∈ H : ⟨xn − γnAxn − yn, w − yn⟩ ≤ 0},
xn+1 = PTn(xn − γnAyn), n ≥ 1,

(1.4)

was proposed by Censor et al. [4], which features two functional evaluation of A, one projection onto C
and one projection onto half-space at each iteration. Weak convergence results of (1.4) were obtained
when A is (pseudo)-monotone and Lipchitz continuous (see, e.g., [5, 6, 20, 36, 50]).

The forward-backward-forward method [45] is given as: x1 ∈ H , γn ∈ (0, 1
L) and L > 0,{

yn = PC(xn − γnAxn)

xn+1 = yn + γn (Axn −Ayn) , n ≥ 1.
(1.5)

The method converges weakly and it has only one projection PC and but two functional evaluations of
A at each iteration.

Inertial versions of the above-mentioned methods (1.2)-(1.5) with one-step inertial extrapolation wn =
xn + θ(xn − xn−1), θ ∈ [0, 1) have also been investigated in the literature and convergence results
were obtained under the assumption that A is (pseudo)-monotone and Lipschitz continuous (see, for
example, [7, 10, 35, 40–42, 44]).

Related works. In [24], Malitsky introduced the projected reflected gradient method: x1, y1 ∈ H ,
γn ∈ (0,

√
2−1
L ) and L > 0, {

xn+1 = PC(xn − γnAyn)
yn+1 = 2xn+1 − xn, n ≥ 1,

(1.6)

and gave weak convergence results for solving VIP (1.1) in real Hilbert spaces with A being monotone
and Lipschitz continuous. It can be seen that method (1.6) involves only one PC and one functional
evaluation of A at each iteration unlike the methods (1.2)-(1.5). Numerical tests in [24] showed that
method (1.6) is more efficient and outperforms methods (1.2)-(1.5). Several modifications of the pro-
jected reflected gradient method (1.6) with the extrapolation wn = xn + θ(xn − xn−1), θ ≥ 0 have
been studied in [23, 26, 39, 51] when A is monotone and Lipschitz continuous.

In [26], a forward-reflected-backward splitting method was studied. We give the VIP setting as (see [26,
Algorithm 3.1]): x0, x1 ∈ H , γ0, γ1 > 0, δ ∈ (0, 1), σ ∈ (0, 1) and ρ ∈ {1, σ−1};

xn+1 = PC(xn − γnAxn − γn−1(Axn −Axn−1)), n ≥ 1, (1.7)



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 103

where γn = ργn−1σ
i with i being the smallest nonnegative integer satisfying

γn∥Axn+1 −Axn∥ ≤
δ

2
∥xn+1 − xn∥.

Weak convergence of (1.7) and its one-step inertial extrapolation wn = xn + θ(xn − xn−1), θ ∈ [0, 1)
with constant step sizes (see [26, Section 4]) was obtained in [26] when A is monotone and Lipschitz
continuous, and it is noticed that (1.7) requires only one PC and one functional evaluation of A per
iteration.

At this point, we want to point out that very few projection-type methods for solving VIP (1.1) when
A is quasi-monotone (which is weaker than the pseudo-monotonicity or monotonicity assumption)
are available in the literature. This is partly due to the fact that the arguments for the convergence
analysis of these projection-type methods when A is monotone or pseudo-monotone cannot be carried
over when A is quasi-monotone. For example, if A is quasi-monotone in VIP (1.1), then weak or Minty
formulation of VIP (1.1) is not equivalent to VIP (1.1).

Recently, Liu and Yang [22] proved that the forward-backward-forward method (1.5) converges
weakly to a solution of VIP (1.1) when A is quasi-monotone, Lipschitz continuous and sequentially
weakly continuous in an infinite dimensional Hilbert space. They also pointed out that their weak
convergence result holds for the extragradient method (1.2) (see also [34]) and the subgradient extra-
gradient method (1.4) with the inherent drawbacks of these methods enumerated above in (1.2)-(1.5).

Quite recently, Wang et al. [48] obtained weak convergence results of a projection and contraction
method with one-step inertial extrapolation wn = xn + θ(xn− xn−1), θ ∈ [0, 1) and Barzilai-Borwein
step size strategy to solve VIP (1.1) when A is quasi-monotone and Lipschitz continuous in Hilbert
spaces. However, the proposed method in [48] involves computations of two projections onto the fea-
sible set C and two evaluations of A.

It was shown in [32, Section 4] by example that one-step inertial extrapolation wn = xn + θ(xn −
xn−1), θ ∈ [0, 1) may fail to provide acceleration. It was remarked in [21, Chapter 4] that the use
of inertia of more than two points xn, xn−1 could provide acceleration. For example, the following
two-step inertial extrapolation

yn = xn + θ(xn − xn−1) + δ(xn−1 − xn−2) (1.8)
with θ > 0 and δ < 0 can provide acceleration. The failure of one-step inertial acceleration of ADMM
was also discussed in [31, Section 3] and adaptive acceleration for ADMM was proposed instead.
Polyak [30] also discussed that the multi-step inertial methods can boost the speed of optimization
methods even though neither the convergence nor the rate result of such multi-step inertial methods
was established in [30]. Some results on multi-step inertial methods have recently been studied in [8,9].

Our contributions. Motivated by [26], our aim in this paper is to propose a forward-reflected-backward
splitting method with one evaluation of A, one computation of PC , two-step inertial extrapolation and
self-adaptive step sizes to solve VIP (1.1) when A is quasi-monotone. Our proposed method has the
following features:

• our method involves one projection onto feasible set C per iteration;
• one evaluation of A is only needed at each iteration;
• two-step inertial extrapolation is incorporated in our proposed method to speed up the itera-

tions;
• self-adaptive step sizes are adopted in our proposed method.



104 CHINEDU IZUCHUKWU AND YEKINI SHEHU

In comparisons with the methods proposed in [22, 38, 48, 49, 53], our contributions in this paper are:
• we propose a two-step inertial forward-reflected-backward splitting method to solve VIP (1.1)

and we give weak convergence results when A is quasi-monotone and Lipschitz continuous
in real Hilbert spaces. Our proposed method is simple and does not require neither further
evaluations of A nor further projections as compared with the methods in [22, 48]. Also, our
method does not involve the projection onto intersection of the feasible set C and n + 1 half
spaces as done in [38, 49, 53];
• our proposed method is applicable in situations where A is pseudo-monotone and Lipchitz con-

tinuous. Therefore, our method overcomes the deficiency in the one-step inertial extragradient
method studied in [40], subgradient extragradient method in [6, 52] and one-step inertial sub-
gradient extragradient method in [7, 10, 36, 44, 50] for both monotone and pseudo-monotone
cases of VIP (1.1);
• we give numerical computations of our proposed method and compare with the methods in

[22, 25, 26, 46, 48]. Our preliminary computational results show that our proposed method is
efficient and converges faster (in terms of CPU time and number of iterations) than the methods
in [22, 25, 26, 46, 48].

Outline. The paper is arranged as follows: In Section 2, we give some basic definitions and results
needed in our analysis while in Section 3, we introduce our proposed method. Weak convergence
analysis of our method is presented in Section 4 and numerical tests are performed in Section 5. Finally,
we give concluding remarks in Section 6.

2. Preliminaries

An operator A : H → H is
(i) Lipschitz continuous with constant L, if there exists L > 0 such that

∥Ax−Ay∥ ≤ L∥x− y∥ ∀x, y ∈ H,

(ii) monotone, if 〈
Ax−Ay, x− y

〉
≥ 0 ∀x, y ∈ H,

(iii) pseudo-monotone, if
⟨Ay, x− y⟩ ≥ 0 =⇒ ⟨Ax, x− y⟩ ≥ 0 ∀x, y ∈ H,

(iv) quasi-monotone, if
⟨Ay, x− y⟩ > 0 =⇒ ⟨Ax, x− y⟩ ≥ 0 ∀x, y ∈ H,

(v) sequentially weakly-strongly continuous, if for every sequence {xn} that converges weakly to a
point x, the sequence {Axn} converges strongly to Ax,

(vi) sequentially weakly continuous, if for every sequence {xn} that converges weakly to a point x,
the sequence {Axn} converges weakly to Ax.

