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ABSTRACT. In a uniformly convex and g-uniformly smooth Banach space with ¢ € (1, 2], let the VI in-
dicate a variational inclusion for two accretive operators and let the CFPP denote a common fixed point
problem of a countable family of /-uniformly Lipschitzian pseudocontractive mappings. In this paper, we
introduce a parallel composite-type extragradient implicit method for solving a general system of varia-
tional inclusions (GSVI) with the VI and CFPP constraints. We then prove the strong convergence of the
suggested algorithm to a solution of the GSVI with the VI and CFPP constraints under some appropriate
assumptions. As applications, we apply our main result to the variational inequality problem (VIP), split
feasibility problem (SFP) and LASSO problem in Hilbert spaces.
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1. INTRODUCTION

Let H be a real Hilbert space, whose inner product and induced norm are denoted by (-,-) and
|| - ||, respectively. Let ) # C C H be a closed convex set. We denote by P¢ the metric projection
from H onto C. Given a mapping A : C' — H. Consider the classical variational inequality problem
(VIP) of finding a point z* € C s.t. (Az*,y — 2*) > 0Vy € C. We denote by VI(C, A) the solution
set of the VIP. Up to now, Korpelevich’s extragradient method [32] has been one of the most popular
methods for solving the VIP. It is worth mentioning that if VI(C, A) # (), this method has only weak
convergence, and only requires that the mapping A is monotone and Lipschitz continuous. To the most
of our knowledge, Korpelevich’s extragradient method has been improved and modified in various ways
so that some new iterative methods happen to solve the VIP and related optimization problems; see e.g.,
[4, 6, 8, 14, 15, 19, 20, 24, 26, 27, 28, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41] and references therein, to name
but a few.

Assume that the operators A : C' — H and B : D(B) C C' — H are a-inverse-strongly monotone
and maximal monotone, respectively. Consider the variational inclusion (VI) of finding a point z* € C
s.t. 0 € (A+ B)z*. In order to solve the FPP of nonexpansive mapping S : C' — C and the VI for both
monotone mappings A, B, Takahashi et al. [11] suggested a Mann-type Halpern iterative method, i.e.,
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for any given 21 = z € C, {x;} is the sequence generated by
Tjt1 = 5j$j + (1 - Bj)S(oajx + (1 — Oéj)J)\Bj (.%'j — /\jA%‘j)) Vi >1, (1.1)

where {\;} C (0,2«) and {¢;}, {5;} C (0,1). They proved the strong convergence of {x;} to a point
of Fix(S) N (A + B)~'0 under some mild conditions.

Recently, Abdou et al. [22] suggested a parallel algorithm, i.e., for any given z9 € C, {x;} is the
sequence generated by

i1 = (1= Q)Saj + I (v f (x)) + (1 = ay)ay — AjAzy) Vi >0, (1.2)

where S, A, B are the same as above, ( € (0,1), {\;} C (0,2c) and {o;} C (0,1). They proved
strong convergence of {z;} to a point of Fix(S) N (A + B)~'0 under some appropriate conditions.
In the practical life, many mathematical models have been formulated as the VI. Without question,
many researchers have presented and developed a great number of iterative methods for solving the
VI in various approaches; see e.g., [4, 11, 15, 17, 19, 22, 27, 28] and the references therein. Due to the
importance and interesting of the VI, many mathematicians are now interested in finding a common
solution of the VI and FPP.

For ¢ € (1,2], let E be a uniformly convex and ¢g-uniformly smooth Banach space with g-uniform
smoothness coefficient x,. Suppose that f : £ — E is a p-contraction and S : £ — FE is a non-
expansive mapping. Let A : E — E be an a-inverse-strongly accretive mapping of order ¢ and
B : E — 2F be an m-accretive operator. Very recently, Sunthrayuth and Cholamjiak [15] proposed
a modified viscosity-type extragradient method for the FPP of S and the VI of finding 2* € E s.t.
0 € (A+ B)z*, ie, for any given xg € E, {z;} is the sequence generated by

yj = J{ (x5 — \jAzj),
Zj = J)\B; ({L‘j — )\jij + rj(yj — l‘j)), (1-3)
Tjp1 = ajf(xj) + ﬁjmj + ’YjSZj vy >0,

where ij = (I +XB)7Y {rj} {as}, {85}, {7} < (0,1) and {\;} C (0,00) are such that: (i)
aj + B+ = 1; (i) imj00 oj = 0, Z;il a; = oo; (iii) {B;} C [a,b] C (0,1);and (iv) 0 < A <
Nj < A\j/rj < p < (agq/rg)@ D, 0 < r < r; < 1. They proved the strong convergence of {x;} to a
point of Fix(S) N (A + B) !0, which solves a certain VIP.

Furthermore, suppose that .J : E — 2F” is the normalized duality mapping from E into 2€" defined
by J(x) = {¢p € E* : (x,¢) = ||z||* = ||¢|*} Vx € E, where (-,-) denotes the generalized duality
pairing between E' and E™. It is known that if F is smooth then J is single-valued. Let C' be a nonempty
closed convex subset of a smooth Banach space FE. Let A;, Ay : C' — E and B, By : C — 2F be
nonlinear mappings with B;z # () Vo € C,i = 1,2. Consider the general system of variational
inclusions (GSVI) of finding (z*,3*) € C x C s.t.

{0 € ((A1y* + Biz*) + x* — y*,

(1.4)
0e CQ(AQQS* + Bgy*) + y* -z,

where (; is a positive constant for ¢ = 1, 2. It is known that problem (1.4) has been transformed into a
fixed point problem in the following way.

Lemma 1.1. (see [13, Lemma 2]). Assume that B1, By : C — 2F are both m-accretive operators and
Ay, Az : C — E are both operators. For givenx™, y* € C, (x*,y*) is a solution of problem (1.4) if and only
ife* € Fix(G), where Fix(QG) is the fixed point set of the mapping G := ng (I — §1A1)J£2 (I —(A,),
and y* = JgQ(I — (oAg)x*.
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Suppose that F is a uniformly convex and 2-uniformly smooth Banach space with 2-uniform smooth-
ness coefficient ky. Let By, By : C' — 2F be both m-accretive operatorsand A; : C — FE (i = 1,2)
be (;-inverse-strongly accretive operator. Let f : C' — C be a contraction with constant 6 € [0, 1).
Let V : C' = C be a nonexpansive operator and T : ' — C' be a A-strict pseudocontraction. Very
recently, using Lemma 1.1, Ceng et al. [13] suggested a composite viscosity implicit rule for solving the
GSVI (1.4) with the FPP constraint of 7', i.e., for any given z9 € C, the sequence {z;} is generated by

yj = J2 (wj — (o Asw)),

25 = ajf(@jo1) + 8jajo1 + BiVajo1 +yluSa; + (1 — w) JE (y; — GAwy)] Vi1
where 1 € (0,1), 5 := (1 — )] +aT with 0 < o < min{1, %}, and the sequences {a;}, {0}, {5;},
{~;} € (0,1) are such that (i) o; + 0; + B +v; = 1 Vj > 1; (ii) limj00 oj = 0, im0 % = 0;
(iii) limj 007 = 1 (iv) Y52gaj = oo. They proved that {z;} converges strongly to a point of
Fix(G) N Fix(T'), which solves a certain VIP.

