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ABSTRACT. We define expansive-type mappings in the setting of modular G-metric spaces and prove
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1. INTRODUCTION

Expansiveness of mappings and their common fixed point results is an interesting and active research
aspect of fixed point theory. The class of expansive mappings in complete metric spaces was introduced
by Wang et al. [30]. They proved some interesting fixed point theorems for this class of mappings,
thereby activating research in expansive mappings in metric spaces and related abstract spaces. Ku-
mar [12] proved some interesting theorems on expansive mappings in several settings, such as metric
spaces, generalized metric spaces, probabilistic metric spaces, and fuzzy metric spaces, which gener-
alized the results of some authors, such as Ahmad, Ashraf, and Rhoades [1], Rhoades [27], Kang et
al. [11], Wang et al. [30], and Vasuki [29]. Kumar’s results contain some errors, which were corrected
in [5]. However, [12] did not consider expansive mappings in the framework of modular G-metric spaces,
which is the main interest of the present paper. Gahler [10] proved some interesting results in complete
2-metric spaces, which is a generalization of the classical metric spaces. Baskaran et al. [4] established
common fixed point theorems for expansive mappings by using compatibility and sequentially continu-
ous mappings in 2-metric spaces. Dhage [9] extended the work in [10] and introduced the notion of D-
metric spaces. These authors claimed that their results generalized the concept of classical metric spaces.
In 2001, Ahmad et al. [1] defined expansive mappings in the context of D-metric spaces, analogous to
expansive mappings in complete metric spaces. They also extended some known results to two map-
pings in the setting of D-metric spaces. In 2003, Mustafa and Sims [14] pointed out that the fundamental
topological properties of D-metric spaces introduced by Dhage [9] were false. To remedy the drawbacks
connected to D-metric spaces, Mustafa and Sims [15] introduced a generalization of metric spaces called
G-metric spaces and proved some interesting fixed point results in this framework. Mustafa et al. [16]
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defined the class of expansive mappings in the setting of G-metric spaces and proved some fixed point
theorems for this class of mappings in G-metric spaces. Furthermore, Mustafa et al. [17] proved some
fixed point results in the setting of complete G-metric spaces. In 2010, Chistyakov [6] introduced the
notion of modular metric spaces or parameterized metric spaces with the time parameter (λ , say). His
intention was to define the notion of a modular acting on an arbitrary set and to develop the theory of
metric spaces generated by modulars, called modular metric spaces. Chistyakov [6] developed the theory
of metric spaces generated by modulars and extended the results given by Nakano [18], Musielak and
Orlicz [26], and Musielak [13] to modular metric spaces. Modular spaces are extensions of Lebesgue,
Riesz, and Orlicz spaces of integrable functions. The introduction of the theory of metric spaces gen-
erated by modulars, known as modular metric spaces, received the attention of many mathematicians.
Consequently, several interesting results have been proved in this direction of research. Chistyakov [8]
also established some fixed point theorems for contractive mappings in modular spaces, and other fixed
point results in modular metric spaces can be found in [7, 8] and [25] and the references therein. Azizi
et al. [3] studied some fixed point theorems for S+ T , where T is ρ-expansive and S(B) resides in a
compact subset of Xρ , where B is a closed, convex, and nonempty subset of Xρ , and T,S : B → Xρ . Their
results also improved the classical version of Krasnosel’skii fixed point theorems in modular spaces.
However, as an application, they studied the existence of solutions to some nonlinear integral equations
in modular function spaces. In 2013, Azadifar et al. [2] developed the concept of modular G-metric
spaces and obtained some fixed point theorems of contractive mappings defined on modular G-metric
spaces. Very recently, Okeke and Francis [19] defined expansive mappings of types I and II in the setting
of modular G-metric spaces and proved that their fixed points exist. Also, many fixed point theorems
for the class of expansive mappings of type I and II defined on complete modular G-metric spaces were
also proved by the authors. Furthermore, Okeke and Francis [23] proved the existence and uniqueness
of fixed points of mappings satisfying Geraghty-type contractions in the setting of preordered modular
G-metric spaces and applied the results in solving nonlinear Volterra-Fredholm-type integral equations.
For other interesting results on generalized modular metric spaces and extended modular b-metric spaces,
interested readers should consult [20–22, 24, 25] and references therein. Our purpose in this paper is to
define three expansive mappings in the setting of modular G-metric spaces and prove some common
unique fixed point results for this class of expansive mappings on G-complete modular G-metric spaces.
Furthermore, we will construct some examples to support our claims.

2. PRELIMINARIES

Definition 2.1. [30] Let (X ,d) be a complete metric space. If f is a mapping of X into itself, then, f is
called an expansive map if there exists a constant q > 1 such that

d( f (x), f (y))≥ qd(x,y), (2.1)

for each x,y ∈ X .

Definition 2.2. [1] Let X be a D-metric space, and let T be a self-mapping on X . Then T is called an
expansive mapping if there exists a constant a > 1 such that for all x,y,z ∈ X , we have

D(T x,Ty,T z)≥ aD(x,y,z).

Definition 2.3. [16] Let (X ,G) be a G-metric space, and T be a self mapping on X . Then T is called
expansive mapping if there exists a constant a > 1 such that for all x,y,z ∈ X , we have

G(T x,Ty,T z)≥ aG(x,y,z). (2.2)

Definition 2.4. [3] Let Xρ be a modular space, and B a nonempty subset of Xρ . The mapping T : B → Xρ

is called ρ-expansive mapping, if there exist constants c,k, l ∈ R+ such that c > l,k > 1 and

ρ(l(T x−Ty))≥ kρ(c(x− y)), (2.3)
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for all x,y ∈ B.

Definition 2.5. [2] Let X be a nonempty set, and let ωG : (0,∞)×X ×X ×X → [0,∞] be a function
satisfying;

(1) ωG
λ
(x,y,z) = 0 for all x,y,z ∈ X and λ > 0 if x = y = z,

(2) ωG
λ
(x,x,y)> 0 for all x,y ∈ X and λ > 0 with x ̸= y,

(3) ωG
λ
(x,x,y)≤ ωG

λ
(x,y,z) for all x,y,z ∈ X and λ > 0 with z ̸= y,

(4) ωG
λ
(x,y,z) = ωG

λ
(x,z,y) = ωG

λ
(y,z,x) = · · · for all λ > 0 (symmetry in all three variables),

(5) ωG
λ+µ

(x,y,z)≤ ωG
λ
(x,a,a)+ωG

µ (a,y,z), for all x,y,z,a ∈ X and λ ,ν > 0,

then the function ωG
λ

is called a modular G-metric on X .
The pair (X ,ωG) is called a modular G-metric space.

Without any confusion, we will take XωG as a modular G-metric space.
In the paper, take XωG = XωG(x0) = {x ∈ X : ωG

λ
(x,x0,x0)< ∞, f or all λ > 0}.

Definition 2.6. [2] Let (Xω ,ω
G) be a modular G-metric space. The sequence {xn}n∈N in XωG is modular

G-convergent to x, if it converges to x in the topology τ(ωG
λ
).

A function T : XωG →XωG at x∈XωG is called modular G-continuous if ωG
λ
(xn,x,x)→ 0 then ωG

λ
(T xn,T x,T x)→

0, for all λ > 0.
The sequence {xn}n∈N is modular G-convergent to x as n → ∞, if lim

n→∞
ωG

λ
(xn,xm,x) = 0. That is for

all ε > 0 there exists n0 ∈ N such that ωG
λ
(xn,xm,x)< ε for all n,m ≥ n0. Here we say that x is modular

G-limit of {xn}n∈N.