Clearly, (ii) =⇒ (iii) =⇒ (iv) but the converses may fail.
Let SD be the solution set of the following Minty formulation of VIP (1.1):

Find x∗ ∈ C such that ⟨Az, z − x∗⟩ ≥ 0 ∀z ∈ C. (2.1)
Then, SD is a closed and convex subset of C , and since C is convex and A is continuous, we have that
SD ⊂ S.

SD is nonempty when the following situations arise.

Lemma 2.1. (see [53]) Suppose either



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 105

(i) A is pseudo-monotone on C and S ̸= ∅,
(ii) A is the gradient of G, where G is a differential quasi-convex function on an open set K ⊃ C and

attains its global minimum on C,
(iii) A is quasi-monotone on C, A ̸= 0 on C and C is bounded,
(iv) A is quasi-monotone on C , A ̸= 0 on C and there exists a positive number r such that, for every

x ∈ C with ∥x∥ ≥ r, there exists y ∈ C such that ∥y∥ ≤ r and ⟨Ax, y − x⟩ ≤ 0,
(v) A is quasi-monotone on C, int C is nonempty and there exists z ∈ S such that Az ̸= 0.

Then, SD is nonempty.

The metric projection, denoted by PC , is a mapping defined on H onto C which assigns to each
v ∈ H , the unique point in C , denoted by PCv such that

∥v − PCv∥ = inf{∥v − y∥ : y ∈ C}.

It is well known that PC is characterized by the inequality

⟨v − PCv, y − PCv⟩ ≤ 0, ∀y ∈ C. (2.2)

Lemma 2.2. The following identities hold for all u, v ∈ H :

2⟨u, v⟩ = ∥u∥2 + ∥v∥2 − ∥u− v∥2 = ∥u+ v∥2 − ∥u∥2 − ∥v∥2.

Lemma 2.3. Let x, y, z ∈ H and a, b ∈ R. Then

∥(1 + a)x− (a− b)y − bz∥2 = (1 + a)∥x∥2 − (a− b)∥y∥2 − b∥z∥2 + (1 + a)(a− b)∥x− y∥2

+b(1 + a)∥x− z∥2 − b(a− b)∥y − z∥2.

Proof.

∥(1 + a)x− (a− b)y − bz∥2 = ⟨(1 + a)x− (a− b)y − bz, (1 + a)x− (a− b)y − bz⟩
= (1 + a)2∥x∥2 − 2(1 + a)(a− b)⟨x, y⟩ − 2b(1 + a)⟨x, z⟩

+2b(a− b)⟨y, z⟩+ (a− b)2∥y∥2 + b2∥z∥2

= (1 + a)2∥x∥2 − (1 + a)(a− b)(∥x∥2 + ∥y∥2 − ∥x− y∥2)
−b(1 + a)(∥x∥2 + ∥z∥2 − ∥x− z∥2)
+b(a− b)(∥y∥2 + ∥z∥2 − ∥y − z∥2) + (a− b)2∥y∥2 + b2∥z∥2

= (1 + a)∥x∥2 − (a− b)∥y∥2 − b∥z∥2

+(1 + a)(a− b)∥x− y∥2 + b(1 + a)∥x− z∥2 − b(a− b)∥y − z∥2.

□

3. Proposed Method

We introduce our proposed method to solve VIP (1.1) below and give some discussions about our
method.



106 CHINEDU IZUCHUKWU AND YEKINI SHEHU

Algorithm 1 2-Step Inertial Projection Method with Adaptive Step Size

1: Choose the parameters γ0, γ1 > 0, µ ∈
(
δ, 1−2δ

2

)
with δ ∈ (0, 14), β ≤ 0, and θ ∈ [0, 1). Choose

a nonnegative real sequence {an} such that
∑∞

n=1 an < ∞. Choose x−1, x0, x1 ∈ H as starting
points. Set n := 1.

2: Compute {
wn = xn + θ(xn − xn−1) + β(xn−1 − xn−2),
xn+1 = PC (wn − ((γn + γn−1)Axn − γn−1Axn−1)) ,

(3.1)

where

γn+1 =

{
min

{
µ∥xn−xn+1∥
∥Axn−Axn+1∥ , γn + an

}
, if Axn ̸= Axn+1,

γn + an, otherwise.
(3.2)

3: Set n← n+ 1, and go to 2.

We assume that the following conditions are satisfied in order to obtain weak convergence of our
proposed Algorithm 1.

Assumption 3.1. Suppose the following conditions are fulfilled:
(a) SD ̸= ∅,
(b) A is Lipschitz continuous on C with constant L > 0,
(c) A satisfies the following condition: whenever {xn} ⊂ C and xn ⇀ v∗, one has ∥Av∗∥ ≤

lim inf
n→∞

∥Axn∥,
(d) A is quasi-monotone on H.

We further assume the following conditions on the inertial parameters θ and β, and iterative parameters
δ and µ in Algorithm 1.

Assumption 3.2. Assume that θ and β satisfy the following conditions

(a) 0 ≤ θ < min
{

1−µ
2 , 2δ3 ,

1
2
−β+δ−µ

3

}
,

(b) β ≤ 0.

Remark 3.3. Observe that if µ < 1−2δ
2 , then 0 < 1

2 + δ − µ. We also note that if β ≤ 0, then by
Assumption 3.2 (a), we obtain

β < min
{ 2δ − 3θ

2(1 + θ)
,
1

2
+ δ − µ

}
.

Remark 3.4.
(i) Clearly, Algorithm 1 requires only one metric projection onto the feasible set C and one eval-

uation of A per iteration.
(ii) Assumption 3.1(c) is strictly weaker than the sequentially weakly continuous assumption in

[22] and other recent papers for solving pseudo-monotone VIPs. An example of an operator
satisfying Assumption 3.1(c) but not sequentially weakly continuous is Av = v∥v∥ ∀v ∈ C
(see [43]).

(iii) No Lipschitz constant of A is needed as input parameter in our proposed Algorithm 1 and
Algorithm 1 does not adopt the line search procedure but rather self-adaptive step sizes. Observe
from (3.2) that lim

n→∞
γn = γ, where γ ∈ [min{ µL , γ1}, γ1 + a], with a =

∑∞
n=1 an (see [22]).

(iv) When θ = 0 = β and an = 0 in Algorithm 1, our proposed method reduces to the method
studied in [46, Algorithm 3.1]. Also, Algorithm 1 becomes [16, Algorithm 3.2] when θ = 0 = β.



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 107

The sequence {an} introduced in (3.2) allows the step sizes to increase from iteration to iteration
and hence, reduces the dependence of Algorithm 1 on the initial step size γ1. Note also that since
lim
n→∞

an = 0, the step sizes maybe non-increasing for large n. Hence, {an} is added in (3.2) to
improve on the self-adaptive step sizes used in [46, Algorithm 3.1] (which are non-increasing).

4. Convergence Results

In this section, we give our convergence results below.

Lemma 4.1. Suppose Assumptions 3.1 (a) and (b) are satisfied and Assumptions 3.2 are fulfilled. Then the
sequence {xn} generated by Algorithm 1 is bounded.

Proof. Pick z ∈ SD . Then z ∈ S ⊂ C . Using (2.2) and Lemma 2.2, we obtain

0 ≤ 2⟨xn+1 − wn + (γn + γn−1)Axn − γn−1Axn−1, z − xn+1⟩
= 2⟨xn+1 − wn, z − xn+1⟩+ 2γn⟨Axn, z − xn+1⟩
+ 2γn−1⟨Axn −Axn−1, z − xn+1⟩
= ∥wn − z∥2 − ∥xn+1 − wn∥2 − ∥xn+1 − z∥2 + 2γn⟨Axn, z − xn+1⟩ (4.1)
+ 2γn−1⟨Axn −Axn−1, z − xn+1⟩.