In addition, assume that {y;} C (0, 1), {\;} C (0,2¢] and {e;},{&;} C (0,1] with o + &; < 1.
Ceng et al. [4] introduced a Mann-type hybrid extragradient algorithm, i.e., for any initial ug = u € C,
{u;} is the sequence generated by

y; = Po(uj — pjAug),
vj = Po(uj — pjAy;),
’ﬁj = Jf; (Uj - )\jAvj),

zj = (1 — oy — dj)uj + O{j’f)j + d]’S@j,

Uj+1 = PCJ'QQJ‘U \V/] > 07

where C; = {z € C : ||z; — 2| < |lu; — 2|}, Q; = {z € C : (yj — z,u —u;) > 0}, ij =
(I +X\;B)"', A: C — H is a monotone and L-Lipschitzian mapping, A : C' — H is an a-inverse-
strongly monotone mapping, B is a maximal monotone mapping with D(B) = C and S : C — C'is
a nonexpansive mapping. They proved strong convergence of {u;} to the point Ppu in 2 = Fix(S) N
(A+ B)~'0N VI(C, A) under some mild conditions.

In a uniformly convex and g-uniformly smooth Banach space with ¢ € (1, 2], let the VI indicate a
variational inclusion for two accretive operators and let the CFPP denote a common fixed point problem
of a countable family of /-uniformly Lipschitzian pseudocontractive mappings. In this paper, we intro-
duce a parallel composite-type extragradient implicit method for solving the GSVI (1.4) with the VI and
CFPP constraints. We then prove the strong convergence of the suggested algorithm to a solution of
the GSVI (1.4) with the VI and CFPP constraints under some appropriate assumptions. As applications,
we apply our main result to the variational inequality problem (VIP), split feasibility problem (SFP) and
LASSO problem in Hilbert spaces. Our results improve and extend the corresponding results in Abdou
et al. [22], Sunthrayuth and Cholamjiak [15], and Ceng et al. [13] to a certain extent.

2. PRELIMINARIES

Let F be a real Banach space with the dual E*, and ) # C' C E be a closed convex set. For
convenience, we shall use the following symbols: x,, — x (resp., ,, — x) indicates the strong (resp.,
weak) convergence of the sequence {x,} to . Given a self-mapping 7" on C. We use the symbols R
and Fix(T') to denote the set of all real numbers and the fixed point set of T', respectively. Recall that T’
is called a nonexpansive mapping if | Tz — T'y|| < ||z — y|| Vz,y € C. Amapping f : C — C'is called
a contraction if 3p € [0,1) s.t. || f(x) — f(y)|| < ol|lx — y|| Vo, y € C. Also, recall that the normalized
duality mapping J defined by

J(z)={p € E*: (2,0) = |lz]|* = |9’} Vz€E. (2.1)
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is the one from F into the family of nonempty (by Hahn-Banach’s theorem) weak® compact subsets of
E*, satisfying J(Tu) = 7J(u) and J(—u) = —J(u) forall 7 > 0 and u € E.
The modulus of convexity of E is the function 0 : (0,2] — [0, 1] defined by

. r+y
p(e) = it (1 — T2V B ol =yl = 1 e -0l 2 o)

The modulus of smoothness of F is the function pg : R} := [0,00) — R defined by

|z + 7yl + [z — 7y
2
A Banach space F is said to be uniformly convex if dg(€) > 0 Ve € (0,2]. It is said to be uniformly

pe(7) = sup{ —lizy e B, |zfl = flyll = 1}.

smooth if lim,_,o+ p%(ﬂ = 0. Also, it is said to be g-uniformly smooth with ¢ > 1 if 3¢ > 0 s.t.
pE(t) < ct?Vt > 0. If E is g-uniformly smooth, then ¢ < 2 and E is also uniformly smooth and
if F is uniformly convex, then F is also reflexive and strictly convex. It is known that Hilbert space
H is 2-uniformly smooth. Further, sequence space £, and Lebesgue space L,, are min{p, 2}-uniformly
smooth for every p > 1 [33].

Let ¢ > 1. The generalized duality mapping J, : E — 2" is defined by

Jo(z) = {¢ € B* : (z,¢) = ||z]|%, [lo]l = l|l="""}, (22)
where (-, -) denotes the generalized duality pairing between E and E*. In particular, if ¢ = 2, then
Jo = J is the normalized duality mapping of E. It is known that J,(z) = ||z||9"2J(z) Vx # 0 and
that J, is the subdifferential of the functional %H -||%. If E is uniformly smooth, the generalized duality
mapping J, is one-to-one and single-valued. Furthermore, J, satisfies J, = J,; 1 where J,, is the
generalized duality mapping of E* with % + é = 1. Note that no Banach space is g-uniformly smooth
for ¢ > 2; see [18] for more details. Let ¢ > 1 and E be a real normed space with the generalized
duality mapping J,. Then the following inequality is an immediate consequence of the subdifferential
inequality of the functional %H - |9

|z +yll? < |zl|? + q(y, Jo(x +y)) Va,y € E, jo(x+y) € Jy(x+y). (2.3)

Proposition 2.1. (see [33]). Let ¢ € (1,2] a fixed real number and let E be q-uniformly smooth. Then
lz+yl|? < ||z]|74 q(y, Jq(x)) + Kqllyl|? Vo, y € E, where kg is the g-uniform smoothness coefficient of
E.

Recall that a mapping T : C' — C'is called pseudocontractive if for each z,y € C, there exists j(x —
y) € J(x —y) such that (Tz — Ty, j(z — y)) < ||z — y||?. Also, it is called strongly pseudocontractive
if for each x,y € C, there exists j(x — y) € J(x — y) such that (Tx — Ty, j(z —y)) < ||z — y||? for
some « € (0,1). We will use the following concept in the sequel.

Definition 2.2. Let {5, }7° ; be a sequence of continuous pseudocontractive self-mappings on C. Then
{Sn}22, is said to be a countable family of /-uniformly Lipschitzian pseudocontractive self-mappings
on C if there exists a constant £ > 0 such that each S, is ¢-Lipschitz continuous.

o0

Lemma 2.3. (see[10]). Let {S,, }°° be a sequence of self-mappings on C such that) >~ | sup,cc || Snz—
Sp—1z|| < co. Then for eachy € C, {Spy} converges strongly to some point of C. Moreover, let S be a
self-mapping on C' defined by Sy = lim,,_,oc Spy Vy € C. Then lim,, oo sup,cc ||Spz — Szl = 0.

The following lemma can be obtained from the result in [33].

Lemma 2.4. Let ¢ > 1 andr > 0 be two fixed real numbers and let E' be uniformly convex. Then there
exist strictly increasing, continuous and convex functions g, h : Ry — R with g(0) = 0 and h(0) = 0
such that

@) [lpz + (1= pwyl|? < pllzl|? + (1 = pw)llyl|? — pl = p)g((le - yll) with u € 0, 1];
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() h(llz —yl) < 29— a(z, jg(y)) + (g — Dyl
forallz,y € B, and jy(y) € J4(y), where B, :={x € E : ||z| <r}.

The following lemma is an analogue of Lemma 2.4 (a).

Lemma 2.5. Let g > 1 and r > 0 be two fixed real numbers and let E/ be uniformly convex. Then there
exists a strictly increasing, continuous and convex function g : Ry — Ry with g(0) = 0 such that
Az + py + vz < Az[|?+ pllyl|? + vl — Aug(l|z — yll) for allz,y, z € By and A, p,v € [0, 1]
with A\ +p+v =1,

Proposition 2.6. (see [25]). Let ) # C' C E be a closed convex set. If T : C — C' is a continuous and
strong pseudocontraction mapping, then I" has a unique fixed point in C'.

