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Abstract. It is the purpose of this paper to establish △-demiclosedness principle for uniformly contin-
uous generalized asymptotically η-strictly pseudocontractive operators in CAT (0) spaces. In addition,
a modified Halpern-type iterative algorithm is constructed and its convergence to a common element of
fixed point set of uniformly continuous asymptotically η-strictly pseudo-contractive operator and set of
common solutions of finite collection of monotone inclusion problems is proved in complete CAT (0)

space. As application of the results obtained, approximate common solution of finite collection of con-
vex minimization and fixed point problems for uniformly continuous asymptotically η-strictly pseudo-
contractive operator is obtained. The theorems proved extend, generalize, improve and unify several
existing results in this direction of research.
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1. Introduction

It is worthy to note that most of definitions and concepts presented in this section are standard, and
thus can neither be changed nor modified. Now, let (Z, ρ) be a metric space, an operator T : D(T ) ⊂
Z → R(T ) ⊂ Z (where D(T ) and R(T ) denote the domain and range of T , respectively) is called
nonexpansive if

∀ u, v ∈ D(T ), ρ(T u, T v) ≤ ρ(u, v).

The operator T is said to be asymptotically nonexpansive if there is a sequence {µn}∞n=1 in [0,∞) with
µn → 0 as n → ∞ such that

∀ n ≥ 1, ∀ u, v ∈ D(T ), ρ(T nu, T nv) ≤ (1 + µn)ρ(u, v).

The operator T is said to be uniformly L-Lipschitzian, if there exists a constant L > 0 such that

∀ n ≥ 1, ∀ u, v ∈ D(T ), ρ(T nu, T nv) ≤ Lρ(u, v);

and the mapping T is called L-Lipschitzian if there exists a constant L > 0 such that

∀ u, v ∈ D(T ), ρ(T u, T v) ≤ Lρ(u, v).
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The operator T is said to be uniformly continuous on D(T ) if for any two sequences {un}∞n=1 and
{vn}∞n=1 in D(T ) such that ρ(un, vn) → 0 as n → ∞, we have that ρ(T un, T vn) → 0 as n → ∞. A
point u∗ ∈ D(T ) is called a fixed point of T if T u∗ = u∗. The set of all fixed points of an operator T
shall be denoted by F(T ), that is,

F(T ) := {u ∈ D(T ) : T u = u}.

Given a metric space (Z, ρ), let u, v ∈ Z be such that ρ(u, v) = ℓ. An isometry γ : [0, ℓ] → Z
with γ(0) = u and γ(ℓ) = v is called a geodesic path from u to v. The image {γ(t) : t ∈ [0, ℓ]} of the
operator γ in Z , that is, the image of the geodesic path γ is named a geodesic segment. The metric space
(Z, ρ) is called a (uniquely) geodesic space if every two points of Z are joined by (only one) geodesic
segment. A geodesic triangle △(u1, u2, u3) in a geodesic space Z consists of three points u1, u2, u3
of Z and three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic
triangle △(u1, u2, u3) is the triangle △̄(u1, u2, u3) := △(ū1, ū2, ū3) in the Cartesian plane R2 such
that

ρ(ui, uj) = ρ
R2
(ūi, ūj), i, j = 1, 2, 3,

where ρ
R2

is the usual metric on R2.

A geodesic space Z is said to be a CAT (0) space if for each geodesic triangle △(u1, u2, u3) in Z
and its comparison triangle △̄(u1, u2, u3) := △(ū1, ū2, ū3) in R2, the CAT (0) inequality ρ(u, v) ≤
ρ
R2
(ū, v̄) is satisfied for all u, v ∈ △ and ū, v̄ ∈ △̄. Complete CAT (0) spaces are often referred to as

Hadamard spaces. Given u, v ∈ Z and α ∈ [0, 1], we write αu⊕ (1−α)v for the unique point z̃ in the
geodesic segment joining from u to v such that

ρ(z̃, u) = (1− α)ρ(u, v) and ρ(z̃, v) = αρ(u, v). (1.1)

For any u, v ∈ Z, the geodesic segment joining u and v is denoted by [u, v], that is, [u, v] = {αu⊕ (1−
α)v : α ∈ [0, 1]}. A subset K of a CAT (0) space is said to be convex if for all u, v ∈ K, [u, v] ⊆ K.

Let (Z, ρ) be a metric space, let −→uv := (u, v) ∈ Z × Z, the pair −→uv is called a vector in Z × Z. A
quasilinearization is a map ⟨., .⟩ : (Z × Z)× (Z × Z) → R defined ∀ u, v, w, x ∈ Z by

⟨−→uv,−→wx⟩ = 1

2

(
ρ2(u, x) + ρ2(v, w)− ρ2(u,w)− ρ2(v, x)

)
. (1.2)

The concept of quasilinearization was introduced by Berg and Nikolaev [4].
It obvious that for all u, v, w, x ∈ Z, ⟨−→uv,−→wx⟩ = ⟨−→wx,−→uv⟩, ⟨−→uv,−→wx⟩ = −⟨−→vu,−→wx⟩ and ⟨−→uz,−→wx⟩ +

⟨−→zv,−→wx⟩ = ⟨−→uv,−→wx⟩. A metric space (Z, ρ) is said to satisfy the Cauchy-Schwarz inequality if for all
u, v, w, x ∈ Z

⟨−→uv,−→wx⟩ ≤ ρ(u, v)ρ(w, x). (1.3)

It is known that a geodesically connected metric space is a CAT (0) space if and only if it satisfies the
Cauchy-Schwarz inequality (see [4]). For more detailed discussion on these spaces the reader may see
[5, 6].

Given a metric space (Z, ρ), let C(Z) denote the space of all continuous real-valued functions on
Z . For s ∈ R, u, v ∈ Z, consider the function Θ(s, u, v) ∈ C(Z) defined for all z ∈ Z by

Θ(s, u, v)(z) = s⟨−→uv,−→uz⟩, (1.4)

it follows from (1.3) that

Θ(s, u, v)(z) = s⟨−→uv,−→uz⟩ ≤ L
(
Θ(s, u, v)

)
,
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where for s ∈ R, u, v ∈ Z, L
(
Θ(s, u, v)

)
= |s|ρ(u, v), and for any g ∈ C(Z), the function L :

C(Z) → R defined by

L(g) = sup
{g(u)− g(v)

ρ(u, v)
: u, v ∈ Z, u ̸= v

}
,

is called Lipschitz semi-norm of the function g. The pair
(
C(Z), L

)
is called Lipschitz semi-norm space.

The function D : (R×Z ×Z)× (R×Z ×Z) → R defined for (r, u, v), (s, w, x) ∈ R×Z ×Z by

D((r, u, v), (s, w, x)) = L(Θ(r, u, v)−Θ(s, w, x))

is called the pseudo-metric on R×Z ×Z , and the pair (R×Z ×Z,D) is called a pseudo-metric space.
It is shown in [14, Lemma 2.1] that D((r, u, v), (s, w, x)) = 0 if and only if r⟨−→uv,−→pq⟩ = s⟨−→wx,−→pq⟩
for all p, q ∈ X . The dual space of a metric space (Z, ρ), is the pseudo-metric space (Z∗,D), where
Z∗ := {[−−→suv] : (s, u, v) ∈ R×Z ×Z}.

