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Abstract. In this paper, we investigate generalized split zero point problems involving a finite family of
maximally comonotone operators and a finite family of quasi-cocoercive operators within Hilbert spaces.
We propose a novel algorithm that leverages both inertial methods and a self-adaptive step size strategy.
By imposing suitable control conditions on the associated parameters, we establish the strong convergence
of the iterative sequence to the unique solution of a variational inequality problem. Furthermore, we
demonstrate the applicability of our results to various problems, including themultiple-sets split feasibility
problem and the split monotone variational inclusion problem.
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1. Introduction

LetH be a real Hilbert space, and consider a set-valued operatorB : H ⇒ H. The zero point problem
involves finding a point z ∈ H such that 0 ∈ B(z). Such a point z is termed a zero of B, and the set
of all zeros of B is denoted by B−1(0). This problem is closely tied to various domains in nonlinear
analysis and optimization, including convexminimization, variational inequality problems, equilibrium
problems, monotone inclusions, fixed point problems, and saddle point problems (see [2, 4]). One of
the most prominent and widely used methods for solving the zero point problem is the proximal point
algorithm, initially introduced byMartinet and subsequently studied in depth by Rockafellar [22]within
the context of Hilbert spaces. Over the past few decades, the zero point problem has been the focus of
extensive research (see, e.g., [15, 10, 7]).

A fundamental problem in nonlinear analysis and optimization is to find a zero of the sum of two
monotone operators, formulated as:

Find x∗ ∈ H such that 0 ∈ A(x∗) +B(x∗), (1.1)

where A : H → H is a monotone, single-valued operator, and B : H ⇒ H is a maximally monotone,
set-valued operator defined on the Hilbert space H. This problem 1.1 has applications in a variety of
areas, such as convex optimization, image processing, and signal processing. A key special case of the
monotone inclusion problem (1.1) is the variational inequality problem (VIP):

Find x∗ ∈ C such that 0 ∈ A(x∗) +NC(x
∗), (1.2)

where C is a nonempty closed convex subset of H and NC(x
∗) denotes the normal cone to C at x∗.

The VIP (1.2) is equivalent to identifying a point x∗ ∈ C such that:

⟨A(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C.
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The solution set for this problem is denoted by V I(C,A). The theory of variational inequalities has
played a critical role in advancing research across various fields, including partial differential equations,
optimal control, mathematical programming, and general optimization (see, e.g., [17]). Its versatility has
made it a cornerstone for solving practical problems in engineering, economics, and applied sciences.

Linear inverse problems are frequently encountered in numerous real-world applications, such as
signal and image processing and medical image reconstruction. In 2005, Censor et al. [8] introduced
the multiple-sets split feasibility problem (MSSFP), which was initially motivated by the inverse prob-
lem of intensity-modulated radiation therapy (IMRT). The MSSFP aims to find a point that is closest
to the intersection of a family of closed convex sets in one space such that its image, under a linear
transformation, is closest to the intersection of another family of closed convex sets in an image space.
Byrne et al. [6] extended this to the split common null point problem, which can be stated as follows:
given set-valued operators Bi : H ⇒ H for 1 ≤ i ≤ m, Gj : K ⇒ K for 1 ≤ j ≤ n, and bounded
linear operators Lj : H → K for 1 ≤ j ≤ n, the goal is to find a point x∗ ∈ H such that:

x∗ ∈

(
m⋂
i=1

B−1
i 0

)⋂ n⋂
j=1

Lj
−1(G−1

j 0)

 .

This problem has been the focus of several studies (see [9, 13, 21, 19] and references therein).
There exists a deep connection between the monotonicity of operators and the convexity of func-

tions. A classical result establishes that the convexity of a function f is linked to the monotonicity of
its gradient∇f (see [2]). However, to address functions that lack convexity, it is necessary to relax the
monotonicity requirement. In 2020, Bauschke et al. [3] introduced the concept of ρ-comonotonicity, a
generalized notion of monotonicity for set-valued operators in Hilbert spaces. Building on this frame-
work, Kohlenbach [18] subsequently developed a Halpern-type proximal point algorithm designed to
approximate zeros of comonotone operators. In recent work [12], the author extended these ideas
to study the split common null point problem involving a finite collection of maximally comonotone
operators.

In recent years, inertial techniques have garnered significant attention due to their ability to accel-
erate convergence and enhance algorithmic performance (see [20, 1, 14, 26] and references therein).
These methods incorporate momentum terms to improve the speed of iterative algorithms.

In this paper, we address the generalized split zero point problems involving a finite family of max-
imally comonotone operators and a finite family of quasi-cocoercive operators in Hilbert spaces. We
introduce a novel algorithm that incorporates an inertial approach to enhance the convergence speed
of the iterative process. Additionally, our method employs a self-adaptive step size strategy that can
be implemented efficiently without requiring prior knowledge of the operators’ norms. We establish
the strong convergence of the proposed method under suitable conditions on the control parameters,
ensuring that the iterative sequence converges to the unique solution of an associated variational in-
equality problem. Additionally, we demonstrate the practical applicability of our results by studying,
the multiple-sets split feasibility problem and the split monotone variational inclusion problem. This
work not only generalizes existing results in the literature but also provides a framework for solving a
broader class of optimization and split feasibility problems in Hilbert spaces.

2. Preliminaries

Throughout the present paper, H denotes a real Hilbert space with inner product ⟨., .⟩ and induced
norm ∥.∥. The identity operator is denoted by I , namely, I(x) = x for all x ∈ H. Strong convergence
of a sequence {xn} inH to x is denoted by xn → x and weak convergence by xn ⇀ x. Let T : H → H
be an operator. A point x ∈ H such that Tx = x is called a fixed point of T . The set of fixed points
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of operator T shall be denoted by Fix(T ). We recall the following definitions concerning an operator
T : H → H.