Let D be a subset of C and let IT be a mapping of C' into D. Then [T is said to be sunny if T[T (x) +
t(x — II(x))] = II(x), whenever II(x) 4+ t(x — II(z)) € C for x € C and ¢t > 0. A mapping II of C
into itself is called a retraction if I1? = I1. If a mapping II of C into itself is a retraction, then I1(z) = z
for each z € R(IT), where R(IT) is the range of II. A subset D of C is called a sunny nonexpansive
retract of C' if there exists a sunny nonexpansive retraction from C onto D. In terms of [23], we know
that if F is smooth and /I is a retraction of C onto D, then the following statements are equivalent:

(i) I is sunny and nonexpansive;
(i) 11(z) — H@)IP < (& —y, J(H(2) — (y))) Y,y € C;

(i) (x — I (x), J(y — I (x))) <0Vr € C,y € D.

Let B : C' — 2F be a set-valued operator with Bx # () Vo € C. Let ¢ > 1. An operator B is said to
be accretive if for each z,y € C, Fj,(x —y) € Jy(z —y) s.t. (u—wv,jg(x —y)) > 0Vu € Bz,v € By.
An accretive operator B is said to be a-inverse-strongly accretive of order ¢q if for each z,y € C,
Jjg(z —y) € Jy(xz —y) st. (u— v, jq(z —y)) > aflu —v||! Vu € Bz,v € By for some o > 0. If
E = H aHilbert space, then B is called a-inverse-strongly monotone. An accretive operator B is said
to be m-accretive if (I + AB)C = E for all A > 0. For an accretive operator B, we define the mapping
JP : (I+AB)C — Cby JP = (I +AB)~! for each A > 0. Such J& is called the resolvent of B for
A>0.

Lemma 2.7. (see [17, 19]). Let B : C — 2F be an m-accretive operator. Then the following statements
hold:

(i) the resolvent identity: JPz = Jf(%x + (1= §)JPz) VA, u>0, z € E;
(if) ifJ/{B is a resolvent of B for A > 0, then JAB is a firmly nonexpansive mapping with Fix(Jf) =
B0, where B~10 = {x € C : 0 € Bx};
(iii) if £ = H a Hilbert space, B is maximal monotone.

Let A : C — E be an a-inverse-strongly accretive mapping of order ¢ and B : C' — 2 be an
m-accretive operator. In the sequel, we will use the notation T) := JZ(I — AA) = (I + AB)"}(I —
AA) VA > 0.

Proposition 2.8. (see [17]). The following statements hold:

(i) Fix(Ty) = (A+ B)~10 VA > 0;
(i) |ly — Toyll < 2|ly — Try|| for0 < A <randy € C.

Proposition 2.9. (see [36]). Let EZ be uniformly smooth, T' : C' — C' be a nonexpansive mapping with
Fix(T) # 0 and f : C — C be a fixed contraction. Foreacht € (0,1), let z; € C' be the unique fixed point
of the contractionC' > z — tf(z) + (1 —t)Tz on C, i.e, zx = tf(z) + (1 — )Tz Then {z} converges
strongly to a fixed point * € Fix(T), which solves the VIP: ((I — f)x*, J(z* — z)) < 0Vz € Fix(T).
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Proposition 2.10. (see [17]). Let E be g-uniformly smooth with q € (1,2]. Suppose that A : C — E is
an a-inverse-strongly accretive mapping of order q. Then, for any given A > 0,

I = Ad)z — (I = AA)y[? < [|lz = y[|? = Mag — kAT )| Az — Ayl Va,y € C,

1
where kg > 0 is the g-uniform smoothness coefficient of . In particular, if0 < X\ < (%Z) a=1 then] —\A
is nonexpansive.

Lemma 2.11. (see [13]). Let E be q-uniformly smooth with ¢ € (1,2]. Let By, By : C — 2F be two
m-accretive operators and A; : C — E (i = 1,2) be o;-inverse-strongly accretive mapping of order q.

Define an operator G : C — C by G := ng(I—ClAl)JZiQ(I—CgAg). If0< G < (m)q%l (1=1,2),

then G is nonexpansive. ’

Lemma 2.12. (see [2]). Let E' be smooth, A : C' — E be accretive and Il be a sunny nonexpansive
retraction from E onto C. Then VI(C, A) = Fix(lIc(I — AA)) VA > 0, where VI(C, A) is the solution
set of the VIP of finding z € C s.t. (Az, J(z —y)) < 0Vy € C.

Recall that if £ = H a Hilbert space, then the sunny nonexpansive retraction IIc from E onto C'
coincides with the metric projection Pc from H onto C. Moreover, if E' is uniformly smooth and T°
is a nonexpansive self-mapping on C' with Fix(T") # (), then Fix(T') is a sunny nonexpansive retract
from E onto C' [29]. By Lemma 2.12 we know that, 2* € Fix(T') solves the VIP in Proposition 2.9 if
and only if z* solves the fixed point equation z* = Il (1) f(z").

Lemma 2.13. (see [16]). Let {I',} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {I',, } of {I',} which satisfies I,, < I, +1 for each integeri > 1.
Define the sequence {T(n)}n>n, of integers as follows:

7(n) =max{k <n: [} < Ik},
where integer ng > 1 such that {k < ng : I'y < ['x11} # (. Then, the following hold:

() 7(ng) < 7(ng+1) <--- and 7(n) — oo;
(ii) FT(TL) < FT(n)—i—l and I, < FT(n)-i—l vn > ng.

Lemma 2.14. (see[1]). Let E be strictly convex, and {S,, }°°_, be a sequence of nonexpansive mappings on
C. Suppose that(,~_, Fix(S,,) is nonempty. Let { A, } be a sequence of positive numbers withy >\ \,, =
1. Then a mapping S on C defined by Sx = 7 A\pSpa V& € C'is defined well, nonexpansive and
Fix(S) = N, Fix(Sy) holds.

Lemma 2.15. (see [36]). Let {ay } be a sequence in [0, 00) such that an4+1 < (1 — Sp)an + Spiy Y0 > 0,
where {s, } and {v,,} satisfy the conditions: (i) {s,} C [0,1], >0 sn = 00; (ii) limsup,, ., vn < 0 or
>0 o Isnn| < oo. Then lim,, o0 @y, = 0.

3. MAIN RESULTS

Throughout this paper, suppose that C' is a nonempty closed convex subset of a uniformly convex
and g-uniformly smooth Banach space E with ¢ € (1,2]. Let By, By : C — 2F be both m-accretive
operators and A; : C — FE be oy-inverse-strongly accretive mapping of order g for ¢ = 1,2. Let
f : C — C be a p-contraction with constant ¢ € [0, %) and {S,}>°, be a countable family of /-
uniformly Lipschitzian pseudocontractive self-mappings on C. Let A : C — E and B : C — 2% be
a o-inverse-strongly accretive mapping of order ¢ and an m-accretive operator, respectively. Assume
that 2 := (22, Fix(S,) N Fix(G) N (A + B)7!0 # 0 where G : C — C is the same as defined in

Lemma 2.11.

Algorithm 3.1. Parallel composite-type extragradient implicit method for the GSVI (1.4) with the VI and
CFEPP constraints.
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Initial Step: Given ¢ € (0,1) and xy € C arbitrarily.