Let Z be a complete CAT (0) space and Z∗ be its dual space. A multivalued operator A : Z → 2Z
∗

with domainD(A) := {u ∈ Z : Au ̸= ∅} is called monotone if for allu, v ∈ D(A), u∗ ∈ Au, v∗ ∈ Av,

⟨u∗ − v∗,−→vu⟩ ≥ 0 (see [15]).

A monotone operator A is said to be maximal monotone if the graph G(A) of A defined by

G(A) := {(u, u∗) ∈ Z × Z∗ : u∗ ∈ A(u)},
is not properly contained in the graph of any other monotone operator. The resolvent of a monotone
operator A of order α > 0 is the multivalued operator JA

α : Z → 2Z defined for all u ∈ Z by

JA
α (u) :=

{
z ∈ Z :

[ 1
α
−→zu

]
∈ Az

}
.

A multivalued operator A said to satisfy the range condition if for every α > 0, D(JA
α ) = Z (see

[15]).
It is well known that theory of monotone operators is among the most important theories in non-

linear and convex analysis, and plays very crucial roles in optimization theory, variational inequalities,
semi group theory, evolution equations, and many others. One of the most important problems in the
theory of monotone operators is the problem of finding

u ∈ D(A) such that 0 ∈ Au, (1.5)

where A : Z → 2Z
∗ is a monotone operator. Problem (1.5) is called Monotone Inclusion Problem

(MIP). MIPs can be applied in solving several mathematical problems such as minimization problems,
variational inequality problems, saddle point problems and several others. Throughout this paper, we
shall denote the set of solutions of problem (1.5) by N (A). The most popular method for finding solu-
tions of MIP, is the Proximal Point Algorithm (PPA) introduced in Hilbert space by Martinet [20] and
further studied by Rockafellar [23]. The PPA is generated from arbitrary x0 ∈ H by

xn−1 − xn ∈ αnA(xn), (1.6)

where {αn}∞n=1 is a sequence of positive real numbers. Rockafellar [23] proved that the sequence
{xn}∞n=1 generated by the algorithm (1.6) is weakly convergent to a solution of MIP (1.5), provided
αn ≥ α0 for each n ∈ N, for some α0 > 0. The PPA was later studied in CAT (0) spaces by Bačák [2],
who proved the ∆-convergence of it when the monotone operator A is the subdifferential of a convex
proper and lower semicontinuous function, where a sequence {xn}∞n=1 in a metric space (Z, ρ) is said
to be △-convergent to x∗ ∈ Z if for every y ∈ Z, lim sup

n→∞

(
ρ(xn, x

∗)− ρ(xn, y)
)
≤ 0.
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Khatibzadeh and Ranjbar [15] studied the following PPA in CAT (0) spaces:{
x0 ∈ Z,[

1
αn

−−−−→xnxn−1

]
∈ Axn.

(1.7)

They obtained a strong and ∆-convergence of the sequence generated by (1.7) to a solution of (1.5).
Ranjbar and Khatibzadeh [22] proposed the following Mann-type and Halpern-type PPA in a CAT (0)
space for finding a solution of (1.5):{

x0 ∈ Z,

xn+1 = σnxn ⊕ (1− σn)JA
αn

xn
(1.8)

and {
u, x0 ∈ Z,

xn+1 = σnu⊕ (1− σn)JA
αn

xn, n ≥ 1,
(1.9)

where {αn}∞n=1 is a sequence in (0,+∞) and {αn}∞n=1 is a sequence in [0, 1]. They obtained ∆ and
strong convergence of the Mann-type and Halpern-type PPA, respectively, to a solution of (1.5).

In another direction of research, several classes of operators have been introduced and approximate
fixed point results for such classes of operators in the setting of CAT (0) spaces by authors had gained
publication in recent past (see, e.g., Sahin and Basarir [24], Ugwunnadi [25], and references therein).
In [24], Sahin and Basarir introduced the concept of η-strictly pseudo-contractive operator in CAT (0)
space as follows: Given a nonempty subset K of a CAT (0) space (Z, ρ), an operator T : K → K is
said to be η-strictly pseudo-contractive if there exists a constant η ∈ [0, 1) such that for all u, v ∈ K ,

ρ2(T u, T v) ≤ ρ2(u, v) + η(ρ(u, T u) + ρ(v, T v))2 . (1.10)

They established demiclosedness principle for this class of operators in CAT (0) space and proved △-
convergence theorem using a cyclic algorithm and a multi-step iteration for this class of operators.
They also obtained a strong convergence theorem using a modified Halpern’s iteration, introduced in
Hilbert spaces by Hu [16].

Ugwunnadi [25] introduced the concept of asymptoitcally η- strictly pseudo-contractive operator
in CAT (0) space as follows: Let K be a nonempty subset of a CAT (0) space (Z, ρ). An operator
T : K → K is said to be asymptotically η-strictly pseudo-contractive if there exist a constant η ∈ [0, 1)
and a sequences {µn} in [0,∞), with lim

n→∞
µn = 0 such that for all u, v ∈ K and for all n ≥ 1,

ρ2(T nu, T nu) ≤ (1 + µn)ρ
2(u, v) + η(ρ(u, T nu) + ρ(v, T nv))2. (1.11)

On assumption that the operator T is uniformly L-Lipschitzian, △-demiclosedness principle was es-
tablished in [25] for the class of operators satisfying (1.11) in CAT (0) space. Moreover, on the same
assumption, strong convergence theorem was established for this class of operators. It is well known
that the class of Uniformly L-Lipschitzian operators is a proper subclass of that of L-Lipschizian op-
erators, which in turn, is a proper subclass of uniformly continuous operators. These facts prompt the
following question:

Question 1: Can the main results obtained in [25] be extendable from the class of uniformly L-
Lipschitzian asymptotically η-strictly pseudo-contractive operators to the more general class of uni-
formly continuous asymptotically η-strictly pseudo-contractive operators under the same setting?

It is our purpose in this paper to, not only give affirmative answer to the above question, but also
introduce a more general class of operators for which our new results are obtained. In fact, motivated
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and inspired by the results of Sahin and Basarir [24], Khatibzadeh and Ranjbar [15], Ranjbar and Khat-
ibzadeh [22], Ugwunnadi [25], we first introduce the following new class of operators called the class
of generalized asymptotically η-strictly pseudo-contractive operator as follows:

Let K be a nonempty subset of a CAT (0) space (Z, ρ). An operator T : K → K is said to be
generalized asymptotically η-strictly pseudo-contractive operator if there exist a constant η ∈ [0, 1)
and two a sequences {µn}, {ξn} in [0,∞) with lim

n→∞
µn = 0 and lim

n→∞
ξn = 0 such that for all u, v ∈ C

and n ≥ 1,

ρ2(T nu, T nv) ≤ (1 + µn)ρ
2(u, v) + η(ρ(u, T nu) + ρ(v, T nv))2 + ξn. (1.12)

It is obvious that every operator satisfying (1.11) authomatically satisfies (1.12) but the converse is not
necessarily the case.