Definition 2.7. [2] Let (Xω ,ω
G) be a modular G-metric space, then {xn}n∈N ⊆XωG is said to be modular

G-Cauchy if for every ε > 0, there exists nε ∈N such that ωG
λ
(xn,xm,xl)< ε for all n,m, l ≥ nε and λ > 0.

A modular G-metric space XωG is said to be modular G-complete if every modular G-Cauchy sequence
in XωG is modular G-convergent in XωG .

Proposition 2.8. [2] Let (Xω ,ω
G) be a modular G-metric space, for any x,y,z,a ∈ XωG , it follows that:

(1) If ωG
λ
(x,y,z) = 0 for all λ > 0, then x = y = z.

(2) ωG
λ
(x,y,z)≤ ωG

λ

2
(x,x,y)+ωG

λ

2
(x,x,z) for all λ > 0.

(3) ωG
λ
(x,y,y)≤ 2ωG

λ

2
(y,x,x) for all λ > 0.

(4) ωG
λ
(x,y,z)≤ ωG

λ

2
(x,a,z)+ωG

λ

2
(a,y,z) for all λ > 0.

(5) ωG
λ
(x,y,z)≤ 2

3(ω
G
λ

2
(x,y,a)+ωG

λ

2
(x,a,z)+ωG

λ

2
(a,y,z)) for all λ > 0.

(6) ωG
λ
(x,y,z)≤ ωG

λ

2
(x,a,a)+ωG

λ

4
(y,a,a)+ωG

λ

4
(z,a,a) for all λ > 0.

Proposition 2.9. [2] Let (Xω ,ω
G) be a modular G-metric space, and {xn}n∈N be a sequence in Xω .

Then the following are equivalent:

(1) {xn}n∈N is ωG-convergent to x,
(2) ωG

λ
(xn,x)→ 0 as n → ∞, i.e., {xn}n∈N converges to x relative to modular metric ωG

λ
(.),

(3) ωG
λ
(xn,xn,x)→ 0 as n → ∞ for all λ > 0,

(4) ωG
λ
(xn,x,x)→ 0 as n → ∞ for all λ > 0,

(5) ωG
λ
(xm,xn,x)→ 0 as m,n → ∞ for all λ > 0.

Next, we give the following two definitions, [1, 28], which will play some vital roles in Section 3 of
this paper.
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Definition 2.10. Let (Xω ,ω
G) be a modular G-metric space, and T,S,R : XωG → XωG be three mappings.

Then T,S,R are said to have common expansive type I mappings if there exists a constant a > 1 such that
for all x ̸= y ̸= z ̸= x ∈ XωG and for any λ > 0, we have

ω
G
λ
(T x,Sy,Rz)≥ aω

G
λ
(x,y,z). (2.4)

Definition 2.11. Let (Xω ,ω
G) be a modular G-metric space, and T,S,R : XωG → XωG be three mappings.

Then T,S,R are said to have common expansive type II mappings if there exists a constant a > 1 such
that for all x,y ∈ XωG and for any λ > 0, we have

ω
G
λ
(T x,Sy,Ry)≥ aω

G
λ
(x,y,y). (2.5)

Remark 2.12. Examples of the class of expansive mappings defined in Definitions 2.10 and 2.11 above
will be given after Theorem 3.1 and Theorem 3.11 respectively.

3. MAIN RESULTS

We begin this section with the following results.

Theorem 3.1. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be three

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for which
the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ aω

G
λ
(x,y,z) ∀ λ > 0. (3.1)

Then T,S,R has a common unique fixed point in XωG .

Proof. Let x0 ∈Xω be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈XωG such that x0 = T x1,
and x2 ∈ XωG so that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG . Continuing in this manner, we generate a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N, so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now, since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2)> 0, so that from inequality (3.1), we have

ω
G
λ
(x3n,x3n+1,x3n+2) = ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+3)≥ aω

G
λ
(x3n+1,x3n+2,x3n+3) ∀ λ > 0.

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+3)≤ µω

G
λ
(x3n,x3n+1,x3n+2), (3.2)

where µ = 1
a and for all λ > 0. In continuing the process above, we have

ω
G
λ
(x3n+1,x3n+2,x3n+3)≤ µ

n
ω

G
λ
(x3n,x3n+1,x3n+2), (3.3)

for λ > 0 and n ∈ N.
Suppose that m,n ∈ N and m > n ∈ N. Applying rectangle inequality repeatedly, i.e., condition (5) of

Definition 2.5 we have

ω
G
λ
(x3n,x3m,x3m)≤ω

G
λ

m−n
(x3n,x3n+1,x3n+1)+ω

G
λ

m−n
(x3n+1,x3n+2,x3n+2)

+ω
G

λ

m−n
(x3n+2,x3n+3,x3n+3)+ω

G
λ

m−n
(x3n+3,x3n+4,x3n+4)

+ · · ·+ω
G

λ

m−n
(x3m−1,x3m,x3m)

≤ω
G
λ

n
(x3n,x3n+1,x3n+1)+ω

G
λ

n
(x3n+1,x3n+2,x3n+2)+ω

G
λ

n
(x3n+2,x3n+3,x3n+3)

+ω
G
λ

n
(x3n+3,x3n+4,x3n+4)+ · · ·+ω

G
λ

n
(x3m−1,x3m,x3m)

≤(µn +µ
n+1 + · · ·+µ

m−1)ωG
λ
(x0,x1,x2)

=
µn

1−µ
ω

G
λ
(x0,x1,x2), (3.4)
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for all m > n ≥ N ∈ N, then

ω
G
λ
(x3n,x3m,x3m)≤

µn

1−µ
ω

G
λ
(x0,x1,x2), (3.5)

for all m, l,n ≥ N and for some N ∈ N, so that by condition (2) of Proposition 2.8, we have

ω
G
λ
(x3n,x3m,x3l)≤ ω

G
λ

2
(x3n,x3m,x3m)+ω

G
λ

2
(x3l,x3m,x3m), (3.6)

so that

ω
G
λ
(x3n,x3m,x3l)≤ω

G
λ

2
(x3n,x3m,x3m)+ω

G
λ

2
(x3l,x3m,x3m)

≤ω
G
λ
(x3n,x3m,x3m)+ω

G
λ
(x3l,x3m,x3m)

≤ µn

1−µ
ω

G
λ
(x0,x1,x2)+

µn

1−µ
ω

G
λ
(x0,x1,x2)

=

(
2µn

1−µ

)
ω

G
λ
(x0,x1,x2). (3.7)

Thus, we have
lim

n,m,l→∞

ω
G
λ
(x3n,x3m,x3l) = 0, ∀ λ > 0. (3.8)

Therefore, we can clearly see that {xn}n∈N is modular G-Cauchy sequence in XωG .
The modular G-completeness of (Xω ,ω

G) implies that for any λ > 0, lim
n,m→∞

ωG
λ
(xn,xm,u) = 0, i.e., for

any ε > 0, there exists n0 ∈ N such that ωG
λ
(xn,xm,u)< ε for all n,m ∈ N and n,m ≥ n0, which implies

that lim
n→∞

xn → u ∈ XωG as n → ∞, or by applying condition (5) of Proposition 2.9. As T,S,R are onto
mappings, there exists w,z∗,v ∈ XωG such that u = Tw,u = Sz∗ and u = Rv. We claim that u = w = z∗ = v.