Iteration Steps: Given the current iterate x,,, compute T,1 as follows:

Step 1 Calculate w,, = spxn, + (1 — 8,)Gxy;

Step 2 Calculate v,, = JgQ (wy, — CAqwy);

Step 3 Calculate u,, = ng (vn, — (LA Vy);

Step 4 Calculate xp41 = (1 — {)SpTnt1 + Cng(anf(un) + (1 — an)un — AyAuy,), where
{sn}, {an} € (0,1) and {An} C (0, 00).
Setn :=mn+ 1 and go to Step 1.

Lemma 3.2. If{z,} is the sequence generated by Algorithm 3.1, then it is bounded.

Proof. Take an element p € 2 := (°°, Fix(S,) N Fix(G) N (A + B) 10 arbitrarily. Then we have
An
1—a,
By Proposition 2.10 and Lemma 2.11, we deduce that I —(1 A1, I—(2 A2 and G := ng (I—ClAl)J£2 (I—

(2A2) are nonexpansive mappings. Moreover, it can be readily seen that for each n > 0, there is only
an element x,,41 € C s.t.

Tn+l = (1 - <)Sn$n+1 + Cjﬁb(anf(un) + (1 - an)un - )\nAun) (3.1)
In fact, consider the mapping F,,x = (1 — {)S,z + CJ;iL (an f(un) + (1 — ap)up, — AAuy,) Vo € C.
Note that S,, : C'— C'is a continuous pseudocontraction. Hence we obtain that for each z,y € C,
(Faz — Fpy, J(x = y)) = (1 = ()(Snz — Sny, J(z = y)) < (1 = Ol - yl>.
Also, from ¢ € (0,1), weget0 < 1—( < 1. Thus, F}, is a continuous and strong pseudocontraction self-

mapping on C. By Proposition 2.6, we deduce that for each n > 0, there is only an element x,,+1 € C,
satisfying (3.1). Since G : C' — (' is a nonexpansive mapping, by Lemma 2.4 (a) we get

[wn = pll* < snllen = pl? + (1= sa)|Gn = pl|? = sn(L = sn)g([l2n — Gonl)
< len = pll* = sn(1 = sn)g([l2n — Gaal). (32)

Using the nonexpansivity of GG again, we obtain from u,, = Gw, that

p=Gp=Sup=JL (p—AAp) = JL (anp + (1 — o) (p — Ap)).

[[un — —pll <llzn—pl VR =0. (33)

Put y,, := J/{Bn (an f(up) + (1 — ap)un — AnAuy) ¥n > 0. Since J)i and I — 1i‘ZnA are nonexpansive
for all n > 0, we obtain from (3.3) that

yn — pl| (3.4)
= I (anf(un) + (1 = ap)un — AnAuy) — p||

= B @ ) + (1= @) — 1 Au)) = I (aup+ (L= an) (o — T2 Ap))|
< an () + (1= )i = 12 Aun)) = anp+ (1= ) p = 1 Ap))|

= 0 an)l{n = T ) = (p = T Ap)) + () — B

< (1= an)llun = pll + anllf(un) = F(R)I| + anllf(p) — pll

< (1= a1~ 0)un — pll + | 75)

< (A —an(l = 0))lzn —pll + anllf(p) -l

= (1 an1 o)) en —pl + an(1 — TP

1-o
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ol Hf() pH}

< max{||z, —

Noticing that S, is a pseudocontractlon mapping, we conclude from (3.1) that

[Zntr =pl* = (1= OSnnt1 = ps Jg(@nt1 = p)) + C(Yn = P, Jy(Tnt1 = p))
(1 - C)Hxn'i‘l - qu + C(yn - D, Jq($n+1 - p)>7
which together with Lemma 2.4 (b), implies that

IN

”xn—i—l _qu < <yn - D, Jq(xn-I—l _p)>
1 ~
< 5[“% —pl?+ (¢ = Dllzns1 — plI* = Allyn — znta )]

This ensures that

|2znt1 = Pl < llyn = Pl = A(llyn — T ). (3.5)
So it follows from (3.4) that
flp)—p
Jn1 = 91 < o 5l < mac{ o — ), L= 2Ly,

By induction, we get ||z, — p|| < max{||zo — p||, W} Vn > 0. Consequently, {z,,} is bounded,
and so are {un }, {wn}, {yn}, {SnTn+1}, {Aun}. This completes the proof. O
Theorem 3.3. Let {x,} be the sequence generalized by Algorithm 3.1. Suppose that the following condi-
tions hold:

(C1) limy o0y =0 and )07 an = 00;

(C2) 0<a<y >‘" <b<(”q)q Tand0<c<s,<d<1;

(C3) 0< (< (‘,’;qq)‘i!*1 fori=1,2.

Assume that Y > Sup,cp ||Sn+12 — Spz|| < oo for any bounded subset D of C. Let S : C' — C be
a mapping defined by Sz = lim,, o Spx Vz € C, and suppose that Fix(S) = (.-, Fix(Sy). Then
Ty, — x* € (2, which is the unique solution to the VIP: (I — f)z*, J(z* —p)) < 0Vp € £, i.e., the fixed
point equation x* = Il f(x*).

Proof. First of all, let * € (2 and y* = J£2 (z* — (2A22™). Since v, = J£2 (wy, — (2 A2w,) and

= ng (vn, — G A vy,), we get u,, = Gw,,. From Proposition 2.10 we have

lon =y 17 = [II2 (wn = GeAzwn) — 2 (&% — (e Aga™)|?
< lwn = 277 = G2 — kg [[Aswy — Agz™ |,
and
lun — 2| = (I (vn = GALoR) — IS (5" = LAy
< o =119 = Gio1g = rgCT [ Aro, — Ary*[|*.

Combining the last two inequalities, we have

lan = 2% |17 < fJwn = 27| = Ga(02a = rgC] ) | Azwn — Aza*||? = C1(014 — regCT )| Avon — Ary™|.
(3.6)
Also, using Propositions 2.1 and 2.10 and the convexity of || -

.6) we get
[y — ™[]

S [C R o—

1—a,

Auy) — (% —

Az™)) + an(f(un) — 27|

1—a,



<

IN
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n o * n * q
[ a Auy) — (z T—a Azx™)||

- &n

(1 = )| (un —
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a1 = )T (F () = o, Ty — & = 2 (Au, — Az*)) + R0l | £ () — |7

1—a,

* )\n — *
(1= an(L = go))lfun — 21" = An(oq = (=)~ [ Ay — Aa* |7

n

gan(l = )T (@) — 2, Jylun — 7 =~ (Aug — A2"))) + R0l f(un) — ]

1—a,

(1 = an(1 = q0))[lwn — 2| = Ga(02q — rgC3 )| Azwn — Aza™||? = C1(01q — rgCf ™)

* )\n — *
X[ Aron = Ary[[] = Anloq = kg(7—=-—)"" )| Aun — A2”]?