Since xn+1 ∈ C and z ∈ SD , we get from (2.1) that ⟨Axn+1, xn+1− z⟩ ≥ 0, ∀n ≥ 1. This implies that
⟨Axn, z − xn+1⟩ ≤ ⟨Axn −Axn+1, z − xn+1⟩, ∀n ≥ 1. Then (4.1) becomes

∥xn+1 − z∥2 ≤ ∥wn − z∥2 − ∥xn+1 − wn∥2 + 2γn⟨Axn −Axn+1, z − xn+1⟩
+ 2γn−1⟨Axn −Axn−1, z − xn⟩+ 2γn−1⟨Axn −Axn−1, xn − xn+1⟩. (4.2)

By (3.2), we get

2γn−1⟨Axn −Axn−1, xn − xn+1⟩ ≤ 2γn−1∥Axn −Axn−1∥∥xn − xn+1∥

≤ 2
γn−1

γn
µ∥xn − xn−1∥∥xn − xn+1∥

≤ γn−1

γn
µ
(
∥xn − xn−1∥2 + ∥xn+1 − xn∥2

)
. (4.3)

Similarly, we obtain

2γn⟨Axn+1 −Axn, z − xn+1⟩ ≥ −
γn
γn+1

µ
(
∥xn+1 − xn∥2 + ∥xn+1 − z∥2

)
. (4.4)

By Remark 3.4(iii) and the condition µ ∈
(
δ, 1−2δ

2

)
, we have that lim

n→∞
γn−1

γn
µ = µ < 1

2 − δ. Hence,
there exists n0 ≥ 1 such that γn−1

γn
µ < 1

2−δ ∀n ≥ n0. Furthermore,− γn
γn+1

µ > −1
2+δ > −1

2 ∀n ≥ n0.
Consequently, (4.3) and (4.4) become

2γn−1⟨Axn −Axn−1, xn − xn+1⟩ ≤
(
1

2
− δ

)(
∥xn − xn−1∥2 + ∥xn+1 − xn∥2

)
, (4.5)

∀n ≥ n0 and

2γn⟨Axn+1 −Axn, z − xn+1⟩ ≥ −
1

2

(
∥xn+1 − xn∥2 + ∥xn+1 − z∥2

)
, (4.6)

∀n ≥ n0, respectively.
Using (4.5) in (4.2), we have ∀n ≥ n0,

∥xn+1 − z∥2 ≤ ∥wn − z∥2 − ∥xn+1 − wn∥2 + 2γn⟨Axn −Axn+1, z − xn+1⟩

+2γn−1⟨Axn −Axn−1, z − xn⟩+
(1
2
− δ

)
∥xn − xn−1∥2



108 CHINEDU IZUCHUKWU AND YEKINI SHEHU

+
(1
2
− δ

)
∥xn+1 − xn∥2. (4.7)

Observe that
wn − z = xn + θ(xn − xn−1) + β(xn−1 − xn−2)− z

= (1 + θ)(xn − z)− (θ − β)(xn−1 − z)− β(xn−2 − z).

Therefore, by Lemma 2.3, we obtain
∥wn − z∥2 = ∥(1 + θ)(xn − z)− (θ − β)(xn−1 − z)− β(xn−2 − z)∥2

= (1 + θ)∥xn − z∥2 − (θ − β)∥xn−1 − z∥2 − β∥xn−2 − z∥2

+(1 + θ)(θ − β)∥xn − xn−1∥2 + β(1 + θ)∥xn − xn−2∥2

−β(θ − β)∥xn−1 − xn−2∥2. (4.8)
Furthermore,

∥xn+1 − wn∥2 = ∥xn+1 − (xn + θ(xn − xn−1) + β(xn−1 − xn−2))∥2

= ∥xn+1 − xn − θ(xn − xn−1)− β(xn−1 − xn−2)∥2

= ∥xn+1 − xn∥2 − 2θ⟨xn+1 − xn, xn − xn−1⟩
−2β⟨xn+1 − xn, xn−1 − xn−2⟩+ θ2∥xn − xn−1∥2

+2βθ⟨xn − xn−1, xn−1 − xn−2⟩+ β2∥xn−1 − xn−2∥2

≥ ∥xn+1 − xn∥2 − 2θ∥xn+1 − xn∥∥xn − xn−1∥
−2β∥xn+1 − xn∥∥xn−1 − xn−2∥+ θ2∥xn − xn−1∥2

−2βθ∥xn−1 − xn∥∥xn−1 − xn−2∥+ β2∥xn−1 − xn−2∥2

≥ ∥xn+1 − xn∥2 − θ∥xn+1 − xn∥2 − θ∥xn − xn−1∥2

−β∥xn+1 − xn∥2 − β∥xn−1 − xn−2∥2 + θ2∥xn − xn−1∥2

−βθ∥xn−1 − xn∥2 − βθ∥xn−1 − xn−2∥2 + β2∥xn−1 − xn−2∥2

= (1− β − θ)∥xn+1 − xn∥2 + (θ2 − θ − βθ)∥xn − xn−1∥2

+(β2 − β − βθ)∥xn−1 − xn−2∥2. (4.9)
Using (4.8) and (4.9) in (4.7), we obtain for all n ≥ n0,

∥xn+1 − z∥2 ≤ (1 + θ)∥xn − z∥2 − (θ − β)∥xn−1 − z∥2 − β∥xn−2 − z∥2

+(1 + θ)(θ − β)∥xn − xn−1∥2 + β(1 + θ)∥xn − xn−2∥2

−β(θ − β)∥xn−1 − xn−2∥2 − (1− β − θ)∥xn+1 − xn∥2

−(θ2 − θ − βθ)∥xn − xn−1∥2 − (β2 − β − βθ)∥xn−1 − xn−2∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩+
(1
2
− δ

)
∥xn − xn−1∥2

+
(1
2
− δ

)
∥xn+1 − xn∥2 + 2γn⟨Axn −Axn+1, z − xn+1⟩. (4.10)

Then, we have from (4.10) (noting that 2β(1 + θ) ≤ 0) that for all n ≥ n0,
∥xn+1 − z∥2 ≤ (1 + θ)∥xn − z∥2 − (θ − β)∥xn−1 − z∥2 − β∥xn−2 − z∥2

+(1 + θ)(θ − β)∥xn − xn−1∥2 − β(θ − β)∥xn−1 − xn−2∥2

−(1− β − θ)∥xn+1 − xn∥2 − (θ2 − θ − βθ)∥xn − xn−1∥2

−(β2 − β − βθ)∥xn−1 − xn−2∥2 + 2γn−1⟨Axn −Axn−1, z − xn⟩

+
(1
2
− δ

)
∥xn − xn−1∥2 +

(1
2
− δ

)
∥xn+1 − xn∥2



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 109

+2γn⟨Axn −Axn+1, z − xn+1⟩
= (1 + θ)∥xn − z∥2 − (θ − β)∥xn−1 − z∥2 − β∥xn−2 − z∥2

+
[
(1 + θ)(θ − β)− (θ2 − θ − βθ)

]
∥xn − xn−1∥2 − (1− β − θ)∥xn+1 − xn∥2

−
[
β(θ − β) + (β2 − β − βθ)

]
∥xn−1 − xn−2∥2 +

(1
2
− δ

)
∥xn − xn−1∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩+
(1
2
− δ

)
∥xn+1 − xn∥2

+2γn⟨Axn −Axn+1, z − xn+1⟩. (4.11)

Therefore, we obtain from (4.11) that

∥xn+1 − z∥2 − θ∥xn − z∥2 − β∥xn−1 − z∥2 + (1− β − θ)∥xn+1 − xn∥2

+2γn⟨Axn+1 −Axn, z − xn+1⟩
≤ ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2 + (1− β − θ)∥xn − xn−1∥2

+(3θ − 1)∥xn − xn−1∥2 + β∥xn−1 − xn−2∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩+
(1
2
− δ

)
∥xn − xn−1∥2

+
(1
2
− δ

)
∥xn+1 − xn∥2,∀n ≥ n0.

Thus, ∀n ≥ n0,

∥xn+1 − z∥2 − θ∥xn − z∥2 − β∥xn−1 − z∥2 +
(1
2
− β − θ + δ

)
∥xn+1 − xn∥2

+2γn⟨Axn+1 −Axn, z − xn+1⟩

≤ ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2 +
(1
2
− β − θ + δ

)
∥xn − xn−1∥2

+(1− 2δ)∥xn − xn−1∥2 + (3θ − 1)∥xn − xn−1∥2 + β∥xn−1 − xn−2∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩. (4.12)

For each n ≥ 0, define

Γn := ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2 +
(1
2
− β − θ + δ

)
∥xn − xn−1∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩.

