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Abstract. Dual ascent method (DAM) is an effective algorithm to handle a class of convex optimization
problems with linear constraint. For problems with non-negative orthant constraints, logarithmic qua-
dratic proximal (LQP) method can solve well by transforming the sub-problems into nonlinear equations.
The LQP term is applied to regularize the subproblems of DAM in this article, so a DAM-LQP method
is developed for solving both linearly constrained and non-negative constrained optimization problems,
and further extend the proposed method to solve separable convex optimization problem with two blocks.
When the objective function is quadratic, the convergence of proposed methods can be guaranteed better;
also, we can solve the subproblems of the convex optimization problem parallelly when parallel compu-
tation devices are available, thus the computation time in one iteration could be greatly reduced. For the
sake of demonstrating the efficiency of proposed methods, numerical results are proposed to verify.

Keywords. Quadratic optimization with linear constraints, Logarithmic-quadratic proximal regular-
ization, Dual ascent method, Global convergence.
© Fixed Point Methods and Optimization

1. Introduction

We consider a class of convex optimization problem with linearly constraints as follows:
min{f(w)|Aw = b, w ∈ X}, (1.1)

in which A ∈ Rm×n, f(w) is a quadratic function and the feasible domain X ⊆ Rn is a non-empty
closed convex set. Without loss of generality, we define f(w) = 1

2w
TMw + qTw, then ∇f(w) =

Mw + q. Ω is denoted as Ω = X × Rm.
In this paper, we think about a kind of problem with a special background, that is the dedicated

algorithm with convex quadratic objective function. We always assume that the quadratic term matrix
of the function f(w) is positive definite and thus is strongly convex. For some cases where the objective
function is quadratic, there are some important applications such that sensitivity analysis of separable
traffic equilibrium in [16], alternating direction method for multi-block convex optimization in [19]
and so on. For the purpose of explaining the assumption of strong convexity on f(w) rational, a good
example is the application of the linearized Bregman scheme in [6] and it has wide range of applications
in [9][10].

Let the Lagrange function of (1.1) be
L(w, z) = f(w)− zT (Aw − b), (1.2)
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where z ∈ Rm is the Lagrange multiplier, and corresponding dual function of (1.1) is as follows:
G(z) := min

w∈X
L(w, z).

It is noticed that the minimizer of G(z) exists owing to the strong convexity of f(w), then the dual
problem of (1.1) is:

max
z∈Rm

G(z).

A point (w∗, z∗) ∈ Ω∗ satisfying
w∗ = argminw∈XL(w, z

∗) and z∗ = argmaxz∈RmL(w∗, z), simutaneously

or equivalently (
w − w∗

z − z∗

)T (
∇f(w∗)−AT z∗

Aw∗ − b

)
≥ 0, ∀w ∈ X , z ∈ Rm (1.3)

is called a saddle point of L(w, z). Ω∗ is denoted as the set of all (w∗, z∗).
One standard way is the classical augmented Lagrange method (ALM) [12] which minimizes the

following augmented Lagrange function:

LA(w, z) = f(w)− zT (Aw − b) +
β

2
||Aw − b||2. (1.4)

Then the ALM procedure for solving (1.1) can be described as follows:{
wk+1 = argminw∈XLA(w, z

k),

zk+1 = zk − γβ(Awk+1 − b),
(1.5)

with β > 0 being a penalty parameter and γ ∈ (0, 2) being a relaxation factor. When the subproblems
in (1.5) have a closed-form solution, the implementation of ALM could be of low cost. However, due
to the presence of quadratic term β

2 ||Aw − b||2, even for the separable f(w) like that in LASSO [6],
the augmented Lagrange function LA(w, z) is still inseparable, thus the subproblems in (1.5) may be
more computationally expensive and the dimensional scalability of numerical performance could be
unsatisfactory. Moreover, as the penalty parameter β is critical to the performance of ALM, it should
be manually tuned and its setting must fall into a suitable interval, in the case, we can obtain the
satisfactory speed performance of ALM. Otherwise, ALM may converge extremely slow. However,
finding the optimal setting of β could not be easy and this is especially true for practical problems.