Moreover,△-demiclosedness principle for uniformly continuous generalized asymptotically η-strictly
pseudo-contractive operators in CAT (0) space is established. In addition, strong convergence theo-
rem is obtained for approximation of a common element of fixed points set of more general class of
uniformly continuous asymptotically η-strictly strictly pseudo-contractive operator and set of common
solutions of a finite family of monotone inclusion problems in a complete CAT (0) space. Furthermore,
the results obtained are utilized for approximation of a common solution of a finite family of con-
vex minimization problem and fixed point problem for uniformly continuous asymptotically η-strictly
pseudo-contractive operator in complete CAT (0) space. The theorems obtained in this paper extend,
generalize, improve and unify the results of Sahin and Basarir [24], Khatibzadeh and Ranjbar [15],
Ranjbar and Khatibzadeh [22], Ugwunnadi [25] and several other results announced recently in this
direction.

2. Preliminaries

We shall start this section with introduction of the concept of asymptotic center in a complete CAT(0)
space; this concept shall play a crucial role in what follows. Now, let {un}∞n=1 be a bounded sequence in
a complete CAT (0) space (Z, ρ). For u ∈ Z , let ∇(u, {un}) = lim sup

n→∞
ρ(u, un), then the asymptotic

radius R({un}) of {un}∞n=1 is given by R({un}) = inf{∇(u, {un}) : u ∈ Z} and the asymptotic
center C({un}) of {un}∞n=1 is the set C({un}) = {u ∈ Z : ∇(u, {un}) = R({un})}. It is well
known that in a complete CAT (0) space, C({un}) consists of exactly one point (see [11, Proposition
7]); moreover, if un ⇀ u∗ as n → ∞, then C({un}) = {u∗}.

In the sequel, the following concepts and lemmas shall play crucial roles:

Lemma 2.1. [10] If K is a closed convex subset of a complete CAT (0) space (Z, ρ) and let {un}∞n=1

be a bounded sequence in K , then the asymptotic center of {un}∞n=1 is in K .

Lemma 2.2. [21] If K is a closed convex subset of a complete CAT (0) space (Z, ρ) and let {un}∞n=1

be a bounded sequence in K , then △− lim
n→∞

un = u∗ implies that un ⇀ u∗ as n → ∞

Lemma 2.3. [13] Let (Z, ρ) be a complete CAT (0) space, {un}∞n=1 be a sequence in Z and let u0 ∈ Z
be fixed, then {un}∞n=1 △−converges to u0 if and only if lim supn→∞⟨−−→u0un,

−→u0v⟩ ≤ 0 for all v ∈ K.

Lemma 2.4. [10] Let (Z, ρ) be a complete CAT (0) space and T : Z → Z be a nonexpansive operator,
then the conditions that {un} ∆-converges to u0 and ρ(un, T un) → 0, implies u0 = T u0.

Lemma 2.5. [17] Every bounded sequence in a complete CAT (0) space has a △−convergent subse-
quence. That is, if {un}∞n=1 is a bounded sequence in a complete CAT (0) space (Z, ρ), then {un}∞n=1

has a △−convergent subsequence.

Lemma 2.6. [12] Let (Z, ρ) be a CAT (0) space, then for any u, v, w ∈ Z and α ∈ [0, 1],
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(i) ρ(αu⊕ (1− α)v, w) ≤ αρ(u,w) + (1− α)ρ(v, w),
(ii) ρ2(αu⊕ (1− α)v, w) ≤ αρ2(u,w) + (1− α)ρ2(v, w)− α(1− α)ρ2(u, v).

Lemma 2.7. [9] Let (Z, ρ) be a CAT (0) space, then for any u, v, w ∈ Z and α ∈ [0, 1],

ρ2(αu⊕ (1− α)v, w) ≤ α2ρ2(u,w) + (1− α)2ρ2(v, w) + 2α(1− α)⟨−→uw,−→vw⟩.

Theorem 2.8. [15] Let (Z, ρ) be a CAT (0) space and JA
α be the resolvent of a multivalued operator A

of order α, then

(i) for any α > 0, R(JA
α ) ⊂ D(A) and F(JA

α ) = N (A), where R(JA
α ) is the range of JA

α ,
(ii) if A is monotone, then JA

α is a single-valued and firmly nonexpansive operator,
(iii) if A is monotone and 0 < α1 ≤ α2, then for any u ∈ Z, ρ(u,JA

α1
u) ≤ 2ρ(u,JA

α2
u).

Lemma 2.9. [26] Let (Z, ρ) be a CAT (0) space and A : Z → 2Z
∗ be a monotone operator, then

ρ2(u∗,JA
α u) + ρ2(JA

α u, u) ≤ ρ2(u∗, u)

for all u∗ ∈ N (A), u ∈ Z and α > 0.

Lemma 2.10. ([19]) Let {θn} be a sequence of real numbers such that there exists a subsequence {ni}
of {n} with θni < θni+1 for all i ∈ N, then there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞ as k → ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N.

θmk
≤ θmk+1 and θk ≤ θmk+1.

In fact, mk = max{j ≤ k : θj < θj+1}.

Lemma 2.11. [28] Let {θn} be a sequence of nonnegative real numbers satisfying the following rela-
tion:

θn+1 ≤ (1− ζn)θn + ζnσn + γn, n ≥ 0,

where, (i) {ζn} ⊂ [0, 1],
∑

ζn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),∑
γn < ∞, then θn → 0 as n → ∞.

3. Main Results

3.1. ∆-demiclossedness principle for generalized asymptotically η-strictly pseudocontractive
operator.

Theorem 3.1. Let K be a closed convex nonempty subset of a complete CAT (0) space (Z, ρ) , let T :
K → K be a uniformly continuous generalized asymptotically η-strictly pseudocontractive operator such
that η ∈ [0, 12). For some p ∈ K , let {xn}n≥1 be a bounded sequence in K such that ∆ − lim

n→∞
xn = p

and lim
n→∞

ρ(xn, T xn) = 0, then p ∈ F(T ).

