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Abstract. In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2], let the VI in-
dicate a variational inclusion for two accretive operators and let the CFPP denote a common fixed point
problem of a countable family of ℓ-uniformly Lipschitzian pseudocontractive mappings. In this paper, we
introduce a parallel composite-type extragradient implicit method for solving a general system of varia-
tional inclusions (GSVI) with the VI and CFPP constraints. We then prove the strong convergence of the
suggested algorithm to a solution of the GSVI with the VI and CFPP constraints under some appropriate
assumptions. As applications, we apply our main result to the variational inequality problem (VIP), split
feasibility problem (SFP) and LASSO problem in Hilbert spaces.
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1. Introduction

Let H be a real Hilbert space, whose inner product and induced norm are denoted by ⟨·, ·⟩ and
∥ · ∥, respectively. Let ∅ ≠ C ⊂ H be a closed convex set. We denote by PC the metric projection
from H onto C . Given a mapping A : C → H . Consider the classical variational inequality problem
(VIP) of finding a point x∗ ∈ C s.t. ⟨Ax∗, y − x∗⟩ ≥ 0 ∀y ∈ C . We denote by VI(C,A) the solution
set of the VIP. Up to now, Korpelevich’s extragradient method [32] has been one of the most popular
methods for solving the VIP. It is worth mentioning that if VI(C,A) ̸= ∅, this method has only weak
convergence, and only requires that the mapping A is monotone and Lipschitz continuous. To the most
of our knowledge, Korpelevich’s extragradient method has been improved and modified in various ways
so that some new iterative methods happen to solve the VIP and related optimization problems; see e.g.,
[4, 6, 8, 14, 15, 19, 20, 24, 26, 27, 28, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41] and references therein, to name
but a few.

Assume that the operators A : C → H and B : D(B) ⊂ C → H are α-inverse-strongly monotone
and maximal monotone, respectively. Consider the variational inclusion (VI) of finding a point x∗ ∈ C
s.t. 0 ∈ (A+B)x∗. In order to solve the FPP of nonexpansive mapping S : C → C and the VI for both
monotone mappings A,B, Takahashi et al. [11] suggested a Mann-type Halpern iterative method, i.e.,
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for any given x1 = x ∈ C , {xj} is the sequence generated by

xj+1 = βjxj + (1− βj)S(αjx+ (1− αj)J
B
λj
(xj − λjAxj)) ∀j ≥ 1, (1.1)

where {λj} ⊂ (0, 2α) and {αj}, {βj} ⊂ (0, 1). They proved the strong convergence of {xj} to a point
of Fix(S) ∩ (A+B)−10 under some mild conditions.

Recently, Abdou et al. [22] suggested a parallel algorithm, i.e., for any given x0 ∈ C , {xj} is the
sequence generated by

xj+1 = (1− ζ)Sxj + ζJB
λj
(αjγf(xj) + (1− αj)xj − λjAxj) ∀j ≥ 0, (1.2)

where S,A,B are the same as above, ζ ∈ (0, 1), {λj} ⊂ (0, 2α) and {αj} ⊂ (0, 1). They proved
strong convergence of {xj} to a point of Fix(S) ∩ (A + B)−10 under some appropriate conditions.
In the practical life, many mathematical models have been formulated as the VI. Without question,
many researchers have presented and developed a great number of iterative methods for solving the
VI in various approaches; see e.g., [4, 11, 15, 17, 19, 22, 27, 28] and the references therein. Due to the
importance and interesting of the VI, many mathematicians are now interested in finding a common
solution of the VI and FPP.

For q ∈ (1, 2], let E be a uniformly convex and q-uniformly smooth Banach space with q-uniform
smoothness coefficient κq . Suppose that f : E → E is a ρ-contraction and S : E → E is a non-
expansive mapping. Let A : E → E be an α-inverse-strongly accretive mapping of order q and
B : E → 2E be an m-accretive operator. Very recently, Sunthrayuth and Cholamjiak [15] proposed
a modified viscosity-type extragradient method for the FPP of S and the VI of finding x∗ ∈ E s.t.
0 ∈ (A+B)x∗, i.e., for any given x0 ∈ E, {xj} is the sequence generated by

yj = JB
λj
(xj − λjAxj),

zj = JB
λj
(xj − λjAyj + rj(yj − xj)),

xj+1 = αjf(xj) + βjxj + γjSzj ∀j ≥ 0,

(1.3)

where JB
λj

= (I + λjB)−1, {rj}, {αj}, {βj}, {γj} ⊂ (0, 1) and {λj} ⊂ (0,∞) are such that: (i)
αj + βj + γj = 1; (ii) limj→∞ αj = 0,

∑∞
j=1 αj = ∞; (iii) {βj} ⊂ [a, b] ⊂ (0, 1); and (iv) 0 < λ ≤

λj < λj/rj ≤ µ < (αq/κq)
1/(q−1), 0 < r ≤ rj < 1. They proved the strong convergence of {xj} to a

point of Fix(S) ∩ (A+B)−10, which solves a certain VIP.
Furthermore, suppose that J : E → 2E

∗ is the normalized duality mapping from E into 2E
∗ defined

by J(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥2 = ∥ϕ∥2} ∀x ∈ E, where ⟨·, ·⟩ denotes the generalized duality
pairing between E and E∗. It is known that if E is smooth then J is single-valued. Let C be a nonempty
closed convex subset of a smooth Banach space E. Let A1, A2 : C → E and B1, B2 : C → 2E be
nonlinear mappings with Bix ̸= ∅ ∀x ∈ C, i = 1, 2. Consider the general system of variational
inclusions (GSVI) of finding (x∗, y∗) ∈ C × C s.t.{

0 ∈ ζ1(A1y
∗ +B1x

∗) + x∗ − y∗,

0 ∈ ζ2(A2x
∗ +B2y

∗) + y∗ − x∗,
(1.4)

where ζi is a positive constant for i = 1, 2. It is known that problem (1.4) has been transformed into a
fixed point problem in the following way.

Lemma 1.1. (see [13, Lemma 2]). Assume that B1, B2 : C → 2E are both m-accretive operators and
A1, A2 : C → E are both operators. For given x∗, y∗ ∈ C , (x∗, y∗) is a solution of problem (1.4) if and only
if x∗ ∈ Fix(G), where Fix(G) is the fixed point set of the mapping G := JB1

ζ1
(I − ζ1A1)J

B2
ζ2

(I − ζ2A2),
and y∗ = JB2

ζ2
(I − ζ2A2)x

∗.



PARALLEL COMPOSITE-TYPE EXTRAGRADIENT IMPLICIT METHOD FOR A SYSTEM OF VARIATIONAL INCLUSIONS 127

Suppose thatE is a uniformly convex and 2-uniformly smooth Banach space with 2-uniform smooth-
ness coefficient κ2. Let B1, B2 : C → 2E be both m-accretive operators and Ai : C → E (i = 1, 2)
be ζi-inverse-strongly accretive operator. Let f : C → C be a contraction with constant δ ∈ [0, 1).
Let V : C → C be a nonexpansive operator and T : C → C be a λ-strict pseudocontraction. Very
recently, using Lemma 1.1, Ceng et al. [13] suggested a composite viscosity implicit rule for solving the
GSVI (1.4) with the FPP constraint of T , i.e., for any given x0 ∈ C , the sequence {xj} is generated by{

yj = JB2
ζ2

(xj − ζ2A2xj),

xj = αjf(xj−1) + δjxj−1 + βjV xj−1 + γj [µSxj + (1− µ)JB1
ζ1

(yj − ζ1A1yj)] ∀j ≥ 1

where µ ∈ (0, 1), S := (1−α)I +αT with 0 < α < min{1, 2λκ2
}, and the sequences {αj}, {δj}, {βj},

{γj} ⊂ (0, 1) are such that (i) αj + δj + βj + γj = 1 ∀j ≥ 1; (ii) limj→∞ αj = 0, limj→∞
βj

αj
= 0;

(iii) limj→∞ γj = 1; (iv)
∑∞

j=0 αj = ∞. They proved that {xj} converges strongly to a point of
Fix(G) ∩ Fix(T ), which solves a certain VIP.