With the increasing dimension of subproblems, Uzawa method [1] has become a more populor
method. Using Uzawa method to solve (1.1), we can get the following iterative scheme:{

zk+1 = argmaxz∈Rm{L(wk, z)− 1
2β ||z − zk||2},

wk+1 = argminw∈XL(w, z
k+1),

(1.6)

where β > 0 represents the iteration step size, || · || represents a general Euclidean norm. In order
to ensure the convergence of the Uzawa method, the step size β should be chosen restrictively. In the
literature, a lot of algorithms are related to the Uzawa method, e.g. [21], [11][13], [15] and so on. We
Some can also refer to [7][8] for some applications.

A similar approach is the dual ascent method (DAM), which solves the dual problem of maximizing
G(z) by applying an iterative ascent method. The basic framework of DAM is as follows:{

zk+1 = zk − βk(Aw
k − b),

wk+1 = argminw∈XL(w, z
k+1),

(1.7)

in which βk is a self-adaptive step size. In the literature, many choices for the ascent methods include
(single) coordinate ascent in [3], gradient ascent in [24] and gradient projection in [17] have been taken.
The subproblems in (1.7) can be solved parallelly when parallel computation devices are available, so the
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computation time in one iteration could be greatly reduced, thus it is more suitable for solving large-
dimension problems. Tseng .et al[20] have shown that a number of dual ascent methods, including
dual coordinate ascent methods, certain dual gradient methods and a dual gradient projection algo-
rithm, converge at least linearly. However, only if the stepsize is small enough, the iterative sequence
generated by (1.7) is convergent, thus the convergence of DAM is usually slow.

In order to improve the efficiency of DAM in solving (1.1) and relax the step size condition, Zhang
et al. proposed a new dual ascent method (NDAM) which apply gradient projection to solving the
dual problem [27]. Based on the Uzawa method, Tao and Yuan proposed an inexact Uzawa method
[23]. In a parallel work, a modified dual ascent method (MDAM) [22] has been proposed, which is an
improvement of NDAM. Compared with NDAM or the Uzawa method, MDAM further relax the step
size condition whereas the convergence result can still be guaranteed, thus potentially yields faster
convergence speed. We can get the new iteration point by the following iteration scheme:{

zk+1 = zk − βk(Aw
k − b),

wk+1 = argminw∈X L(w, zk+1),
(1.8)

where βk is an adaptive step size. However, MDAM can only solve the problem without additional
constraints. When with non-negative orthant constraints, MDAM is unable to handle it properly. On
this basis, it is suggested that the LQP terms is applied for regularizing the subproblems of DAM, then
put forward a modified self-adaptive LQP-DAM method.

It is noticed that the LQP method was firstly proposed by Auslender [2], the non-negative orthant
constraint w ≥ 0 is penalized into the objective function, then the subproblems turn out to be uncon-
strained nonlinearly equations. A LQP-based decomposition method is developed by Yuan and Li [26],
in which LQP terms are applied to the subproblems of ADMM. Later, a new inexact LQP method is
presented by Bnouhachem et al. (see [5][4]). Recently, an prediction-correction method based on LQP
is presented by Li [18]. As a result of the interior point property of LQP algorithm, we decompose the
subproblems into a system of nonlinear equations, which can be handled by a bunch of algorithms ef-
ficiently, for example, Quasi-Newton algorithm. On these bases, we hope to reduce the computational
costs.

In this paper, we put forward a modified self-adaptive DAM with LQP regularization (DAMLQP)
for solving (1.1). Compared with DAM or the Uzawa method, the step size is further relaxed, the
convergence is also guaranteed. Moreover, the subproblems can be solved in parallel when parallel
computation devices are available, thus the computation time in one iteration could be greatly reduced.
Furthermore, we extend the DAMLQP to two blocks and the convergence could be also proved. In
addition, we show that proposed algorithms have satisfactory numerical behaviors via the numerical
experiment.