Definition 2.1. The operator T : H → H is called:
• L-Lipschitz continuous if L > 0 and

∥T (x)− T (y)∥ ≤ L∥x− y∥, ∀x, y ∈ H.

If L = 1, then T called a nonexpansive mapping.
• β-strongly monotone if β > 0 and

⟨T (x)− T (y), x− y⟩ ≥ β∥x− y∥2, ∀x, y ∈ H.

• β-cocoercive if β > 0 and
⟨T (x)− T (y), x− y⟩ ≥ β∥T (x)− T (y)∥2, ∀x, y ∈ H.

• β-quasi-cocoercive [5] if it satisfies cocoercivity relative to its set of zeros, i.e.,
⟨T (x), x− z⟩ ≥ β∥T (x)∥2, ∀x ∈ H, z ∈ T−10.

Definition 2.2. Let H be a Hilbert space. A mapping T : H → H is said to be demi-closed at 0 if, for
any sequence {xn} inH, the conditions xn ⇀ z and T (xn) → 0, imply Tz = 0.

Definition 2.3. Let H be a Hilbert space, let T : H → H, and let α ∈ [0,∞). Then T is called α-
conically nonexpansive if there exists a nonexpansive operator S : H → H such that T = (1− α)I +
αS. Given an α-conically nonexpansive operator, it is α-averaged when α ∈ (0, 1) and nonexpansive
when α = 1.

Based on Lemmas 3.1, 3.2, 3.3, and 3.4 from reference [12], the following properties of α-conically
nonexpansive mappings can be established:

Lemma 2.4. Let H be a Hilbert space, α ∈ (0,∞) and let T : H → H be α-conically nonexpansive.
Then, the following properties hold:

(i) The operator I − T is demiclosed in 0.
(ii) The set of fixed points, Fix(T ), is closed and convex.
(iii) The operator T is Lipschitz continuous.
(iv) For any x∗ ∈ Fix(T ) and x ∈ H, the following inequality holds:

⟨x− x∗, x− Tx⟩ ≥ 1

2α
∥x− Tx∥2.

Definition 2.5. Let C be a nonempty closed convex subset of a real Hilbert space H. For any x ∈ H,
the metric projection PC(x) of x onto the set C is defined as:

PC(x) = argmin
y∈C

∥y − x∥.

SinceC is nonempty, closed, and convex, the projectionPC(x) is guaranteed to exist and be unique. The
metric projection is fundamental in optimization and variational inequality problems, as it identifies
the closest point in C to a given point x.

For a set- valued operator B : H ⇒ H, we define its domain, range, and graph as follows:

D(B) := {x ∈ H : B(x) ̸= ∅}, R(B) :=
⋃

{B(z) : z ∈ D(B)},

G(B) := {(x, y) ∈ H ×H : x ∈ D(B), y ∈ B(x)}.
The inverse of B, denoted by B−1, is defined such that:

x ∈ B−1(y) ⇐⇒ y ∈ B(x).
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An operator B is said to be monotone if, for all x, y ∈ D(B), we have:
⟨x− y, u− v⟩ ≥ 0 for all u ∈ B(x) and v ∈ B(y).

A monotone operatorB is considered maximally monotone if it has no proper monotone extension, or
equivalently (by Minty’s theorem), if:

R(I + λB) = H for all λ > 0.

A more general concept than monotonicity is ρ-comonotonicity [3]. For a given ρ ∈ R, an operator
B : H ⇒ H is said to be ρ-comonotone if:

⟨x− y, u− v⟩ ≥ ρ∥u− v∥2 ∀(x, u), (y, v) ∈ G(B).

Note that if B is 0-comonotone, then B is monotone. When B is ρ-comonotone with ρ > 0, it is also
known as ρ-cocoercive, which is a stronger condition than monotonicity. For ρ < 0, the concept of
ρ-comonotonicity is referred to as |ρ|-cohypomonotonicity (see [[10], Definition 2.2]).

An operator B is termed maximally ρ-comonotone if it is ρ-comonotone and there exists no other
ρ-comonotone operatorD : H ⇒ H such that G(D) properly contains G(B).

For ρ-comonotone operators, the resolvent plays a crucial role in approximating zero points. Given
λ > 0, the resolvent JB

λ is defined as:

JB
λ := (I + λB)−1,

which maps R(I + λB) to D(B). The resolvent operator is a fundamental tool in the approximation
theory for zero points of maximally comonotone operators.

The following results are derived from [[3], Propositions 2.10 and 2.13] and [[18], Lemma 2.3].

Lemma 2.6. Let B : H ⇒ H be maximally ρ-comonotone with ρ ∈ R and let λ > 0. If ρ > −λ, then
λB is maximally ρ

λ -comonotone with ρ
λ > −1, also JB

λ is single-valued andD(JB
λ ) = R(I + λB) = H.

There is a close relationship between the resolvent of a maximally comonotone operator and a con-
ically nonexpansive operator, as stated in the following lemma.

Lemma 2.7. [3] Let H be a Hilbert space and let T : H → H be an operator.
(i) T is nonexpansive if and only if it is the resolvent of a maximally (−1

2)-comonotone operatorB : H ⇒
H.
(ii) Let α ∈ (0,∞). Then T is α-conically nonexpansive if and only if it is the resolvent of a maximally
ρ-comonotone operator B : H ⇒ H, where ρ = 1

2α − 1 > −1.
(iii) Let α ∈ (0, 1). Then T is α-averaged if and only if it is the resolvent of a maximally ρ-comonotone
operator B : H ⇒ H, where ρ = 1

2α − 1 > −1
2 .