We next show that Γn ≥ 0. Now,

Γn = ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2

+
(1
2
− β − θ + δ

)
∥xn − xn−1∥2

+2γn−1⟨Axn −Axn−1, z − xn⟩
≥ ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2

+
(1
2
− β − θ + δ

)
∥xn − xn−1∥2

−2γn−1∥Axn −Axn−1∥∥xn − z∥
≥ ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2

+
(1
2
− β − θ + δ

)
∥xn − xn−1∥2



110 CHINEDU IZUCHUKWU AND YEKINI SHEHU

−2γn−1µ

γn
∥xn − xn−1∥∥xn − z∥

≥ ∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2

+
(1
2
− β − θ + δ

)
∥xn − xn−1∥2

−γn−1µ

γn

[
∥xn − xn−1∥2 + ∥xn − z∥2

]
=

(
1− γn−1µ

γn

)
∥xn − z∥2

+
(1
2
− β − θ + δ − γn−1µ

γn

)
∥xn − xn−1∥2

−θ∥xn−1 − z∥2 − β∥xn−2 − z∥2. (4.13)

Using Lemma 2.2, we obtain

∥xn−1 − z∥2 = ∥(xn−1 − xn) + (xn − z)∥2

= ∥xn − xn−1∥2 + ∥xn − z∥2 + 2⟨xn−1 − xn, xn − z⟩
≤ 2∥xn − xn−1∥2 + 2∥xn − z∥2. (4.14)

If we combine (4.13) and (4.14), we get

Γn ≥
(
1− γn−1µ

γn

)
∥xn − z∥2 +

(1
2
− β − θ + δ − γn−1µ

γn

)
∥xn − xn−1∥2

−2θ∥xn − xn−1∥2 − 2θ∥xn − z∥2 − β∥xn−2 − z∥2

=
(
1− γn−1µ

γn
− 2θ

)
∥xn − z∥2 − β∥xn−2 − z∥2

+
(1
2
− β − θ + δ − γn−1µ

γn
− 2θ

)
∥xn − xn−1∥2. (4.15)

Observe that

lim
n→∞

(1
2
− β − θ + δ − γn−1µ

γn
− 2θ

)
=

1

2
− β − θ + δ − µ− 2θ > 0,

by the condition that θ <
1
2
−β+δ−µ

3 and

lim
n→∞

(
1− γn−1µ

γn
− 2θ

)
= 1− µ− 2θ > 0,

by the condition that θ < 1−µ
2 . Therefore, there exists n1 ∈ N, n1 ≥ n0 such that

1

2
− β − θ + δ − γn−1µ

γn
− 2θ > 0; 1− γn−1µ

γn
− 2θ > 0, ∀n ≥ n1. (4.16)

Hence, by (4.16) and β ≤ 0, we obtain from (4.15) that Γn ≥ 0,∀n ≥ n1 ≥ n0.

Also by (4.12), we get

Γn+1 ≤ Γn +
[
(1− 2δ) + (3θ − 1)

]
∥xn − xn−1∥2

+β∥xn−1 − xn−2∥2

= Γn − (2δ − 3θ)∥xn − xn−1∥2 + β∥xn−1 − xn−2∥2. (4.17)



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 111

Since θ < 2δ
3 , we have 2δ − 3θ > 0 and by β ≤ 0, we obtain from (4.17) that lim

n→∞
Γn exists. Conse-

quently,

lim
n→∞

−
[
− (2δ − 3θ)∥xn − xn−1∥2 + β∥xn−1 − xn−2∥2

]
= 0. (4.18)

Hence,

0 ≤ (2δ − 3θ)∥xn − xn−1∥2

≤ −
[
− (2δ − 3θ)∥xn − xn−1∥2 + β∥xn−1 − xn−2∥2

]
. (4.19)

We obtain from (4.19) that
lim
n→∞

(2δ − 3θ)∥xn − xn−1∥2 = 0.

Hence, we have
lim
n→∞

∥xn+1 − xn∥ = 0. (4.20)

Also,

∥xn+1 − wn∥ = ∥xn+1 − xn − θ(xn − xn−1)− β(xn−1 − xn−2)∥
≤ ∥xn+1 − xn∥+ θ∥xn − xn−1∥+ |β|∥xn−1 − xn−2∥ → 0 (4.21)

as n → ∞. Since lim
n→∞

Γn exists and lim
n→∞

∥xn − xn−1∥ = 0, we obtain from (4.15) that the sequence
{xn} is bounded. □

Using the ideas in [22], we have the following lemma.

Lemma 4.2. Let {xn} be generated by Algorithm 1 such that Assumption 3.1(a)-(d) and Assumptions
3.2 (a)-(b) are satisfied. If v∗ is one of the weak cluster points of {xn}, then we have at least one of the
following: v∗ ∈ SD or Av∗ = 0.

Proof. By Lemma 4.1, {xn} is bounded. Hence, let v∗ be a weak cluster point of {xn}. Then, we can
choose a subsequence of {xn}, denoted by {xnk

} such that xnk
⇀ v∗ ∈ C.

We consider the following two possible cases.
Case I: Suppose that lim sup

k→∞
∥Axnk

∥ = 0. Then, lim
k→∞

∥Axnk
∥ = lim inf

k→∞
∥Axnk

∥ = 0. Thus, we obtain

from Assumption 3.1(c) that

0 < ∥Av∗∥ ≤ lim inf
k→∞

∥Axnk
∥ = 0. (4.22)

This means that Av∗ = 0.
Case II: Suppose that lim sup

k→∞
∥Axnk

∥ > 0. Then without loss of generality, we can choose a subse-

quence of {Axnk
} still denoted by {Axnk

} such that lim
k→∞

∥Axnk
∥ = M1 > 0. Now, using (2.2), we

obtain for all y ∈ C, that

0 ≤ ⟨xnk+1 − xnk
+ ((γnk

+ γnk−1)Axnk
+ γnk−1Axnk−1) , y − xnk+1⟩

= ⟨xnk+1 − xnk
, y − xnk+1⟩+ γnk

⟨Axnk
, y − xnk

⟩
+ γnk

⟨Axnk
, xnk

− xnk+1⟩+ γnk−1⟨Axnk
−Axnk−1, y − xnk+1⟩. (4.23)

Since A is Lipschitz continuous on C , we have from (4.20) that lim
n→∞

∥Axn−Axn−1∥ = 0. Now, using
this and (4.20) in (4.23), we get

0 ≤ lim inf
k→∞

⟨Axnk
, y − xnk

⟩ ≤ lim sup
k→∞

⟨Axnk
, y − xnk

⟩ <∞, ∀y ∈ C. (4.24)

Based on (4.24), we consider the following two cases under Case II:



112 CHINEDU IZUCHUKWU AND YEKINI SHEHU

Case 1: Suppose that lim sup
k→∞

⟨Axnk
, y − xnk

⟩ > 0 ∀y ∈ C. Then we can choose a subsequence of

{xnk
} denoted by {xnkj

} such that lim
j→∞
⟨Axnkj

, y − xnkj
⟩ > 0. Thus, there exists j0 ≥ 1 such that

⟨Axnkj
, y − xnkj

⟩ > 0 ∀j ≥ j0, which by the quasi-monotonicity of A on C, implies that ⟨Ay, y −
xnkj
⟩ ≥ 0 ∀y ∈ C, j ≥ j0. Hence, letting j → ∞, we get that ⟨Ay, y − v∗⟩ ≥ 0 ∀y ∈ C. Therefore,

v∗ ∈ SD.
Case 2: Suppose that lim sup

k→∞
⟨Axnk

, y − xnk
⟩ = 0 ∀y ∈ C. Then, by (4.24), we get

lim
k→∞
⟨Axnk

, y − xnk
⟩ = 0 ∀y ∈ C, (4.25)

from which we get that

⟨Axnk
, y − xnk

⟩+ |⟨Axnk
, y − xnk

⟩|+ 1

k + 1
> 0 ∀y ∈ C. (4.26)

Also, since lim
k→∞

∥Axnk
∥ = M1 > 0, we can find k0 ≥ 1 such that ∥Axnk

∥ > M1
2 ∀k ≥ k0. Hence, we

can set bnk
=

Axnk
∥Axnk

∥2 ∀k ≥ k0. Thus, ⟨Axnk
, bnk
⟩ = 1 ∀k ≥ k0. Therefore, by (4.26), we get〈

Axnk
, y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1
− xnk

]〉
> 0,

and using the quasi-monotonicity of A on H, we obtain〈
A
(
y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

])
, y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

〉
≥ 0.