Proof. Since ∆− lim
n→∞

xn = p, we obtain from Lemma 2.2 that xn ⇀ p as n → ∞. So, by Lemma 2.1,
C({xn}) ⊂ K , and it is in fact equal to {p}. Since

lim
n→∞

ρ(xn, T xn) = 0,

we obtain by mathematical induction that for all m ∈ N,

lim
n→∞

ρ(xn, T mxn) = 0. (3.1)
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This follows from the fact that by our hypothesis, (3.1) holds for m = 1, that is, lim
n→∞

ρ(xn, T xn) = 0.
Suppose that for some k ≥ 1, lim

n→∞
ρ(xn, T kxn) = 0, we show that lim

n→∞
ρ(xn, T k+1xn) = 0. Observe

that

ρ(xn, T k+1xn) ≤ ρ(xn, T xn) + ρ(T xn, T k+1xn)

= ρ(xn, T xn) + ρ
(
T xn, T (T kxn)

)
. (3.2)

Since lim
n→∞

ρ(xn, T kxn) = 0, we obtain, by uniform continuity of T , that

lim
n→∞

ρ
(
T xn, T (T kxn)

)
= 0.

Thus, we obtain from (3.2) that for all m ∈ N, (3.1) holds. Observe further that for each x ∈ K and for
all m ∈ N,

lim sup
n→∞

ρ(xn, x) = lim sup
n→∞

ρ(T mxn, x). (3.3)

This follows from the fact that for each x ∈ K and for all m ∈ N,

ρ(xn, x) ≤ ρ(xn, T mxn) + ρ(T mxn, x) (3.4)

and

ρ(T mxn, x) ≤ ρ(T mxn, xn) + ρ(xn, x). (3.5)

So, taking lim sup
n→∞

on both sides of (3.4) and (3.5), and applying a necessary elementary rule governing
the concept of limit superior, we obtain (by combining the new inequalities emanating fromm (3.4) and
(3.5) respectively) that (3.3) holds.

Now, defining Φ : K → R by Φ(x) := lim sup
n→∞

ρ(xn, x) = lim sup
n→∞

ρ(T mxn, x), we obtain for all
m ∈ N (using the fact that T is generalized asymptotically η-strictly pseudocontractive operator) that

(
Φ(T mp)

)2
= lim sup

n→∞
ρ2(T mxn, T mp)

≤ lim sup
n→∞

(
(1 + µm)ρ2(xn, p) + η

(
ρ(xn, T mxn) + ρ(p, T mp)

)2
+ ξm

)
. (3.6)

Thus, we obtain from (3.6) that

(
Φ(T mp)

)2
≤ (1 + µm)

(
Φ(p)

)2
+ ηρ2(p, T mp) + ξm. (3.7)

Taking lim sup
m→∞

on both sides of (3.7)

lim sup
m→∞

(
Φ(T mp)

)2
≤

(
Φ(p)

)2
+ η lim sup

m→∞
ρ2(p, T mp). (3.8)

Moreover, it follows from Lemma 2.6 that with λ = 1
2 and for any n,m ∈ N,

ρ2
(
xn,

p⊕ T mp

2

)
≤ 1

2
ρ2(xn, p) +

1

2
ρ2(xn, T mp)− 1

4
ρ2(p, T mp). (3.9)

Taking lim sup
m→∞

on both sides of (3.9) and recalling that C{xn}) = {p}, we obtain for any m ∈ N,

(
Φ(p)

)2 ≤ Φ
(p⊕ T mp

2

)2
≤ 1

2

(
Φ(p)

)2
+

1

2

(
Φ(T mp)

)2 − 1

4
ρ2(p, T mp). (3.10)
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Inequality (3.10) gives

ρ2(p, T mp) ≤ 2
(
Φ(T mp)

)2 − 2
(
Φ(p)

)2
,

which implies that

lim sup
m→∞

ρ2(p, T mp) ≤ 2 lim sup
m→∞

(
Φ(T mp)

)2 − 2
(
Φ(p)

)2
. (3.11)

Combining inequalities (3.8) and (3.11), we obtain that

(1− 2η) lim sup
m→∞

ρ2(p, T mp) ≤ 0. (3.12)

Since 1− 2η > 0, we obtain from (3.12) that lim sup
m→∞

ρ2(p, T mp) = 0. Thus, we easily obtain that

lim
m→∞

ρ2(p, T mp) = 0. (3.13)

Observe that

ρ(T p, p) ≤ ρ(T p, T m+1p) + ρ(T m+1p, p)

= ρ(T p, T (T mp)) + ρ(T m+1p, p). (3.14)

Since by (3.13) lim
m→∞

ρ2(p, T mp) = 0, it is easy to see that

lim
m→∞

ρ(p, T mp) = 0.

Thus, by continuity of T ,

lim
m→∞

ρ(T p, T (T mp)) = 0.

Hence, we obtain from (3.14) that ρ(T p, p) = 0. This implies that T p = p. Hence, p ∈ F(T ). This
completes the proof. □

The following Corollaries easily follow from Theorem 3.1:

Corollary 3.1. Let K be a closed convex nonempty subset of a complete CAT (0) space (Z, ρ), let
T : K → K be a uniformly L-Lipschitzian generalized asymptotically η-strictly pseudocontractive op-
erator. For some p ∈ K , let {xn}n≥1 be a bounded sequence in K such that ∆ − lim

n→∞
xn = p and

lim
n→∞

ρ(xn, T xn) = 0, then p ∈ F(T ).

Corollary 3.2. Let K be a closed convex nonempty subset of a complete CAT (0) space (Z, ρ), let T :
K → K be a uniformly continuous asymptotically η-strictly pseudocontractive operator. For some p ∈ K ,
let {xn}n≥1 be a bounded sequence in K such that ∆ − lim

n→∞
xn = p and lim

n→∞
ρ(xn, T xn) = 0, then

p ∈ F(T ).

Corollary 3.3. Let K be a closed convex nonempty subset of a complete CAT (0) space (Z, ρ), let T :
K → K be a uniformly L-Lipschitzian asymptotically η-strictly pseudocontractive operator. For some
p ∈ K , let {xn}n≥1 be a bounded sequence in K such that ∆− lim

n→∞
xn = p and lim

n→∞
ρ(xn, T xn) = 0,

then p ∈ F(T ).
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3.2. Convergence theorem in the metric topology.

In this section, we state and prove the following theorem:

Theorem 3.2. Let (Z, ρ) be a complete CAT (0) space with dual space Z∗. Let Ai : Z → 2Z
∗
, i =

1, 2, . . . , N, be multivalued monotone operators that satisfy the range condition, and T : Z → Z be
a uniformly continuous asymptotically η-strictly pseudo-contractive operator with sequence {µn}∞n=1 ⊆

[0,∞) such that
∞∑
n=1

µn < ∞ and η ∈ [0, 12). Suppose that Ω := F(T ) ∩
(
∩N
i=1N (Ai)

)
̸= ∅ and for

arbitrary w, x1 ∈ Z , the sequence {xn} is generated by
vn = JAN

α
(N)
n

◦ JAN−1

α
(N−1)
n

◦ · · · ◦ JA2

α
(2)
n

◦ JA1

α
(1)
n

(xn),

yn = ζnw ⊕ (1− ζn)vn,
xn+1 = (1− βn)yn ⊕ βnT nyn, n ≥ 1,

(3.15)

(where {ζn}n≥1 and {βn}n≥1 are sequences in (0, 1) satisfying (i) lim
n→∞

ζn = 0, (ii)
∞∑
n=1

ζn = +∞, (iii)

µn = o(ζn), (iv) ∀ n ≥ 1 and for some γ0 > 0, γ0 ≤ βn < 1
2(1 − ζn)(1 − η) and 0 < (1 − γ0)(1 +

βnµn)ζn < 1 and for some α(i), i = 1, 2, ..., N, α
(i)
n > α(i),) then {xn}n≥1 converges in the metric

topology to some element of Ω.