First, from inequality (3.1) with x = x3n+1 and y = z∗ and z = v, we have that for all n ≥ 1,λ > 0

ω
G
λ
(x3n,u,u) = ω

G
λ
(T x3n+1,Sz∗,Rv)≥ aω

G
λ
(x3n+1,z∗,v) ∀ λ > 0. (3.9)

As n → ∞, we have ωG
λ
(u,z∗,v) = 0, i.e., u = z∗ = v.

Secondly, using inequality (3.1) with x = w and y = x3n+2 and z = v, we have that for all n ≥ 1,λ > 0

ω
G
λ
(u,x3n+1,u) = ω

G
λ
(Tw,Sx3n+2,Rv)≥ aω

G
λ
(w,x3n+2,v) ∀ λ > 0. (3.10)

As n → ∞, we have ωG
λ
(w,u,v) = 0, i.e., w = u = v.

Lastly, from inequality (3.1) with x = w and y = z∗ and z = x3n+3, we have that for all n ≥ 1,λ > 0

ω
G
λ
(u,u,x3n+2) = ω

G
λ
(Tw,Sz∗,Rx3n+3)≥ aω

G
λ
(w,z∗,x3n+3) ∀ λ > 0. (3.11)

As n → ∞, we have ωG
λ
(w,z∗,u) = 0, i.e., w = z∗ = u.

We can clearly see that in the three cases above, u = w = z∗ = v, so that u is a common fixed point of
T,S,R, i.e., u = Tu = Su = Ru.

To prove uniqueness, suppose, if possible, that there exists another common fixed point of T,S,R, that
is, there is u∗ ∈ XωG such that u∗ = Tu∗ = Su∗ = Ru∗. Suppose that it is not the case that is, u ̸= u∗, and
for all λ > 0. Again, inequality (3.1) becomes

ω
G
λ
(u,u∗,u∗) = ω

G
λ
(Tu,Su∗,Ru∗)≥ aω

G
λ
(u,u∗,u∗)> ω

G
λ
(u,u∗,u∗), (3.12)

which is indeed a contradiction since a > 1, hence u = u∗. Therefore, T,S,R has a common unique
fixed point in XωG . □

Remark 3.2. Theorem 3.1 is a generalization of Theorem 3.1 in Okeke and Francis [19].



6 G. A. OKEKE, D. FRANCIS, H. OLAOLUWA, D.F. AGBEBAKU

Remark 3.3. If we let T = S = R, we get a result we have given in [19].
Let (Xω ,ω

G) be a G-complete modular G-metric space. If there exists a constant a > 1. Let T : XωG →
XωG be an onto mapping on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Ty,T z)≥ aω

G
λ
(x,y,z) ∀ λ > 0. (3.13)

Then T has a unique fixed point in XωG .

Proof. For the Proof of Remark 3.3 see Okeke and Francis [19]. □

Corollary 3.4. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T : XωG → XωG be an onto

mapping on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for which the
following condition holds

ω
G
λ
(T x,Ty,T z)≥ aω

G
λ
(x,y,z) ∀ λ > 0. (3.14)

Then T has a unique fixed point in XωG .

Proof. It follows from Theorem 3.1 by taken T = S = R. Hence, T has a unique fixed point in XωG .
□

Remark 3.5. Note that in Theorem 3.1 above, if T = S = R, we get an extension of Theorem 2.1 in [16]
which is our Corollary 3.4 in modular G-metric space.

Example 3.6. Let XωG = R+ ∪{∞}. Define mappings T,S,R : R+ ∪{∞} → R+ ∪{∞} by T x = xn +
4x,Sx = xn + 4x− 1 and Rx = xn + 4x− 2 for all x ∈ R+ ∪{∞} and n ∈ N. Then T,S,R are expansive
maps with nontrivial common fixed point of T,S,R.

Define modular G-metric by ωG
λ

: (0,∞)×R+∪{∞}×R+∪{∞}×R+∪{∞} → R+∪{∞}. For all
distinct x,y,z ∈ R+∪{∞} and λ > 0,n ∈ N, then

ω
G
λ
(T x,Sy,Rz)

=
1
λ
(∥T x−Sy∥+∥Sy−Rz∥+∥T x−Rz∥)

=
1
λ

(∥∥xn +4x− (yn +4y−1)
∥∥+∥∥yn +4y+1− (zn +4z−2)

∥∥+∥∥xn +4x− (zn +4z−2)
∥∥)

=
1
λ

(∥∥xn − yn +4(x− y)+1
∥∥+∥∥yn − zn +4(y− z)+3

∥∥+∥∥xn − zn +4(x− z)+2
∥∥)

=
1
λ

(∥∥∥(x− y)(xn−1 + yxn−2 + · · ·+ yn−1)+4(x− y)+1
∥∥∥

+
∥∥∥(y− z)(yn−1 + zyn−2 + · · ·+ zn−1)+4(y− z)+3

∥∥∥
+
∥∥∥(x− z)(xn−1 + zxn−2 + · · ·+ zn−1)+4(x− z)+2

∥∥∥)
≥ 1

λ

{
4∥x− y∥+4∥y− z∥+4∥x− z∥

}
=4ω

G
λ
(x,y,z). (3.15)

Therefore,

ω
G
λ
(T x,Sy,Rz)≥ 4ω

G
λ
(x,y,z), (3.16)

which justifies that T,S,R are expansive mappings with a common expansive constant 4. Hence inequal-
ity (3.1) is satisfied with a = 4 > 1.
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Corollary 3.7. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be three

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for which
the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ a

(
ω

G
λ

2
(x,x,y)+ω

G
λ

2
(x,x,z)

)
∀ λ > 0. (3.17)

Then T,S,R has a common unique fixed point in XωG .

Proof. By condition (2) of Proposition 2.8, we have that ωG
λ

2
(x,x,y) +ωG

λ

2
(x,x,z) ≥ ωG

λ
(x,y,z) for all

λ > 0. Therefore, from inequality (3.17), we have

ω
G
λ
(T x,Sy,Rz)≥ a

(
ω

G
λ

2
(x,x,y)+ω

G
λ

2
(x,x,z)

)
≥ aω

G
λ
(x,y,z). (3.18)

So that for all λ > 0 and a > 1, we have

ω
G
λ
(T x,Sy,Rz)≥ aω

G
λ
(x,y,z). (3.19)

By Proof of Theorem 3.1, T,S,R have a common unique fixed point in XωG .
□

Remark 3.8. corollary 3.9 below is a variant form of Theorem 3.1 which reads as follows;

Corollary 3.9. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be three

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for which
the following condition holds for some positive integer, m ≥ 1

ω
G
λ
(T mx,Smy,Rmz)≥ aω

G
λ
(x,y,z) ∀ λ > 0. (3.20)

Then T,S,R has a common unique fixed point in XωG for some positive integer, m ≥ 1.