In addition, assume that {µj} ⊂ (0, 1
L), {λj} ⊂ (0, 2α] and {αj}, {α̂j} ⊂ (0, 1] with αj + α̂j ≤ 1.

Ceng et al. [4] introduced a Mann-type hybrid extragradient algorithm, i.e., for any initial u0 = u ∈ C ,
{uj} is the sequence generated by

yj = PC(uj − µjAuj),

vj = PC(uj − µjAyj),

v̂j = JB
λj
(vj − λjAvj),

zj = (1− αj − α̂j)uj + αj v̂j + α̂jSv̂j ,

uj+1 = PCj∩Qju ∀j ≥ 0,

where Cj = {x ∈ C : ∥zj − x∥ ≤ ∥uj − x∥}, Qj = {x ∈ C : ⟨uj − x, u − uj⟩ ≥ 0}, JB
λj

=

(I + λjB)−1, A : C → H is a monotone and L-Lipschitzian mapping, A : C → H is an α-inverse-
strongly monotone mapping, B is a maximal monotone mapping with D(B) = C and S : C → C is
a nonexpansive mapping. They proved strong convergence of {uj} to the point PΩu in Ω = Fix(S)∩
(A+B)−10 ∩VI(C,A) under some mild conditions.

In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2], let the VI indicate a
variational inclusion for two accretive operators and let the CFPP denote a common fixed point problem
of a countable family of ℓ-uniformly Lipschitzian pseudocontractive mappings. In this paper, we intro-
duce a parallel composite-type extragradient implicit method for solving the GSVI (1.4) with the VI and
CFPP constraints. We then prove the strong convergence of the suggested algorithm to a solution of
the GSVI (1.4) with the VI and CFPP constraints under some appropriate assumptions. As applications,
we apply our main result to the variational inequality problem (VIP), split feasibility problem (SFP) and
LASSO problem in Hilbert spaces. Our results improve and extend the corresponding results in Abdou
et al. [22], Sunthrayuth and Cholamjiak [15], and Ceng et al. [13] to a certain extent.

2. Preliminaries

Let E be a real Banach space with the dual E∗, and ∅ ≠ C ⊂ E be a closed convex set. For
convenience, we shall use the following symbols: xn → x (resp., xn ⇀ x) indicates the strong (resp.,
weak) convergence of the sequence {xn} to x. Given a self-mapping T on C . We use the symbols R
and Fix(T ) to denote the set of all real numbers and the fixed point set of T , respectively. Recall that T
is called a nonexpansive mapping if ∥Tx−Ty∥ ≤ ∥x− y∥ ∀x, y ∈ C . A mapping f : C → C is called
a contraction if ∃ϱ ∈ [0, 1) s.t. ∥f(x)− f(y)∥ ≤ ϱ∥x− y∥ ∀x, y ∈ C . Also, recall that the normalized
duality mapping J defined by

J(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥2 = ∥ϕ∥2} ∀x ∈ E. (2.1)
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is the one from E into the family of nonempty (by Hahn-Banach’s theorem) weak∗ compact subsets of
E∗, satisfying J(τu) = τJ(u) and J(−u) = −J(u) for all τ > 0 and u ∈ E.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf{1− ∥x+ y∥
2

: x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ}.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup{∥x+ τy∥+ ∥x− τy∥
2

− 1 : x, y ∈ E, ∥x∥ = ∥y∥ = 1}.

A Banach space E is said to be uniformly convex if δE(ϵ) > 0 ∀ϵ ∈ (0, 2]. It is said to be uniformly
smooth if limτ→0+

ρE(τ)
τ = 0. Also, it is said to be q-uniformly smooth with q > 1 if ∃c > 0 s.t.

ρE(t) ≤ ctq ∀t > 0. If E is q-uniformly smooth, then q ≤ 2 and E is also uniformly smooth and
if E is uniformly convex, then E is also reflexive and strictly convex. It is known that Hilbert space
H is 2-uniformly smooth. Further, sequence space ℓp and Lebesgue space Lp are min{p, 2}-uniformly
smooth for every p > 1 [33].

Let q > 1. The generalized duality mapping Jq : E → 2E
∗ is defined by

Jq(x) = {ϕ ∈ E∗ : ⟨x, ϕ⟩ = ∥x∥q, ∥ϕ∥ = ∥x∥q−1}, (2.2)
where ⟨·, ·⟩ denotes the generalized duality pairing between E and E∗. In particular, if q = 2, then
J2 = J is the normalized duality mapping of E. It is known that Jq(x) = ∥x∥q−2J(x) ∀x ̸= 0 and
that Jq is the subdifferential of the functional 1

q∥ · ∥
q . If E is uniformly smooth, the generalized duality

mapping Jq is one-to-one and single-valued. Furthermore, Jq satisfies Jq = J−1
p , where Jp is the

generalized duality mapping of E∗ with 1
p + 1

q = 1. Note that no Banach space is q-uniformly smooth
for q > 2; see [18] for more details. Let q > 1 and E be a real normed space with the generalized
duality mapping Jq . Then the following inequality is an immediate consequence of the subdifferential
inequality of the functional 1

q∥ · ∥
q :

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x+ y)⟩ ∀x, y ∈ E, jq(x+ y) ∈ Jq(x+ y). (2.3)

Proposition 2.1. (see [33]). Let q ∈ (1, 2] a fixed real number and let E be q-uniformly smooth. Then
∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ κq∥y∥q ∀x, y ∈ E, where κq is the q-uniform smoothness coefficient of
E.

Recall that a mapping T : C → C is called pseudocontractive if for each x, y ∈ C , there exists j(x−
y) ∈ J(x− y) such that ⟨Tx−Ty, j(x− y)⟩ ≤ ∥x− y∥2. Also, it is called strongly pseudocontractive
if for each x, y ∈ C , there exists j(x− y) ∈ J(x− y) such that ⟨Tx− Ty, j(x− y)⟩ ≤ α∥x− y∥2 for
some α ∈ (0, 1). We will use the following concept in the sequel.

Definition 2.2. Let {Sn}∞n=0 be a sequence of continuous pseudocontractive self-mappings onC . Then
{Sn}∞n=0 is said to be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings
on C if there exists a constant ℓ > 0 such that each Sn is ℓ-Lipschitz continuous.

Lemma2.3. (see [10]). Let {Sn}∞n=0 be a sequence of self-mappings onC such that
∑∞

n=1 supx∈C ∥Snx−
Sn−1x∥ < ∞. Then for each y ∈ C , {Sny} converges strongly to some point of C . Moreover, let S be a
self-mapping on C defined by Sy = limn→∞ Sny ∀y ∈ C . Then limn→∞ supx∈C ∥Snx− Sx∥ = 0.

The following lemma can be obtained from the result in [33].

Lemma 2.4. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly convex. Then there
exist strictly increasing, continuous and convex functions g, h : R+ → R+ with g(0) = 0 and h(0) = 0
such that

(a) ∥µx+ (1− µ)y∥q ≤ µ∥x∥q + (1− µ)∥y∥q − µ(1− µ)g(∥x− y∥) with µ ∈ [0, 1];
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(b) h(∥x− y∥) ≤ ∥x∥q − q⟨x, jq(y)⟩+ (q − 1)∥y∥q
for all x, y ∈ Br and jq(y) ∈ Jq(y), where Br := {x ∈ E : ∥x∥ ≤ r}.

The following lemma is an analogue of Lemma 2.4 (a).

Lemma 2.5. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly convex. Then there
exists a strictly increasing, continuous and convex function g : R+ → R+ with g(0) = 0 such that
∥λx+ µy + νz∥q ≤ λ∥x∥q + µ∥y∥q + ν∥z∥q − λµg(∥x− y∥) for all x, y, z ∈ Br and λ, µ, ν ∈ [0, 1]
with λ+ µ+ ν = 1.

Proposition 2.6. (see [25]). Let ∅ ≠ C ⊂ E be a closed convex set. If T : C → C is a continuous and
strong pseudocontraction mapping, then T has a unique fixed point in C .