Proof. The sequence {xn}n≥1 generated by (3.15) shall first be shown to be bounded. To see this, recall
that µn = o(ζn) means that lim

n→∞

µn

ζn
= 0. Thus, since the sequence {βn}n≥1 is bounded away from 0

by γ0, there exists an integer N0 ≥ 1 such that for all n ≥ N0,
µn

ζn
≤ γ0(1+βnµn)

βn
. This implies that for

all n ≥ N0, βnµn ≤ γ0δn, where δn := (1 + βnµn)ζn.

Now, for arbitrary x∗ ∈ Ω, set M0 := max{ρ2(x∗, xN0), (1− γ0)
−1ρ2(x∗, w)}. We show by induc-

tion that ∀ n ≥ N0,

ρ2(x∗, xn) ≤ M0. (3.16)
It is easy to see that for n = N0, ρ

2(x∗, xN0) ≤ M0. Suppose that (3.16) holds for some j ≥ N0, that
is, suppose that for some j ≥ N0, ρ

2(x∗, xj) ≤ M0, we show that inequality (3.16) also holds for j+1.
Observe that from (3.15) (using Lemma 2.6 and nonexpansiveness of JAk

α
(k)
n

, k = 1, 2, ..., N , that

ρ2(x∗, yj) = ρ2(x∗, ζju⊕ (1− ζj)vj)

≤ ζjρ
2(x∗, u) + (1− ζj)ρ

2(x∗, vj)− ζj(1− ζj)ρ
2(u, vj)

≤ ζjρ
2(x∗, u) + (1− ζj)ρ

2(x∗, vj)

≤ ζjρ
2(x∗, u) + (1− ζj)ρ

2(x∗, xj). (3.17)
So, using (3.17) and Lemma 2.6, we obtain from (3.15) that

ρ2(x∗, xj+1) = ρ2(x∗, (1− βj)yn ⊕ βjT jyj)

≤ (1− βj)ρ
2(x∗, yj) + βjρ

2(x∗, T jyj)− βj(1− βj)ρ
2(yj , T jyj)

≤ (1− βj)ρ
2(x∗, yj) + βj

(
(1 + µj)ρ

2(x∗, yj) + ηρ2(yj , T jyj)
)

−βj(1− βj)ρ
2(yj , T jyj)

=
[
1− βj + βj(1 + µj)

]
ρ2(x∗, yj)− βj(1− βj − η)ρ2(yj , T jyj). (3.18)

Thus, we obtain from (3.18) that
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ρ2(x∗, xj+1) ≤ [1 + βjµj ]ρ
2(x∗, yj)

≤ [1 + βjµj ]
(
αjρ

2(x∗, w) + (1− αj)ρ
2(x∗, xj)

)
≤ [1− (1− γ0)δj ]ρ

2(x∗, xj) + δjρ
2(x∗, w)

= [1− (1− γ0)δj ]ρ
2(x∗, xj) + (1− γ0)δj [(1− γ0)

−1]ρ2(x∗, w)

≤ max
{
ρ2(x∗, xN0), (1− γ0)

−1ρ2(x∗, w)
}
.

So, by induction, we obtain that ∀ n ≥ N0

ρ2(x∗, xn) ≤ M0.

Thus, the sequence {xn}∞n=1 is bounded, and hence the sequences {yn}∞n=1 and {vn}∞n=1 are bounded.

Moreover (following the method of proof of [25]), we obtain from (3.15) and Lemma 2.7 that

ρ2(x∗, yn) ≤ ζ2nρ
2(w, x∗) + (1− ζn)

2ρ2(x∗, vn) + 2ζn(1− ζn)⟨
−−→
wx∗,

−−→
vnx

∗⟩

≤ (1− ζn)ρ
2(x∗, xn) + ζn

(
ζnρ

2(w, x∗) + 2(1− ζn)⟨
−−→
wx∗,

−−→
vnx

∗⟩
)
. (3.19)

Thus, from (3.17), (3.19) (with j replaced by n) and (3.19), and for some M1 > 0, we obtain that

ρ2(x∗, xn+1) ≤ ρ2(x∗, yn) + βnµnρ
2(x∗, yn)− βn(1− βn − k)ρ2(yn, T nyn)

≤ ρ2(x∗, yn) + βnµnM1 − βn(1− βn − k)ρ2(yn, T nyn)

≤ (1− ζn)ρ
2(x∗, xn) + ζn

(
ζnρ

2(w, x∗) + βn
µn

ζn
M1

)
+2ζn(1− ζn)⟨

−−→
wx∗,

−−→
vnx

∗⟩ − βn(1− βn − k)ρ2(yn, T nyn). (3.20)

It is easy to see from (3.20) that

ρ2(x∗, xn+1) ≤ (1− ζn)ρ
2(x∗, xn) + ζn

(
ζnρ

2(w, x∗) + βn
µn

ζn
M1

)
+2ζn(1− ζn)⟨

−−→
wx∗,

−−→
vnx

∗⟩. (3.21)

Two cases arise:
Case1. Suppose that there exists N1 ∈ N such that {ρ(x∗, xn)} is decreasing for all n ≥ N1. In this
case, {ρ(x∗, xn)} is convergent; Thus, from (3.20), we obtain that

βn(1− βn − γ0)ρ
2(yn, T nyn) ≤ ρ2(x∗, xn)− ρ2(x∗, xn+1) (3.22)

+ζn

(
ζnρ

2(w, x∗) + βn
un
ζn

M1 − ρ2(x∗, xn)
)

(3.23)

+2ζn(1− ζn)⟨
−−→
wx∗,

−−→
vnx

∗⟩. (3.24)

Since {βn} is boubded away from 0 and 1, βn(1 − βn − γ0) > 0 and ζn → 0 as n → ∞, we obtain
from (3.22) that

ρ(yn, T nyn) → 0 as n → ∞. (3.25)

Moreover, from (3.15), we obtain that

ρ(yn, vn) ≤ ζnρ(w, vn) → 0, as n → ∞ (3.26)

and since {yn} is bounded, then using the fact that ζn → 0, we obtain from (3.26) that

lim
n→∞

ρ(yn, vn) = 0. (3.27)
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Let w(i+1)
n = JAi

α
(i)
n

w
(i)
n for each i = 1, 2, . . . , N, where w

(1)
n = xn, for all n ≥ 1. Then, w(2)

n =

JA1

α
(1)
n

(xn), w
(3)
n = JA2

α
(2)
n

◦ JA1

α
(1)
n

(xn), . . . , w
(N)
n = JAN−1

α
(N−1)
n

◦ · · · ◦ JA2

α
(2)
n

◦ JA1

α
(1)
n

(xn), w
(N+1)
n = vn.