An

gan(l = )TN F (@) = 2" gl — 2" = T

This together with (3.2) and (3.5), leads to

|zne1 = @[ < Ny — @[ = hlllyn — 2t )
< (1= an(l = qo))[[lwn — 2" = Ca(02g — rgCS )| Agwn — Aga™ |

_ « An vge %
~Cu(019 = rCT ) Aron = Ary7(|) = Malog — g 7)) Aup — Az

+qon (1 — ap)THf(2*) — 2%, Jy(up — 2* — 1 i\na (Auy, — Ax™)))

+5q02 || f(un) — 2|9 = 2(||yn — ot |])
(1 = an(1 = qo)[llzn — 2*[|* = sn(1 = sn)g([[2n — Gnll)
—Go(02q — KgCd M| Aswy, — Asa™||7 — Ci(o1g — Kl )
* An — *
x||Arvn — Ary*||9] = An(oq — /’vq(1 Y )4 Auy, — Az*||?
An

1—oay,

IN

+qon (1 —ap)THf(2*) — 2%, Jy(up — 2* — (Auy, — Az™)))

+rgad || £ (un) — 2| = A(||yn — Tnal)
= (1= an(l=qo))llzn — 2|7 = {(1 = an(l — qo))[sn(1 — 5n)g(||[Tn — Gzn|)
+Co(02q — 15gCE )| Aswn — Asz™ (|7 + Ci(01q — Kol )| Arvn — Ary™||7)

An o . - _
+An(oq — Hq(li)q D Aug — Az + h(|lyn — zps1lD)} + gon (1 — @n)?!
An

- tn
1—a,

x(f(@%) = 2%, Jg(un — 2" — (Aun — Az™))) + Kgog || f (un) — ™[]

For each n > 0, we set

Iy
En

Tin

= |lzn — 2%,
an(1 - qo),
= (1—an(l - q0)[sa(l = $2)3([|2n — Gnll) + Co(02q — KgCs )| Aowy, — Agz™|?

_ . An _ N
+1(010 = g¢l ) [ Arvn — Ay || + (0 = rig( =)0 | Ay, — Aa||

n

+B(Hyn - 5Un+1H)a

(Aup — Az7))) + kg || f (un) — 7|7

(3.7)
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Un = qan(l— o) (f@") =2, Jy(un — 2" = 5 :\nan (Aup — Az%))) + Kgof || f (un) — 27"
Then (3.7) can be rewritten as the following formula:
i <1 —ep)ly—nn+9, Yn>0, (3.8)
and hence
Ty < (1 =&+, Yn>0. (3.9)

We next show the strong convergence of { I, } by the following two cases:

Case 1. Suppose that there exists an integer ng > 1 such that {I’,} is non-increasing. Then
Fn — Fn+1 — 0.
From (3.9), we get
0<n, < Iy —Iny1 + 9, — el
Since o, — 0, &, — 0 and ¥,, — 0, we have 7,, — 0. This ensures that lim,, o §(||z, — Gx,||) =
limy, 00 h(Hyn - J5n+1||) =0,

lim ||Asw, — Asz™|| = lim [|4A1v, — A1y*|| =0, (3.10)
n—00 n—0oo
and
lim [|Au, — Az™|| = 0. (3.11)
n—oo

Note that § and h are strictly increasing, continuous and convex functions with §(0) = 2(0) = 0. So it
follows that

lim |y, — zpt1]| = lim ||z, — Gz,|| = 0. (3.12)
n—oo n—oo
Thus, from (3.1) we get
: ¢ .
Jim |[Snang1 = Znpa ]| = ¢ Jim (g, — 2541 = 0. (3.13)

On the other hand, using Lemma 2.4 (b) and Lemma 2.7 (ii), we get
lon =y (|7 = (T2 (wn = CoAzwn) — T2 (2" — (o Agaz™) ||

< (wy — QAswy, — (2% — (Ax™), Jq(vn -y"))
= (wp, — 2", Jy(vn — y")) + C(A2x™ — Aswy,, Jy(vn, — y*))
1 * * 7 * *
< 5[”“}” =29+ (g = Dlvn =y |9 = ha([Jwn — 2" — vp + y7[])]

+<2<A213* - A2wn7 Jq(”n - y*)>,
which hence attains
[on = 519 < [lwp — 2|7 = By ([Jwn — v — 2+ y7) + qlol|A2a™ — Aywp||lvn — y* ||
In a similar way, we get
lun — 27 = TS (vn — QL Awn) = TEH (Y = G Ay |0
< <vn - ClAlvn - (y* - ClAly*)a Jq(un - l‘*)>
= <7)n - y*7 Jq(un - .%’*)> + C1<Aly>’< - Alvna Jq(un - x*)>

IN

1 * * T * *
Q[HU” =y |7+ (g = Dfun — 2|7 = ha(llvn — y* — un + 27|))]
+C1 <Aly* - Alvm Jq(un - x*»’
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which hence attains

[un — 2" <

<

lon = *1|% = h2(llvn = y* = un + 2*|)) + ¢Call Ary" — Avvallflun — 2]
lzn = 2|7 = ha(wn = vn = 2" +y*|)) + qColl A2a™ — Azw|l[|vn — y*[|*”!
—ha([[vn = up + 2" = y*[I) + ¢l Ary™ — Avva|]|up — 2|77 (3.14)

Since J f" is firmly nonexpansive (due to Lemma 2.7 (ii)), by Lemma2.4 (b) we get

[yn — 27|

IN

IN

||J)i(anf(un) + (1 — ap)un — ApAuy,) — Jﬁ(w* — A Azx™) ||

<(anf(un) + (1 - an)un - )\nAun) - (l’* - )‘TLA$*)’ Jq(yn - :L‘*)>

;[H(Oénf(un) + (1= an)un = AnAun) — (2" = A Az")[|7 + (¢ = Dlyn — 27|

_hl(Hanf(un) + (1 - O‘n)un - )\n(Aun - AQS‘*) - yn”)]a

which together with the convexity of || - || and the nonexpansivity of I —

lyn —2*[|* <

IN

IN

An
1—an

A, implies that

| (an f(un) + (1 — an)un — ApAuy) — (¥ — X\ Az™)||?
il (un) + (1 = @i = A Aty = As) = o)
10 = an) (= T2 ) = (& = T2 Aa)) + () = )1
—n(lan S (un) + (1 = an)itn = Aty — Az = o)
(1= @) = T2 Aun) = (0" = T2 A+ ) — 7

_hl(HO‘nf(un) + (1 = ap)up — A (Auy, — Afv*) - ynH)
(1 = an)lfup — 2| + an | f(un) — 2|7

—hi([[anf(un) + (1 — an)un — An(Auy — Az™) — yal|).

This together with (3.5) and (3.14), implies that

241 = 27" < {lyn — 27|

IN

(1 = an)ljun — 27[[" + o[ f (un) — =7|*

_hl(Hanf(un) + (1 - an)un - )\n(Aun - Al‘*) - ynH)

IN

(1= an)lllzn = 2*|17 = ha(fJwn = vn — 2 + y7[]) + g2l A2a™ — Agwy|[[|vn — y7||*”!