Lemma 2.8. [12] Let H be a Hilbert space, B : H ⇒ H be ρ-comonotone with ρ ∈ R and let λ, µ > 0.
If ρ > −λ,−µ, then there exists a constant L > 0, such that

∥x− JB
µ x∥ ≤ (L+ 1 +

Lµ

λ
)∥x− JB

λ x∥, ∀x ∈ R(I + λB) ∩R(I + µB).

Lemma 2.9. [12] Let B : H ⇒ H be a ρ-comonotone operator with ρ > −1. Then, the set B−1(0) =
Fix(JB

1 ), and consequently, B−1(0) is closed and convex.

Definition 2.10. For a nonempty closed and convex subset C of H, the indicator function iC of C is
given by:

iC :=

{
0, if x ∈ C,

∞, if x /∈ C.

Furthermore, the normal cone of C at u ∈ C , NC(u) is given as:
NC(u) = {f ∈ H : ⟨u− y, f⟩ ≥ 0, ∀y ∈ C}.
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Remark 2.11. The indicator function iC is proper, lower semicontinuous, and convex. Consequently,
its subdifferential ∂iC is a maximal monotone operator. It is well-known that the subdifferential of the
indicator function is the normal cone to the set, i.e., ∂iC(u) = NC(u) for any u ∈ H. Moreover, the
resolvent of ∂iC satisfies

J∂iC
r (x) = PCx, ∀x ∈ H, r > 0,

where PC denotes the projection onto the closed convex set C . For further details, see [2, 22, 23].

Lemma 2.12. [17] Let C be a nonempty closed and convex subset of a real Hilbert space H, and let
T : C → H be a strongly monotone and Lipschitz continuous mapping. Then V I(C, T ) consists of only
one point.

Lemma 2.13. [25] Let the operator T : H → H be l-Lipschitz continuous and δ-strongly monotone with
constants l > 0, δ > 0. Assume that γ ∈ (0, 2δ

l2
). For α ∈ (0, 1) define Tα = I − αγT . Then for all

x, y ∈ H,
∥Tαx− Tαy∥ ≤ (1− αη)∥x− y∥

holds, where η = 1−
√

1− γ(2δ − γl2) ∈ (0, 1).

Lemma 2.14. ([16]) Assume {Γn} is a sequence of nonnegative real numbers such that{
Γn+1 ≤ (1− Ξn)Γn + Ξnϑn, n ≥ 0,

Γn+1 ≤ Γn − ξn + ζn, n ≥ 0,

where {Ξn} is a sequence in (0, 1), {ξn} is a sequence of nonnegative real numbers and {ϑn} and {ζn}
are two sequences in R such that

(i)
∑∞

n=1 Ξn = ∞,
(ii) limn→∞ ζn = 0
(iii) limk→∞ ξnk

= 0, implies lim supk→∞ ϑnk
≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ Γn = 0.

3. The Algorithm and its Convergence

In this section, we present our algorithm and show its convergence analysis. We begin with the
following assumptions under which our strong convergence is obtained.

Assumption 3.1. Assume that the following hold:
(C1) H0 and Hi, Ki, i = 1, 2, ...,M , are real Hilbert spaces.
(C2) The operator F : H0 → H0 is l-Lipschitz continuous and δ-strongly monotone with constants

l > 0, δ > 0.
(C3) For each i ∈ {1, 2, ...,M}, (sn,i) ⊂ (0,∞)with sn,i ≥ si > 0 for all n ∈ N and thatBi : Hi ⇒

Hi is (set-valued) maximally ςi-comonotone operator with ςi ∈ (−si, 0].
(C4) For each i ∈ {1, 2, ...,M},Ai : Ki → Ki is a σi- quasi-cocoercive operator andAi is demiclosed

at 0.
(C5) For each i ∈ {1, 2, ...,M}, Li : H0 → Hi, is a bounded linear operator such that Li ̸= 0.
(C6) For each i ∈ {1, 2, ...,M}, Ji : H0 → Ki, is a bounded linear operator such that Ji ̸= 0.
(C7) Ω =

⋂M
i=1

(
Li

−1(B−1
i (0)) ∩ Ji

−1(A−1
i (0))

)
̸= ∅.

(C8) For i ∈ {1, 2, ...,M}, {ai}, {bi} ⊂ (0, 1],
∑M

i=1 ai =
∑M

i=1 bi = 1.
(C9) {dn,i} and {en,i} are bounded sequences in (0,∞).
(C10) {εn} is a nonnegative sequence such that limn→∞

εn
βn

= 0 where {βn} ⊂ (0, 1) satisfies
limn→∞ βn = 0 and

∑∞
n=0 βn = ∞.
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We now present the proposed method of this paper.