By Lemma 2.9, we obtain for each i = 1, 2, . . . , N that

ρ2(x∗, w(i+1)
n ) ≤ ρ2(x∗, w(i)

n )− ρ2(w(i)
n , w(i+1)

n ). (3.28)
For i = N , we obtain from (3.15) and (3.28) that

ρ2(x∗, yn) ≤ ζnρ
2(x∗, w) + (1− ζn)ρ

2(x∗, w(N+1)
n )

≤ ζnρ
2(x∗, w) + (1− ζn)

[
ρ2(x∗, w(N)

n )− ρ2(w(N)
n , w(N+1)

n )
]

≤ ζnρ
2(x∗, w) + (1− ζn)

[
ρ2(x∗, xn)− ρ2(w(N)

n , w(N+1)
n )

]
, (3.29)

which implies from (3.29) that

(1− ζn)ρ
2(w(N)

n , w(N+1)
n ) ≤ ρ2(x∗, xn)− ρ2(x∗, yn) + ζn

[
ρ2(x∗, w)− ρ2(x∗, xn)

]
≤ ρ2(x∗, xn)−

1

1 + βnµn
ρ2(x∗, xn+1) +

µn

1 + βnµn

+ζn
[
ρ2(x∗, w)− ρ2(x∗, xn)

]
→ 0, as n → ∞.

By the condition on ζn, we obtain that

lim
n→∞

ρ2(w(N)
n , w(N+1)

n ) = 0. (3.30)

Similarly, we obtain for i = N − 1, (3.15) and (3.28) that

ρ2(x∗, yn) ≤ ζnρ
2(x∗, w) + (1− ζn)ρ

2(x∗, w(N)
n )

≤ ζnρ
2(x∗, w) + (1− ζn)

[
ρ2(x∗, w(N−1)

n )− ρ2(w(N−1)
n , w(N)

n )
]

≤ ζnρ
2(x∗, w) + (1− ζn)

[
ρ2(x∗, xn)− ρ2(w(N−1)

n , w(N)
n )

]
, (3.31)

which implies from (3.29) and the condition on ζn that

lim
n→∞

ρ2(w(N−1)
n , w(N)

n ) = 0. (3.32)

Continuing in this manner, we can show that

lim
n→∞

ρ(w(i)
n , w(i+1)

n ) = 0, i = 1, 2, . . . , N − 2. (3.33)

This, together with (3.30) and (3.32), gives

lim
n→∞

ρ(w(i)
n , w(i+1)

n ) = 0, i = 1, 2, . . . , N. (3.34)

From (3.34), and applying triangle inequality, we obtain for each i = 1, 2, . . . , N , that

lim
n→∞

ρ(xn, w
(i)
n ) = lim

n→∞
ρ(w(1)

n , w(i)
n ) = 0. (3.35)

For i = N , we obtain from (3.34) and (3.35), we obtain that

lim
n→∞

ρ(xn, w
(N+1)
n ) = lim

n→∞
ρ(xn, vn) = 0. (3.36)

Also, from (3.36) and (3.27), we obtain that
lim
n→∞

ρ(yn, xn) = 0. (3.37)

Since α
(i)
n ≥ α(i) > 0 for all n ≥ 1, we obtain from Theorem 2.8 (iii) and (3.34) that

ρ
(
w(i)
n ,JAi

α(i)w
(i)
n

)
≤ 2ρ

(
w(i)
n ,JAi

α
(i)
n

w(i)
n

)
→ 0as n → ∞, i = 1, 2, . . . , N. (3.38)
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Again, since JAi

α(i) is nonexpansive for each i = 1, 2, . . . , N , we obtain from (3.35) and (3.38) that

ρ
(
xn,JAi

α(i)xn

)
≤ ρ(xn, w

(i)
n ) + ρ(w(i)

n ,JAi

α(i)w
(i)
n ) + ρ(JAi

α(i)w
(i)
n ,JAi

α(i)xn)

≤ 2ρ(xn, w
(i)
n ) + ρ(w(i)

n ,JAi

α(i)w
(i)
n ) → 0, as n → ∞, i = 1, 2, . . . , N. (3.39)

Furthermore, from (3.25) and (3.37), we get that

ρ(T nyn, xn) ≤ ρ(T nyn, yn) + ρ(yn, xn) → 0 as n → ∞. (3.40)

Thus, from (3.15) and (3.37), we obtain

ρ(xn+1, xn) ≤ (1− βn)ρ(yn, xn) + βnρ(T nyn, xn) → 0 as n → ∞. (3.41)

Now, observe that using the definition of the operator T and the fact that for any a, b ∈ R, 2ab ≤
a2 + b2, we obtain that

ρ2(xn, T nxn) ≤
[
ρ(xn, T nyn) + ρ(T nyn, T nxn)

]2
= ρ2(xn, T nyn) + 2ρ(xn, T nyn)ρ(T nyn, T nxn) + ρ2(T nyn, T nxn)

≤ 2ρ2(xn, T nyn) + 2ρ2(T nyn, T nxn)

≤ 2ρ2(xn, T nyn)

+2
[
(1 + µn)ρ

2(xn, yn) + η
(
ρ(xn, T nxn) + ρ(ynT nyn)

)2] (3.42)

Thus, for some constant M2 > 0, we obtain from (3.42) that

(1− 2η)ρ2(xn, T nxn) ≤ 2ρ2(xn, T nyn)

+2(1 + µn)ρ
2(xn, yn) + 2ηM2ρ(ynT nyn). (3.43)

So, using (3.25), (3.37), (3.40) and the fact that η < 1
2 , we obtain from (3.43) that

ρ2(xn, T nxn) → 0 as n → ∞. (3.44)

Inequality (3.44) implies that

ρ(xn, T nxn) → 0 as n → ∞ (3.45)

and that

ρ2(xn−1, T n−1xn−1) → 0 as n → ∞. (3.46)

Furthermore, observe that

ρ(T n−1xn, xn) ≤ ρ(T n−1xn, T n−1xn−1)

+ρ(T n−1xn−1, xn−1) + ρ(xn−1, xn). (3.47)

From (3.46), we obtain that for some constant M4 > 0,

ρ2(T n−1xn, xn) ≤
[
ρ(T n−1xn, T n−1xn−1) + ρ(T n−1xn−1, xn−1) + ρ(xn−1, xn)

]2
≤ ρ2(T n−1xn, T n−1xn−1)

+M4

[
ρ(T n−1xn−1, xn−1) + ρ(xn−1, xn)

]
. (3.48)

But by the definition of T
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ρ2(T n−1xn, T n−1xn−1) ≤ (1 + µn−1)ρ
2(xn, xn−1)