Proof. By Theorem 3.1, T m,Sm,Rm has a common fixed point say u∗ ∈ XωG for some positive integer
m ≥ 1 by using inequality (3.20). Now T m(Tu∗) = T m+1u∗ = T (T mu∗) = Tu∗, so Tu∗ is a fixed point
of T mu∗. Similarly, Su∗ is a fixed point of Smu∗ and Ru∗ is a fixed point of Rmu∗. For the uniqueness,
suppose, if possible, that there exists another common fixed point of T m,Sm,Rm say v∗ ∈ Xω that is
T mv∗ = Smv∗ = Rmv∗ = v∗ . We show that u∗ = v∗. Indeed, suppose that u∗ ̸= v∗ implies that for any
λ > 0, ωG

λ
(u∗,v∗,v∗)> 0, from inequality (3.20), we have a contradiction since a > 1, hence T,S,R has

a common unique fixed point in XωG for some positive integer, m ≥ 1. □

Corollary 3.10. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds for some positive integer, m ≥ 1

ω
G
λ
(T mx,Smy,Rmz)≥ a

(
ω

G
λ

2
(x,x,y)+ω

G
λ

2
(x,x,z)

)
∀ λ > 0. (3.21)

Then T,S,R has a common unique fixed point in XωG , for some positive integer, m ≥ 1.

Proof. By Proof of Corollary 3.9, T,S,R has a common unique fixed point in XωG for some positive
integer, m ≥ 1. □

Theorem 3.11. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be three

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for which
the following condition holds

ω
G
λ
(T x,Sy,Ry)≥ aω

G
λ
(x,y,y) ∀ λ > 0. (3.22)

Then T,S,R has a common unique fixed point in XωG
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Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, and x2 ∈ XωG such that x1 = Sx2 so thatx1 = Rx2 for x2 ∈ XωG . By continuing this process, we
can find a sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse
iterations as x3n = T x3n+1, x3n+1 = Sx3n+2 = Rx3n+2. Now since x3n ̸= x3n+1 implies that for any λ > 0,
ωG

λ
(x3n,x3n+1,x3n+1)> 0, so that from inequality (3.22), we have

ω
G
λ
(x3n,x3n+1,x3n+1) = ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+2)≥ aω

G
λ
(x3n+1,x3n+2,x3n+2) ∀ λ > 0. (3.23)

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+2)≤ βω

G
λ
(x3n,x3n+1,x3n+1), (3.24)

where, β = 1
a and for all λ > 0. On continuing the process above, we have

ω
G
λ
(x3n+1,x3n+2,x3n+2)≤ β

n
ω

G
λ
(x3n,x3n+1,x3n+1), (3.25)

for λ > 0 and n ∈ N. where, β = 1
a < 1.

Following proof of Theorem 3.1 carefully, we clearly see that u is a common unique fixed point of
T,S,R in XωG .

□

Example 3.12. Let XωG = R+∪{∞}. Define mappings T,S,R : R+∪{∞} → R+∪{∞} by T x = xp +
1,Sx = xp and Rx = xp − 1 for all x ∈ R+ ∪ {∞} and p ∈ N. Then T,S,R are expansive maps with
nontrivial common fixed point of T,S,R.

Remark 3.13. If we take p = 1, then the Example 3.12 is clear.

Define modular G-metric by ωG
λ

: (0,∞)×R+∪{∞}×R+∪{∞}×R+∪{∞}→R+∪{∞}. Now, for
all x,y ∈ R+∪{∞} and λ > 0,

ω
G
λ
(xp +1,yp,yp −1) = ω

G
λ
(T x,Sy,Ry)

=
1
λ

(
∥T x−Sy∥+∥Sy−Ry∥+∥T x−Sy∥

)
=

1
λ

(
∥xp +1− yp∥+

∥∥yp − (yp −1)
∥∥+∥∥xp +1− (yp −1)

∥∥)
=

1
λ

(
∥xp − yp +1∥+∥1∥+∥xp − yp +2∥

)
≥ 1

λ

(
∥xp − yp∥+∥xp − yp∥+1

)
=

1
λ

(
2∥xp − yp∥+1

)
≥ 2

λ
∥xp − yp∥

=
2
λ

∥∥∥(x− y)(xp−1 + yxp−2 + · · ·+ yp−1)
∥∥∥

≥ 2
λ
∥x− y∥

= 2ω
G
λ
(x,y,y). (3.26)

Therefore,
ω

G
λ
(T x,Sy,Ry)≥ 2ω

G
λ
(x,y,y) ∀ λ > 0, (3.27)

which shows that T,S,R are expansive mappings with common expansive constant 2. Hence inequality
(3.22) is satisfied with a = 2 > 1.
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Corollary 3.14. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ a

(
ω

G
λ
(x,z,z)+ω

G
λ
(z,z,y)

)
∀ λ > 0. (3.28)

Then T,S,R has a common unique fixed point in XωG .

Proof. Note that by putting y = z in inequality (3.28), we have

ω
G
λ
(T x,Sy,Ry)≥ aω

G
λ
(x,y,y) ∀ λ > 0. (3.29)

By Proof of Theorem 3.11, T,S,R has a common unique fixed point in XωG . □

Corollary 3.15. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ω
G
λ
(T mx,Smy,Rmy)≥ aω

G
λ
(x,y,y) ∀ λ > 0. (3.30)

Then T,S,R has a common unique fixed point in XωG for some positive integer, m ≥ 1.

Proof. By Theorem 3.11, T m,Sm,Rm has a common fixed point say u∗ ∈ XωG for some positive integer,
m ≥ 1 by using inequality (3.30). Now T m(Tu∗) = T m+1u∗ = T (T mu∗) = Tu∗, so Tu∗ is a fixed point
of T mu∗. Similarly, Su∗ is a fixed point of Smu∗ and Ru∗ is a fixed point of Rmu∗. For the uniqueness,
suppose, if possible, that there exists another common fixed point of T m,Sm,Rm say v∗ ∈ XωG that is
T mv∗ = Smv∗ = Rmv∗ = v∗. We show that u∗ = v∗. Indeed, suppose that u∗ ̸= v∗ implies that for any
λ > 0, ωG

λ
(u∗,v∗,v∗)> 0, from inequality (3.30), we get a contradiction since a > 1, hence T,S,R has a

common unique fixed point in XωG for some positive integer, m ≥ 1. □

Corollary 3.16. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T x,Sy,Rz)≥ amax


ω

G
λ

2
(x,z,z)+ω

G
λ

2
(z,z,y),

ω
G
λ

2
(z,y,y)+ω

G
λ

2
(y,y,x),

ω
G
λ

2
(z,x,x)+ω

G
λ

2
(x,x,y)

 . (3.31)

Then T,S,R has a common unique fixed point in XωG .

Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG . Continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2)> 0, so that from inequality (3.16), we have

ω
G
λ
(x3n,x3n+1,x3n+2) = ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+3)

≥ amax


ω

G
λ

2
(x3n+1,x3n+3,x3n+3)+ω

G
λ

2
(x3n+3,x3n+3,x3n+2),

ω
G
λ

2
(x3n+3,x3n+2,x3n+2)+ω

G
λ

2
(x3n+2,x3n+2,x3n+1),

ω
G
λ

2
(x3n+3,x3n+1,x3n+1)+ω

G
λ

2
(x3n+1,x3n+1,x3n+2)

 . (3.32)
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By condition (2) of Proposition 2.8, we have

amax


ω

G
λ

2
(x3n+1,x3n+3,x3n+3)+ω

G
λ

2
(x3n+3,x3n+3,x3n+2),

ω
G
λ

2
(x3n+3,x3n+2,x3n+2)+ω

G
λ

2
(x3n+2,x3n+2,x3n+1),

ω
G
λ

2
(x3n+3,x3n+1,x3n+1)+ω

G
λ

2
(x3n+1,x3n+1,x3n+2)

≥ aKλ , (3.33)

where Kλ := ωG
λ
(x3n+1,x3n+2,x3n+3). Therefore, we have that for all λ > 0,

ω
G
λ
(x3n+1,x3n+2,x3n+3)≤ γω

G
λ
(x3n,x3n+1,x3n+2), (3.34)

where γ = 1
a < 1. Following the proof of Theorem 3.1, T,S,R has a common unique fixed point in XωG .

