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ABSTRACT. We present a new method for solving variational inequality problems (VIPs) based on dou-
ble inertial terms with a modified subgradient extragradient self-adaptive step size method. Our pro-
posal utilizes double inertial acceleration to improve convergence behavior and stability in solving VIPs.
Strong convergence theorems for the proposed algorithms are established under some mild assumptions
on the control parameters in 2-uniformly convex and smooth real Banach spaces. Numerical experiments
demonstrate the efficacy and advantages of our technique compared to existing methods in the literature.
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1. INTRODUCTION

The history of variational inequality theory is extensive, having emerged from equilibrium problems
and finding use in many different domains. The first variational inequality problem, or Signorini prob-
lem, was proposed by Antonio Signorini [31] in 1959. Through his work, Guido Stampacchia expanded
the theory and introduced the concept of “variational inequality.” Moreover, Stampacchia demonstrated
a generalization of the Lax-Milgram theorem, which became fundamental. Due to the efforts of Jacques-
Louis Lions and Gaetano Fichera, the idea became well-known in France, see [32, 11, 20] for further
information. Early in the 1960s, scientists discovered that the virtual work or power principle in me-
chanics inevitably leads to variational inequalities. The study of variational inequalities was greatly
advanced by Fichera, Lions, and Stampacchia [32, 11, 20]. The critical significance that variational in-
equality plays beyond its original definition in a variety of domains. For example, they assist in analyz-
ing market competition among enterprises, addressing patterns of population migration, and modeling
traffic flow and congestion in transportation networks. Variational inequalities are used in spatial price
equilibrium models in economics to identify stable price distributions. These inequalities have appli-
cations in finance, including option pricing, portfolio optimization, and equilibrium price modeling.
Furthermore, variational inequality modeling can be used to evaluate information flow in knowledge
networks and environmental fluxes, such as pollutant dispersion (see [29, 26]).
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The mathematical concept of the variational inequality problem, according to Antman [6] is defined
as follows: Let F be a Banach space, C a subset of F, and a functional A : C' — E*, where E* is the
dual space of the space E. The variational inequality problem is the problem of finding a point x in C
such that the following inequality holds:

(y—x,Az) >OVyeC (1.1)

where (-,-) : E x E* — R is the duality pairing. The solution set of (1.1) is denoted by VI(C, A).
Many iterative techniques have been devised by researchers to address these problems that arise from
variational inequalities; among these, the subgradient extragradient method introduced by Censor et al.
[9] has demonstrated impressive results which was found to be more effective than the extragradient
method of Korpelevich [18]. It has become famous for its effectiveness in handling nonsmooth and
nonconvex functions (see [23, 22, 16, 34, 37, 40]). The algorithm iteratively generates points as follows:

xo € H,

Yn = PC'(CUn - )\A(wn)>7
T,={2€H:{(z—yn,xn — NA(zp) — yn) < 0},
Tp+1 = Pr, (zn — ANA(yn)), ¥ n>0.

(1.2)

where A € (0,1/L), C is a nonempty closed convex subset of a real Hilbert space H and L is the
Lipschitz constant of A. They obtained weak convergence of the sequence {x,} generated by (1.2)
under some suitable conditions. On the other hand, research on variational inequality problems (VIPs)
in Banach spaces is extremely important. Despite the fact that Hilbert spaces are a unique kind of
Banach space, there are compelling grounds for examining VIPs within the larger framework of Banach
spaces. Beyond Hilbert spaces, Banach spaces offer generality and applicability that make modeling
physical systems, economic phenomena, and optimization problems more flexible. In addition, the
lack of orthogonality in Banach spaces forces scholars to explore geometry and orthogonality ideas in
novel approaches. Applications of VIPs in Banach spaces come from a variety of disciplines, such as
equilibrium problems, mechanics, and economics, see [1, 5, 12, 14, 17, 19] for further information.

The study of extragradient and subgradient methods in Banach space was recently introduced by Cai
et al. [7], where F is a 2-uniformly convex Banach space as follows:

yn = o H(Jzp — MA(zn)),

T,={z€ E:{(z—yn, Jr, — MA(xy) — Jyn) < 0},
wy, = Hp, J N Jzn — MA(yn)),

Tpt1 = J HanJzr + (1 — ap)Jw,) ¥V n>0.

(1.3)

The operator Il is the generalized projection operator and J is the normalized duality mapping,
An € (0,1) and o, C (0, 1) satisfying some conditions. They obtained strong convergence of (1.3) to
the solution in VI(A, C). Note that the algorithm (1.3) may fail when the estimated Lipschitz constant
of the mapping A is unknown. To overcome these challenges, Ma [23] introduced a modified extragra-
dient method for approximating solution of pseudomonotone VIP in 2—uniformly smooth and uniform
convex real Banach spaces. Under suitable condition He establish strong convergence theorem of the
sequence {x, } generated as follows:

yn = o H(Jzm — MA(zn)),

T, ={2€ E:(z—yn, Jrn — MA(xsn) — Jyn) < 0},
wy, = g, J (T2 — M Ayn)),

Tpi1 = J HanJzy + (1 — ap)Jw,) ¥V n>0.