—ha(|Jvn — up + 2% — y*||) + qCil| A1y — Avog||Jun — 2|77 + an| £ (un) — ||
—hi([lanf(un) + (1 — ap)un — An(Auy, — Az™) — y,l|)

IN

anllf (un) = &* |1+ e — 2|7 = {(1 = an)[P1 (Jwn — va — 2™ + )

+ha(|[vn =t + & = y* )] + b (o f (un) + (1 = an)un — An(Aup — Az*) —yal))}
+qGalA2™ — Agwnlllon — y*[177" + qGillAry” — Avvnllfun — 2" |77,

which immediately yields

(1= an)lln([wn = v = 2" +y*|1) + ha(lon — un +2* = y*|)]

<

Since le, fzg and hq

+h1(len f(un) + (1 — an)un — An(Aun — Az™) — ynll)
an | f (un) — ¥+ I — Tngr + qCull Ay — Avop|l[un — 297"
+qGa|| Agz™ — Agwy[|on — y* |7

are strictly increasing, continuous and convex functions with h;(0) = ho(0) =

h1(0) = 0, from (3.10) we conclude that ||w, — v, — 2* + y*|| = 0, ||v, — up + 2* — y*|| — 0 and
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llom f(un) + (1 — an)un — An(Auy — Az*) — yn|| — 0 as n — oco. Note that
[wn = un|l < llwn —vn — 2" + ¥ + [lon — un + 27 — 97,
and

[un — ynll
= |lanf(un) + (1 — ap)un — Ap(Auy, — Ax™) — ypn + an(un — f(un)) + An(Auy, — Ax™)||
< lanf(un) + (1 = an)un — An(Aun — Az™) =yl + anllun — flun)|| + Anl|Aun — Az™.
So it follows from (3.11) that

lim ||w, — uy| = lim [Jup, — yu|| = 0. (3.15)
n—oo n—oo

Also, since wy, = spxy + (1 — s,,) Gy, from (3.12) and (3.15) we infer that
|wn — znll = (1 = s)[|Gzn — 2| < [|G2p — 20]| = 0 (n — 00),
|20 — un| < llzn — wall + [wn — unl| = 0 (n — 00), (3.16)
and hence
20 = Zniall < [lzn = unll + llun = ynll + lyn — 2nall = 0 (n — o).
Also, using (3.13) and the ¢-Lipschitz continuity of 5),, we have

[Snzn — znll < |[Sn@n — SnTnttll + |SnZns1 — Tnga |l + |21 — 2all
< U+ Dz — zpgall + 1Sn@ns1 — Tpyal =0 (0 — 00).

We next claim that ||z, — Sx,|| — 0 as n — oo where S := (21 — S)~!. In fact, it is first clear
that S : C' — C is pseudocontractive and /-Lipschitzian where Sz = lim,,_,oc Spax Vo € C. We claim
that limy, o ||Szy — x| = 0. Using the boundedness of {z,} and setting D = conv{z,, : n > 0}
(the closed convex hull of the set {z,, : n > 0}), by the assumption we have Y ° , sup,cp ||Spz —

Sp—1z|| < oco. Hence, by Lemma 2.3 we get lim,, o0 SUp,cp ||Snx — Sz|| = 0, which immediately
arrives at

lim ||Spzn — Sz,| = 0.

n—oo

Therefore, we have
lxn — Szp|| < ||Xn — Snznl| + [[Snxn — Szu|| = 0 (n — 00). (3.17)

Now, let us show that if we define S := (2] — S)~!, then S : C — C is nonexpansive, Fix(S5) =
Fix(S) = Mo, Fix(Sy) and limy, o0 |2 — S]] = 0. As a matter of fact, put S := (21 — )1,
where I is the identity operator of E. Then it is known that S is nonexpansive and Fix(S) = Fix(S) =
N2, Fix(S,) as a consequence of [21, Theorem 6]. From (3.17) it follows that
_ — 1 _
|zn — Sxn|| = [|ISS xp — Sz (3.18)

1S 2 — 2|l = |2 — S)zp — n| = |20 — Sznl| = 0 (0 — 00).

IN

In addition, for each n > 0, we put T}, := in (I — ApA). Then from (3.15) and o, — 0, we get

[un = Th,un| < flun — Jﬁ(anf(un) + (1 = an)un — AnAun) ||

+||Jﬁ(anf(un) + (1 — an)up — ApAuy,) — Jﬁ(un — M Auy)||
[un = ynll + [[(an f(un) + (1 = an)un = AnAun) — (un — AnAuy)||
= lun — ynll + anll f(un) = upll = 0 (n — 00).
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Since lim,, o0 a(l — ay,) = a > 0, without loss of generality, we may assume that I\ > 0 s.t. A <
a(l — ay,) < A, Vn > 0. Using Proposition 2.8 (ii), we obtain from (3.16) that

[Tz — znll < || Tazn — Taunl| + ([ Toaun — unl| + [[un — 24|
< 2l|zn — unl| + [ Taun — unl| (3.19)
< 2llzn — upn| 4 2| Ty, un — upl] =0 (n — 00).

We now define the mapping ® : C' — C by ®z := 1152 + 10Gx + (1 — 11 — vy)Thx Vo € C with
vy + 9 < 1 for constants v, v € (0, 1). Then by Lemma 2.14 and Proposition 2.8 (i), we know that ®
is nonexpansive and

Fix(®) = Fix(§) N Fix(G) N Fix(Ty) = ﬂ Fix(S,) NFix(G) N (A+ B)~10 (=: ).

Taking into account that
@2y — x|l < v1[S2n — 2| + 12| Gn — 2pl| + (1 — 11 — 12) [ Tozy — @,

we deduce from (3.12), (3.18) and (3.19) that

nlg{.lo | Pxy, — xp| = 0. (3.20)
Let 2z = tf(zt) + (1 — t)®2 Vt € (0,1). Then it follows from Proposition 2.9 that {z:} converges
strongly to a point z* € Fix(®) = {2, which solves the VIP:

((I = flz", J(a" —p)) <0 Vpe L.

Also, from (2.3) we get
[zt = all® = [1(f (2) = 2n) + (1 = £)(Pz — ) |*
(1 =)@z — wn||” + qt(f(2t) — 2, Jo(2 — 2n))
(1 =)@z — wn|* + qt(f(20) — 22, Jg(2t — 2n)) + qt(ze — T, Jg(20 — 2n))
(1= )12zt — Q|| + [|Pp — mnl))? + qb(f (21) — 26, Jg(2t — @) + qtllze — 20|
(1 =)zt = al + @20 — 2nl)? + qt(f(20) = 20, Sy (2t = 2n)) + qtl|ze — 20|,

which immediately attains

<f<2t) — Zt, Jq(xn - Zt)) <

From (3.20), we have

IN A

(1—1) gt —

Uz = zall {10 = za )T + [

. 1-—-1¢t)4 t—1 1—t)+qgt—1
limsup(f(z) — 2¢, Jg(xn — 2¢)) < ( ) M + a M = (( ) q
n—00 qt qt qt

where M is a constant such that ||z, — z,[|9 < M foralln > 0and ¢t € (0,1). It is clear that
(1 —=1t)94qt—1)/qt - 0ast — 0. Since J, is norm-to-norm uniformly continuous on bounded
subsets of E and z; — ™, we get

|Jg(xn — 2¢) — Jg(@n —2")|| = 0 (£t —0).

)M,  (3.21)

So we obtain

f(zt) = 2, Jg(an — 20)) = (f(27) — 27, Jg(zn — 27))]

(2t) = f(a7), Jg(zn — 2)) + (f(27) = a7, Jg(@n — 1)) + (2" — 2¢, Jg(an — 2t))
|

IN

[(F(@") = 2% Jy(en = 2t) = Jg(wn = 27|+ [(F(2) = F(27), Jg(2n = 20))]
(" = 2, Jo(wn — 2))]
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< (@) = 2 g(@n = 20) = Jo(wn — )| + (1 + @)z — 2|l — 2l
Thus, for each n > 0, we have
M (F(ze) = 21, Jg(wn — 22)) = (f(7) = 27, Jy(wn —27)).
From (3.21), as t — 0, it follows that
limsup(f(z*) — z*, Jg(xn, — 2*)) < 0. (3.22)

n—oo

By (C2), (3.11) and (3.16), we get

* A’Vl * *
|lwn, — 1 a (Auy, — Az™) — (2, — ")

A .
lun = anll + I Au, — Az”| (3.23)
1—oa,

< up — x| + bl|Auy, — Az*|| - 0 (n — o0).