This implies that

⟨Ay, y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

⟩

≥ ⟨Ay,A(y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
), y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

⟩

≥ −∥Ay −A(y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
)∥ · ∥y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

∥

≥ −L∥bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
∥ · ∥y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

∥

=
−L
∥Axnk

∥

(
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

)
· ∥y + bnk

[
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

]
− xnk

∥

≥ −2L
M1

(
|⟨Axnk

, y − xnk
⟩|+ 1

k + 1

)
M2, (4.27)

for some M2 > 0, where the existence of M2 is from the boundedness of {y+ bnk

[
|⟨Axnk

, y−xnk
⟩|+

1
k+1

]
− xnk

}. Now, observe that (4.25) implies that lim
k→∞

(
|⟨Axnk

, y − xnk
⟩| + 1

k+1

)
= 0. Thus, as

k →∞ in (4.27), we get that ⟨Ay, y − v∗⟩ ≥ 0, ∀y ∈ C. Therefore, v∗ ∈ SD. □

We now give our weak convergence theorem below.

Theorem 4.3. Suppose Assumptions 3.1(a)-(d), Assumptions 3.2 (a)-(b) are fulfilled andAx ̸= 0,∀x ∈ C .
Then, {xn} generated by Algorithm 1 converges weakly to an element of SD ⊂ S.

Proof. Suppose wω(xn) is the set of weak cluster points of {xn}. We show that
wω(xn) ⊂ SD.

Take v∗ ∈ wω(xn). Then, there exists a subsequence {xnk
} ⊂ {xn} such that xnk

⇀ v∗, k → ∞.
Since C is weakly closed, we have that v∗ ∈ C . Since Ax ̸= 0, ∀x ∈ C , we have Av∗ ̸= 0. By Lemma



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 113

4.2, we get v∗ ∈ SD . Therefore, wω(xn) ⊂ SD.

Since lim
n→∞

Γn exists and lim
n→∞

∥xn+1 − xn∥ = 0, we have that

lim
n→∞

[
∥xn − z∥2 − θ∥xn−1 − z∥2 − β∥xn−2 − z∥2

]
(4.28)

exists for all z ∈ SD .

We now show that xn ⇀ x∗ ∈ SD . Let us assume that there exist {xnk
} ⊂ {xn} and {xnj} ⊂ {xn}

such that xnk
⇀ v∗, k →∞ and xnj ⇀ x∗, j →∞. We show that v∗ = x∗.

Observe that
2⟨xn, x∗ − v∗⟩ = ∥xn − v∗∥2 − ∥xn − x∗∥2 − ∥v∗∥2 + ∥x∗∥2, (4.29)

2⟨−θxn−1, x
∗ − v∗⟩ = −θ∥xn−1 − v∗∥2 + θ∥xn−1 − x∗∥2

+θ∥v∗∥2 − θ∥x∗∥2 (4.30)
and

2⟨−βxn−2, x
∗ − v∗⟩ = −β∥xn−2 − v∗∥2 + β∥xn−2 − x∗∥2

+β∥v∗∥2 − β∥x∗∥2. (4.31)
Addition of (4.29), (4.30) and (4.31) gives

2⟨xn − θxn−1 − βxn−2, x
∗ − v∗⟩ =

(
∥xn − v∗∥2 − θ∥xn−1 − v∗∥2 − β∥xn−2 − v∗∥2

)
−
(
∥xn − x∗∥2 − θ∥xn−1 − x∗∥2 − β∥xn−2 − x∗∥2

)
+(1− θ − β)(∥x∗∥2 − ∥v∗∥2).

According to (4.28), we have

lim
n→∞

[
∥xn − x∗∥2 − θ∥xn−1 − x∗∥2 − β∥xn−2 − x∗∥2

]
exists and

lim
n→∞

[
∥xn − v∗∥2 − θ∥xn−1 − v∗∥2 − β∥xn−2 − v∗∥2

]
exists. This implies that

lim
n→∞

⟨xn − θxn−1 − βxn−2, x
∗ − v∗⟩

exists. Now,
⟨v∗ − θv∗ − βv∗, x∗ − v∗⟩ = lim

k→∞
⟨xnk

− θxnk−1 − βxnk−2, x
∗ − v∗⟩

= lim
n→∞

⟨xn − θxn−1 − βxn−2, x
∗ − v∗⟩

= lim
j→∞
⟨xnj − θxnj−1 − βxnj−2, x

∗ − v∗⟩

= ⟨x∗ − θx∗ − βx∗, x∗ − v∗⟩,

and this yields
(1− θ − β)∥x∗ − v∗∥2 = 0.

Since β ≤ 0 < 1 − θ, we obtain that x∗ = v∗. Hence, {xn} converges weakly to a point in SD . This
completes the proof.

□



114 CHINEDU IZUCHUKWU AND YEKINI SHEHU

5. Numerical Experiments

In this section, using the following test examples, we compare Algorithm 1 with other known methods
in the literature ( [46, Algorithm 3.1], [22, Algorithms 3.1, 3.2 and 3.3], [25, Algorithm 1], [26, Algorithm
3.1] and [48, Algorithm 3.1]). We also consider our method with the cases when θ = 0 = β (in this
case, Algorithm 1 reduces to [16, Algorithm 3.2]) and β = 0 (in this case, Algorithm 1 reduces to [15,
Algorithm 1]) to show the advantage gained with the introduction of the two-step inertial extrapolation
wn = xn + θ(xn − xn−1) + β(xn−1 − xn−2) in Algorithm 1.

Example 5.1. This example was also considered in [22]. Let C = [−1, 1] and

Av =


2v − 1, v > 1,
v2, v ∈ [−1, 1],
−2v − 1, v < −1.

Here A is quasi-monotone and Lipschitz continuous with SD = {−1} and S = {−1, 0}.

Example 5.2. [22] Let C = [0, 1]m and Av = (h1v, h2v, · · · , hmv),
where hiv = v2i−1 + v2i + vi−1vi + vivi+1 − 2vi−1 + 4vi + vi+1 − 1, i = 1, 2, · · · ,m,
v0 = vm+1 = 0.Then A is quasi-monotone.

The next example shows that our Algorithm 1 still works for the VIP (1.1) when A is not quasi-
monotone.

Example 5.3. [22] Let C = {v ∈ R2 : v21 + v22 ≤ 1, 0 ≤ v1} and A(v1, v2) = (−v1ev2 , v2). It can be
shown that A is not quasi-monotone with (1, 0) ∈ SD and S = {(1, 0), (0, 0)}.

We consider the next example in infinite dimensional Hilbert space.

Example 5.4. Let H = {v = (v1, v2, . . . , vi, . . .) :
∑∞

i=1 |vi|2 < +∞}. Let α, β ∈ R be such that
β > α > β

2 > 0. Take Cα = {v ∈ H : ∥v∥ ≤ α} and Aβ(v) = (β − ∥v∥)v. Then A is pseudo-
monotone and Lipschitz continuous (but not monotone), and hence quasi-monotone. Furthermore, we have
that SD = {0} = S.

We test the above examples by performing the following experiments.