□

Corollary 3.17. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T x,Sy,Rz)≥ amax



ω
G
λ

2
(y,x,x)+

1
2

ω
G
λ

2
(y,z,z),

ω
G
λ

2
(z,x,x)+

1
2

ω
G
λ

2
(y,y,z),

ω
G
λ

2
(z,z,y)+

1
2

ω
G
λ

2
(z,y,z)


. (3.35)

Then T,S,R has a common unique fixed point in XωG .

Proof. Note that if z = y, inequality (3.35) becomes

ω
G
λ
(T x,Sy,Ry)≥ aω

G
λ

2
(y,x,x). (3.36)

Now, we consider the right hand side of inequality (3.35) by applying condition (3) of Proposition 2.8,
we get ωG

λ
(x,y,y) ≤ 2ωG

λ

2
(y,x,x) for all λ > 0, or, putting z = y in condition (2) of Proposition 2.8, we

have ωG
λ
(x,y,y)≤ ωG

λ

2
(y,x,x)+ωG

λ

2
(y,x,x) for all λ > 0. So that 1

2 ωG
λ
(x,y,y)≤ ωG

λ

2
(y,x,x) for all λ > 0.

From inequality (3.36), we have that

ω
G
λ
(T x,Sy,Ry)≥ aω

G
λ

2
(y,x,x)≥ a

2
ω

G
λ
(x,y,y). (3.37)

By Proof of Theorem 3.11 we are done. Hence, T,S,R has a common unique fixed point in XωG .
□

Corollary 3.18. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T x,Sy,Rz)≥ amax


2ω

G
λ

2
(y,x,x)+ω

G
λ

2
(y,z,z),

2ω
G
λ

2
(z,x,x)+ω

G
λ

2
(y,y,z),

2ω
G
λ

2
(z,z,y)+ω

G
λ

2
(z,y,z)

 . (3.38)

Then, T,S,R has a common unique fixed point in XωG .

Proof. Following the Proof of corollary 3.17, we get

ω
G
λ
(T x,Sy,Ry)≥ 2aω

G
λ

2
(y,x,x)≥ aω

G
λ
(x,y,y). (3.39)

By Theorem 3.11, the Proof is completed. □
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Corollary 3.19. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant k > 1, for
which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ k

(
ω

G
λ

2
(x,T x,T x)+ω

G
λ

2
(T x,y,z)

)
∀ λ > 0. (3.40)

Then, T,S,R has a common unique fixed point in XωG .

Proof. Using condition (5) of Definition 2.5 for λ = λ

2 +
λ

2 > 0, we have ωG
λ

2
(x,T x,T x)+ωG

λ

2
(T x,y,z)≥

ωG
λ
(x,y,z). Therefore, for all λ > 0, inequality (3.40) becomes

ω
G
λ
(T x,Sy,Rz)≥ k

(
ω

G
λ

2
(x,T x,T x)+ω

G
λ

2
(T x,y,z)

)
≥ kω

G
λ
(x,y,z) ∀ λ > 0. (3.41)

Hence,
ω

G
λ
(T x,Sy,Rz)≥ kω

G
λ
(x,y,z) ∀ λ > 0, (3.42)

where, k > 1. By Proof of Corollary 3.7, the Proof corollary 3.19 is completed.
□

Corollary 3.20. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant k > 1, for
which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ k

(
ω

G
λ

2
(x,Sx,Sx)+ω

G
λ

2
(Sx,y,z)

)
∀ λ > 0. (3.43)

Then, T,S,R has a common unique fixed point in XωG .

Proof. Using condition (5) of Definition 2.5 for λ = λ

2 + λ

2 > 0, we have ωG
λ

2
(x,Sx,Sx)+ωG

λ

2
(Sx,y,z)≥

ωG
λ
(x,y,z). Therefore, for all λ > 0, inequality (3.43) becomes

ω
G
λ
(T x,Sy,Rz)≥ k

(
ω

G
λ

2
(x,Sx,Sx)+ω

G
λ

2
(Sx,y,z)

)
≥ kω

G
λ
(x,y,z) ∀ λ > 0. (3.44)

Hence,
ω

G
λ
(T x,Sy,Rz)≥ kω

G
λ
(x,y,z) ∀ λ > 0, (3.45)

where, k > 1. By Proof of Corollary 3.7, the proof corollary 3.20 is completed.
□

Corollary 3.21. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant k > 1, for
which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ k

(
ω

G
λ

2
(x,Rx,Rx)+ω

G
λ

2
(Rx,y,z)

)
∀ λ > 0. (3.46)

Then, T,S,R has a common unique fixed point in XωG .

Proof. Using condition (5) of Definition 2.5 for λ = λ

2 + λ

2 > 0, we have

ω
G
λ
(T x,Sy,Rz)≥ kω

G
λ
(x,y,z) ∀ λ > 0, (3.47)

where, k > 1. By Proof of Corollary 3.7, the Proof Corollary 3.21 is completed.
□

Corollary 3.22. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(T x,x,y)+ γω

G
λ
(Sy,y,z)+δω

G
λ
(x,Rz,z), (3.48)

where, α +β +γ +δ > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG .
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Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG . By continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now, since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2)> 0, so that from inequality (3.48), we have

ω
G
λ
(x3n,x3n+1,x3n+2) =ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+3)

≥αω
G
λ
(x3n+1,x3n+2,x3n+3)+βω

G
λ
(T x3n+1,x3n+1,x3n+2)

+ γω
G
λ
(Sx3n+2,x3n+2,x3n+3)+δω

G
λ
(x3n+1,Rx3n+3,x3n+3)

=αω
G
λ
(x3n+1,x3n+2,x3n+3)+βω

G
λ
(x3n,x3n+1,x3n+2)

+ γω
G
λ
(x3n+1,x3n+2,x3n+3)+δω

G
λ
(x3n+1,x3n+2,x3n+3)

=(α + γ +δ )ωG
λ
(x3n+1,x3n+2,x3n+3)+βω

G
λ
(x3n,x3n+1,x3n+2).

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+3)≤ hω

G
λ
(x3n,x3n+1,x3n+2), (3.49)

where, h = 1−β

(α+γ+δ ) < 1, β < 1 and λ > 0.