Algorithm 1

Initialization Take α > 0, µi ∈ (0, 2σi) and ρi ∈ (0, 2( ςisi + 1)), i = 1, 2, ..,M . Choose sequences
{ai}, {bi}, {dn,i}, {en,i}, {βn} and {εn} such that the Assumption 3.1 hold. Let x1, x0 ∈ H0 be two
initial points.
Iterative Steps: Given the iterates xn−1 and xn, (n ≥ 1). Calculate xn+1 as follows:
Step 1: Compute wn = xn + αn(xn − xn−1), where 0 ≤ αn ≤ αn such that

αn =

{
min

{
εn

∥xn−xn−1∥ , α
}
, xn ̸= xn−1,

α, otherwise.
(3.1)

Step 2: Compute

zn = wn −
M∑
i=1

ai θn,i Ji
∗(AiJiwn),

where the stepsizes are chosen in such a way that

θn,i =
µi∥AiJiwn∥2

∥Ji
∗(AiJiwn)∥2 + dn,i

, i = 1, 2, ...,M. (3.2)

Step 3: Compute

yn = zn −
M∑
i=1

bi τn,i Li
∗(Lizn − JBi

sn,i
(Lizn)),

where the stepsizes are chosen in such a way that

τn,i =
ρi∥Lizn − JBi

sn,i
(Lizn)∥2

∥Li
∗(Lizn − JBi

sn,i(Lizn))∥2 + en,i
, i = 1, 2, ...,M. (3.3)

Step 4: Compute
xn+1 = (I − βnF )yn.

Set n := n+ 1 and go to step 1.

Now we are in position to state our main convergence result.

Theorem 3.2. Let {xn} be a sequence generated by Algorithm 1 under Assumption 3.1. Then, the sequence
{xn} converges strongly to the unique solution x⋆ ∈ V I(Ω, F ).

Proof. ConsideringCondition (C3) and applying Lemma 2.6, we conclude that for each i ∈ {1, 2, . . . ,M},
the operator sn,iBi is ( ςi

sn,i
)-comonotone. Since

ςi
sn,i

≥ ςi
si

> −1,

it follows that sn,iBi is also ( ςisi )-comonotone. By Lemma 2.7, the operator JBi
sn,i

is 1

2
(

ζi
si
+1

) -conically
nonexpansive. From Lemma 2.9, we know that for each i ∈ {1, 2, . . . ,M}, the set B−1

i (0) is closed
and convex. Additionally, since the operator Li : H0 → Hi is bounded and linear, it follows that
Li

−1(B−1
i (0)) is also a closed convex set. Moreover, by leveraging Assumptions 3.1 (C4) and (C6), we

can further deduce that, for each i ∈ {1, 2, . . . ,M}, the set Ji
−1(A−1

i (0)) is closed and convex as
well. Consequently, the set Ω is closed and convex. Finally, under Assumption 3.1 (C2), the variational
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inequality problem V IP (Ω, F ) admits a unique solution. We denote this unique solution by x⋆ ∈ H0.
Next, we demonstrate that the sequence {xn} is bounded. By leveraging the convexity of the norm
squared function ∥ · ∥2, Assumption 3.1 (C4), and the definition of θn,i, we can derive the following:

∥zn − x⋆∥2 = ∥wn −
M∑
i=1

aiθn,i Ji
∗(AiJiwn)− x⋆∥2

≤
M∑
i=1

ai∥(wn − x⋆)− θn,i Ji
∗(AiJiwn)∥2

=
M∑
i=1

ai
(
∥wn − x⋆∥2 − 2⟨wn − x⋆, θn,iJi

∗(AiJiwn)⟩

+ ∥θn,iJi
∗(AiJiwn)∥2

)
=

M∑
i=1

ai
(
∥wn − x⋆∥2 − 2θn,i⟨Jiwn − Jix

⋆, AiJiwn⟩

+ (θn,i)
2∥Ji

∗(AiJiwn)∥2
)

≤
M∑
i=1

ai
(
∥wn − x⋆∥2 − 2(

µi∥AiJiwn∥2

∥Ji
∗(AiJiwn)∥2 + dn,i

)(σi)∥AiJiwn∥2

+ (
µi∥AiJiwn∥2

∥Li
∗(AiJiwn)∥2 + dn,i

)2∥Ji
∗(AiJiwn)∥2

)
≤ ∥wn − x⋆∥2 −

M∑
i=1

ai(2σi − µi)
µi∥AiJiwn∥4

∥Ji
∗(AiJiwn)∥2 + dn,i

. (3.4)

Since x⋆ ∈ Ω, it follows that x⋆ ∈ L−1
i (B−1

i (0)) for each i ∈ {1, 2, ...,M}. Thus, we have Lix
⋆ ∈

B−1
i (0) = Fix(JBi

sn,i
). Now, by applying Lemma 2.4 (iv), along with the convexity of ∥ · ∥2 and the

definition of τn,i, we can derive the following:

∥yn − x⋆∥2 = ∥zn −
M∑
i=1

biτn,i Li
∗(Lizn − JBi

sn,i
Lizn)− x⋆∥2

≤
M∑
i=1

bi∥(zn − x⋆)− τn,i Li
∗(Lizn − JBi

sn,i
Lizn)∥2

=
M∑
i=1

bi
(
∥zn − x⋆∥2 − 2⟨zn − x⋆, τn,iLi

∗(Lizn − JBi
sn,i

Lizn)⟩

+ ∥τn,iLi
∗(Lizn − JBi

sn,i
Lizn)∥2

)
=

M∑
i=1

bi
(
∥zn − x⋆∥2 − 2τn,i⟨Lizn − Lix

⋆,Lizn − JBi
sn,i

Lizn⟩

+ (τn,i)
2∥Li

∗(Lizn − JBi
sn,i

Lizn)∥2
)

≤
M∑
i=1

bi
(
∥zn − x⋆∥2 − 2(

ρi∥Lizn − JBi
sn,i

Lizn∥2

∥Li
∗(Lizn − JBi

sn,iLizn)∥2 + en,i
)(
ζi
si

+ 1)∥Lizn − JBi
sn,i

Lizn∥2



152 M.ESLAMIAN

+ (
ρi∥Lizn − JBi

sn,i
Lizn∥2

∥Li
∗(Lizn − JBi

sn,iLizn)∥2 + en,i
)2∥Li

∗(Lizn − JBi
sn,i

Lizn)∥2
)

≤ ∥zn − x⋆∥2 −
M∑
i=1

bi(2(
ζi
si

+ 1)− ρi)
ρi∥Lizn − JBi

sn,i
Lizn∥4

∥Li
∗(Lizn − JBi

sn,iLizn)∥2 + en,i
. (3.5)

From (3.1), we know that αn∥xn − xn−1∥ ≤ εn for all n. Moreover, since limn→∞
εn
βn

= 0, it follows
that:

lim
n→∞

αn

βn
∥xn − xn−1∥ = 0.