Experiment 1:
In this experiment, we compare Algorithm 1 with other methods that involve only one evaluation of A
per iteration (that is, Algorithm 3.1 in [46], Algorithm 1 in [25] and Algorithm 3.1 in [26]), in order to
validate the benefits of incorporating the two-step inertial extrapolation.
During the computation for this experiment, we make use of the following:

• Algorithm 1: Take an = 16
(n+1)1.1

and δ = 0.24. Then we can choose µ = 0.25 and θ ∈
{0, 0.05, 0.1, 0.15}. We also take β = {−1, 0}, γ0 = 0.5 and γ1 = 1.
• Algorithm 3.1 in [46]: Take µ = 0.25, λ0 = 0.5 and λ1 = 1.
• Algorithm 1 in [25]: Take ϕ = 1.5, λ0 = 0.5 and λ̄ = 15. According to the author in [25], λ̄ is

given only to ensure the boundedness of the step size. Thus, it makes sense to choose it quite
large (see [25, page 389]).
• Algorithm 3.1 in [26]: Take δ = 0.5, σ = 0.5, ρ = 1

σ , λ0 = 0.5 and λ1 = 1.
We then take TOLn := max

{
∥xn+1 − xn∥2, ∥xn − xn−1∥2

}
with stopping criterion TOLn < ε for all

the algorithms in this experiment, where ε is the predetermined error. In particular, we take ε = 10−12.
Note that TOLn = 0 implies that xn is a solution of Problem (1.1). We also choose x−1, x0 and x1 as



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 115

follows: x−1 = −0.1, x0 = 0.1, x1 = 0.2 for Example 5.1; m = 50 while x−1, x0 and x1 are ran-
domly chosen for Example 5.2; x−1 = (−0.4,−0.4), x0 = (0.2, 0.1), x1 = (0.8, 0.5) for Example 5.3;
x−1 = x0 = (1, 12 ,

1
4 , · · · ), x1 = (45 ,

16
25 ,

64
125 , · · · ) for Example 5.4.

Experiment 2:
In this experiment, we compare Algorithm 1 with methods that involve more than one evaluation of A
per iteration, in particular, those methods in the literature that were used for solving VIP with quasi-
monotone operator. That is, Algorithm 3.1, Algorithm 3.2 and Algorithm 3.3 in [22] (modified Tseng’s
method, extragradient method and subgradient extragradient method, respectively), and Algorithm 3.1
in [48].

• Algorithm 1: TOLn := ∥xn − xn+1∥+ ∥xn − xn−1∥, δ = 0.24, µ = 0.99(1−2δ)
2 ,

θ = 0.99
(
min

(
2δ
3 ,

1−µ
2 , 0.5−β+δ−µ

3

))
, an = 1

(n+1)1.1
, β = −2, γ0 = 0.5 and γ1 = 1.

• Algorithms 3.1, 3.2 and 3.3 in [22]: TOLn := ∥yn − xn∥/min{γn, 1}, µ = 0.5, an = 1
(n+1)1.1

and γ1 = 1.
• Algorithm 3.1 in [48]: TOLn := ∥xn−PC(xn−Axn)∥, α = 0.6, γ = 1.99, λ1 = 1, ϵn = 10000

n1.001

and θ = 10
n .

Unlike in Experiment 1, we use different TOLn for different methods for the comparison in this ex-
periment because these methods have different stopping criteria. However, the choices we have made
here have also been used by the authors of these methods (see [22, Section 4] and [48, Section 5]).
Furthermore, we choose x−1, x0 and x1 as follows:

• Example 5.1: Case 1: x−1 = −0.1, x0 = 0.1, x1 = 0.2; Case 2: x−1 = −0.2, x0 = 0.2,
x1 = 0.6; Case 3: x−1 = 0.1, x0 = −0.1, x1 = 0.7 and Case 4: x−1 = −0.9, x0 = 0.9,
x1 = 0.1.
• Example 5.2: m ∈ {50, 100, 150, 200} while x−1, x0 and x1 are randomly chosen.
• For Example 5.3: Case 1: x−1 = (0.11,−0.8), x0 = (0.2, 0.1), x1 = (0.8, 0.5); Case 2:
x−1 = (−0.11,−0.8), x0 = (0.1, 0.2), x1 = (0.1,−0.2); Case 3: x−1 = (−0.1,−0.2), x0 =
(0.5,−0.5), x1 = (0.3, 0.6) and Case 4: x−1 = (0.1,−0.2), x0 = (0.3,−0.6), x1 = (0.5,−0.5).
• Example 5.4: Case 1: x1 = (23 ,

4
9 ,

8
27 , · · · ), x−1 = x0 = (23 ,

4
9 ,

8
27 , · · · ); Case 2: x1 =

(12 ,
1
4 ,

1
8 , · · · ), x−1 = x0 = (23 ,

4
9 ,

8
27 , · · · ); Case 3: x1 = (45 ,

16
25 ,

64
125 , · · · ), x−1 = x0 =

(1, 12 ,
1
4 , · · · ); Case 4: x1 = (34 ,

9
16 ,

27
64 , · · · ); x−1 = x0 = (1, 14 ,

1
9 , · · · ).

All the computations are performed using Matlab 2016 (b) which is running on a personal computer
with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM.
In Tables 1-6, “Iter” and “CPU” mean the CPU time in seconds and the number of iterations, respec-
tively. In Tables 1-2, “Alg.” and “Ex.” mean Algorithm and Example, respectively.

The numerical results for Experiment 1 are given in Tables 1-2 and Figures 1-2 while that of Experi-
ment 2 are given in Tables 3-6 and Figures 3-6.



116 CHINEDU IZUCHUKWU AND YEKINI SHEHU

Number of iterations
0 500 1000 1500 2000

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100 120

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100 120 140

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Figure 1. The behavior of TOLn for Experiment 1 with β = 0; ϵ = 10−12:: Top
Left: Example 5.1; Top Right: Example 5.2; Bottom Left: Example 5.3; Bottom

Right: Example 5.4.

Table 1: Comparison of algorithms for Experiment 1 with β = 0; ϵ = 10−12.
Alg.1
(θ = 0)

Alg.1 (θ =
0.05)

Alg.1
(θ = 0.1)

Alg.1 (θ =
0.15)

Alg.3.1
[46]

Alg.1
[25]

Alg.3.1
[26]

Ex.
5.1

CPU
Iter

0.0168
242

0.0053
220

0.0050
231

0.0080
221

0.3316
1163

0.1199
481

0.4865
1971

Ex.
5.2

CPU
Iter

0.0220
27

0.0159
24

0.0017
24

0.0022
23

0.1197
30

0.0842
32

0.2469
111

Ex.
5.3

CPU
Iter

0.0143
24

0.0057
22

0.0035
22

0.0044
21

0.1247
55

0.0232
30

0.2423
140

Ex.
5.4

CPU
Iter

1.2092
27

0.9814
22

0.9181
21

0.8354
19

1.2002
28

1.1737
32

3.6282
83



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 117

Number of iterations
0 500 1000 1500 2000

T
O

L

10-12

10-10

10-8

10-6

10-4

10-2

100

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100 120

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100 120 140

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1 (3=0)
Algorithm 1 (3=0.05)
Algorithm 1 (3=0.1)
Algorithm 1 (3=0.15)
Hieu et al (Alg. 3.1)
Malitsky (Alg. 1)
Malitsky and Tam (Alg. 3.1)

Figure 2. The behavior of TOLn for Experiment 1 with β = −1; ϵ = 10−12: Top
Left: Example 5.1; Top Right: Example 5.2; Bottom Left: Example 5.3; Bottom

Right: Example 5.4.

Table 2: Comparison of algorithms for Experiment 1 with β = −1; ϵ = 10−12.
Alg.1
(θ = 0)

Alg.1 (θ =
0.05)

Alg.1
(θ = 0.1)

Alg.1 (θ =
0.15)

Alg.3.1
[46]

Alg.1
[25]

Alg.3.1
[26]

Ex.
5.1

CPU
Iter

0.0112
26

0.0029
27

0.0017
28

0.0015
29

0.3263
1163

0.1110
481

0.4812
1971

Ex.
5.2

CPU
Iter

0.0115
22

0.0021
20

0.0022
17

0.0018
18

0.1070
30

0.0821
32

0.2303
111

Ex.
5.3

CPU
Iter

0.0116
21

0.0107
17

0.0012
15

0.0010
18

0.1141
55

0.0213
30

0.2305
140

Ex.
5.4

CPU
Iter

1.0272
27

0.8911
19

0.3867
8

0.1079
2

1.2260
28

1.1932
32

3.6216
83



118 CHINEDU IZUCHUKWU AND YEKINI SHEHU

Table 3: Comparison of algorithms for Experiment 2 (Example 5.1); ϵ = 10−6.
Algorithms Case 1 Case 2 Case 3 Case 4

CPU Iter CPU Iter CPU Iter CPU Iter
Algorithm 1 0.0010 389 0.0081 487 0.0020 655 0.0011 355
Algorithm 3.1 in [22] 0.0289 1002 0.0247 1005 0.0264 1005 0.0270 996
Algorithm 3.2 in [22] 0.0833 1008 0.0778 1019 0.0478 1023 0.0241 1001
Algorithm 3.3 in [22] 0.0400 998 0.0694 1009 0.0785 1013 0.0715 992
Algorithm 3.1 in [48] 0.1331 2177 0.1164 2120 0.1487 1439 0.0965 1529

Number of iterations
0 500 1000 1500 2000 2500

T
O

L

10-6

10-5

10-4

10-3

10-2

10-1

100

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 500 1000 1500 2000 2500

T
O

L

10-6

10-5

10-4

10-3

10-2

10-1

100

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 500 1000 1500

T
O

L

10-6

10-5

10-4

10-3

10-2

10-1

100

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 200 400 600 800 1000 1200 1400 1600

T
O

L

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Figure 3. The behavior of TOLn for Experiment 2 (Example 5.1); ϵ = 10−6: Top
Left: Case 1; Top Right: Case 2; Bottom left: Case 3; Bottom Right: Case 4.