(1.4)
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where the step size \,, is chosen as follows: for some A\g > 0,6 € (0, 1), for all n € N,

. ) Tn—Yn 2 Wn—Yn 2 y
min {Am T e e i } if (wn = yn, Al2a) = Algn)) > 0,
Ani1 = (1.5)

An, otherwise

On the other hand, in solving variational inequality problems, the inclusion of inertial terms plays a
pivotal role in enhancing both the stability and convergence properties of algorithms. These terms
introduce momentum, which not only mitigates oscillations but also enables the algorithm to escape
saddle points and local minima more effectively. The acceleration of convergence is another key benefit:
by incorporating historical gradient information, inertial techniques facilitate faster progress toward
optimal solutions, particularly in ill-conditioned or noisy problems. Beyond theoretical insights, the
practical relevance of inertial methods is evident across diverse fields, including machine learning,
image processing, and control systems, where their ability to strike a balance between exploration and
exploitation proves invaluable in various spaces see for example [13, 21, 23, 16, 15, 34, 37]. Very recently,
Yao et al. [40] and Thong et al. [35] introduced double inertial subgradient extragradient method with
adaptive step size in real Hilbert spaces H where step size used in Thong et al. [35] was non-monotonic
step size. Hence, the two results are different. The algorithm studied by Yao et al. [40] is as follows:

Step 1. Choose p € (0,1) and A1 > 0. Let xo, z1 € H be given starting points. Set n = 1
Step 2. Compute
Zp = Tp + 5(5571 - xn—l);
Wy, = Ty + Op(Tn — Tp—1); (1.6)
Yn = PC’(wn - )\nA(wn))a
min { o, G5 ] Alwa) £ Al)
)\nJrl = (1-7)
An, otherwise
If x,, = w,, = yn, STOP. Otherwise,
Step 3. Compute

Tyl = (1 — an)zn + anPr, (W, — Ayn), n > 1 (1.8)
where T, is given by
T, ={w € H : (w, — A\yAw, — yn,w — y,) < 0} (1.9)

Step 4. Set n <— n + 1 and go to Step 2.

Inspired and motivated by the findings above as well as the continued investigation into these areas.
In order to solve variational inequalities in Banach spaces, we provide in this study a modified sub-
gradient extragradient method that combines double inertial terms with the Mann-type approach. We
contributed the following to this study:.

e Our result extend many results in the literature [9, 8, 30, 35, 37, 40] from Hilbert spaces to
Banach spaces.

e The step size in our algorithm works without prior knowledge of the Lipschitz constant of the
pseudomonotone mapping.

e To accelerate the convergence speed of the proposed algorithms, the double inertial terms are
also embedded in our algorithms. Numerical experimental results demonstrate that the pro-
posed algorithms converge faster than the methods without inertial or with single inertial term
in [7, 9, 23].
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e The strong convergence theorems of the proposed algorithms are proved under some suitable
conditions in 2—uniformly convex and smooth real Banach spaces.

This is the format for the remaining parts of the paper. The next section provides certain necessary
definitions and technical lemmas. In the Section 3, we study the convergence of double inertial subgra-
dient extragradient algorithms with Mann-type. Section 4 include a numerical evaluation that confirm
our theoretical findings.

2. PRELIMINARIES

In this section, we present some preliminary definitions and concepts which are needed for the
establishment of the main result of this paper. Let E be a real Banach space with dual E*, let Sg(x) :=
{z € E : ||z|| = 1} denote the unit sphere of E. We denote the value of z* € E* at v € F by (z,z*).
Also, we denote the strong (resp. weak) convergence of a sequence {z,,} C E to a point z € E by

Tn — T (resp. &, — x). A Banach space F is said to be smooth if for each x,y € Sg, }in%w
H

exists. If for all x,y € Sg withx # y, forany A € (0,1), ||[Az+ (1 —\)y|| < 1, then E is called strictly
convex. The space E is said to be uniformly convex if for any e € (0, 2] there exists § = d(e) > 0 such

that for all 2,y € Sg, ||z — y|| > ¢, we have 1224l < 1 — 5. The modulus of convexity of E is the
function éf : [0,2] — [0, 1] defined for all € € [0, 2] by

2

sp(c) = L {1 = B el = Lyl = Ll — ) > ¢}, if0<e <
0if e = 0.