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if Π [Π (x)+
t(x− Π (x))] = Π (x), whenever Π (x) + t(x− Π (x)) ∈ C for x ∈ C and t ≥ 0. A mapping Π of C
into itself is called a retraction if Π 2 = Π . If a mapping Π of C into itself is a retraction, then Π (z) = z
for each z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. In terms of [23], we know
that if E is smooth and Π is a retraction of C onto D, then the following statements are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ∥Π (x)−Π (y)∥2 ≤ ⟨x− y, J(Π (x)−Π (y))⟩ ∀x, y ∈ C ;

(iii) ⟨x−Π (x), J(y −Π (x))⟩ ≤ 0 ∀x ∈ C, y ∈ D.
Let B : C → 2E be a set-valued operator with Bx ̸= ∅ ∀x ∈ C . Let q > 1. An operator B is said to

be accretive if for each x, y ∈ C , ∃jq(x− y) ∈ Jq(x− y) s.t. ⟨u− v, jq(x− y)⟩ ≥ 0 ∀u ∈ Bx, v ∈ By.
An accretive operator B is said to be α-inverse-strongly accretive of order q if for each x, y ∈ C ,
∃jq(x − y) ∈ Jq(x − y) s.t. ⟨u − v, jq(x − y)⟩ ≥ α∥u − v∥q ∀u ∈ Bx, v ∈ By for some α > 0. If
E = H a Hilbert space, then B is called α-inverse-strongly monotone. An accretive operator B is said
to be m-accretive if (I +λB)C = E for all λ > 0. For an accretive operator B, we define the mapping
JB
λ : (I + λB)C → C by JB

λ = (I + λB)−1 for each λ > 0. Such JB
λ is called the resolvent of B for

λ > 0.

Lemma 2.7. (see [17, 19]). Let B : C → 2E be an m-accretive operator. Then the following statements
hold:

(i) the resolvent identity: JB
λ x = JB

µ (µλx+ (1− µ
λ )J

B
λ x) ∀λ, µ > 0, x ∈ E;

(ii) if JB
λ is a resolvent of B for λ > 0, then JB

λ is a firmly nonexpansive mapping with Fix(JB
λ ) =

B−10, where B−10 = {x ∈ C : 0 ∈ Bx};
(iii) if E = H a Hilbert space, B is maximal monotone.

Let A : C → E be an α-inverse-strongly accretive mapping of order q and B : C → 2E be an
m-accretive operator. In the sequel, we will use the notation Tλ := JB

λ (I − λA) = (I + λB)−1(I −
λA) ∀λ > 0.

Proposition 2.8. (see [17]). The following statements hold:

(i) Fix(Tλ) = (A+B)−10 ∀λ > 0;
(ii) ∥y − Tλy∥ ≤ 2∥y − Try∥ for 0 < λ ≤ r and y ∈ C .

Proposition 2.9. (see [36]). Let E be uniformly smooth, T : C → C be a nonexpansive mapping with
Fix(T ) ̸= ∅ and f : C → C be a fixed contraction. For each t ∈ (0, 1), let zt ∈ C be the unique fixed point
of the contraction C ∋ z 7→ tf(z) + (1− t)Tz on C , i.e., zt = tf(zt) + (1− t)Tzt. Then {zt} converges
strongly to a fixed point x∗ ∈ Fix(T ), which solves the VIP: ⟨(I − f)x∗, J(x∗ − x)⟩ ≤ 0 ∀x ∈ Fix(T ).
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Proposition 2.10. (see [17]). Let E be q-uniformly smooth with q ∈ (1, 2]. Suppose that A : C → E is
an α-inverse-strongly accretive mapping of order q. Then, for any given λ ≥ 0,

∥(I − λA)x− (I − λA)y∥q ≤ ∥x− y∥q − λ(αq − κqλ
q−1)∥Ax−Ay∥q ∀x, y ∈ C,

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 ≤ λ ≤ (αqκq
)

1
q−1 , then I−λA

is nonexpansive.

Lemma 2.11. (see [13]). Let E be q-uniformly smooth with q ∈ (1, 2]. Let B1, B2 : C → 2E be two
m-accretive operators and Ai : C → E (i = 1, 2) be σi-inverse-strongly accretive mapping of order q.
Define an operator G : C → C by G := JB1

ζ1
(I − ζ1A1)J

B2
ζ2

(I − ζ2A2). If 0 ≤ ζi ≤ (σiq
κq

)
1

q−1 (i = 1, 2),
then G is nonexpansive.

Lemma 2.12. (see [2]). Let E be smooth, A : C → E be accretive and ΠC be a sunny nonexpansive
retraction from E onto C . Then VI(C,A) = Fix(ΠC(I − λA)) ∀λ > 0, where VI(C,A) is the solution
set of the VIP of finding z ∈ C s.t. ⟨Az, J(z − y)⟩ ≤ 0 ∀y ∈ C .

Recall that if E = H a Hilbert space, then the sunny nonexpansive retraction ΠC from E onto C
coincides with the metric projection PC from H onto C . Moreover, if E is uniformly smooth and T
is a nonexpansive self-mapping on C with Fix(T ) ̸= ∅, then Fix(T ) is a sunny nonexpansive retract
from E onto C [29]. By Lemma 2.12 we know that, x∗ ∈ Fix(T ) solves the VIP in Proposition 2.9 if
and only if x∗ solves the fixed point equation x∗ = ΠFix(T )f(x

∗).

Lemma 2.13. (see [16]). Let {Γn} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for each integer i ≥ 1.
Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where integer n0 ≥ 1 such that {k ≤ n0 : Γk < Γk+1} ≠ ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 ∀n ≥ n0.

Lemma 2.14. (see [1]). Let E be strictly convex, and {Sn}∞n=0 be a sequence of nonexpansive mappings on
C . Suppose that

⋂∞
n=0 Fix(Sn) is nonempty. Let {λn} be a sequence of positive numbers with

∑∞
n=0 λn =

1. Then a mapping S on C defined by Sx =
∑∞

n=0 λnSnx ∀x ∈ C is defined well, nonexpansive and
Fix(S) =

⋂∞
n=0 Fix(Sn) holds.

Lemma 2.15. (see [36]). Let {an} be a sequence in [0,∞) such that an+1 ≤ (1− sn)an+ snνn ∀n ≥ 0,
where {sn} and {νn} satisfy the conditions: (i) {sn} ⊂ [0, 1],

∑∞
n=0 sn = ∞; (ii) lim supn→∞ νn ≤ 0 or∑∞

n=0 |snνn| < ∞. Then limn→∞ an = 0.

3. Main Results

Throughout this paper, suppose that C is a nonempty closed convex subset of a uniformly convex
and q-uniformly smooth Banach space E with q ∈ (1, 2]. Let B1, B2 : C → 2E be both m-accretive
operators and Ai : C → E be σi-inverse-strongly accretive mapping of order q for i = 1, 2. Let
f : C → C be a ϱ-contraction with constant ϱ ∈ [0, 1q ), and {Sn}∞n=0 be a countable family of ℓ-
uniformly Lipschitzian pseudocontractive self-mappings on C . Let A : C → E and B : C → 2E be
a σ-inverse-strongly accretive mapping of order q and an m-accretive operator, respectively. Assume
that Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ (A + B)−10 ̸= ∅ where G : C → C is the same as defined in

Lemma 2.11.

Algorithm 3.1. Parallel composite-type extragradient implicit method for the GSVI (1.4) with the VI and
CFPP constraints.
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Initial Step: Given ζ ∈ (0, 1) and x0 ∈ C arbitrarily.
Iteration Steps: Given the current iterate xn, compute xn+1 as follows:
Step 1 Calculate wn = snxn + (1− sn)Gxn;
Step 2 Calculate vn = JB2

ζ2
(wn − ζ2A2wn);

Step 3 Calculate un = JB1
ζ1

(vn − ζ1A1vn);
Step 4 Calculate xn+1 = (1 − ζ)Snxn+1 + ζJB

λn
(αnf(un) + (1 − αn)un − λnAun), where

{sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞).
Set n := n+ 1 and go to Step 1.