Remark 5.5.



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 119

Table 4: Comparison of algorithms for Experiment 2 (Example 5.2); ϵ = 10−7.
Algorithms m = 50 m = 100 m = 150 m = 200

CPU Iter CPU Iter CPU Iter CPU Iter
Algorithm 1 0.0014 12 0.0020 13 0.0012 9 0.0009 10
Algorithm 3.1 in [22] 0.1061 76 0.1096 80 0.1054 66 0.1046 70
Algorithm 3.2 in [22] 0.1084 81 0.1126 87 0.1085 75 0.1079 82
Algorithm 3.3 in [22] 0.1061 66 0.1108 62 0.1091 64 0.1096 53
Algorithm 3.1 in [48] 0.1039 53 0.1078 59 0.1031 44 0.1070 50

Number of iterations
0 20 40 60 80 100

T
O

L

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 10 20 30 40 50 60 70 80

T
O

L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-10

10-8

10-6

10-4

10-2

100

102

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Figure 4. The behavior of TOLn for Experiment 2 (Example 5.2); ϵ = 10−7: Top
Left: m = 50; Top Right: m = 100; Bottom left: m = 150; Bottom Right: m = 200.

(i) In our convergence analysis, we assume that δ ∈ (0, 14), µ ∈
(
δ, 1−2δ

2

)
and 0 ≤ θ <

min
{

1−µ
2 , 2δ3 ,

1
2
−β+δ−µ

3

}
. This means that µ and θ both depend on the choice of δ. In par-

ticular, the closer δ is to 1
4 , the larger the interval of the inertial parameter θ but the smaller



120 CHINEDU IZUCHUKWU AND YEKINI SHEHU

Table 5: Comparison of algorithms for Experiment 2 (Example 5.3); ϵ = 10−5

Algorithms Case 1 Case 2 Case 3 Case 4
CPU Iter CPU Iter CPU Iter CPU Iter

Algorithm 1 0.0010 7 0.0023 15 0.0011 10 0.0011 9
Algorithm 3.1 in [22] 0.1027 48 0.1085 73 0.1039 60 0.1067 56
Algorithm 3.2 in [22] 0.1052 52 0.1058 79 0.1062 65 0.1090 61
Algorithm 3.3 in [22] 0.1045 39 0.1042 37 0.1065 41 0.1076 37
Algorithm 3.1 in [48] 0.1374 97 0.1184 82 0.1175 108 0.1167 92

Number of iterations
0 20 40 60 80 100

T
O

L

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 20 40 60 80 100 120

T
O

L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 20 40 60 80 100

T
O

L

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Figure 5. The behavior of TOLn for Experiment 2 (Example 5.3); ϵ = 10−5: Top
Left: Case 1; Top Right: Case 2; Bottom left: Case 3; Bottom Right: Case 4.

the interval of µ. On the other hand, the closer δ is to zero, the larger the interval of µ but the
smaller the interval of θ.

(ii) Our numerical experiments in Section 5 show the benefits gained (in terms of number of itera-
tions and CPU time) over [46, Algorithm 3.1], [22, Algorithms 3.1, 3.2 and 3.3], [25, Algorithm
1], [26, Algorithm 3.1] and [48, Algorithm 3.1], by introducing the inertial parameters θ and β



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 121

Table 6: Comparison of algorithms for Experiment 2 (Example 5.4); ϵ = 10−3.
Algorithms Case 1 Case 2 Case 3 Case 4

CPU Iter CPU Iter CPU Iter CPU Iter
Algorithm 1 0.4823 11 0.3030 7 0.4608 12 0.4986 12
Algorithm 3.1 in [22] 1.1965 29 1.2443 30 1.1143 27 1.1004 27
Algorithm 3.2 in [22] 1.7106 34 1.5688 31 1.8092 35 1.8236 35
Algorithm 3.3 in [22] 13.5817 25 1.7173 25 1.9735 25 14.3086 25
Algorithm 3.1 in [48] 25.4557 25 1.4581 25 1.5841 25 25.3428 25

Number of iterations
0 5 10 15 20 25 30 35

T
O

L

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 5 10 15 20 25 30 35

T
O

L

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 5 10 15 20 25 30 35

T
O

L

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Number of iterations
0 5 10 15 20 25 30 35

T
O

L

10-4

10-3

10-2

10-1

100

101

Algorithm 1
Liu and Yang (Alg. 3.1)
Liu and Yang (Alg. 3.2)
Liu and Yang (Alg. 3.3)
Wang et al (Alg. 3.1)

Figure 6. The behavior of TOLn for Experiment 2 (Example 5.4); ϵ = 10−3: Top
Left: Case 1; Top Right: Case 2; Bottom left: Case 3; Bottom Right: Case 4.

in our proposed Algorithm 1.
For instance, in Experiment 1, we considered different choices of θ and β including the choices
θ = 0 = β and β = 0. The numerical results from Tables 1-2 and Figures 1-2 validate the ad-
vantage brought by the two-step inertial extrapolation.



122 CHINEDU IZUCHUKWU AND YEKINI SHEHU

6. Final Remarks

In this paper, we have presented a forward-reflected-backward splitting method with two-step in-
ertial extrapolation and self-adaptive step sizes to solve variational inequalities with quasi-monotone
operators in real Hilbert spaces. We give weak convergence analysis of our method under some stan-
dard conditions. Numerical illustration showed that our method is computationally cheaper than other
related methods in the literature. As part of our future projects, we shall consider a relaxed version
of our proposed method with correction term to solve variational inequalities in the setting of quasi-
monotone.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the
current study.

Statements and Declarations

The authors declare that they have no competing interests.

References
[1] J.-P. Aubin and I. Ekeland. Applied Nonlinear Analysis. Wiley, New York, 1984.
[2] C. Baiocchi and A. Capelo. Variational and quasivariational inequalities. Applications to free-boundary problems. Wiley,

New York, 1984.
[3] L.-C. Ceng, N. Hadjisavvas, and N.-C. Wong. Strong convergence theorem by a hybrid extragradient-like approximation

method for variational inequalities and fixed point problems. Journal of Global Optimization, 46:635–646, 2010.
[4] Y. Censor, A. Gibali, and S. Reich. Extensions of korpelevich’s extragradient method for the variational inequality prob-

lem in euclidean space. Optimization, 61:1119–1132, 2011.
[5] Y. Censor, A. Gibali, and S. Reich. Strong convergence of subgradient extragradient methods for the variational inequality

problem in hilbert space. Optimization Method and Software, 26:827–845, 2011.
[6] Y. Censor, A. Gibali, and S. Reich. The subgradient extragradient method for solving variational inequalities in hilbert

space. Journal of Optimization Theory and Applications, 148:318–335, 2011.
[7] X. Chang, S. Liu, Z. Deng, and S. Li. An inertial subgradient extragradient algorithm with adaptive stepsizes for varia-

tional inequality problems. Optimization Method and Software, 4:1507–1526, 2022.
[8] P. L. Combettes and L. E. Glaudin. Quasi-nonexpansive iterations on the affine hull of orbits: from mann’s mean value

algorithm to inertial methods. SIAM Journal on Optimization, 4:2356–2380, 2017.
[9] Q.-L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, and T. M. Rassias. Mikm: multi-step inertial krasnosel’skii–mann algorithm

and its applications. Journal of Global Optimization, 73:801–824, 2019.
[10] J. Fan, L. Liu, and X. Qin. A subgradient extragradient algorithm with inertial effects for solving strongly pseudomono-

tone variational inequalities. Optimization, 69:2199–2215, 2020.
[11] G. Fichera. Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti della Accademia Nazionale

dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 34:138–142,
1963.