In terms of modulus of convexity, the space E is said to be uniformly convex if and only if for all

€ € (0, 2], we have that d(€) > 0; and for p € (1, 4+00), the space E is said to be p-uniformly convex

if and only if there exists a constant ¢, > 0 such that € € (0,2], dg(€) > cpeP. It is obvious that every
p-uniformly convex real normed space is uniformly convex.

The modulus of smoothness of E is the function pg : [0, 00) — [0, 00) for all 7 > 0 defined by

o) —sup (I E =l gy
The space E is called uniformly smooth if liH(l) pET(T) = 0; and F is called g-uniformly smooth if there
T—

exits a positive real number C; such that for any 7 > 0, pp(7) < C,79. Hence, every g-uniformly
smooth Banach space is uniformly smooth. We know that the space Ly, £, and W for 1 < p < 2 are
2-uniformly convex and uniformly smooth (see [38] for more details).

The normalized duality mapping J : E — 2F" is defined by

J(a):={f € B*: {x, f) = [|fII* = ||=||*}.
It is known that J has the following properties (for more details see [10, 28, 33]):

(a) If E is smooth, then J is single-valued.

(b) If E is uniformly smooth, then J is norm to norm uniformly continuous on bounded subset of
E.

(c) If E is uniformly smooth, then the dual space E* is uniformly convex; and if F' is and uni-
formly convex, then the dual space E* is uniformly smooth. Furthermore, .J and .J~! are both
uniformly continuous on bounded subsets of F and E*, respectively.

(d) If E is a reflexive, strictly convex and smooth Banach space, then J~! (the duality mapping
from E* into E) is single-valued, one to one and onto.
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Let ¢ : E x E — [0,00) denote the Lyapunov functional in sense of Alber [2] defined V x,y € F by

o(x,y) = [[z|* = 2(z, Jy) + [ly[[*. (2.1)
The functional ¢ satisfies the following properties (see [27]): V x,y,z € E

1) ([]| = [ly1)* < d(z,y) < (|ll| + [lyl])%,

(P2) ¢(l’a?/) = qﬁ(w,z) + ¢(Zvy) + 2<IE —z,Jz— Jy>7

(P3) ¢(z,y) = (z, Jw — Jy) + (y — , Jy) < [[|[[[Jz — Jyl| +[ly — /[yl

(P4) ¢(z, J HadJz + (1 —a)Jy)) < ad(z,x) + (1 — a)d(z,y), where a € (0,1) and z,y € E.

Now, we introduce another functional V' : E' x E* — [0, 00) by [2], which is a mild modification and
have a relationship with Lyapunov functional in (2.1) as follows: for all x € E and 2* € E*

V(z,a*) = [[a]|* - 2{x,2") + []a*|? (2.2)
From the Definition of ¢ in (2.1), we get for allx € F and 2* € E*
V(z,z*) = ¢(x, J ' (a¥)). (2.3)

For each x € FE, the mapping g defined by g(z*) = V (z,z*) for all #* € E* is a continuous, convex
function from E* into R.

Let E a be reflexive, strictly convex and smooth Banach space and C' a nonempty closed and convex
subset of E. Then by [2], for each x € F, there exists a unique element v € C' (denoted by IIoz) such
that

Pu, ) = 228 oy, x).

The mapping Il : £ — C, defined by Ilox = wu is called the generalized projection operator (see [3]),
which have the following important characteristic.

Lemma 2.1. [4] Let C' be a nonempty, closed and convex subset of a smooth Banach space E, then v =
Ilcx if and only if
(u—w,Jr—Ju) >0, Yw € C.

Lemma 2.2. [25] Let E be a reflexive, strictly convex and smooth Banach space and C' be a nonempty
closed and convex subset of E. Then

o(y, llox) + ¢(llcz, x) < o(y,x), Vy € C.

Lemma 2.3. [2] Let E be a reflexive, strictly convex and smooth Banach space and let V' be as in (2.2).
Then, forallx € F and x*,y* € E*

V(x,z*) + 2<J_193* —xz,y") < V(x,z* +y").

Lemma 2.4. [27] Let E be a uniformly smooth real Banach space and r > 0. Then there exists a contin-
uous, strictly increasing and convex function g : [0,2r] — [0, oo] such that g(0) = 0 and

d(u, T HtJv + (1 — t)Jw)) < téd(u,v) + (1 — t)p(u, w) — t(1 — t)g(||Jv — Jw]||)
forallt € [0,1], w € Eandv,w € B, :={z€ E : ||z|| <r}.

Lemma 2.5. [33] Let C' be a nonempty, closed and convex subset of X and F' : C — X* be monotone
and continuous mapping. For anyy € C, we have

yeVI(C,F) & (F(2),z—y) >0V zeC.