+η
[
ρ(T n−1xn, xn−1) + ρ(xn, T n−1xn−1)

]2
≤ (1 + µn−1)ρ

2(xn, xn−1) + η
[
ρ(T n−1xn, xn) + ρ(xn, xn−1)

+ρ(xn, xn−1) + ρ(xn−1, T n−1xn−1)
]2

= (1 + µn−1)ρ
2(xn, xn−1)

+η
[
ρ2(T n−1xn, xn) + 4ρ2(xn, xn−1) + ρ2(xn−1, T n−1xn−1)

+4ρ(T n−1xn, xn)ρ(xn, xn−1) + 2ρ(T n−1xn, xn)ρ(xn−1, T n−1xn−1)

+4ρ(xn, xn−1)ρ(xn−1, T n−1xn−1)
]
. (3.49)

Using (3.49) in (3.48), we obtain that
ρ2(T n−1xn, xn) ≤ (1 + µn−1)ρ

2(xn, xn−1)

+η
[
ρ2(T n−1xn, xn) + 4ρ2(xn, xn−1) + ρ2(xn−1, T n−1xn−1)

+4ρ(T n−1xn, xn)ρ(xn, xn−1) + 2ρ(T n−1xn, xn)ρ(xn−1, T n−1xn−1)

+4ρ(xn, xn−1)ρ(xn−1, T n−1xn−1)
]

+M4

[
ρ(T n−1xn−1, xn−1) + ρ(xn−1, xn)

]
. (3.50)

From (3.50), we obtain that
(1− η)ρ2(T n−1xn, xn) ≤ (1 + µn−1)ρ

2(xn, xn−1)

+η
[
4ρ2(xn, xn−1) + ρ2(xn−1, T n−1xn−1)

+4ρ(T n−1xn, xn)ρ(xn, xn−1)

+2ρ(T n−1xn, xn)ρ(xn−1, T n−1xn−1)

+4ρ(xn, xn−1)ρ(xn−1, T n−1xn−1)
]

+M4

[
ρ(T n−1xn−1, xn−1) + ρ(xn−1, xn)

]
. (3.51)

From (3.51), we obtain that ρ2(T n−1xn, xn) → 0 as n → ∞. This implies that
ρ(T n−1xn, xn) → 0 as n → ∞. (3.52)

Observe that
ρ(xn, Txn) ≤ ρ(xn, T nxn) + ρ(T nxn, Txn)

= ρ(xn, T nxn) + ρ
(
T (T n−1xn), Txn

)
which implies from (3.45), (3.52) and uniform continuity of T that

ρ(xn, Txn) → 0 as n → ∞. (3.53)
Moreover, since {xn} is bounded and Z is a complete CAT (0) space, we can find a subsequence {xni}
of {xn} such that △ − limxni = v∗, for some v∗ ∈ Z . It then follows from (3.53) and Theorem 3.1
that v∗ ∈ F(T ). Also, since JAi

α(i) is nonexpansive for each i = 1, 2, . . . , N , we obtain from (3.39) and
Lemma 2.4 that v∗ ∈ ∩N

i=1A
−1
i (0). Therefore, v∗ ∈ Ω.
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Furthermore, for arbitrary w ∈ Z , we obtain from Lemma 2.3 that

lim sup⟨
−−→
wv∗,

−−→
xnv

∗⟩ ≤ 0. (3.54)

By using the quasilinearization properties, we obtain

⟨
−−→
wv∗,

−−→
vnv

∗⟩ = ⟨
−−→
wv∗,−−→vnxn⟩+ ⟨

−−→
wv∗,

−−→
xnv

∗⟩

≤ ρ(w, v∗)ρ(vn, xn) + ⟨
−−→
wv∗,

−−→
xnv

∗⟩,

which implies from (3.36) and (3.54) that

lim sup
n→∞

⟨
−−→
wv∗,

−−→
vnv

∗⟩ ≤ 0. (3.55)

Now, for x∗ = v∗ (in particular) in inequality (3.21), we get for n ≥N1 that

ρ2(v∗, xn+1) ≤ (1− ζn)ρ
2(v∗, xn) + α2

nρ
2(w, v∗) + βn

µn

ζn
M1

+2ζn(1− ζn)⟨
−−→
wv∗,

−−→
vnv

∗⟩.

Hence,
ρ2(v∗, xn+1) ≤ (1− ζn)ρ

2(v∗, xn) + ζnσn + γn

where σn := 2(1 − ζn)⟨
−−→
wv∗,

−−→
vnv

∗⟩ + ζnρ
2(w, v∗) and γn := βn

µn

ζn
M1. It then follows from Lemma

2.11 that ρ(v∗, xn) → 0 as n → ∞. Consequently, xn → v∗. as n → ∞.

Case 2. Suppose that for all N ∈ N, the sequence {ρ(x∗, xn)}n≥N is not decreasing, then there
exists a strictly increasing sequence {ni}∞i=1 of N such that

ρ(x∗, xni) < ρ(x∗, xni+1)

for all i ∈ N. Then, by Lemma 2.10, there exists an increasing sequence {mj}j≥1 such that mj →
∞, ρ(x∗, xmj ) ≤ ρ(x∗, xmj+1) and ρ(x∗, xj) ≤ ρ(x∗, xmj+1) for all j ≥ 1. Then from (3.20) and the
fact that αn → 0, we get

βmj (1− βmj − k)ρ2(ymj , T mjyn) ≤ ρ2(x∗, xmj )− ρ2(x∗, xmj+1)

+αmj

(
αmjρ

2(w, x∗) + βmj

µmj

αmj

M1 − ρ2(x∗, xmj )
)

+2αmj (1− αmj )⟨
−−→
wx∗,

−−−→
vmjx

∗⟩.

This implies that ρ(ymj , T mjymj ) → 0 as j → ∞.Thus, as in Case 1, we obtain that ρ(xmj , Txmj ) → 0

as j → ∞ and also following the same argument in Case 1, we get lim sup⟨
−−→
wv∗,

−−−→
vmjv

∗⟩ ≤ 0. Again,
considering the particular case of x∗ = v∗ in inequality (3.21), we obtain that

ρ2(v∗, xmj+1) ≤ (1− αmj )ρ
2(v∗, xmj ) + α2

mj
ρ2(w, v∗) + βmj

µmj

αmj

M1

+2αmj (1− αmj )⟨
−−→
wv∗,

−−−→
vmjv

∗⟩. (3.56)

Since ρ2(v∗, xmj ) ≤ ρ2(v∗, xmj+1), then (3.56) implies that

αmjρ
2(v∗, xmj ) ≤ ρ2(v∗, xmj )− ρ2(v∗, xmj+1) + α2

mj
ρ2(w, v∗)

+βmj

µmj

αmj

M1 + 2αmj (1− αmj )⟨
−−→
wv∗,

−−−→
vmjv

∗⟩

≤ α2
mj

ρ2(w, v∗) + βmj

µmj

αmj

M1 + 2αmj (1− αmj )⟨
−−→
wv∗,

−−−→
vmjv

∗⟩. (3.57)
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Since αmj > 0, we obtain from (3.57) that

ρ2(v∗, xmj ) ≤ αmjρ
2(w, v∗) + βmj

µmj

αmj

M1 + 2(1− αmj )⟨
−−→
wv∗,

−−−→
vmjv

∗⟩.