Lemma 3.2. If {xn} is the sequence generated by Algorithm 3.1, then it is bounded.

Proof. Take an element p ∈ Ω :=
⋂∞

n=0 Fix(Sn) ∩ Fix(G) ∩ (A+B)−10 arbitrarily. Then we have

p = Gp = Snp = JB
λn
(p− λnAp) = JB

λn
(αnp+ (1− αn)(p−

λn

1− αn
Ap)).

By Proposition 2.10 and Lemma 2.11, we deduce that I−ζ1A1, I−ζ2A2 andG := JB1
ζ1

(I−ζ1A1)J
B2
ζ2

(I−
ζ2A2) are nonexpansive mappings. Moreover, it can be readily seen that for each n ≥ 0, there is only
an element xn+1 ∈ C s.t.

xn+1 = (1− ζ)Snxn+1 + ζJB
λn
(αnf(un) + (1− αn)un − λnAun). (3.1)

In fact, consider the mapping Fnx = (1− ζ)Snx+ ζJB
λn
(αnf(un) + (1− αn)un − λnAun) ∀x ∈ C .

Note that Sn : C → C is a continuous pseudocontraction. Hence we obtain that for each x, y ∈ C ,
⟨Fnx− Fny, J(x− y)⟩ = (1− ζ)⟨Snx− Sny, J(x− y)⟩ ≤ (1− ζ)∥x− y∥2.

Also, from ζ ∈ (0, 1), we get 0 < 1−ζ < 1. Thus, Fn is a continuous and strong pseudocontraction self-
mapping on C . By Proposition 2.6, we deduce that for each n ≥ 0, there is only an element xn+1 ∈ C ,
satisfying (3.1). Since G : C → C is a nonexpansive mapping, by Lemma 2.4 (a) we get

∥wn − p∥q ≤ sn∥xn − p∥q + (1− sn)∥Gxn − p∥q − sn(1− sn)g̃(∥xn −Gxn∥)
≤ ∥xn − p∥q − sn(1− sn)g̃(∥xn −Gxn∥). (3.2)

Using the nonexpansivity of G again, we obtain from un = Gwn that
∥un − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥ ∀n ≥ 0. (3.3)

Put yn := JB
λn
(αnf(un) + (1−αn)un − λnAun) ∀n ≥ 0. Since JB

λn
and I − λn

1−αn
A are nonexpansive

for all n ≥ 0, we obtain from (3.3) that
∥yn − p∥ (3.4)
= ∥JB

λn
(αnf(un) + (1− αn)un − λnAun)− p∥

= ∥JB
λn
(αnf(un) + (1− αn)(un − λn

1− αn
Aun))− JB

λn
(αnp+ (1− αn)(p−

λn

1− αn
Ap))∥

≤ ∥(αnf(un) + (1− αn)(un − λn

1− αn
Aun))− (αnp+ (1− αn)(p−

λn

1− αn
Ap))∥

= ∥(1− αn)((un − λn

1− αn
Aun)− (p− λn

1− αn
Ap)) + αn(f(un)− p)∥

≤ (1− αn)∥un − p∥+ αn∥f(un)− f(p)∥+ αn∥f(p)− p∥
≤ (1− αn(1− ϱ))∥un − p∥+ αn∥f(p)− p∥
≤ (1− αn(1− ϱ))∥xn − p∥+ αn∥f(p)− p∥

= (1− αn(1− ϱ))∥xn − p∥+ αn(1− ϱ)
∥f(p)− p∥

1− ϱ
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≤ max{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}.

Noticing that Sn is a pseudocontraction mapping, we conclude from (3.1) that

∥xn+1 − p∥q = (1− ζ)⟨Snxn+1 − p, Jq(xn+1 − p)⟩+ ζ⟨yn − p, Jq(xn+1 − p)⟩
≤ (1− ζ)∥xn+1 − p∥q + ζ⟨yn − p, Jq(xn+1 − p)⟩,

which together with Lemma 2.4 (b), implies that

∥xn+1 − p∥q ≤ ⟨yn − p, Jq(xn+1 − p)⟩

≤ 1

q
[∥yn − p∥q + (q − 1)∥xn+1 − p∥q − h̃(∥yn − xn+1∥)].

This ensures that
∥xn+1 − p∥q ≤ ∥yn − p∥q − h̃(∥yn − xn+1∥). (3.5)

So it follows from (3.4) that

∥xn+1 − p∥ ≤ ∥yn − p∥ ≤ max{∥xn − p∥, ∥f(p)− p∥
1− ϱ

}.

By induction, we get ∥xn − p∥ ≤ max{∥x0 − p∥, ∥p−f(p)∥
1−ϱ } ∀n ≥ 0. Consequently, {xn} is bounded,

and so are {un}, {wn}, {yn}, {Snxn+1}, {Aun}. This completes the proof. □

Theorem 3.3. Let {xn} be the sequence generalized by Algorithm 3.1. Suppose that the following condi-
tions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(C2) 0 < a ≤ λn
1−αn

≤ b < (σqκq
)

1
q−1 and 0 < c ≤ sn ≤ d < 1;

(C3) 0 < ζi < (σiq
κq

)
1

q−1 for i = 1, 2.

Assume that
∑∞

n=0 supx∈D ∥Sn+1x − Snx∥ < ∞ for any bounded subset D of C . Let S : C → C be
a mapping defined by Sx = limn→∞ Snx ∀x ∈ C , and suppose that Fix(S) =

⋂∞
n=0 Fix(Sn). Then

xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, J(x∗ − p)⟩ ≤ 0 ∀p ∈ Ω , i.e., the fixed
point equation x∗ = ΠΩf(x

∗).

Proof. First of all, let x∗ ∈ Ω and y∗ = JB2
ζ2

(x∗ − ζ2A2x
∗). Since vn = JB2

ζ2
(wn − ζ2A2wn) and

un = JB1
ζ1

(vn − ζ1A1vn), we get un = Gwn. From Proposition 2.10 we have

∥vn − y∗∥q = ∥JB2
ζ2

(wn − ζ2A2wn)− JB2
ζ2

(x∗ − ζ2A2x
∗)∥q

≤ ∥wn − x∗∥q − ζ2(σ2q − κqζ
q−1
2 )∥A2wn −A2x

∗∥q,

and

∥un − x∗∥q = ∥JB1
ζ1

(vn − ζ1A1vn)− JB1
ζ1

(y∗ − ζ1A1y
∗)∥q

≤ ∥vn − y∗∥q − ζ1(σ1q − κqζ
q−1
1 )∥A1vn −A1y

∗∥q.

Combining the last two inequalities, we have

∥un−x∗∥q ≤ ∥wn−x∗∥q − ζ2(σ2q−κqζ
q−1
2 )∥A2wn−A2x

∗∥q − ζ1(σ1q−κqζ
q−1
1 )∥A1vn−A1y

∗∥q.
(3.6)

Also, using Propositions 2.1 and 2.10 and the convexity of ∥ · ∥q , from (3.4) and (3.6) we get

∥yn − x∗∥q

≤ ∥(1− αn)((un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)) + αn(f(un)− x∗)∥q
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≤ (1− αn)
q∥(un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)∥q

+qαn(1− αn)
q−1⟨f(un)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

≤ (1− αn(1− qϱ))∥un − x∗∥q − λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

≤ (1− αn(1− qϱ))[∥wn − x∗∥q − ζ2(σ2q − κqζ
q−1
2 )∥A2wn −A2x

∗∥q − ζ1(σ1q − κqζ
q−1
1 )

×∥A1vn −A1y
∗∥q]− λn(σq − κq(

λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q.