[12] A. Gibali and D. V. Thong. A new low-cost double projection method for solving variational inequalities. Optimization
and Engineering, 21:1613–1634, 2020.

[13] R. Glowinski, J.-L. Lions, and R. Trémoliéres. Numerical Analysis of Variational Inequalities. Springer, Amsterdam, 1981.
[14] B.-S. He, Z.-H. Yang, and X.-M. Yuan. An approximate proximal-extragradient type method for monotone variational

inequalities. Journal of Mathematical Analysis and Applications, 300:362–374, 2004.
[15] C. Izuchukwu, Y. Shehu, and J.-C. Yao. New inertial forward-backward type for variational inequalities with quasi-

monotonicity. Journal of Global Optimization, 84:441–464, 2022.
[16] C. Izuchukwu, Y. Shehu, and J.-C. Yao. A simple projection method for solving quasimonotone variational inequality

problems. Optimization and Engineering, 24:915–938, 2023.
[17] E. N. Khobotov. Modification of the extragradient method for solving variational inequalities and certain optimization

problems. USSR Computational Mathematics and Mathematical Physics, 27:120–127, 1987.
[18] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their Applications. Academic Press,

New York, 1980.



TWO-STEP INERTIAL FORWARD-REFLECTED-BACKWARD METHOD 123

[19] G. M. Korpelevich. An extragradient method for finding saddle points and for other problems. Ekonomika i matematich-
eskie metody, 12:747–756, 1976.

[20] R. Kraikaew and S. Saejung. Strong convergence of the halpern subgradient extragradient method for solving variational
inequalities in hilbert spaces. Journal of Optimization Theory and Applications, 163:399–412, 2014.

[21] J. Liang. Convergence rates of first-order operator splitting methods. PhD thesis, Normandie Université; GREYC CNRS
UMR 6072, 2016.

[22] H. Liu and J. Yang. Weak convergence of iterative methods for solving quasimonotone variational inequalities. Compu-
tational Optimization and Applications, 77:491–508, 2020.

[23] P.-E. Maingé and M.-L. Gobinddass. Convergence of one-step projected gradient methods for variational inequalities.
Journal of Optimization Theory and Application, 171:146–168, 2016.

[24] Y. Malitsky. Projected reflected gradient methods for monotone variational inequalities. SIAM Journal on Optimization,
25:502–520, 2015.

[25] Y. Malitsky. Golden ratio algorithms for variational inequalities. Mathematical Programming, 184:383–410, 2020.
[26] Y. Malitsky and M. K. Tam. A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM

Journal on Optimization, 30:1451–1472, 2020.
[27] Y. V. Malitsky and V. Semenov. An extragradient algorithm for monotone variational inequalities.Cybernetics and Systems

Analysis, 50:271–277, 2014.
[28] P. Marcotte. Applications of khobotov’s algorithm to variational and network equlibrium problems. Information Systems

and Operational Research, 29:258–270, 1991.
[29] M. A. Noor. Extragradient methods for pseudomonotone variational inequalities. Journal of Optimization Theory and

Applications, 117:475–488, 2003.
[30] B. T. Polyak. Introduction to optimization. Optimization Software, Publications Division, New York, 1987.
[31] C. Poon and J. Liang. In Advances In Neural Information Processing Systems. Trajectory of Alternating Direction Method

of Multipliers and Adaptive Acceleration, 2019.
[32] C. Poon and J. Liang. Geometry of First-Order Methods and Adaptive Acceleration. arXiv:2003.03910, 2020.
[33] L. Popov. A modification of the arrow-hurwicz method for finding saddle points. Mathematical Notes, 28:845–848, 1980.
[34] Salahuddin. The extragradient method for quasi-monotone variational inequalities. Optimization, 71:2519–2528, 2022.
[35] Y. Shehu and O. S. Iyiola. Projection methods with alternating inertial steps for variational inequalities: Weak and linear

convergence. Applied Numerical Mathematics, 157:315–337, 2020.
[36] Y. Shehu, O. S. Iyiola, and S. Reich. A modified inertial subgradient extragradient method for solving variational inequal-

ities. Optimization and Engineering, 1:1–29, 2022.
[37] G. Stampacchia. ”variational Inequalities”, in: Theory and Applications of Monotone Operators. Proceedings of the NATO

Advanced Study Institute, Italy, 1968.
[38] G.-j. Tang, Z. Wan, and N.-J. Huang. Strong convergence of a projection-type method for mixed variational inequalities

in hilbert spaces. Numerical Functional Analysis and Optimization, 39:1103–1119, 2018.
[39] D. V. Thong, A. Gibali, and P. T. Vuong. An explicit algorithm for solving monotone variational inequalities. Applied

Numerical Mathematics, 171:408–425, 2022.
[40] D. V. Thong and D. V. Hieu. Inertial extragradient algorithms for strongly pseudomonotone variational inequalities.

Journal of Computational and Applied Mathematics, 341:80–98, 2018.
[41] D. V. Thong, D. V. Hieu, and T. M. Rassias. Self adaptive inertial subgradient extragradient algorithms for solving pseu-

domonotone variational inequality problems. Optimization Letters, 14:115–144, 2020.
[42] D. V. Thong, X.-H. Li, Q.-L. Dong, Y. J. Cho, and T. M. Rassias. An inertial popov’s method for solving pseudomonotone

variational inequalities. Optimization Letters, 15:757–777, 2021.
[43] D. V. Thong, J. Yang, Y. J. Cho, and T. M. Rassias. Explicit extragradient-like method with adaptive stepsizes for pseu-

domonotone variational inequalities. Optimization Letters, 15:2181–2199, 2021.
[44] M. Tian and M. Tong. Self-adaptive subgradient extragradient method with inertial modification for solving monotone

variational inequality problems and quasi-nonexpansive fixed point problems. Journal of Inequalities and Applications,
7:1–19, 2019.

[45] P. Tseng. A modified forward-backward splitting method for maximal monotone mappings. SIAM Journal of Control and
Optimization, 38:431–446, 2000.

[46] D. Van Hieu, P. K. Anh, and L. D. Muu. Modified forward–backward splitting method for variational inclusions. 4OR-A
Quarterly Journal of Operations Research, 19:127–151, 2021.

[47] P. T. Vuong. On the weak convergence of the extragradient method for solving pseudomonotone variational inequalities.
Journal of Optimization Theory and Application, 176:399–409, 2018.

[48] Z.-b. Wang, X. Chen, J. Yi, and Z. y. Chen. Inertial projection and contraction algorithms with larger step sizes for solving
quasimonotone variational inequalities. Journal of Global Optimization, pages 1–24, 2022.



124 CHINEDU IZUCHUKWU AND YEKINI SHEHU

[49] Z.-b. Wang, Z. y. Chen, Y. bin Xiao, and C. Zhang. A new projection-type method for solving multi-valued mixed varia-
tional inequalities without monotonicity. Applicable Analysis, 99:1453–1466, 2020.

[50] J. Yang. Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities.
Applicable Analysis, 100:1067–1078, 2021.

[51] J. Yang and H. Liu. A modified projected gradient method for monotone variational inequalities. Journal of Optimization
Theory and Application, 179:197–211, 2018.

[52] J. Yang, H. Liu, and Z. Liu. Modified subgradient extragradient algorithms for solving monotone variational inequalities.
Optimization, 67:2247–2258, 2018.

[53] M. Ye and Y. He. A double projection method for solving variational inequalities without monotonicity. Computational
Optimization and Applications, 60:141–150, 2015.


	1. Introduction
	2. Preliminaries
	3. Proposed Method
	4. Convergence Results
	5. Numerical Experiments
	6. Final Remarks
	Data Availability
	Statements and Declarations
	References