ω
G
λ
(x3n+1,x3n+2,x3n+3)≤ hn

ω
G
λ
(x3n,x3n+1,x3n+2), ∀ λ > 0, (3.50)

and n ≥ 1. Suppose, that m,n ∈ N and m > n ∈ N. Applying rectangle inequality repeatedly, i.e.,
condition (5) of Definition 2.5 we have

ω
G
λ
(x3n,x3m,x3m)≤ω

G
λ

m−n
(x3n,x3n+1,x3n+1)+ω

G
λ

m−n
(x3n+1,x3n+2,x3n+2)

+ω
G

λ

m−n
(x3n+2,x3n+3,x3n+3)+ω

G
λ

m−n
(x3n+3,x3n+4,x3n+4)

+ · · ·+ω
G

λ

m−n
(x3m−1,x3m,x3m)

≤ω
G
λ

n
(x3n,x3n+1,x3n+1)+ω

G
λ

n
(x3n+1,x3n+2,x3n+2)+ω

G
λ

n
(x3n+2,x3n+3,x3n+3)

+ω
G
λ

n
(x3n+3,x3n+4,x3n+4)+ · · ·+ω

G
λ

n
(x3m−1,x3m,x3m)

≤(hn +hn+1 + · · ·+hm−1)ωG
λ
(x0,x1,x2)

≤ hn

1−h
ω

G
λ
(x0,x1,x2), (3.51)

for all m > n ≥ N ∈ N, then

ω
G
λ
(x3n,x3m,x3m)≤

hn

1−h
ω

G
λ
(x0,x1,x2), (3.52)

for all m, l,n ≥ N for some N ∈ N, so that by condition (2) of proposition 2.8, we have

ω
G
λ
(x3n,x3m,x3l)≤ ω

G
λ

2
(x3n,x3m,x3m)+ω

G
λ

2
(x3l,x3m,x3m), (3.53)

so that

ω
G
λ
(x3n,x3m,x3l)≤ω

G
λ

2
(x3n,x3m,x3m)+ω

G
λ

2
(x3l,x3m,x3m)

≤ω
G
λ
(x3n,x3m,x3m)+ω

G
λ
(x3l,x3m,x3m)

≤ hn

1−h
ω

G
λ
(x0,x1,x2)+

hn

1−h
ω

G
λ
(x0,x1,x2)

=

(
2hn

1−h

)
ω

G
λ
(x0,x1,x2). (3.54)
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Thus, we have
lim

n,m,l→∞

ω
G
λ
(xn,xm,xl) = 0, ∀ λ > 0. (3.55)

Therefore, we can clearly see that {xn}n∈N is modular G-Cauchy sequence.
The modular G-completeness of (Xω ,ω

G) implies that for any λ > 0, lim
n,m→∞

ωG
λ
(xn,xm,u) = 0, i.e., for

any ε > 0, there exists n0 ∈ N such that ωG
λ
(xn,xm,u)< ε for all n,m ∈ N and n,m ≥ n0, which implies

that lim
n→∞

xn → u ∈ XωG as n → ∞, or by applying condition (5) of Proposition 2.9.
As T,S,R are onto mappings, there exists w, p,v ∈ XωG such that u = Tw,u = Sp and u = Rv. We claim

that u = w = p = v.
First, from inequality (3.48) with x = x3n+1 and y = p, z = v, we have that for all n ≥ 1,λ > 0

ω
G
λ
(x3n,u,u) =ω

G
λ
(T x3n+1,Sp,Rv)

≥αω
G
λ
(x3n+1, p,v)+βω

G
λ
(T x3n+1,x3n+1, p)

+ γω
G
λ
(Sp, p,v)+δω

G
λ
(x3n+1,Rv,v)

=αω
G
λ
(x3n+1, p,v)+βω

G
λ
(x3n,x3n+1, p)

+ γω
G
λ
(Sp, p,v)+δω

G
λ
(x3n+1,Rv,v)

=αω
G
λ
(x3n+1, p,v)+βω

G
λ
(x3n,x3n+1, p)

+ γω
G
λ
(u, p,v)+δω

G
λ
(x3n+1,u,v) ∀ λ > 0. (3.56)

As n → ∞, we have αωG
λ
(u, p,v) + βωG

λ
(u,u, p) + γωG

λ
(u, p,v) + δωG

λ
(u,u,v) ≤ 0, so that (α +

γ)ωG
λ
(u, p,v) + βωG

λ
(u,u, p) + δωG

λ
(u,u,v) = 0. Therefore, since α + γ ̸= 0, ωG

λ
(u, p,v) = 0, i.e.,

u = p = v, similarly, since β ,δ ̸= 0, ωG
λ
(u,u, p) = 0 and ωG

λ
(u,u,v) = 0, i.e., u = p = v.

Secondly, using inequality (3.48) with x = w and y = x3n+2 and z = v, we have that for all n ≥ 1,λ > 0

ω
G
λ
(u,x3n+1,u) =ω

G
λ
(Tw,Sx3n+2,Rv)

≥αω
G
λ
(w,x3n+2,v)+βω

G
λ
(Tw,w,x3n+2)

+ γω
G
λ
(Sx3n+2,x3n+2,v)+δω

G
λ
(w,Rv,v)

=αω
G
λ
(w,x3n+2,v)+βω

G
λ
(Tw,w,x3n+2)

+ γω
G
λ
(x3n+1,x3n+2,v)+δω

G
λ
(w,Rv,v)

=αω
G
λ
(w,x3n+2,v)+βω

G
λ
(u,w,x3n+2)

+ γω
G
λ
(x3n+1,x3n+2,v)+δω

G
λ
(w,u,v) ∀ λ > 0. (3.57)

As n → ∞, we have (α + δ )ωG
λ
(w,u,v)+βωG

λ
(u,w,u)+ γωG

λ
(u,u,v) ≤ 0. Since α + δ ̸= 0, β ̸= 0

and γ ̸= 0, w = u = v.
lastly, from inequality (3.48) with x = w and y = p and z = x3n+3, we have that for all n ≥ 1,λ > 0

ω
G
λ
(u,u,x3n+2) =ω

G
λ
(Tw,Sp,Rx3n+3)

≥αω
G
λ
(w, p,x3n+3)+βω

G
λ
(Tw,w, p)

+ γω
G
λ
(Sp, p,x3n+3)+δω

G
λ
(w,Rx3n+3,x3n+3)

=αω
G
λ
(w, p,x3n+2)+βω

G
λ
(Tw,w, p)

+ γω
G
λ
(Sp, p,x3n+3)+δω

G
λ
(w,x3n+2,x3n+3)

=αω
G
λ
(w, p,x3n+3)+βω

G
λ
(u,w, p)

+ γω
G
λ
(u, p,x3n+3)+δω

G
λ
(w,x3n+2,x3n+3) ∀ λ > 0. (3.58)
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As n → ∞, we have (α + β )ωG
λ
(u,w, p)+ γωG

λ
(u, p,u)+ δωG

λ
(w,u,u) ≤ 0, hence, ωG

λ
(u,w, p) = 0,

i.e., u = w = p. We can clearly see that in the three cases above, u = w = p = v, so that u is a common
fixed point of T,S,R i.e., u = Tu = Su = Ru.

To prove uniqueness, suppose, if possible, that there exists another common fixed point of T,S,R, that
is, there is a u∗ ∈ XωG such that u∗ = Tu∗ = Su∗ = Ru∗.Suppose if possible that u ̸= u∗, and for all λ > 0,
again inequality (3.48) becomes;

ω
G
λ
(u,u∗,u∗) =ω

G
λ
(Tu,Su∗,Ru∗)

≥αω
G
λ
(u,u∗,u∗)+βω

G
λ
(Tu,u,u∗)

+ γω
G
λ
(Su∗,u∗,u∗)+δω

G
λ
(u,Ru∗,u∗)

=αω
G
λ
(u,u∗,u∗)+βω

G
λ
(u,u,u∗)

+ γω
G
λ
(u∗,u∗,u∗)+δω

G
λ
(u,u∗,u∗)

=(α +δ )ωG
λ
(u,u∗,u∗)+βω

G
λ
(u,u,u∗)

≥(α +δ )ωG
λ
(u,u∗,u∗)

>ω
G
λ
(u,u∗,u∗) (3.59)

which is a contradiction, hence u = u∗. □

Remark 3.23. Corollary 3.22 is an extension of Theorem 3.11 in Okeke and Francis [19].