Lemma 2.6. [25] Let E be a uniformly convex and smooth real Banach space and {uy, } and {vy} be two
sequences in E. If lim ¢(up,v,) = 0 and either {u,,} or {v,} is bounded, then lim ||u, — v,|| = 0.
n—oo n—oo
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Lemma 2.7. [38] Let E be a 2-uniformly convex and smooth real Banach space. Then, there exists a
positive real-valued constant o such that

allz —y|? < ¢(z,y), Va,y € E.

Lemma 2.8. [38] Let E be a 2-uniformly smooth real Banach space, then there exists sy > 0 such that
forallx,y € E, the following holds

e+ ylI* < [l + 2z, Jy) + 2s|lylI*.
Lemma 2.9. [39] If{ay} is a sequence of nonnegative real numbers satisfying the following inequality:

an+1 < (1 = an)an + anon +ym,n 2 0,
where, (1) {an} C [0,1], > oy = 00; (i4) lim sup oy, < 0; (74i) v, > 0; (n > 0) and
> 4n < 00. Then, a,, — 0 asn — oc.
Lemma 2.10. [24] Let {a,} be a sequence of real numbers such that there exists a subsequence {ay, } of
{an} such that a,, < an,+1 for alli € N. Then there exists a nondecreasing sequence {my} C N such
that my, — oo and the following properties are satisfied by all (sufficiently large) numbers k € N.

my < Ay 11 and ag < Gy 1.

In fact, mp = max{j < k:a; < aji1}.
3. MAIN REsSULTS

In this section, we introduce the subgradient extragradient method involving double inertial extrap-
olation terms with modified Mann for solving the pseudomonotone variational inequality problem.
First, we make the following assumptions:

Assumption 3.1.
(A1) C is a nonempty closed and convex subset of 2-uniformly convex and smooth real Banach space &/
with dual E*.
(A2) A:C — E* is a pseudomonotone and L-Lipschitz continuous mapping with L > 0.
(A3) The mapping A is weakly sequentially continuous, i.e., for each sequence {x,} C C, we have
A(xy) — A(z) whenever x,, — x asn — o0.

o0
(A4) {an} C (0,1) is a sequence with lim o, = 0 and Z apn, = oo; {1y} a positive sequence in
n—oo el

(0, v/2) such that 7,, = o(aw,), where « is defined in Lemma 2.7 and o > p for some i € (0, 1).
(A5) J is a normalized duality mapping on E and V (C, A) is nonempty set.

The following lemmas are very helpful in analyzing the convergence of our method.

Lemma 3.2. [22] Assume that (A1)—(A5) holds, then the step size (3.2) is well defined. In addition, we
have A, < 7.

Lemma 3.3. [22] Suppose that Assumption (A1)—(A3) holds. Let {w,} and {y,} be two sequences gen-
erated by Algorithm 3. If there exists a subsequence {wy,, } of {wy} such that {wy, } converges weakly to
zel andklim ||wn, — Yn,|| =0, then z € VI(C, A).

—00

Next, we investigate the boundedness of our method.

Lemma 3.4. Suppose that Assumption 3.1 (A1)—(A5) holds. Let {y,}, {yn} and {w,} be sequences gen-
erated by Algorithm 3. Then, for alla* € VI(C, A)

* * HAp
QS(U’ 7yn) < ¢(a 7wn) - (1 - a)\n—‘,-l

) <¢(una Yn) + ¢(wn, yn)> (3:4)
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Initialization: Choose xg, 1 € C to be arbitrary.
Iterative Steps: Calculate x,, 1 as follows:
Step 1. Given the iterates x,,_; and x,, for each n > 1, choose 0, 6, in (0, 1). Let 29, 1 € E be given
starting points. Setn =1
Step 2. Compute
Zn = Jfl[J(xn) + 0 (J(20) — J(@0-1))],
wyp, = J I () + 0 (J(20) — T (20-1))], (3.1)
Yn = HC[J_I(J(wn) — AnA(wn))],
where the step size A, is chosen as follows: for some Ag > 0, for all n € N,
2 2
min { A, aftenlfHn ol DL iy, — , A(wn) — Alyn)) > 0,
An—l—l = (3-2)
An, otherwise

If z,, = wy, = yp, then stop for x,, is a solution. Otherwise,
Step 3. Compute
up = g, (J 71 (Jwn — M Ayn)),
Iy, ={w € E: (w— yn, Jw, — \yAw, — Jy,) < 0},
vn = I = ) (1)),
xn+1 == Jﬁl((l - /Bn)‘](zn) + ,BnJ(Un)), ne N

Set n := n + 1 and return to Step 1.