This together with (3.2) and (3.5), leads to

∥xn+1 − x∗∥q ≤ ∥yn − x∗∥q − h̃(∥yn − xn+1∥) (3.7)
≤ (1− αn(1− qϱ))[∥wn − x∗∥q − ζ2(σ2q − κqζ

q−1
2 )∥A2wn −A2x

∗∥q

−ζ1(σ1q − κqζ
q−1
1 )∥A1vn −A1y

∗∥q]− λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+κqα
q
n∥f(un)− x∗∥q − h̃(∥yn − xn+1∥)

≤ (1− αn(1− qϱ))[∥xn − x∗∥q − sn(1− sn)g̃(∥xn −Gxn∥)
−ζ2(σ2q − κqζ

q−1
2 )∥A2wn −A2x

∗∥q − ζ1(σ1q − κqζ
q−1
1 )

×∥A1vn −A1y
∗∥q]− λn(σq − κq(

λn

1− αn
)q−1)∥Aun −Ax∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩

+κqα
q
n∥f(un)− x∗∥q − h̃(∥yn − xn+1∥)

= (1− αn(1− qϱ))∥xn − x∗∥q − {(1− αn(1− qϱ))[sn(1− sn)g̃(∥xn −Gxn∥)
+ζ2(σ2q − κqζ

q−1
2 )∥A2wn −A2x

∗∥q + ζ1(σ1q − κqζ
q−1
1 )∥A1vn −A1y

∗∥q]

+λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q + h̃(∥yn − xn+1∥)}+ qαn(1− αn)

q−1

×⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q.

For each n ≥ 0, we set

Γn = ∥xn − x∗∥q,
εn = αn(1− qϱ),

ηn = (1− αn(1− qϱ))[sn(1− sn)g̃(∥xn −Gxn∥) + ζ2(σ2q − κqζ
q−1
2 )∥A2wn −A2x

∗∥q

+ζ1(σ1q − κqζ
q−1
1 )∥A1vn −A1y

∗∥q] + λn(σq − κq(
λn

1− αn
)q−1)∥Aun −Ax∗∥q

+h̃(∥yn − xn+1∥),
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ϑn = qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q.

Then (3.7) can be rewritten as the following formula:

Γn+1 ≤ (1− εn)Γn − ηn + ϑn ∀n ≥ 0, (3.8)

and hence
Γn+1 ≤ (1− εn)Γn + ϑn ∀n ≥ 0. (3.9)

We next show the strong convergence of {Γn} by the following two cases:

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

From (3.9), we get
0 ≤ ηn ≤ Γn − Γn+1 + ϑn − εnΓn.

Since αn → 0, εn → 0 and ϑn → 0, we have ηn → 0. This ensures that limn→∞ g̃(∥xn − Gxn∥) =
limn→∞ h̃(∥yn − xn+1∥) = 0,

lim
n→∞

∥A2wn −A2x
∗∥ = lim

n→∞
∥A1vn −A1y

∗∥ = 0, (3.10)

and
lim
n→∞

∥Aun −Ax∗∥ = 0. (3.11)

Note that g̃ and h̃ are strictly increasing, continuous and convex functions with g̃(0) = h̃(0) = 0. So it
follows that

lim
n→∞

∥yn − xn+1∥ = lim
n→∞

∥xn −Gxn∥ = 0. (3.12)

Thus, from (3.1) we get

lim
n→∞

∥Snxn+1 − xn+1∥ =
ζ

1− ζ
lim
n→∞

∥yn − xn+1∥ = 0. (3.13)

On the other hand, using Lemma 2.4 (b) and Lemma 2.7 (ii), we get

∥vn − y∗∥q = ∥JB2
ζ2

(wn − ζ2A2wn)− JB2
ζ2

(x∗ − ζ2A2x
∗)∥q

≤ ⟨wn − ζ2A2wn − (x∗ − ζ2A2x
∗), Jq(vn − y∗)⟩

= ⟨wn − x∗, Jq(vn − y∗)⟩+ ζ2⟨A2x
∗ −A2wn, Jq(vn − y∗)⟩

≤ 1

q
[∥wn − x∗∥q + (q − 1)∥vn − y∗∥q − h̃1(∥wn − x∗ − vn + y∗∥)]

+ζ2⟨A2x
∗ −A2wn, Jq(vn − y∗)⟩,

which hence attains

∥vn − y∗∥q ≤ ∥wn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qζ2∥A2x
∗ −A2wn∥∥vn − y∗∥q−1.

In a similar way, we get

∥un − x∗∥q = ∥JB1
ζ1

(vn − ζ1A1vn)− JB1
ζ1

(y∗ − ζ1A1y
∗)∥q

≤ ⟨vn − ζ1A1vn − (y∗ − ζ1A1y
∗), Jq(un − x∗)⟩

= ⟨vn − y∗, Jq(un − x∗)⟩+ ζ1⟨A1y
∗ −A1vn, Jq(un − x∗)⟩

≤ 1

q
[∥vn − y∗∥q + (q − 1)∥un − x∗∥q − h̃2(∥vn − y∗ − un + x∗∥)]

+ζ1⟨A1y
∗ −A1vn, Jq(un − x∗)⟩,
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which hence attains

∥un − x∗∥q ≤ ∥vn − y∗∥q − h̃2(∥vn − y∗ − un + x∗∥) + qζ1∥A1y
∗ −A1vn∥∥un − x∗∥q−1

≤ ∥xn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qζ2∥A2x
∗ −A2wn∥∥vn − y∗∥q−1

−h̃2(∥vn − un + x∗ − y∗∥) + qζ1∥A1y
∗ −A1vn∥∥un − x∗∥q−1. (3.14)

Since JB
λn

is firmly nonexpansive (due to Lemma 2.7 (ii)), by Lemma2.4 (b) we get

∥yn − x∗∥q = ∥JB
λn
(αnf(un) + (1− αn)un − λnAun)− JB

λn
(x∗ − λnAx

∗)∥q

≤ ⟨(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx
∗), Jq(yn − x∗)⟩

≤ 1

q
[∥(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx

∗)∥q + (q − 1)∥yn − x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)],

which together with the convexity of ∥ · ∥q and the nonexpansivity of I − λn
1−αn

A, implies that

∥yn − x∗∥q ≤ ∥(αnf(un) + (1− αn)un − λnAun)− (x∗ − λnAx
∗)∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

= ∥(1− αn)((un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)) + αn(f(un)− x∗)∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

≤ (1− αn)∥(un − λn

1− αn
Aun)− (x∗ − λn

1− αn
Ax∗)∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ (1− αn)∥un − x∗∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥).

This together with (3.5) and (3.14), implies that

∥xn+1 − x∗∥q ≤ ∥yn − x∗∥q

≤ (1− αn)∥un − x∗∥q + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ (1− αn)[∥xn − x∗∥q − h̃1(∥wn − vn − x∗ + y∗∥) + qζ2∥A2x

∗ −A2wn∥∥vn − y∗∥q−1

−h̃2(∥vn − un + x∗ − y∗∥) + qζ1∥A1y
∗ −A1vn∥∥un − x∗∥q−1] + αn∥f(un)− x∗∥q

−h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)
≤ αn∥f(un)− x∗∥q + ∥xn − x∗∥q − {(1− αn)[h̃1(∥wn − vn − x∗ + y∗∥)

+h̃2(∥vn − un + x∗ − y∗∥)] + h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)}
+qζ2∥A2x

∗ −A2wn∥∥vn − y∗∥q−1 + qζ1∥A1y
∗ −A1vn∥∥un − x∗∥q−1,

which immediately yields

(1− αn)[h̃1(∥wn − vn − x∗ + y∗∥) + h̃2(∥vn − un + x∗ − y∗∥)]
+h1(∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥)

≤ αn∥f(un)− x∗∥q + Γn − Γn+1 + qζ1∥A1y
∗ −A1vn∥∥un − x∗∥q−1

+qζ2∥A2x
∗ −A2wn∥∥vn − y∗∥q−1.

Since h̃1, h̃2 and h1 are strictly increasing, continuous and convex functions with h̃1(0) = h̃2(0) =
h1(0) = 0, from (3.10) we conclude that ∥wn − vn − x∗ + y∗∥ → 0, ∥vn − un + x∗ − y∗∥ → 0 and
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∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥ → 0 as n → ∞. Note that

∥wn − un∥ ≤ ∥wn − vn − x∗ + y∗∥+ ∥vn − un + x∗ − y∗∥,

and

∥un − yn∥
= ∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn + αn(un − f(un)) + λn(Aun −Ax∗)∥
≤ ∥αnf(un) + (1− αn)un − λn(Aun −Ax∗)− yn∥+ αn∥un − f(un)∥+ λn∥Aun −Ax∗∥.