Corollary 3.24. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds for
some positive integer, m ≥ 1

ω
G
λ
(T mx,Smy,Rmz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(T mx,x,y)+ γω

G
λ
(Smy,y,z)+δω

G
λ
(x,Rmz,z), (3.60)

where, α +β + γ +δ > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG

for some positive integer, m ≥ 1.

Proof. By corollary 3.22, T m,Sm and Rm has common fixed point say u ∈ XωG for some positive integer
m ≥ 1 by using inequality (3.60), we have that T mu = Smu = Rmu = u for some positive integer m ≥ 1.
For uniqueness, suppose that there exist another common fixed point u∗ ∈ XωG of T m,Sm and Rm for
some positive integer, m ≥ 1, such that T mu∗ = Smu∗ = Rmu∗ = u∗. Suppose, that u ̸= v, which implies
that for any λ > 0, from inequality (3.60), for some positive integer, m ≥ 1, we get is a contradiction,
hence u = u∗. □

Remark 3.25. Corollary 3.24 is an extension of Theorem 3.12 in Okeke and Francis [19].

Corollary 3.26. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ αω

G
λ
(x,y,z)+β

(
ω

G
λ
(T x,x,y)+ω

G
λ
(Sy,y,z)+ω

G
λ
(x,Rz,z)

)
, (3.61)

where, α +3β > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG .

Proof. Putting β = γ = δ , then by Proof Corollary 3.22, T,S,R has a common unique fixed point in XωG .
□

Corollary 3.27. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds for
some positive integer, m ≥ 1

ω
G
λ
(T mx,Smy,Rmz)≥ αω

G
λ
(x,y,z)+β

(
ω

G
λ
(T mx,x,y)+ω

G
λ
(Smy,y,z)+ω

G
λ
(x,Rmz,z)

)
, (3.62)
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where, α + 3β > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG for
some positive integer, m ≥ 1.

Proof. By Proof Corollary 3.26, T,S,R has a common unique fixed point in XωG for some positive integer,
m ≥ 1. □

Corollary 3.28. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(x,Rz,T x)+ γω

G
λ
(y,Sy,z)+δω

G
λ
(z,Sy,Rz), (3.63)

where, α +β +γ +δ > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG .

Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG By continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2)> 0, so that from inequality (3.63), and after some simplifications, we get

ω
G
λ
(x3n+1,x3n+2,x3n+3)≤ kω

G
λ
(x3n,x3n+1,x3n+2), (3.64)

where, k = 1−β

(α+γ+δ ) < 1, β < 1 and λ > 0. Following Proof of Corollary 3.22, we conclude that T,S,R
has a common unique fixed point in XωG . □

Corollary 3.29. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T mx,Smy,Rmz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(x,Rmz,T x)+ γω

G
λ
(y,Smy,z)+δω

G
λ
(z,Smy,Rmz), (3.65)

where, α +β + γ +δ > 1 and β < 1 for all λ > 0. Then, T,S,R has a common unique fixed point in XωG

for some positive integer, m ≥ 1.

Proof. By Proof corollary 3.28, we can conclude that T,S,R has a common unique fixed point in XωG for
some positive integer, m ≥ 1. □

Corollary 3.30. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T x,Sy,Rz)≥ amax

{
ω

G
λ
(x,y,z),ωG

λ
(T x,y,y),

ω
G
λ
(Sy,y,z),ωG

λ
(x,Rz,z)

}
.

(3.66)

Then, T,S,R has a common unique fixed point in XωG .

Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG By continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now, since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2) > 0, so that from inequality (3.66), we have, with x = x3n+1 and y = x3n+2

and z = x3n+3, for all n ≥ 1, λ > 0,
ω

G
λ
(x3n,x3n+1,x3n+2) =

ωG
λ
(T x3n+1,Sx3n+2,Rx3n+3)≥ amax

{
ω

G
λ
(x3n+1,x3n+2,x3n+3),ω

G
λ
(T x3n+1,x3n+2,x3n+2),

ω
G
λ
(Sx3n+2,x3n+2,x3n+3),ω

G
λ
(x3n+1,Rx3n+3,x3n+3)

}
.

(3.67)
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So that

ωG
λ
(x3n,x3n+1,x3n+2)≥ amax

{
ω

G
λ
(x3n+1,x3n+2,x3n+3),ω

G
λ
(x3n,x3n+2,x3n+2),

ω
G
λ
(x3n+1,x3n+2,x3n+3),ω

G
λ
(x3n+1,x3n+2,x3n+3)

}
.

(3.68)

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+3)≤ bω

G
λ
(x3n,x3n+1,x3n+2), (3.69)

for all λ > 0 and b = 1
a < 1. By proof of corollary 3.22, T,S,R has a common unique fixed point in

XωG . □

Corollary 3.31. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T mx,Smy,Rmz)≥ amax

{
ω

G
λ
(x,y,z),ωG

λ
(T mx,y,y),

ω
G
λ
(Smy,y,z),ωG

λ
(x,Rmz,z)

}
.

(3.70)

Then, T,S,R has a common unique fixed point in XωG for some positive integer m ≥ 1.

Proof. By corollary 3.30, we can see that T mu = Smu = Rmu = u for some positive integer m ≥ 1.
Suppose that there exists v ∈ XωG such that T mv = Smv = Rmv = v for some positive integer m ≥ 1. Now
we claim that u ̸= v implies that for any λ > 0, we have ωG

λ
(u,v,v)> 0, then for uniqueness, inequality

(3.70 we get a contradiction since a > 1, hence u = v.
□

Corollary 3.32. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which satisfy the condition

ω
G
λ
(T x,Sy,Rz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(Sx,T x,T x)+ γω

G
λ
(Ry,Sy,Sy)+δω

G
λ
(T z,Rz,Rz), (3.71)

where, α > 1 and for all λ > 0. Then, T,S,R has a common unique fixed point in XωG .

Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG By continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2) > 0. From inequality (3.71), with x = x3n+1 and y = x3n+2 and z = x3n+3,

we have that for all n ≥ 1, λ > 0,

ω
G
λ
(x3n,x3n+1,x3n+2) =ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+3)

≥αω
G
λ
(x3n+1,x3n+2,x3n+3)+βω

G
λ
(Sx3n+1,T x3n+1,T x3n+1)

+ γω
G
λ
(Rx3n+2,Sx3n+2,Sx3n+2)+δω

G
λ
(T x3n+3,Rx3n+3,Rx3n+3)

=αω
G
λ
(x3n+1,x3n+2,x3n+3)+βω

G
λ
(x3n,x3n,x3n)

+ γω
G
λ
(x3n+1,x3n+1,x3n+1)+δω

G
λ
(x3n+2,x3n+2,x3n+2)

=αω
G
λ
(x3n+1,x3n+2,x3n+3). (3.72)

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+3)≤ rω

G
λ
(x3n,x3n+1,x3n+2), (3.73)

where r = 1
α

, and for all λ > 0, r < 1. By continuing this process, we get

ω
G
λ
(x3n+1,x3n+2,x3n+3)≤ rn

ω
G
λ
(x3n,x3n+1,x3n+2), ∀ λ > 0, (3.74)

and n ≥ 1. By Corollary 3.22, we are done. □
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Remark 3.33. Corollary 3.32 is an extension of Corollary 3.5 in [28]. Corollary 3.32 is an extension of
Corollary 3.16 in Okeke and Francis [19].