(3.3)

Proof. Let a* € VI(C, A), using Lemma 2.2, (2.2) and (2.3), we obtain
pa*,up) < ¢(a”, J_l(an — AAyn)) — d(un, J_l(an — A Ayn))

= V(a*, (Jwn — MAyn)) — V(tn, (Jw, — AnAyn))
= ||a*|]* = 2(a*, Jw, — MAy,) + || Jwn — M\ Ay,
~[|un|? + 2(un, Jwn, — A Ayn) — || Jwn — Ay Ayy||?
= ||a*||® = 2(a*, Jw,) + 2 n{(a*, Ay,)
] |* + 2(ttn, Jwn) — 220 (tin, Ayn)
= o(a*,wp) — O(un, wy) + 2\ (a* — up, Ayy). (3.5)
Since y, = Mo (J 7 (Jwy, — A\yAwy,)) is in C and a* € VI(C, A), then by definition of VIP, we get
(yn — a*, A(a™)) > 0 it follows by pseudomonotonicity of A that
(yn —a*, A(yn)) > 0 (3.6)
Thus
(@® = un, A(yn)) = (@" = Yn, A(Yn)) + (Yn — Un, A(Yn))
< (Yn — Un, A(Yn))- (3.7)
Furthermore, by definition of 7},, we have
(U, — Yn, JWp, — Ay Awy, — Jyn) <0
which implies
(Un = Yn, JWn, — AAyn — Jyn) = (Up — Yn, Jwn — AAw, — Jyp)
+ A (Un, — Yn, Awy,, — Ayp)
< At — Yn, Awy, — Ayn). (3.8)
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Next, combining (3.6), (3.7), (3.8), (P2), (3.2) and Lemma 2.7, we get

d(a* up) < d(a*,wn) — G(un, wn) + 20 (Un — Yn, AYn)
= ¢(a*,wn) — ¢(un, Yn) — G(Yn, wn) + (Un — Yn, Jwn — Jyn)
=2 (Un — Yn, AYn)
= ¢(a”,wn) — ¢(un, Yn) — ¢(Yn, wn) + 2X0(un — Yn, Jwn — Ayn — Jyn)
= ¢(a*, wy) — ¢(Un, Yn) = O(Yn, Wn) + 2An(Un — Yn, Awn — Ayn)

A
< (@, wa) = Ottns Ya) = (s wa) + 1= (1lun = vl + e = gl ?)
n+1
HAn
< Qb(a*’wn) (1* a}\nJrl)(¢(Unvyn)+¢(wmyn))

g

Lemma 3.5. Suppose that in Assumption 3.1, (A1) - (A5) holds and for 0y, dg >, 0y, 5y, € (0,1) are chosen
such that

min{ﬁo, m}a if Tn# Tn-1,
0, < 0, = (3.9)

Oy, otherwise

and

. - .
B min {507 TTZn—Jzn_1] }7 if xy 7é Tn—1,
O < 0, = (3.10)

L do, otherwise

Then the sequence {x,,} generated by Algorithm 3 is bounded.

Proof. Leta* € VI(C, A), using (P2), (3.1), (3.9) and Lemma 2.7, we compute as follows

d(a* wy) = dla*, zy) — p(wn, xy) + 2(wy, — a*, Jw, — Jxy,)
< 30", 2n) — () + 2lm — a1 T — Tl
< @la*, my) — P(wn, ) + 20, ||a” — wy||||Jxn — Jxn—1]]
< @(a”, zn) — d(wn, Tpn) + Onl|[a” — wn||2 + | Jzn — Jzn-1]|
") )

IA
=
S
8
3

= dwn,2n) + 20, (lla* = wall® + |20 = wal) 20 = Jwn |
+0p||Jxpn — Jxp_1]|

< la*zn) = G(wn,wn) + 270 (ll0" = 2l + [ = 2al?) + 7
< B0, ) — Bl mn) + (00, 20) + D, 7)) + 7
= (1 + %)Cb(a*ﬂnn) - (1 - %)Cb(wm-fn) + Tn. (3.11)

Using the same process of argument of arriving at (3.11), we get that

27y, 27y,

d(a*, zn) < (1 + 7>¢(a*,xn) - (1 — 7)¢(zn,xn) + Th. (3.12)
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Next from (3.3), with Lemma 2.4, and using (3.4), (3.11) and (3.12), by letting o € E to be a zero point,
we obtain

o(a*,zny1) = o¢la*,J” 1(( Bn)dzn + Bndvn)

< (1=Bn)d(a*, zn) + Bnd(a”, vn) — (1 = Bn)Bng(||J2n — Junl|)
= (1= Ba)o(a*, 2) + Bud(a*, T~ (1 = an) Jun) = (1= Ba)Bug(|| T2 — Junl|)
< (1 - Bn)¢(a* zn) + Bn( - )¢(a*>un) + 5n04n¢(<1*, U)

—(1 = B1)Bng (|2 — Junl]) (3.13)
< @=B[(1+ ) ota" m) — (1 22 bz, 2a) + 7

+Bn - [(1 + Qﬁ) a $n - (1 - %)Qﬁ(wna-xn) + T

( Oé)\n—i-l)( unayn +o wnaQn))} + Bnanﬁb(a*va)