So it follows from (3.11) that

lim
n→∞

∥wn − un∥ = lim
n→∞

∥un − yn∥ = 0. (3.15)

Also, since wn = snxn + (1− sn)Gxn, from (3.12) and (3.15) we infer that

∥wn − xn∥ = (1− sn)∥Gxn − xn∥ ≤ ∥Gxn − xn∥ → 0 (n → ∞),

∥xn − un∥ ≤ ∥xn − wn∥+ ∥wn − un∥ → 0 (n → ∞), (3.16)
and hence

∥xn − xn+1∥ ≤ ∥xn − un∥+ ∥un − yn∥+ ∥yn − xn+1∥ → 0 (n → ∞).

Also, using (3.13) and the ℓ-Lipschitz continuity of Sn, we have

∥Snxn − xn∥ ≤ ∥Snxn − Snxn+1∥+ ∥Snxn+1 − xn+1∥+ ∥xn+1 − xn∥
≤ (ℓ+ 1)∥xn − xn+1∥+ ∥Snxn+1 − xn+1∥ → 0 (n → ∞).

We next claim that ∥xn − Sxn∥ → 0 as n → ∞ where S := (2I − S)−1. In fact, it is first clear
that S : C → C is pseudocontractive and ℓ-Lipschitzian where Sx = limn→∞ Snx ∀x ∈ C . We claim
that limn→∞ ∥Sxn − xn∥ = 0. Using the boundedness of {xn} and setting D = conv{xn : n ≥ 0}
(the closed convex hull of the set {xn : n ≥ 0}), by the assumption we have

∑∞
n=1 supx∈D ∥Snx −

Sn−1x∥ < ∞. Hence, by Lemma 2.3 we get limn→∞ supx∈D ∥Snx − Sx∥ = 0, which immediately
arrives at

lim
n→∞

∥Snxn − Sxn∥ = 0.

Therefore, we have

∥xn − Sxn∥ ≤ ∥xn − Snxn∥+ ∥Snxn − Sxn∥ → 0 (n → ∞). (3.17)

Now, let us show that if we define S := (2I − S)−1, then S : C → C is nonexpansive, Fix(S) =
Fix(S) =

⋂∞
n=0 Fix(Sn) and limn→∞ ∥xn − Sxn∥ = 0. As a matter of fact, put S := (2I − S)−1,

where I is the identity operator of E. Then it is known that S is nonexpansive and Fix(S) = Fix(S) =⋂∞
n=0 Fix(Sn) as a consequence of [21, Theorem 6]. From (3.17) it follows that

∥xn − Sxn∥ = ∥SS−1
xn − Sxn∥ (3.18)

≤ ∥S−1
xn − xn∥ = ∥(2I − S)xn − xn∥ = ∥xn − Sxn∥ → 0 (n → ∞).

In addition, for each n ≥ 0, we put Tλn := JB
λn
(I − λnA). Then from (3.15) and αn → 0, we get

∥un − Tλnun∥ ≤ ∥un − JB
λn
(αnf(un) + (1− αn)un − λnAun)∥

+∥JB
λn
(αnf(un) + (1− αn)un − λnAun)− JB

λn
(un − λnAun)∥

≤ ∥un − yn∥+ ∥(αnf(un) + (1− αn)un − λnAun)− (un − λnAun)∥
= ∥un − yn∥+ αn∥f(un)− un∥ → 0 (n → ∞).
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Since limn→∞ a(1 − αn) = a > 0, without loss of generality, we may assume that ∃λ > 0 s.t. λ ≤
a(1− αn) ≤ λn ∀n ≥ 0. Using Proposition 2.8 (ii), we obtain from (3.16) that

∥Tλxn − xn∥ ≤ ∥Tλxn − Tλun∥+ ∥Tλun − un∥+ ∥un − xn∥
≤ 2∥xn − un∥+ ∥Tλun − un∥ (3.19)
≤ 2∥xn − un∥+ 2∥Tλnun − un∥ → 0 (n → ∞).

We now define the mapping Φ : C → C by Φx := ν1Sx + ν2Gx + (1 − ν1 − ν2)Tλx ∀x ∈ C with
ν1 + ν2 < 1 for constants ν1, ν2 ∈ (0, 1). Then by Lemma 2.14 and Proposition 2.8 (i), we know that Φ
is nonexpansive and

Fix(Φ) = Fix(S) ∩ Fix(G) ∩ Fix(Tλ) =
∞⋂
n=0

Fix(Sn) ∩ Fix(G) ∩ (A+B)−10 (=: Ω).

Taking into account that
∥Φxn − xn∥ ≤ ν1∥Sxn − xn∥+ ν2∥Gxn − xn∥+ (1− ν1 − ν2)∥Tλxn − xn∥,

we deduce from (3.12), (3.18) and (3.19) that
lim
n→∞

∥Φxn − xn∥ = 0. (3.20)

Let zt = tf(zt) + (1 − t)Φzt ∀t ∈ (0, 1). Then it follows from Proposition 2.9 that {zt} converges
strongly to a point x∗ ∈ Fix(Φ) = Ω , which solves the VIP:

⟨(I − f)x∗, J(x∗ − p)⟩ ≤ 0 ∀p ∈ Ω .

Also, from (2.3) we get
∥zt − xn∥q = ∥t(f(zt)− xn) + (1− t)(Φzt − xn)∥q

≤ (1− t)q∥Φzt − xn∥q + qt⟨f(zt)− xn, Jq(zt − xn)⟩
= (1− t)q∥Φzt − xn∥q + qt⟨f(zt)− zt, Jq(zt − xn)⟩+ qt⟨zt − xn, Jq(zt − xn)⟩
≤ (1− t)q(∥Φzt − Φxn∥+ ∥Φxn − xn∥)q + qt⟨f(zt)− zt, Jq(zt − xn)⟩+ qt∥zt − xn∥q

≤ (1− t)q(∥zt − xn∥+ ∥Φxn − xn∥)q + qt⟨f(zt)− zt, Jq(zt − xn)⟩+ qt∥zt − xn∥q,
which immediately attains

⟨f(zt)− zt, Jq(xn − zt)⟩ ≤
(1− t)q

qt
(∥zt − xn∥+ ∥Φxn − xn∥)q +

qt− 1

qt
∥zt − xn∥q.

From (3.20), we have

lim sup
n→∞

⟨f(zt)− zt, Jq(xn − zt)⟩ ≤
(1− t)q

qt
M +

qt− 1

qt
M = (

(1− t)q + qt− 1

qt
)M, (3.21)

where M is a constant such that ∥zt − xn∥q ≤ M for all n ≥ 0 and t ∈ (0, 1). It is clear that
((1 − t)q + qt − 1)/qt → 0 as t → 0. Since Jq is norm-to-norm uniformly continuous on bounded
subsets of E and zt → x∗, we get

∥Jq(xn − zt)− Jq(xn − x∗)∥ → 0 (t → 0).

So we obtain
|⟨f(zt)− zt, Jq(xn − zt)⟩ − ⟨f(x∗)− x∗, Jq(xn − x∗)⟩|

= |⟨f(zt)− f(x∗), Jq(xn − zt)⟩+ ⟨f(x∗)− x∗, Jq(xn − zt)⟩+ ⟨x∗ − zt, Jq(xn − zt)⟩
−⟨f(x∗)− x∗, Jq(xn − x∗)⟩|

≤ |⟨f(x∗)− x∗, Jq(xn − zt)− Jq(xn − x∗)⟩|+ |⟨f(zt)− f(x∗), Jq(xn − zt)⟩|
+|⟨x∗ − zt, Jq(xn − zt)⟩|
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≤ ∥f(x∗)− x∗∥∥Jq(xn − zt)− Jq(xn − x∗)∥+ (1 + ϱ)∥zt − x∗∥∥xn − zt∥q−1.