Consequently, there exists a constantM1 > 0 such that
αn

βn
∥xn − xn−1∥ ≤ M1.

From the definition of wn, we obtain:

∥wn − x⋆∥ =∥xn + αn(xn − xn−1)− x⋆∥

≤∥xn − x⋆∥+ αn∥xn − xn−1∥

=∥xn − x⋆∥+ βn
αn
βn

∥xn − xn−1∥

=∥xn − x⋆∥+ βnM1.

(3.6)

By our assumptions and using equations (3.4), (3.5), and (3.6), we deduce:

∥yn − x⋆∥ ≤ ∥wn − x⋆∥ ≤ ∥xn − x⋆∥+ βnM1. (3.7)

Now, let ν ∈ (0, 2δ
l2
). Since limn→∞ βn = 0, there exists an index n0 ∈ N such that for all n > n0, we

have βn < ν. Thus, βn

ν ∈ (0, 1). Applying Lemma 2.13 for all n > n0, we obtain:

∥(I − βnF )yn − (I − βnF )x⋆∥ =∥(I − βn

ν νF )yn − (I − βn

ν νF )x⋆∥

≤ (1− βn

ν η)∥yn − x⋆∥,
(3.8)

where η = 1−
√

1− ν(2δ − νl2) ∈ (0, 1). Utilizing the inequalities (3.7) and (3.8), we obtain that:

∥xn+1 − x⋆∥ =∥yn − βnFyn − x⋆∥

=∥(I − βnF )yn − (I − βnF )x⋆ − βnFx⋆∥

≤∥(I − βnF )yn − (I − βnF )x⋆∥+ βn∥Fx⋆∥

≤ (1− βn

ν η)∥yn − x⋆∥+ βn∥Fx⋆∥

≤ (1− βn

ν η)∥xn − x⋆∥+ βnM1 + βn∥Fx⋆∥

≤ (1− βn

ν η)∥xn − x⋆∥+ βn

ν η[ν(M1+∥Fx⋆∥)
η ]

≤max{∥xn − x⋆∥, ν(M1+∥Fx⋆∥)
η }

≤· · · ≤ max{∥xn0 − x⋆∥, ν(M1+∥Fx⋆∥)
η }.

This implies that the sequence {xn} is bounded. Additionally, we can conclude that the sequences {yn}
and {wn} are also bounded. We have:
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∥wn − x⋆∥2 =∥xn + αn(xn − xn−1)− x⋆∥2

≤∥xn − x⋆∥2 + (αn)
2∥xn − xn−1∥2 + 2αn⟨xn − x⋆, xn − xn−1⟩

≤∥xn − x⋆∥2 + (αn)
2∥xn − xn−1∥2 + 2αn∥xn − x⋆∥∥xn − xn−1∥.

By utilizing inequality (3.8) and the inequality ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H, we obtain:

∥xn+1 − x⋆∥2 =∥(I − βnF )yn − (I − βnF )x⋆ − βnFx⋆∥2

≤∥(I − βnF )yn − (I − βnF )x⋆∥2 − 2βn⟨Fx⋆, xn+1 − x⋆⟩

≤ (1− βn

ν η)2∥yn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤ (1− βn

ν η)∥wn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤ (1− βn

ν η)∥xn − x⋆∥2 + (βn

ν η)(2νη )⟨Fx⋆, x⋆ − xn+1⟩

+αn∥xn − xn−1∥(αn∥xn − xn−1∥+ 2∥xn − x⋆∥)

≤ (1− βn

ν η)∥xn − x⋆∥2 + (βn

ν η)(2νη )⟨Fx⋆, x⋆ − xn+1⟩

+3αn∥xn − xn−1∥M2

=(1− βn

ν η)∥xn − x⋆∥2

+ βn

ν η[2νη ⟨Fx⋆, x⋆ − xn+1⟩+ 3ναn
βn

M2
η ∥xn − xn−1∥]

=(1− Ξn)∥xn − x⋆∥2 + Ξnϑn, ∀n > n0,

(3.9)

whereM2 = supn∈N{∥xn − x⋆∥, αn∥xn − xn−1∥} and

Ξn =
βn
ν
η, ϑn =

2ν

η
⟨Fx⋆, x⋆ − xn+1⟩+

3ναn

βn

M2

η
∥xn − xn−1∥.

It is straightforward to observe that Ξn → 0 and
∑∞

n=1 Ξn = ∞. Since {xn} is bounded, there exists
a constantM3 > 0 such that

2⟨Fx⋆, x⋆ − xn+1⟩ ≤ M3.

From the definition of {xn+1} and inequality (3.8), we deduce that

∥xn+1 − x⋆∥2 =∥yn − βnFyn − x⋆∥2

=∥(I − βnF )yn − (I − βnF )x⋆ − βnFx⋆∥2

≤∥(I − βnF )yn − (I − βnF )x⋆∥2 − 2βn⟨Fx⋆, xn+1 − x⋆⟩

≤ (1− βn

ν η)2∥yn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤∥yn − x⋆∥2 + βnM3 ∀n > n0.