IN

Using (3.22) and (3.23), we have

An
limsup(f(z*) — 2%, Jg(up — 2" —

n—o0 1- Qn

(Auy, — Az™))) <0. (3.24)

Now, from (3.7) it is easy to see that
[ @1 — 2"
< (1-an(l—qo))fzn — 27|
+qan(1 - an)Q71<f(x*) - .73*, Jq(“n - $* -
= (1 —an(l —qo))llxn — 2™
q(1 — )" N f(2") =2, Jy(un — 2* — 125 (Auy, — Az¥)))
1 —qo

An
1—a,

(Aup — Az™))) + Kgf || f(un) — 2™

+an(1 - q@)[
rq | f (un) — 2%
1—qo
Note that {a,, (1 — go)} C [0,1], Y02 an(1 — go) = 0o and
1— o) TN f(2*) — 2%, Jg(up — 2% — 122 (Auy, — Az* q—1 — p*||e
limsup[q( @) a T4, ( ))>+’€q0‘n I[f(un) — 2|

n—o0 1—qo 1 —qo
Applying Lemma 2.15 to (3.25), we deduce that I, — 0 as n — oo. Thus, z,, = 2" asn — oc.

]. (3.25)

] <0

Case 2. Suppose that 3{I,,} C {I'n} sit. Iy, < Iyy41 VI € N, where N is the set of all positive
integers. Define the mapping 7 : N — N by

T(m) :==max{l <m: I} < [j41}.

Using Lemma 2.13, we have

FT(m) < FT(m)—H and I’y < F’r(m)—i-l'
Putting [, = ||z — 2|7 Vm € N and using the same inference as in Case 1, we can obtain
n}l—mo |’$T(m)+1 — Lr(m) H =0 (3.26)
and \
limsup(f(z*) — 2%, Jg(vr(m) — 2" — A(AUT(m) — Az"))) <0. (3.27)

m—00 1-— Qr(m)
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Because of I"-(;;,) < I';(;)41 and () > 0, we conclude from (3.7) that

* Q(l = Qr(m, )qil * * * )‘7’ m
|9 < 1_(%) (F(a") = %, g (pmy — 2 — —)

q—1

@7 (m) — @

A — Azx*
1— aT(m)< Ur(m) T ))>

(U‘T(M)) - x*”q7
and hence
limsup ||z () — 2" [|7 < 0.

m—0o0

Thus, we have
: e —

Using Proposition 2.1 and (3.26), we obtain
127 (my+1 — 21T = l2r(my — 27|
UTr(m)+1 = Tr(m)> Jg(Trm) — 7)) + KgllTr(my4+1 — Trm) |7

Az imy+1 = T llEreny = 217 + Kgllwrny+1 = Trmll? =0 (m — o0).

IN A

Taking into account Iy, < I ()11, we have
[2m — 2" < (|27 (my41 — 27|

< ||x7(m) - x*Hq + QHxT(m)Jrl - xT(m)HHxT(m) - x*qul + Hq”xT(m)+1 — Lr(m) 1,

It is easy to see from (3.26) that z,, — =* as m — oo. This completes the proof.
O

We also obtain the strong convergence result for the parallel composite-type extragradient implicit
method in a real Hilbert space H. It is well known that k9 = 1 [33]. Hence, by Theorem 3.3 we derive
the following conclusion.

Corollary 3.4. Let ) # C C H be a closed convex set. Let f : C — C be a g-contraction with
constant o € [0,1), and {S,}°2, be a countable family of {-uniformly Lipschitzian pseudocontractive
self-mappings on C. Suppose that By, Bo : C — 28 are both maximal monotone operators and A; :
C — H is o;-inverse-strongly monotone mapping fori = 1,2. Let A : C — H and B : C — 2
be a o-inverse-strongly monotone mapping and a maximal monotone operator, respectively. Assume that
2 =02, Fix(S,)NFix(G)N(A+B)~10 # () where G : C — C is the same as defined in Lemma 2.11.
For any given xy € C and ¢ € (0,1), let {z,,}>2, be the sequence generated by

Wy, = Spp + (1 — 5,) Gy,
Up = J? (wp, — G2 Arwy,),
n = ng (vn — CLA1VR),
Tnt1 = (1 =) Spxny1 + CJ)i(oznf(un) + (1 — ap)up — ApAuy,) Vn >0,
where the sequences {sy, }, {an} C (0,1) and {\,,} C (0,00) are such that the following conditions hold:
(C1) limy o0y = 0 and 307§ oty = 00;
(C2) 0<a<y )‘ <b<20andl<c<s, <d<1;
C3) 0<@G< 20Zforz =1,2.

Assume that Y " Sup,cp ||Sn+12 — Spz|| < oo for any bounded subset D of C. Let S : C' — C be
a mapplng defined by Sz = lim, o Spx Vo € C, and suppose that le( ) = N Fix(Sy). Then
Tp — x* € 2, which is the unique solution to the VIP: ((I — f)x*,p — x*) > 0Vp € (2, i.e., the fixed
point equation x* = P f(x*).

(3.28)
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Remark 3.5. Compared with the corresponding results in Abdou et al. [22], Sunthrayuth and Cholamjiak
[15], and Ceng et al. [13], our results improve and extend them in the following aspects.

(i) The problem of solving the VI for both monotone operators A, B with the FPP constraint of a
nonexpansive mapping S in [22, Theorem 3.2] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for both accretive operators A, B and the CFPP
of {S,}7°, a countable family of ¢-uniformly Lipschitzian pseudocontractions. The parallel
iterative algorithm in [22, Theorem 3.2] is extended to develop our parallel composite-type ex-
tragradient implicit method.

(ii) The problem of solving the GSVI (1.4) with the FPP constraint of a strict pseudocontraction
T in [13, Theorem 1], is extended to develop our problem of solving the GSVI (1.4) with the
constraints of the VI for two accretive operators A, B and the CFPP of {S,,}°° a countable
family of /-uniformly Lipschitzian pseudocontractions. The composite viscosity implicit rule
in [13, Theorem 3.1] is extended to develop our parallel composite-type extragradient implicit
method.

(iii) The problem of solving the VI for both accretive operators A, B with the FPP constraint of a
nonexpansive mapping S in [15, Theorem 3.3] is extended to develop our problem of solving
the GSVI (1.4) with the constraints of the VI for both accretive operators A, B and the CFPP
of {5,}5°, a countable family of /-uniformly Lipschitzian pseudocontractions. The modified
viscosity-type extragradient method in [15, Theorem 3.3] is extended to develop our parallel
composite-type extragradient implicit method.

4. SOME APPLICATIONS

In this section, we give some applications of Corollary 3.4 to important mathematical problems in
the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed convex subset C' C
H and a nonlinear monotone operator A : C' — H. Consider the classical VIP of finding u* € C' s.t.