*(1*ﬂn)ﬁn9(|’<]zn*<]vn||) (3.14)
= |:(1 - anﬁn) + (1 - anﬁn)%} ng(a*, xn) + (1 - anﬁn)Tn + Bnan¢(a*7 U)

(1= )l = ) ($t0,1) + S 3)) = (1= B2) (120 = o)
(1 - ﬁ) [(1 — Bn)P(2n, xn) + Bn(1 — o) P(wn, xn)]

(67

|: — anfn + Qﬂ] ¢(a*a xn) + Tn + ﬁnanqb(a*’ U)

_<1 a Anﬂ)ﬁ"( ~ o) (¢(“n7yn) + ¢(wmyn)> — (1= Bn)Bng(l|J 20 = Junl|)

IN

27,
(1 - 771) [(1 - Bn)(b(znv xn) + Bn(l - Oén)¢(wna xn)] . (3.15)
Furthermore, for any 79 € (0 0‘) there exists a natural number Ny such that for all n > N, we have
QT" < a,Ty. Also, since hm A, exists, then lim )\’\” = 1, which implies that
n—oo
lim (1 — a’/()‘” ) 1-— ” > 0 (since o > ), thus there exists N1 € N such that for all n > Ny, we
n—00 +1
get lim (1 - a’f\A" ) > 0. Hence, for all n > max{Ng, N1} := N, from (3.13), we obtain
n—00 1

B ) < (1= (1= 3)]0la" 20) + anfa
(1= £) 81 = ) (#(uwn yn) + @lwa,y) ) = (1= Bu)Bug11 720 = Jval )

0+ Buand(a*,0)

- (1 - anm) [(1 — Bn)d(zn, xn) + Bn(1 — an)d(wh, xn)] (3.16)
< [1-ansa(1-5)|ola mn) +ansa(F + 60" 0)
< max {¢(a*,xn)7 (TO/gn_—i_Tf/(gr;U))}
<
© ety )
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Therefore, by induction, we get
(TO/Bn + ¢(a*> G))

o(a*, zy) < max{gb(a*,:v;v), 1= 70/50)

Hence ¢(a*, x,) is bounded and by Lemma 2.7, we get that {x, } is bounded, so {wy}, {zn}, {yn},
{u,} and {v,} are also bounded. O

}VnZN.

We now state and prove the following theorem:

Theorem 3.6. Suppose conditions in Assumption 3.1 are satisfied. Let {x, }°° | be sequence generated by
Algorithm 3, then {x,,}°° | converges strongly to some point in VI(C, A).

Proof. Let a* € VI(C, A), where a* := Ily (¢ 4)0 and o is the zero point in E. Then, we will divide
the proof into two cases.

Case 1. If the sequence {¢(a*, z,)} is non-increasing, then by the boundedness of {¢(a*, )}, we
obtain that limit of ¢(a*, x,,) exists, which follows by uniqueness of limit of real sequence that

lim (gf)(a*, Tn) — ¢(a*, xnﬂ)) = 0. Thus, from (3.16), we get

0 S <1 - g)ﬁn(l - an) <¢(un7yn) + ¢(wn7yn)> + (1 - Bn)ﬁngO’JZn - JUTLH)
+ (1= aumo) [(1 = Bu)6(ensa) + Bull = an)p(wns 30|
< an/Bn [(;(i - 1)(/§<a*7 xn) + % + ¢(a*7 U) + ¢(a*, xn) - ¢(a*7 mn—f—l) (3-17)

Taking limit on both sided of (3.16), we obtain
: [
lim (1= £)8u(1 = @) (#(tns o) + 0w ) ) + (1 = Bu)Bag 1Tz = Joall)

n—oo

+(1 . anm) [(1 — B)b(2ns n) + Bl — an)d(wn, xn)]> —0.

Thus
nh_{gloﬁb(wm Tn) = nh_{go (2nyTn) = nh_{goqs(wna Yn)
= lim @¢(up, yn) = lim g(||Jz, — Jugl||) = 0. (3.18)
n—oo n—oo
Using the property of ¢ in Lemma 2.4 and by Lemma 2.6, we get from (3.18) that
lim ||w, —zp|] = lim ||z, — zp|| = lUm [|Jw, — ynl|
—00 n—oo n—oo
= lim [|up — yu|| = lim ||z, — Ju,|| = 0. (3.19)
n—oo n—oo