(3.10)

From (3.6) we have

∥wn − x⋆∥2 ≤ (∥xn − x⋆∥+ βnM1)
2

=∥xn − x⋆∥+ βn(2M1∥xn − x⋆∥+ βn(M1)
2)

≤∥xn − x⋆∥2 + βnM4.

(3.11)
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for some constantM4 > 0. From inequalities (3.4),(3.5),(3.10) and (3.11), for all n > n0, we get

∥xn+1 − x⋆∥2 ≤∥xn − x⋆∥2 + βnM4 −
∑M

i=1 ai(2σi − µi)
µi∥AiJiwn∥4

∥Ji
∗(AiJiwn)∥2+dn,i

−
∑M

i=1 bi(2(
ζi
si
+ 1)− ρi)

ρi∥Lizn−J
Bi
sn,i

Lizn∥4

∥Li
∗(Lizn−J

Bi
sn,i

Lizn)∥2+en,i

+ βnM3.
(3.12)

Now we set

ξn =
∑M

i=1 ai(2σi − µi)
µi∥AiJiwn∥4

∥Ji
∗(AiJiwn)∥2+dn,i

+
∑M

i=1 bi(2(
ζi
si
+ 1)− ρi)

ρi∥Lizn−J
Bi
sn,i

Lizn∥4

∥Li
∗(Lizn−J

Bi
sn,i

Lizn)∥2+en,i

,

and
ηn = βn(M3 +M4), Γn = ∥xn − x⋆∥2. (3.13)

Hence, inequality (3.12) can be rewritten as:
Γn+1 ≤ Γn − ξn + ηn. (3.14)

To prove that Γn → 0, by Lemma 2.14 (considering inequalities (3.9) and (3.14)), it is sufficient to show
that for any subsequence {nk} ⊂ {n}, if limk→∞ ξnk

= 0, then
lim sup
k→∞

ϑnk
≤ 0.

Assuming limk→∞ ξnk
= 0, we deduce the following:

lim
k→∞

∥Liznk
− JBi

snk,i
Liznk

∥ = lim
k→∞

∥AiJiwnk
∥ = 0, i = 1, 2, ...,M. (3.15)

This implies that
lim
k→∞

∥ynk
− znk

∥ = lim
k→∞

∥znk
− wnk

∥ = 0. (3.16)

Note that
∥xn − wn∥ = αn∥xn − xn−1∥ = βn

αn

βn
∥xn − xn−1∥ → 0.

Hence
lim
k→∞

∥znk
− xnk

∥ = lim
k→∞

∥wnk
− xnk

∥ = 0. (3.17)

Also we have
lim
k→∞

∥xnk+1 − ynk
∥ = lim

k→∞
βnk

∥F (ynk
)∥ = 0. (3.18)

From above inequalities we arrive at
∥xnk+1 − xnk

∥ ≤ ∥xnk+1 − ynk
∥+ ∥ynk

− znk
∥

+ ∥znk
− wnk

∥+ ∥wnk
− xnk

∥ → 0, k → ∞. (3.19)
Since {xnk

} is bounded, there exists a subsequence {xnkj
} of {xnk

} that converges weakly to x̂. With-
out loss of generality, we assume that xnk

⇀ x̂. Given that limk→∞ ∥wnk
− xnk

∥ = 0, it follows
that wnk

⇀ x̂. Since Ji is a bounded linear operator, we have Ji(wnk
) ⇀ Jix̂. Additionally, since

limk→∞ ∥AiJiwnk
∥ = 0, by the demiclosedness ofAi, we obtainAiJix̂ = 0. Therefore,Jix̂ ∈ A−1

i (0),
for i = 1, 2, . . . ,M . Next, since limk→∞ ∥znk

−xnk
∥ = 0, we conclude that znk

⇀ x̂. Again, sinceLi is
a bounded linear operator, it follows thatLi(znk

) ⇀ Lix̂. From Lemma 2.8, for each i ∈ {1, 2, . . . ,M},
there exists a constant Li > 0 such that

∥Liznk
− JBi

si Liznk
∥ ≤ (Li + 1 +

Li si
snk,i

)∥Liznk
− JBi

snk,i
Liznk

∥. (3.20)

This implies that
lim
k→∞

∥Liznk
− JBi

si Liznk
∥ = 0, i = 1, 2, ...,M. (3.21)
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Using Lemma 2.4, we conclude that Lix̂ ∈ Fix(JBi
si ) = B−1

i (0). Therefore, x̂ ∈ Ω. Now we show that
lim sup
k→∞

⟨Fx⋆, x⋆ − xnk
⟩ ≤ 0. (3.22)

To prove this inequality, we select a subsequence {xnkj
} of {xnk

} such that

lim
j→∞

⟨Fx⋆, x⋆ − xnkj
⟩ = lim sup

k→∞
⟨Fx⋆, x⋆ − xnk

⟩.

Since x⋆ is the unique solution of the variational inequality V IP (Ω, F ) and {xnkj
} converges weakly

to x̂ ∈ Ω, we conclude that
lim sup
k→∞

⟨Fx⋆, x⋆ − xnk
⟩ = lim

j→∞
⟨Fx⋆, x⋆ − xnkj

⟩ = ⟨Fx⋆, x⋆ − x̂⟩ ≤ 0.

Therefore
lim sup
k→∞

ϑnk
≤ 0.

Since all the conditions of Lemma 2.14 are satisfied, we immediately deduce that limn→∞ Γn = limn→∞
∥xn − x⋆∥2 = 0, which implies that the sequence {xn} converges strongly to x⋆, the unique solution
of the variational inequality V IP (Ω, F ). □

4. Application

In this section, we present applications of our main theoretical results to specific problem classes,
including the split monotone variational inclusion problem and the multiple-set split feasibility prob-
lem.