Corollary 3.34. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S : XωG → XωG be two

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Sy,z)≥ αω

G
λ
(x,y,z)+βω

G
λ
(Sx,T x,T x)+ γω

G
λ
(y,Sy,Sy)+δω

G
λ
(T z,z,z), (3.75)

where, α > 1 and for all λ > 0. Then, T,S has a common unique fixed point in XωG .

Proof. Take R = I in Corollary 3.32, we can conclude that T,S has a common unique fixed point in XωG .
□

Corollary 3.35. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let S,R : XωG → XωG be two

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(x,Sy,Rz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(Sx,x,x)+ γω

G
λ
(Ry,Sy,Sy)+δω

G
λ
(z,Rz,Rz), (3.76)

where, α > 1 and for all λ > 0. Then, S,R has common unique fixed point in XωG .

Proof. Take T = I in Corollary 3.32, we can conclude that S,R has common unique fixed point in XωG .
□

Corollary 3.36. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,R : XωG → XωG be two

onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,y,Rz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(x,T x,T x)+ γω

G
λ
(Ry,y,y)+δω

G
λ
(T z,Rz,Rz), (3.77)

where, α > 1 and for all λ > 0. Then, T,S,R has common unique fixed point in XωG .

Proof. Take S = I in Corollary 3.32, we can conclude that T,R has common unique fixed point in XωG .
□

Corollary 3.37. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let R : XωG → XωG be an onto

mapping on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(x,y,Rz)≥ αω

G
λ
(x,y,z)+ γω

G
λ
(Ry,y,y)+δω

G
λ
(z,Rz,Rz), (3.78)

where, α > 1 and for all λ > 0. Then, R has unique fixed point in Xω .

Proof. Take S = T = I in Corollary 3.32, we can conclude that R has a unique fixed point in XωG .
□

Corollary 3.38. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T : XωG → XωG be an onto

mapping on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,y,z)≥ αω

G
λ
(x,y,z)+βω

G
λ
(x,T x,T x)+δω

G
λ
(T z,z,z), (3.79)

where, α > 1 and for all λ > 0. Then, T has unique fixed point in XωG .

Proof. Take R = S = I in Corollary 3.32, we can conclude that T has a unique fixed point in XωG . □

Corollary 3.39. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T mx,Smy,Rmz)≥ αω

G
λ
(x,y,z)+βω

G
λ
(Smx,T mx,T mx)

+ γω
G
λ
(Rmy,Smy,Smy)+δω

G
λ
(T mz,Rmz,Rmz), (3.80)

where, α > 1 and for all λ > 0. Then, T,S,R has common unique fixed point in XωG for some positive
integer, m ≥ 1.
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Proof. By Corollary 3.32, we can see that T mu = Smu = Rmu = u for some positive integer m ≥ 1.
Suppose that there exists v ∈ XωG such that T mv = Smv = Rmv = v for some positive integer m ≥ 1. Now
we claim that u ̸= v implies that for any λ > 0, we have ωG

λ
(u,v,v)> 0, then for uniqueness, inequality

(3.80) we arrive a contradiction, hence u = v. □

Corollary 3.40. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG for which the following condition holds

ω
G
λ
(T x,Sy,Rz)≥ αω

G
λ
(x,y,z)+β

(
ω

G
λ
(Sx,T x,T x)+ω

G
λ
(Ry,Sy,Sy)+ω

G
λ
(T z,Rz,Rz)

)
, (3.81)

where, α > 1 for all λ > 0. Then, T,S,R has common unique fixed point in XωG .

Proof. Putting β = γ = δ , then by Corollary 3.32, T,S,R has a common unique fixed point in XωG . □

Corollary 3.41. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T x,Sy,Rz)≥ amax

{
ω

G
λ
(x,y,z),ωG

λ
(Sx,T x,T x),

ω
G
λ
(Ry,Sy,Sy),ωG

λ
(T z,Rz,Rz)

}
.

(3.82)

Then, T,S,R has common unique fixed point in XωG .

Proof. Let x0 ∈ XωG be arbitrary. Since T,S,R are onto mappings, there exists x1 ∈ XωG such that x0 =
T x1, x2 ∈ XωG such that x1 = Sx2 and x2 = Rx3 for x3 ∈ XωG By continuing this process, we can find a
sequence {x3n}n≥1 ∈ XωG such that x3n = T x3n+1 for all n ∈ N so that we have the inverse iterations as
x3n = T x3n+1, x3n+1 = Sx3n+2 and x3n+2 = Rx3n+3. Now, since x3n ̸= x3n+1 ̸= x3n+2 implies that for any
λ > 0, ωG

λ
(x3n,x3n+1,x3n+2) > 0. From inequality (3.82), with x = x3n+1 and y = x3n+2 and z = x3n+3,

we have that for all n ≥ 1, λ > 0,

ω
G
λ
(x3n,x3n+1,x3n+2) = ω

G
λ
(T x3n+1,Sx3n+2,Rx3n+3)

≥ amax

{
ω

G
λ
(x3n+1,x3n+2,x3n+3),ω

G
λ
(Sx3n+1,T x3n+1,T x3n+1),

ω
G
λ
(Rx3n+2,Sx3n+2,Sx3n+2),ω

G
λ
(T x3n+3,Rx3n+3,Rx3n+3)

}
(3.83)

Hence,

ωG
λ
(x3n,x3n+1,x3n+2)≥ amax

{
ω

G
λ
(x3n+1,x3n+2,x3n+3),ω

G
λ
(x3n,x3n,x3n),

ω
G
λ
(x3n+1,x3n+1,x3n+1),ω

G
λ
(x3n+2,x3n+2,x3n+2)

}
.

(3.84)

Therefore,
ω

G
λ
(x3n+1,x3n+2,x3n+3)≤ κω

G
λ
(x3n,x3n+1,x3n+2), (3.85)

for all λ > 0 and κ = 1
a < 1. Proof of Corollary 3.32 completes Corollary 3.41. Hence T,S,R has

common unique fixed point in XωG .
□

Corollary 3.42. Let (Xω ,ω
G) be a G-complete modular G-metric space. Let T,S,R : XωG → XωG be

three onto mappings on XωG , for all x ̸= y ̸= z ̸= x ∈ XωG and there is an expansive constant a > 1, for
which the following condition holds

ωG
λ
(T mx,Smy,Rmz)≥ amax

{
ω

G
λ
(x,y,z),ωG

λ
(Smx,T mx,T mx),

ω
G
λ
(Rmy,Smy,Smy),ωG

λ
(T mz,Rmz,Rmz)

}
.

(3.86)

Then, T,S,R has common unique fixed point in XωG for some positive integer m ≥ 1.
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Proof. By Corollary 3.41, we can see that T mu = Smu = Rmu = u for some positive integer m ≥ 1.
Suppose that there exists v ∈ XωG such that T mv = Smv = Rmv = v for some positive integer m ≥ 1. Now
we claim that u ̸= v implies that for any λ > 0, we have ωG

λ
(u,v,v)> 0, then for uniqueness, inequality

(3.86) we have a contradiction since a > 1, hence u = v. □
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