Using the fact that lim sup⟨
−−→
wv∗,

−−−→
vmjv

∗⟩ ≤ 0 and umj

αmj
→ 0 as j → ∞, we obtain that ρ(v∗, xmj ) → 0

as j → ∞. This together with (3.48) give ρ(v∗, xmj+1) → 0 as j → ∞. But ρ(v∗, xj) ≤ ρ(v∗, xmj+1),
for all j ≥ N, thus we obtain that xj → v∗ as j → ∞. Therefore, from the above two cases, we can
conclude that {xn}∞n=1 converges strongly to an element of Ω. □

Recalling that every uniformly L-Lipschitzian operator is uniformly continuous, we obtain the con-
vergence result of Ugwunnadi [25] as an immediate consequence of Theorem 3.2. Thus, we have the
folloing corollary.

Corollary 3.4. Let (Z, ρ) be a complete CAT (0) space with dual space Z∗. Let Ai : Z → 2Z
∗
, i =

1, 2, . . . , N be multivalued monotone operators that satisfy the range condition, and T : Z → Z be a
uniformly L-Lipschitzian asymptotically η-strictly pseudocontractive operator with sequence {µn}∞n=1 ⊆
[0,∞) such that

∑∞
n=1 µn < ∞ and η ∈ [0, 12). Suppose that Ω := F(T ) ∩

(
∩N
i=1N (A)

)
̸= ∅ and for

arbitrary w, x1 ∈ Z , the sequence {xn} is generated by vn = JAN

α(N) ◦ J
AN−1

α(N−1) ◦ · · · ◦ JA2

α(2) ◦ JA1

α(1)(xn),

yn = ζnw ⊕ (1− ζn)vn,
xn+1 = (1− βn)yn ⊕ βnT nyn, n ≥ 1

(where {ζn}n≥1 and {βn}n≥1 are sequences in (0, 1) satisfying (i) lim
n→∞

ζn = 0, (ii)
∑
n→∞

ζn = +∞, (iii)

µn = o(ζn), (iv) ∀ n ≥ 1 and for some γ0 > 0, γ0 ≤ βn < 1
2(1 − ζn)(1 − η) and 0 < (1 − γ0)(1 +

βnµn)ζn < 1 and for some α(i), i = 1, 2, ..., N, α
(i)
n ≥ α(i)), then {xn}n≥1 converges in the metric

topology to an element of Ω.

4. Application

In this section, we apply our results to solve finite family of convex minimization problem and fixed
point problem for η-strictly pseudo-contractive operator. Let (Z, ρ) be a Hadamard space and Z∗ be
its dual space. Recall that a function f : Z → (−∞,∞] is called

(i) convex, if
f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Z, λ ∈ (0, 1),

(ii) proper, if the domain D(f) := {x ∈ X : f(x) < +∞} is nonempty,
(iii) lower semi-continuous at a pointx ∈ D(f), if for each sequence {xn} inD(f) such that lim

n→∞
xn =

x, we have that
f(x) ≤ lim inf

n→∞
f(xn).

Furthermore, f is said to be lower semicontinuous on D(f) if it is lower semi-continuous at every point
in D(f).

Let f : Z → (−∞,∞] be a proper convex and lower semicontinuous function, then (see [13]) the
subdifferential ∂f : Z → 2Z

∗ of f , defined

∂f(x) =

{
{x∗ ∈ Z∗ : f(z)− f(x) ≥ ⟨x∗,−→xz⟩, ∀z ∈ Z}, if x ∈ D(f),
∅, otherwise

(4.1)

is
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(i) a monotone operator,
(ii) known to satisfy the range condition. That is, D(J ∂f

λ ) = Z for all λ > 0.

Now, consider the following Minimization Problem (MP): Find x ∈ Z such that
f(x) = min

y∈Z
f(y). (4.2)

It was established in [13] that f attains its minimum at x ∈ Z if and only if 0 ∈ ∂f(x). Thus, the above
MP (4.2) can be formulated as follows: Find x ∈ Z such that

0 ∈ ∂f(x).

Therefore, by setting Ai = ∂fi, i = 1, 2, . . . , N in Theorem 3.2, we obtain the following result:

Theorem4.1. Let (Z, ρ) be a completeCAT (0) space andZ∗ be its dual space. Let fi : Z → (−∞,∞], i =
1, 2, . . . , N be a finite family of proper, lower semicontinuous and convex function, and T : Z → Z be
uniformly continuous asymptotically η-strictly pseudo-contractive operator with a sequence {µn}∞n=1 ⊆
[0,∞) such that

∑∞
n=1 µn < ∞ and η ∈ [0, 12). Suppose that Ω∗ := F(T ) ∩

(
∩N
i=1N (∂fi)

)
̸= ∅. Let

w, x1 ∈ Z be arbitrary and the sequence {xn} be generated by
vn = J ∂fN

α
(N−1)
n

◦ J ∂fN−1

α
(N−1)
n

◦ · · · ◦ J ∂f2

α
(2)
n

◦ J ∂f1

α
(1)
n

(xn),

yn = ζnw ⊕ (1− ζn)vn,

xn+1 = (1− βn)yn ⊕ βnT nyn, n ≥ 1,

(4.3)

(where {ζn}n≥1 and {βn}n≥1 are sequences in (0, 1) satisfying (i) lim
n→∞

ζn = 0, (ii)
∑
n→∞

ζn = +∞, (iii)

µn = o(ζn), (iv) ∀ n ≥ 1 and for some γ0 > 0, γ0 ≤ βn < 1
2(1 − ζn)(1 − η) and 0 < (1 − γ0)(1 +

βnµn)ζn < 1 and for some α(i), i = 1, 2, ..., N, α
(i)
n ≥ α(i)), then {xn}n≥1 converges in the metric

topology to an element of Ω.

5. Conclusion

From the presentations made above, one can easily see that the answer to Question 1 is in the affirma-
tive. In Theorem 3.1, δ-demiclosedness principle for the new class of uniformly continuous generalized
asymptotically η-strictly pseudocontractive operators was obtained in complete CAT (0) space. The
Theorem extended the δ-demiclosedness principle obtained by Ugwunnadi [25]. Theorem 3.2 extended
the convergence result obtained in [25] from the class of uniformly L-Lipschitzian asymptotically η-
strictly pseudocontractive operators to the more general class of uniformly continuous asymptotically
η-strictly pseudocontractive operators in complete CAT (0) space. Theorem 4.1 and the corollaries ob-
tained are of independent interest. Our Theorems extended, generalized, improve and unified several
existing results.
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