4.1. Monotone inclusionproblem. Webegin by considering the followingmonotone inclusion prob-
lem:

Find x∗ ∈ H such that 0 ∈ D(x∗) +G(x∗),

where D : H → H is a monotone and Lipschitz continuous single-valued operator, and G : H ⇒ H
is a maximally monotone set-valued operator defined on the Hilbert spaceH. To address this problem,
we utilize the forward-backward-forward (FBF) operatorU : H → H, originally proposed by Tseng in
[24]. The FBF operator is defined as follows:

U := I − JG
γ (I − γD)− γ

[
Dx−D ◦ JG

γ (I − γD)
]
,

where γ > 0 and JG
γ := (I + γG)−1 denotes the resolvent of the operator G. We now present the

following key results:

Lemma 4.1. [Adapted from [5], Proposition 1] Assume D is monotone and L-Lipschitz continuous, and
G is maximally monotone. Then the operatorU satisfies:

(i) The set of zeros of the sumD+G coincides with the set of zeros of U.
(ii) The operatorU is Lipschitz continuous.
(iii) If γ < 1

L , thenU is quasi-cocoercive with modulus ω = 1−γL
(1+γL)2

.

We will now apply Algorithm 1 to solve the split monotone variational inclusion problem. To pro-
ceed, we first consider the following conditions.

Assumption 4.2. Assume that the following hold:
(C1) H0 is a real Hilbert space and Ki, i = 1, 2, ...,M , are finite dimensional real Hilbert spaces.
(C2) The operator F : H0 → H0 is l-Lipschitz continuous and δ-strongly monotone with constants

l > 0, δ > 0.
(C3) For each i ∈ {1, 2, ...,M}, Gi : Ki ⇒ Ki is a maximal monotone set-valued operator and

Di : Ki → Ki is a monotone and Li-Lipschitz continuous operator.
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(C4) For each i ∈ {1, 2, ...,M}, Ji : H0 → Ki, is a bounded linear operator such that Ji ̸= 0.
(C5) Ω =

⋂M
i=1 Ji

−1
(
(Di +Gi)

−10
)
̸= ∅.

(C6) For i ∈ {1, 2, ...,M}, {ai} ⊂ (0, 1],
∑M

i=1 ai = 1.
(C7) {dn,i} is a bounded sequence in (0,∞).
(C8) {εn} is a nonnegative sequence such that limn→∞

εn
βn

= 0 where {βn} ⊂ (0, 1) satisfies
limn→∞ βn = 0 and

∑∞
n=0 βn = ∞.

We introduce the following algorithm designed to solve the split monotone variational inclusion
problem.

Algorithm 2

Initialization Take α > 0, γi < 1
Li

and µi ∈ (0, 2(1−γiLi)
(1+γiLi)2

), i = 1, 2, ..,M . Choose sequences {ai},
{dn,i}, {βn} and {εn} such that the Assumption 4.2 hold. Let x1, x0 ∈ H0 be two initial points.
Iterative Steps: Given the iterates xn−1 and xn, (n ≥ 1). Calculate xn+1 as follows:
Step 1: Compute wn = xn + αn(xn − xn−1), where {αn} is defined in (3.1).
Step 2: Compute

yn = wn −
M∑
i=1

ai θn,i Ji
∗(UiJiwn)

where
Ui := I − JGi

γi (I − γiDi)− γi
[
Dix−Di ◦ JGi

γi (I − γiDi)
]
,

and the stepsizes are chosen in such a way that

θn,i =
µi∥UiJiwn∥2

∥Ji
∗(UiJiwn)∥2 + dn,i

, i = 1, 2, ...,M. (4.1)

Step 3: Compute
xn+1 = (I − βnF )yn.

Set n := n+ 1 and go to step 1.

In a finite-dimensional real Hilbert space, every continuous mapping is demiclosed at 0. Utilizing
Theorem 3.2 and Lemma 4.1, we derive the following strong convergence result for solving the split
monotone variational inclusion problem.

Theorem 4.3. Let {xn} be a sequence generated by Algorithm 2 under Assumption 4.2. Then, the sequence
{xn} converges strongly to the unique solution x⋆ ∈ V I(Ω, F ).

Remark 4.4. Let Gi : Ki ⇒ Ki be a maximally monotone set-valued operator and fi : Ki → Ki be
an ηi-cocoercive operator for each i ∈ {1, 2, ...,M}. Consider the operator defined by Ti = JGi

λi
(I −

λifi) with λi ∈ (0, 2ηi). It is known that Ti is an
(

2ηi
4ηi−λi

)
-averaged operator (see [11] for details).

Consequently, I − Ti is 4ηi−λi

4ηi
-cocoercive and demiclosed at zero. By setting Ai = I − Ti and Bi = 0

in Algorithm 1, we derive a new algorithm tailored for solving the split monotone variational inclusion
problem.

4.2. Multiple-set split feasibility problem. We now demonstrate the application of Algorithm 1 to
solve the multiple-set split feasibility problem in Hilbert spaces. To establish the strong convergence of
our approach, we first outline the following assumptions that are essential for ensuring convergence.