(Au* ;v —u™)y >0 YveC. (4.1)

The solution set of problem (4.1) is denoted by VI(C, A). It is clear that u* € C solves VIP (4.1) if and
only if it solves the fixed point equation u* = Po(u* — AAu*) with A > 0. Let i¢ be the indicator
function of C' defined by

) 0 ifuecdC,

ic(u) = {

oo ifu¢gC.
We use N¢(u) to indicate the normal cone of C atu € H,ie, No(u) = {w € H : (w,v—u) <0Vv €
C'}. Tt is known that i¢ is a proper, convex and lower semicontinuous function and its subdifferential
Oic is a maximal monotone mapping [11]. We define the resolvent operator szc of dic for A > 0 by

JYC () = (I + \ic) H(x) Va € H,
where
Oic(u) = {weH :icu)+ (w,v—u) <ic(v)Vve H}
= {weH:(wv—u) <0VveC}=Nc(u) YueC.
Hence, we get
u= inc(x) & x—u € ANg(u)
& (r—u,v—u)<0 Yvel
& u=Pco(z),
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where P( is the metric projection of H onto C. Moreover, we also have (A + dic) 10 = VI(C, A)
[11].

Thus, putting B = 0ic in Corollary 3.4, we obtain the following result:

Theorem 4.1. Let f, A, A;, B; (i = 1,2) and {5y}, be the same as in Corollary 3.4. Suppose that
2 = N, Fix(Sn) N Fix(G) N VI(C, A) # (. For any given xg € C and ¢ € (0,1), let {x,}52 be
the sequence generated by

Wy, = Sp&y + (1 — )G,

Uy = ng (wy, — CaAgwy,),

Up = gl (vn, — G A VR),

Tnt1 = (1 =) Snxni1 + CPo(anf(un) + (1 — ap)uy — ApAuy,) Vn >0,
where the sequences {s,}, {an} C (0,1) and {\,} C (0,00) are such that the conditions (C1)-(C3) in

Corollary 3.4 hold. Then x,, — x* € (2, which is the unique solution to the VIP: ((I — f)z*,p — x*) >
0Vp € 12, i.e, the fixed point equation x* = Pg, f(x*).

(4.2)

4.2. Application to split feasibility problem. Let H; and H5 be two real Hilbert spaces. Consider
the following split feasibility problem (SFP) of finding

ueCst.TueQQ, (4.3)

where C' and () are closed convex subsets of H; and Ho, respectively, and 7 : H; — Ho is a bounded
linear operator with its adjoint 7*. The solution set of SFP is denoted by U := C N T 1Q = {u €
C:Tu € Q}. In 1994, Censor and Elfving [3] first introduced the SFP for modelling inverse problems
of radiation therapy treatment planning in a finite dimensional Hilbert space, which arise from phase
retrieval and in medical image reconstruction.

It is known that z € C solves the SFP (4.3) if and only if z is a solution of the minimization prob-

lem: minyec g(y) := £||Ty — PoTy|*. Note that the function g is differentiable convex and has the

Lipschitzian gradient defined by Vg = T*(I — Pg)T. Moreover, Vg is W-inverse-strongly mono-
tone, where || 7|2 is the spectral radius of 7*7 [5]. So, z € C solves the SFP if and only if it solves the
variational inclusion problem of finding z € Hj s.t.
0€ Vyg(z) +0ic(z) & 0€z+ Nic(z) — (2 — AVyg(z))
& z—AVg(z) € z+ Aic(2)
& z=(I+Mic) (z—AVg(2))
& z=Po(z—AVg(2)).
Now, setting A = Vg, B = dic and 0 = W in Corollary 3.4, we obtain the following result:

Theorem 4.2. Let f, A;, B; (i = 1,2) and {5, }52, be the same as in Corollary 3.4. Assume that (2 :=
N2, Fix(S,) N Fix(G) NU # 0. For any given xy € C and ¢ € (0,1), let {x,,}22, be the sequence
generated by

Wy, = $pTpn + (1 — 8,) Gy,

Un = J£2 (wn — QA2wy,),

Up = ng (vn, — C1A1V),

Tp+1 = (1 - C)Sﬂxn—i-l + CPC(anf(un) + (1 - an)“n - )\nT*(I - PQ)TUTI) vn 2 07

where the sequences {sp }, {an} C (0,1) and {\,} C (0,00) are such that the conditions (C1)-(C3) in

Corollary 3.4 hold where 0 = W Then x,, — x* € 12, which is the unique solution to the VIP: ((I —

flz*,p—x*) > 0Vp € 12, i.e, the fixed point equation z* = Pg f(z*).

(4.4)
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4.3. Application to LASSO problem. In this subsection, we first recall the least absolute shrinkage
and selection operator (LASSO) [9], which can be formulated as a convex constrained optimization
problem:

1
gr/réi}} 5|]7’y —b||3 subject to |jy|l1 < s, (4.5)

where 7 : H — H is a bounded operator on H, b is a fixed vector in H and s > 0. Let U be the
solution set of LASSO (4.5). The LASSO has received much attention because of the involvement of the
/1 norm which promotes sparsity, phenomenon of many practical problems arising in statics model,
image compression, compressed sensing and signal processing theory.

In terms of the optimization theory, ones know that the solution to the LASSO problem (4.5) is a min-
imizer of the following convex unconstrained minimization problem so-called Basis Pursuit denoising
problem:

ggg 9(y) + h(y), (4.6)

where g(y) := 3[|Ty — bl|3, h(y) := Ally|l1 and A > 0 is a regularization parameter. It is known that

Vy(y) =T*(Ty—0b)is ﬁ-inverse-strongly monotone. Hence, we have that 2z solves the LASSO
if and only if z solves the variational inclusion problem of finding z € H s.t.

lI0 e Vyg(z)+0h(z) < 0€z+ A0h(z)— (2 —AVyg(2))
& z—AVyg(z) € z+ \Oh(z)
& 2= (I4+Xh)Hz—AVy(2))
&z =prox,(z — AVg(z)),
where prox;,(y) is the proximal of h(y) := A||ly||1 given by

) 1
proxy(y) = argminye g {Alullr + 5llu — yll3} Vy€H,
which is separable in indices. Then, for y € H,

prox;,(y) = proxy., (¥)
= (proxy(y1), Proxy|.|(¥2), ..., Proxy. | (yn)),
where prox,.(yi) = sgn(y;) max{|y;| — A,0} fori =1,2,....n.
In 2014, Xu [12] suggested the following proximal-gradient algorithm (PGA):
1 = prox (zr — MT(Tog — b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem (4.5).
Next, putting C = H, A =Vg, B=0hand o = ﬁ in Corollary 3.4, we obtain the following
result:

Theorem 4.3. Let f, A;, B; (i = 1,2) and {S,,}5°, be the same as in Corollary 3.4 with C = H. Assume
that 2 := (,~, Fix(S,) N Fix(G) N U # (. For any given vy € H and ¢ € (0,1), let {x,}7° be the
sequence generated by

Wy, = STy + (1 — 8,)Gap,

Uy = J£2 (wn — CQAan),

Up = ng (’Un — ClAlvn),

ZTnt1 = (1 = ¢)Snant1 + ¢proxy, (an f(un) + (1 — ap)uy, — AT (Tu, — b)) Vn >0,
where the sequences {s,},{an} C (0,1) and {\,} C (0,00) are such that the conditions (C1)-(C3)
in Corollary 3.4 hold where 0 = ﬁ Then x, — x* € {2, which is the unique solution to the
VIP: (I — f)x*,p —x*) > 0 Vp € {2, i.e, the fixed point equation x* = P f(x*).

(4.7)
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