Thus, for each n ≥ 0, we have

lim
t→0

⟨f(zt)− zt, Jq(xn − zt)⟩ = ⟨f(x∗)− x∗, Jq(xn − x∗)⟩.

From (3.21), as t → 0, it follows that

lim sup
n→∞

⟨f(x∗)− x∗, Jq(xn − x∗)⟩ ≤ 0. (3.22)

By (C2), (3.11) and (3.16), we get

∥un − x∗ − λn

1− αn
(Aun −Ax∗)− (xn − x∗)∥

≤ ∥un − xn∥+
λn

1− αn
∥Aun −Ax∗∥ (3.23)

≤ ∥un − xn∥+ b∥Aun −Ax∗∥ → 0 (n → ∞).

Using (3.22) and (3.23), we have

lim sup
n→∞

⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩ ≤ 0. (3.24)

Now, from (3.7) it is easy to see that

∥xn+1 − x∗∥q

≤ (1− αn(1− qϱ))∥xn − x∗∥q

+qαn(1− αn)
q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn

1− αn
(Aun −Ax∗))⟩+ κqα

q
n∥f(un)− x∗∥q

= (1− αn(1− qϱ))∥xn − x∗∥q

+αn(1− qϱ)[
q(1− αn)

q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn
1−αn

(Aun −Ax∗))⟩
1− qϱ

+
κqα

q−1
n ∥f(un)− x∗∥q

1− qϱ
]. (3.25)

Note that {αn(1− qϱ)} ⊂ [0, 1],
∑∞

n=0 αn(1− qϱ) = ∞ and

lim sup
n→∞

[
q(1− αn)

q−1⟨f(x∗)− x∗, Jq(un − x∗ − λn
1−αn

(Aun −Ax∗))⟩
1− qϱ

+
κqα

q−1
n ∥f(un)− x∗∥q

1− qϱ
] ≤ 0.

Applying Lemma 2.15 to (3.25), we deduce that Γn → 0 as n → ∞. Thus, xn → x∗ as n → ∞.

Case 2. Suppose that ∃{Γml
} ⊂ {Γm} s.t. Γml

< Γml+1 ∀l ∈ N, where N is the set of all positive
integers. Define the mapping τ : N → N by

τ(m) := max{l ≤ m : Γl < Γl+1}.

Using Lemma 2.13, we have

Γτ(m) ≤ Γτ(m)+1 and Γm ≤ Γτ(m)+1.

Putting Γm = ∥xm − x∗∥q ∀m ∈ N and using the same inference as in Case 1, we can obtain

lim
m→∞

∥xτ(m)+1 − xτ(m)∥ = 0 (3.26)

and
lim sup
m→∞

⟨f(x∗)− x∗, Jq(uτ(m) − x∗ −
λτ(m)

1− ατ(m)
(Auτ(m) −Ax∗))⟩ ≤ 0. (3.27)
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Because of Γτ(m) ≤ Γτ(m)+1 and ατ(m) > 0, we conclude from (3.7) that

∥xτ(m) − x∗∥q ≤
q(1− ατ(m))

q−1

1− qϱ
⟨f(x∗)− x∗, Jq(uτ(m) − x∗ −

λτ(m)

1− ατ(m)
(Auτ(m) −Ax∗))⟩

+
κqα

q−1
τ(m)

1− qϱ
∥f(uτ(m))− x∗∥q,

and hence
lim sup
m→∞

∥xτ(m) − x∗∥q ≤ 0.

Thus, we have
lim

m→∞
∥xτ(m) − x∗∥q = 0.

Using Proposition 2.1 and (3.26), we obtain

∥xτ(m)+1 − x∗∥q − ∥xτ(m) − x∗∥q

≤ q⟨xτ(m)+1 − xτ(m), Jq(xτ(m) − x∗)⟩+ κq∥xτ(m)+1 − xτ(m)∥q

≤ q∥xτ(m)+1 − xτ(m)∥∥xτ(m) − x∗∥q−1 + κq∥xτ(m)+1 − xτ(m)∥q → 0 (m → ∞).

Taking into account Γm ≤ Γτ(m)+1, we have

∥xm − x∗∥q ≤ ∥xτ(m)+1 − x∗∥q

≤ ∥xτ(m) − x∗∥q + q∥xτ(m)+1 − xτ(m)∥∥xτ(m) − x∗∥q−1 + κq∥xτ(m)+1 − xτ(m)∥q.

It is easy to see from (3.26) that xm → x∗ as m → ∞. This completes the proof.
□

We also obtain the strong convergence result for the parallel composite-type extragradient implicit
method in a real Hilbert space H . It is well known that κ2 = 1 [33]. Hence, by Theorem 3.3 we derive
the following conclusion.

Corollary 3.4. Let ∅ ̸= C ⊂ H be a closed convex set. Let f : C → C be a ϱ-contraction with
constant ϱ ∈ [0, 1), and {Sn}∞n=0 be a countable family of ℓ-uniformly Lipschitzian pseudocontractive
self-mappings on C . Suppose that B1, B2 : C → 2H are both maximal monotone operators and Ai :
C → H is σi-inverse-strongly monotone mapping for i = 1, 2. Let A : C → H and B : C → 2H

be a σ-inverse-strongly monotone mapping and a maximal monotone operator, respectively. Assume that
Ω :=

⋂∞
n=0 Fix(Sn)∩Fix(G)∩(A+B)−10 ̸= ∅whereG : C → C is the same as defined in Lemma 2.11.

For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snxn + (1− sn)Gxn,

vn = JB2
ζ2

(wn − ζ2A2wn),

un = JB1
ζ1

(vn − ζ1A1vn),

xn+1 = (1− ζ)Snxn+1 + ζJB
λn
(αnf(un) + (1− αn)un − λnAun) ∀n ≥ 0,

(3.28)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the following conditions hold:
(C1) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2) 0 < a ≤ λn
1−αn

≤ b < 2σ and 0 < c ≤ sn ≤ d < 1;
(C3) 0 < ζi < 2σi for i = 1, 2.

Assume that
∑∞

n=0 supx∈D ∥Sn+1x − Snx∥ < ∞ for any bounded subset D of C . Let S : C → C be
a mapping defined by Sx = limn→∞ Snx ∀x ∈ C , and suppose that Fix(S) =

⋂∞
n=0 Fix(Sn). Then

xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, p − x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed
point equation x∗ = PΩf(x

∗).
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Remark 3.5. Compared with the corresponding results in Abdou et al. [22], Sunthrayuth and Cholamjiak
[15], and Ceng et al. [13], our results improve and extend them in the following aspects.

(i) The problem of solving the VI for both monotone operators A,B with the FPP constraint of a
nonexpansive mapping S in [22, Theorem 3.2] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for both accretive operators A,B and the CFPP
of {Sn}∞n=0 a countable family of ℓ-uniformly Lipschitzian pseudocontractions. The parallel
iterative algorithm in [22, Theorem 3.2] is extended to develop our parallel composite-type ex-
tragradient implicit method.

(ii) The problem of solving the GSVI (1.4) with the FPP constraint of a strict pseudocontraction
T in [13, Theorem 1], is extended to develop our problem of solving the GSVI (1.4) with the
constraints of the VI for two accretive operators A,B and the CFPP of {Sn}∞n=0 a countable
family of ℓ-uniformly Lipschitzian pseudocontractions. The composite viscosity implicit rule
in [13, Theorem 3.1] is extended to develop our parallel composite-type extragradient implicit
method.

(iii) The problem of solving the VI for both accretive operators A,B with the FPP constraint of a
nonexpansive mapping S in [15, Theorem 3.3] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for both accretive operators A,B and the CFPP
of {Sn}∞n=0 a countable family of ℓ-uniformly Lipschitzian pseudocontractions. The modified
viscosity-type extragradient method in [15, Theorem 3.3] is extended to develop our parallel
composite-type extragradient implicit method.

4. Some Applications

In this section, we give some applications of Corollary 3.4 to important mathematical problems in
the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed convex subset C ⊂
H and a nonlinear monotone operator A : C → H . Consider the classical VIP of finding u∗ ∈ C s.t.