Also from the definition of (v, ), we obtain that
|| Jvn — Jun|| = an||Jun|| = 0as — oo (3.20)
and using (3.19), we get
|Jzn41 — Jvpl] = (1 = Bn)l[Jvn — 20| = 0 (3.21)

as n — oo. Since J and J~! are norm-to-norm uniformly continuous on bounded sets, then from
(3.19), (3.20) and (3.21), we respectively obtain

lim ||Jz, — Jx,|| = lim ||vy, — up|| = lm ||zp41 —vp|| =0 (3.22)
n—o0 n—o0 n—00

thus, combining the last two limits in (3.22), we get

lim ||zp41 — un|| = 0. (3.23)
n—oo
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We know that
[ Jzns1 — Jaa|| < [|J2pt1 — Jznl| + [[J22 — Jon|
= BnllJvn = Jzn|[ + |[J2: — Jza||
it follows from (3.19), (3.22) and norm-to-norm uniformly continuity of J~! on bounded sets that
lim ||zp41 — 20| = 0. (3.24)
n—oo
Furthermore, since {x, } is bounded, there exists a subsequence {x,,, } of {x,,} such thatz,, — p € E.
From (3.19), we get w,, — p, and klim ||Wn, — Yn,|| = 0, then by Lemma 3.3 that p € VI(C, A). For
—00

any 2* € VI(C, A) which means 2" = Py (¢ 4)0, where o is a zero point(or vector) in F, then since
p € VI(C, A) from Lemma 2.1, we get

limsup(x, — 2", —Jz*) = lim (z,, — 2%, —Jz")
n—00 k—o0
= (p—2,—-J)=(p—2"0—-J2") <0 (3.25)
Since
(up — 2%, =J2") = (up — xpy1, —J2°) + (Tp41 — Tn, —J2") + (xy, — 2%, =T 2")

it follows from (3.23), (3.24) and (3.25) that
lim sup(u,, — z*, —Jz") <0 (3.26)

n—oo

Finally, we show that {z;,,} converges strongly to z* € VI(C, A), from (P4), (2.3), Lemma 2.3, (3.11)
and (3.12), we get

(2", xpy1) = d’(Z*’Jil(( — bBn )JZn+BnJUn))

IN

( ) (2"
( ) (z*,zn)+/3n (2%, (1 = ) Juy)

(L= Bn)e (2", 20) + BulV (2", (1 — an) Jun + anJ2") 4 200 (uy — 2%, —J27)]
( )o(

( )

IA N

1- Bn ) Z*, Z ) + Bn(l - an)¢(Z*7un) + 2anﬁn<un -z _JZ*>

27, 27,

1- 38, [(1 + 7)¢(z*,xn) + Tn} + Bn(1 — ay) [(1 + f>q§(z*,a:n) + Tn}
+200, B (U, — 2%, —J2%)

IN

< (1 — anfn(1 — 70/51)>¢(z*, Tn) + anfp {2<un — 25 =Jz") + aT%J
Thus
(=" 1) < (1-anBull=10/81))0 9e",2n)
2uy — 2%, —Jz*) + an61
+anBn(l —10/51) [ (1 — 7)) } (3.27)

Hence, it follows from (3.27), (3.26) and Lemma 2.9 that ¢(z*, x,,) converges strongly to 0 and by Lemma
2.7, we get that {z,, } converges strongly to z* € VI(C, A).

Case 2. Assume that {¢(a*, z,)}5; is non-decreasing sequence of real numbers. As in Lemma
2.10, set ¥, := ¢(a*, zp) and let r : N — N be a mapping for all n > ng (for some ng large enough),
defined by

r(n) :=max{k e N: k <n, ¥, < U1}
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Then, r is a non-decreasing sequence such that r(n) — 0o as n — oco. Thus
0 < \Ijr(n) < \Pr(n)—‘f-lu Vn > no

which means that ¢(a”, z,(,,)) < @(a*, 2p(n)41), for all n > ng. Since {$(a”, z,(,))} is bounded,
therefore le ¢(a”, z,(y)) exists. Thus following the same line of action as in Case 1, we can show that

the following hold:

nh_%lonr(n) - xr(n)” = nh_g)lonr(n) - yr(n)” =0
and
nh~>nolo‘ |xr(n+1) = Up(n) H = 7}52(}”£r(n)+1 - xr(r)” = 0.