Assumption 4.5. Assume that the following hold:
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(C1) H0 and Ki, i = 1, 2, ...,M , are real Hilbert spaces.
(C2) The operator F : H0 → H0 is l-Lipschitz continuous and δ-strongly monotone with constants

l > 0, δ > 0.
(C3) For each i ∈ {1, 2, ...,M}, Qi, is nonempty closed and convex subset of Ki and {Ci}Mi=1 is a

finite family of nonempty closed and convex subsets ofH0.
(C4) For each i ∈ {1, 2, ...,M}, Ji : H0 → Ki, is a bounded linear operator such that Ji ̸= 0.
(C5) Ω = {x ∈

⋂M
i=1Ci : Jix ∈ Qi, i = 1, 2, ...,M} ≠ ∅.

(C6) For i ∈ {1, 2, ...,M}, {ai}, {bi} ⊂ (0, 1],
∑M

i=1 ai =
∑M

i=1 bi = 1.
(C7) {dn,i} is a bounded sequence in (0,∞).
(C8) {εn} is a nonnegative sequence such that limn→∞

εn
βn

= 0 where {βn} ⊂ (0, 1) satisfies
limn→∞ βn = 0 and

∑∞
n=0 βn = ∞.

We now propose the following algorithm to address the multiple-set split feasibility problem .

Algorithm 3

Initialization Take α > 0 and µi ∈ (0, 2) i = 1, 2, ..,M . Choose sequences {ai}, {bi}, {dn,i}, {βn}
and {εn} such that the Assumption 4.5 hold. Let x1, x0 ∈ H0 be two initial points.
Iterative Steps: Given the iterates xn−1 and xn, (n ≥ 1). Calculate xn+1 as follows:
Step 1: Compute wn = xn + αn(xn − xn−1), where {αn} is defined in (3.1).
Step 2: Compute

zn = wn −
M∑
i=1

ai θn,i Ji
∗(Jiwn − PQiJiwn)

where the stepsizes are chosen in such a way that

θn,i =
µi∥Jiwn − PQiJiwn∥2

∥Ji
∗(Jiwn − PQiJiwn)∥2 + dn,i

, i = 1, 2, ...,M. (4.2)

Step 3: Compute

yn =
M∑
i=1

bi PCi(zn).

Step 4: Compute
xn+1 = (I − βnF )yn.

Set n := n+ 1 and go to step 1.

Theorem 4.6. Let {xn} be a sequence generated by Algorithm 3 under Assumption 4.5. Then, the sequence
{xn} converges strongly to the unique solution x⋆ ∈ V I(Ω, F ).

Proof. For i = 1, 2, . . . ,M , let us define Bi = ∂iCi , which is known to be a maximal monotone
operator. According to Remark 2.11, we have J

∂iCi
r (x) = PCix for all x ∈ H0 and any r > 0.

Additionally, it follows that B−1
i (0) = Fix(PCi) = Ci. Similarly, for i = 1, 2, . . . ,M , let us set

Ai = I − PQi . It is straightforward to verify that Ai is a 1-cocoercive operator. Furthermore, we have
A−1

i (0) = Fix(PQi) = Qi. Now, by setting Hi = H0, Ji = I , (i = 1, 2, . . . ,M) and θn,i = 1 in
Algorithm 1, we obtain the desired result directly from Theorem 3.2. □
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5. Numerical Experiment

In this section, we present a computational experiment to demonstrate the effectiveness of our pro-
posed algorithm. Specifically, we consider a minimization problem defined over the solution set of a
multiple-set split feasibility problem. The algorithm was implemented in MATLAB R2014b and exe-
cuted on a laptop equipped with an Intel Core i7 processor and 12 GB of RAM.

Example 5.1. We address the following constrained optimization problem:

Minimize f(x) =
1

2
∥x− p∥2 subject to x ∈ Ω =

4⋂
i=1

(
Ci ∩ L−1

i (Qi)
)
,

where p = (0.2, 0, 0, 0, 0) ∈ R5, Ci ⊂ R5, and Qi ⊂ R10 are defined as follows:
Ci = {x ∈ R5 : ⟨zi, x⟩ ≤ ri}, i = 1, 2, 3, 4,

Q1 = {x ∈ R10 : ∥x− (q1, 0, 0, . . . , 0)∥ ≤ 1},
Q2 = {x ∈ R10 : ∥x− (0, q2, 0, . . . , 0)∥ ≤ 1},
Q3 = {x ∈ R10 : ∥x− (0, 0, q3, 0, . . . , 0)∥ ≤ 1},
Q4 = {x ∈ R10 : ∥x− (0, 0, 0, q4, 0, . . . , 0)∥ ≤ 1}.

Here, Li : R5 → R10 are bounded linear operators, with the elements of their representation matrices
randomly generated within the closed interval [−2, 2]. This problem can be equivalently reformulated
as a variational inequality problem of the form:

V I(Ω, F ), where F (x) = ∇f(x) = ∇
(
1

2
∥x− p∥2

)
= x− p.

We analyze the convergence behavior of the sequence {xn} generated by Algorithm 3. For this ex-
periment, the coordinates of the vectors zi(i = 1, 2, 3, 4), were randomly generated within the inter-
val [1, 4], while the scalar values ri(i = 1, 2, 3, 4) were drawn from the interval [1, 2]. Similarly, the
vectors qi(i = 1, 2, 3, 4) were randomly generated within [0, 1]. The coordinates of the initial approxi-
mations x0 and x1 were also chosen randomly from the interval (0, 1). The stopping criterion was set
as En = ∥xn − xn−1∥ < 10−5. The algorithm parameters were configured as follows: ai = bi =

1
4 ,

αn = 0.6, βn = 2
n+3 , εn = 1

(n+2)1.2
, and θn,i =

1.5∥(I−PQi
)Liwn∥2

∥L∗
i ((I−PQi

)Liwn)∥2+0.001
. The numerical results are

depicted in Figures 1 and 2, illustrating the convergence performance of our algorithm.
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