⟨Au∗, v − u∗⟩ ≥ 0 ∀v ∈ C. (4.1)

The solution set of problem (4.1) is denoted by VI(C,A). It is clear that u∗ ∈ C solves VIP (4.1) if and
only if it solves the fixed point equation u∗ = PC(u

∗ − λAu∗) with λ > 0. Let iC be the indicator
function of C defined by

iC(u) =

{
0 if u ∈ C,
∞ if u ̸∈ C.

We use NC(u) to indicate the normal cone of C at u ∈ H , i.e., NC(u) = {w ∈ H : ⟨w, v−u⟩ ≤ 0 ∀v ∈
C}. It is known that iC is a proper, convex and lower semicontinuous function and its subdifferential
∂iC is a maximal monotone mapping [11]. We define the resolvent operator J∂iC

λ of ∂iC for λ > 0 by

J∂iC
λ (x) = (I + λ∂iC)

−1(x) ∀x ∈ H,

where

∂iC(u) = {w ∈ H : iC(u) + ⟨w, v − u⟩ ≤ iC(v) ∀v ∈ H}
= {w ∈ H : ⟨w, v − u⟩ ≤ 0 ∀v ∈ C} = NC(u) ∀u ∈ C.

Hence, we get

u = J∂iC
λ (x) ⇔ x− u ∈ λNC(u)

⇔ ⟨x− u, v − u⟩ ≤ 0 ∀v ∈ C

⇔ u = PC(x),



PARALLEL COMPOSITE-TYPE EXTRAGRADIENT IMPLICIT METHOD FOR A SYSTEM OF VARIATIONAL INCLUSIONS 141

where PC is the metric projection of H onto C . Moreover, we also have (A + ∂iC)
−10 = VI(C,A)

[11].
Thus, putting B = ∂iC in Corollary 3.4, we obtain the following result:

Theorem 4.1. Let f,A,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary 3.4. Suppose that
Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ VI(C,A) ̸= ∅. For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be

the sequence generated by
wn = snxn + (1− sn)Gxn,

vn = JB2
ζ2

(wn − ζ2A2wn),

un = JB1
ζ1

(vn − ζ1A1vn),

xn+1 = (1− ζ)Snxn+1 + ζPC(αnf(un) + (1− αn)un − λnAun) ∀n ≥ 0,

(4.2)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3) in
Corollary 3.4 hold. Then xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I − f)x∗, p − x∗⟩ ≥
0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).

4.2. Application to split feasibility problem. Let H1 and H2 be two real Hilbert spaces. Consider
the following split feasibility problem (SFP) of finding

u ∈ C s.t. T u ∈ Q, (4.3)
where C and Q are closed convex subsets of H1 and H2, respectively, and T : H1 → H2 is a bounded
linear operator with its adjoint T ∗. The solution set of SFP is denoted by ℧ := C ∩ T −1Q = {u ∈
C : T u ∈ Q}. In 1994, Censor and Elfving [3] first introduced the SFP for modelling inverse problems
of radiation therapy treatment planning in a finite dimensional Hilbert space, which arise from phase
retrieval and in medical image reconstruction.

It is known that z ∈ C solves the SFP (4.3) if and only if z is a solution of the minimization prob-
lem: miny∈C g(y) := 1

2∥T y − PQT y∥2. Note that the function g is differentiable convex and has the
Lipschitzian gradient defined by ∇g = T ∗(I − PQ)T . Moreover, ∇g is 1

∥T ∥2 -inverse-strongly mono-
tone, where ∥T ∥2 is the spectral radius of T ∗T [5]. So, z ∈ C solves the SFP if and only if it solves the
variational inclusion problem of finding z ∈ H1 s.t.

0 ∈ ∇g(z) + ∂iC(z) ⇔ 0 ∈ z + λ∂iC(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂iC(z)

⇔ z = (I + λ∂iC)
−1(z − λ∇g(z))

⇔ z = PC(z − λ∇g(z)).

Now, setting A = ∇g, B = ∂iC and σ = 1
∥T ∥2 in Corollary 3.4, we obtain the following result:

Theorem 4.2. Let f,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary 3.4. Assume that Ω :=⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ ℧ ̸= ∅. For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence

generated by
wn = snxn + (1− sn)Gxn,

vn = JB2
ζ2

(wn − ζ2A2wn),

un = JB1
ζ1

(vn − ζ1A1vn),

xn+1 = (1− ζ)Snxn+1 + ζPC(αnf(un) + (1− αn)un − λnT ∗(I − PQ)T un) ∀n ≥ 0,

(4.4)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3) in
Corollary 3.4 hold where σ = 1

∥T ∥2 . Then xn → x∗ ∈ Ω , which is the unique solution to the VIP: ⟨(I −
f)x∗, p− x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).
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4.3. Application to LASSO problem. In this subsection, we first recall the least absolute shrinkage
and selection operator (LASSO) [9], which can be formulated as a convex constrained optimization
problem:

min
y∈H

1

2
∥T y − b∥22 subject to ∥y∥1 ≤ s, (4.5)

where T : H → H is a bounded operator on H , b is a fixed vector in H and s > 0. Let ℧ be the
solution set of LASSO (4.5). The LASSO has received much attention because of the involvement of the
ℓ1 norm which promotes sparsity, phenomenon of many practical problems arising in statics model,
image compression, compressed sensing and signal processing theory.

In terms of the optimization theory, ones know that the solution to the LASSO problem (4.5) is a min-
imizer of the following convex unconstrained minimization problem so-called Basis Pursuit denoising
problem:

min
y∈H

g(y) + h(y), (4.6)

where g(y) := 1
2∥T y − b∥22, h(y) := λ∥y∥1 and λ ≥ 0 is a regularization parameter. It is known that

∇g(y) = T ∗(T y − b) is 1
∥T ∗T ∥ -inverse-strongly monotone. Hence, we have that z solves the LASSO

if and only if z solves the variational inclusion problem of finding z ∈ H s.t.
ll0 ∈ ∇g(z) + ∂h(z) ⇔ 0 ∈ z + λ∂h(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂h(z)

⇔ z = (I + λ∂h)−1(z − λ∇g(z))

⇔ z = proxh(z − λ∇g(z)),

where proxh(y) is the proximal of h(y) := λ∥y∥1 given by

proxh(y) = argminu∈H{λ∥u∥1 +
1

2
∥u− y∥22} ∀y ∈ H,

which is separable in indices. Then, for y ∈ H ,
proxh(y) = proxλ∥·∥1(y)

= (proxλ|·|(y1), proxλ|·|(y2), ...,proxλ|·|(yn)),

where proxλ|·|(yi) = sgn(yi)max{|yi| − λ, 0} for i = 1, 2, ..., n.
In 2014, Xu [12] suggested the following proximal-gradient algorithm (PGA):

xk+1 = proxh(xk − λkT ∗(T xk − b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem (4.5).
Next, putting C = H, A = ∇g, B = ∂h and σ = 1

∥T ∗T ∥ in Corollary 3.4, we obtain the following
result:

Theorem 4.3. Let f,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary 3.4 with C = H . Assume
that Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ ℧ ̸= ∅. For any given x0 ∈ H and ζ ∈ (0, 1), let {xn}∞n=0 be the

sequence generated by
wn = snxn + (1− sn)Gxn,

vn = JB2
ζ2

(wn − ζ2A2wn),

un = JB1
ζ1

(vn − ζ1A1vn),

xn+1 = (1− ζ)Snxn+1 + ζproxh(αnf(un) + (1− αn)un − λnT ∗(T un − b)) ∀n ≥ 0,

(4.7)

where the sequences {sn}, {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C3)
in Corollary 3.4 hold where σ = 1

∥T ∗T ∥ . Then xn → x∗ ∈ Ω , which is the unique solution to the
VIP: ⟨(I − f)x∗, p− x∗⟩ ≥ 0 ∀p ∈ Ω , i.e., the fixed point equation x∗ = PΩf(x

∗).
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