Since {, ()} is bounded, there exists a subsequence of {,(,,)}, still denoted by {x,.(,,) } such that x,.(,,)
converges weakly to p € E as n — oo. By an argument similar to that in Case 1, we can show that
p € VI(C, A) and for any z* € VI(C, A) following similar method of logic in Case 1, we get

lim (ur(n) — Z*, —JZ*> < 0. (3.28)

n—oo
Also, by (3.27), and \Ifr(n) < \Ilr(n)ﬂ, we get
¢(z*7 xr(n)) < ¢(Z*7 $r(n)+1)
< <1 - ar(n)/ﬁr(n)(l - 7—0/51)>¢(2*7 xr(n))
2(up(ny — 2%, —J2%) + %:7(:,)81]
(L —70/P1)
Therefore, since (1 — a(y)Br(n) (1 — 70/B1)) > 0 for all n € N, then

A0 () Br(ny (1 — 70/51){

2<ur(n) —z", —JZ*> + Trm

A (n)B1
0 —m/B) | (29)

(b(Z*awr(n)) <

which implies by (3.28)
lim supe(2*, 7,.()) < 0.

n—oo
Thus
nh_)Igoqf)(Z ?xr(n)) = 0.
Thus
Jim &%, 2p(n) 1) = 0.
Therefore

Jin Wy = Jim oy =0

For all n > ng, we have that W,y < W, ()41 if n # r(n) (that is, 7(n) < n), because Wy 41 < Wy, for
r(n) < k < n. As a consequence, we get for all n > ng

0<v, < max{qu(n)a \I/r(n)-i-l} = \Pr(n)—i-l'

So lim ¥,, = 0 gives that lim ¢(z*, z,,) = 0, which implies that lim ||z* — z,|| = 0. Thus z,, — z*
n—oo n—o0 n—o0

in VI(C, A). 0
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4. NUMERICAL EXAMPLE

In this section, we provide a numerical experiment to demonstrate the advantages of the suggested
method and compare it with some known convergent algorithms, including the algorithm (1.2) intro-
duced by Censor et al. [9] (shortly, Algorithm (1.2)), Algorithms presented by Cai [7](shortly, Algorithm
(1.3)) and Ma [23](shortly, Algorithm (1.4)). All the programs are implemented in MATLAB R2023b on
a personal computer.

Example 4.1. Let £ = L3[0,1] and C' = {x € L2[0,1] : (a,z) < b} where a =t + 1 and b = 1,
with norm ||z|| = ‘/fo |z(t)|2dt and inner product (z,y) fo t)dt, for all x,y € Lo(][0,1]),
t € [0, 1]. Define metric projection P¢ as follows:

x, ifreC

Po(z) = ) (4.1)
|El<|{|le> a+x, otherwise.
2

Let A : L»[0,1] — L»[0,1] be defined by A(z(t)) = e~ I1=ll f s)ds, for all x € Ls[0,1], t,s €
[O 1] then, A is pseudomonotone and uniformly continuous mappmg (see [36]) and let T'(z(t)) =
fo s)ds, for all x € L»[0,1],t € [0, 1], then T is nonexpansive mapping. For the control parameters,

we use o = Op = % Qn, Uy = n0»01 and 0,, = 0,,. We define the sequence TOL, :=

5n 2°
[Ep— an—ti apply the stopping criterion TOL,, < ¢ for the iterative processes because the
solution to the problem is unknown. ¢ is the predetermined error. Here, the terminating condition is
set to ¢ = 107°. The numerical experiments are listed on Table 1. Also, we illustrate the efficiency of
strong convergence of the proposed Algorithm (1.2) introduced by Censor et al. [9] (shortly, Algorithm
(1.2)), Algorithms presented by Cai [7](shortly, Algorithm (1.3)) and Ma [23](shortly, Algorithm (1.4))

in Figure 1.

For the numerical experiments illustrated in Figure 1 and Table 1 below, we take into consideration
the resulting cases.
Case 1: 79 =t3and 21 = t2 + 1.
Case2: 2o =t2andx; = t* + ¢.
Case 3: g = % +tand z; = 23 + ¢.
Case 4: 79 = t? and z1 = (t/5)> + ¢

TaBLE 1. Comparison of Algorithm (3), Algorithm (1.2), Algorithm (1.3) and Algorithm (1.4).

Algorithm 3 Algorithm (1.2) Algorithm (1.3) Algorithm (1.4)
Iter. CPU (sec) Iter. CPU (sec) Iter. CPU (sec) Iter. CPU (sec)
Casel 79 2.8295 245 7.7275 81 20.1548 375 28.4084
Case2 78 2.6678 102 3.4574 423  10.4600 374 8.4675
Case3 84 2.9675 128 3.5662 564 15.6135 515 13.4206
Case4 74 2.6625 102 3.2013 423 10.2072 374 8.5089

5. CONCLUSION

In this work, we propose a novel double modified subgradient extragradient self-adaptive step size
method for solving variational inequality problems (VIPs). Our technique combines double inertial
acceleration to enhance convergence behavior and improve stability concerns in solving variational
inequality problems. Through rigorous convergence analysis, we establish that our method converges
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Ficure 1. The error plotting of Comparison of Algorithm 3, Algorithm (1.2), Algorithm
(1.3) and Algorithm (1.4) for Example 4.1.

strongly to the unique solution of the pseudomonotone variational inequality problem in 2—uniformly
convex and smooth real Banach spaces.
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