The remaining part of this paper is presented as follows. In Section 2, some preliminaries will be
given. In Section 3, two proposed algorithms are put forward to solving problems (1.1) and (3.29),
respectively. The convergence qualities are established in Section 3 to prove the convergence of our
algorithms. In Section 4, we will present some experimental results compared with some state-of-the-
art algorithms. Some conclusions will be drawn in the final section.

2. Preliminaries

Some basic knowledge about the LQP regularization is put forward, which will be useful in the
following discussion in this section. More details also can be found in [2], which is necessary for the
analysis of convergence in Section 3.
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2.1. The logarithmic-quadratic proximal regularization. For any s ∈ Rn
+, the LQP regularization

term is defined as follows:

d(k, s) :=

{∑n
i=1[

1
2(ki − si)

2 + µ(s2i log
si
ki

+ kisi − s2i )], if k ∈ Rn
+,

∞, otherwise,
(2.1)

where µ ≥ 0 is a weighting parameter. Based on this definition, we get
∇kd(k, s) = (k − s) + µ(s− S2k−1),

where S := diag (s1, s2, . . . , sn) ∈ Rn×n , k−1 ∈ Rn is a vector and the i-th element of 1
k is 1

ki
.

For the convergence analysis in further parts, we summarize the following lemma:

Lemma 1. [25] A positive definite diagonal matrix is defined as Q := diag(q1, q2, . . . , qn) ∈ Rn×n, p is
a monotone mapping and ϑ : Rn → R. We define µ is a given positive constant. For given s, s, there
are S := diag(s1, s2, . . . , sn), s

−1 := ( 1
s1
, . . . , 1

sn
)T and

Φ
′
(s, s) := (s− s) + µ(s− S

2
s−1).

Therefore, the variational inequality

ϑ(k)− ϑ(s) + (k − s)T [p(s) +QΦ
′
(s, s)] ≥ 0, ∀k ∈ Rn

+,

has an unique positive solution s. Moreover, we have
ϑ(k)− ϑ(s) + (k − s)T p(s) ≥ (1 + µ)(s− s)TQ(k − s)− µ||s− s||2p

for this positive solution s ∈ Rn
+ and any k ∈ Rn

+.

As discussed in [14], solving (1.1) is equivalent to finding t∗ = (w∗, z∗) ∈ Ω := Rn
+ ×Rm

+ such that

V I(Ω, F ) : (t− t∗)TF (t∗) ≥ 0, ∀t ∈ Ω, (2.2)
in which

t =

(
w
z

)
and F (t) =

(
M −AT

A 0

)T (
w
z

)
+

(
p
−b

)
. (2.3)

The mapping F (t) defined in (2.3)is monotone. Ω∗ is denoted as the solution set of V I(Ω, F, θ), which
is nonempty.

3. Two Modified Self-Adaptive Dual Ascent Methods with LQP Regularization

In this section, our proposed methods are described firstly, after that, we present the convergence
analysis, the first algorithm is described as in Algorithm 1.

Remark 3.1. (1) In ALM, we need to set a proper fixed β to optimize its performance. In customized
proximal point algorithm (CPPA for short), we need to manually tune the setting of r and s. In con-
trary, the step size βk is self-adaptive and can be initialized with arbitrary value in our algorithm. Thus,
compared with ALM and CPPA, our algorithm is easier to implement.
(2) Compared with CPPA, ||ATA|| could be too expensive to compute. Moreover, in some practical
applications, the matrix A is not available so that the computation time could be long while in some
applications, ||ATA|| may be easy to compute. However, our algorithm does not need to divide these
cases so that its computing time is competitive compared to CPPA.
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3.1. Themodified self-adaptive dual ascent method with LQP regularization.
Algorithm 1: Amodified self-adaptive dual ascent method with LQP regularization for (1.1).
Step 0. Initial w0 = argminw∈XL(w, z

0), initial step size β0, lower bound of step size βmin, param-
eters µ, v ∈ (0, 2) and µ < v, k = 0, η ∈ (0, 1), tolerance ϵ.
Step 1. Find (z̃k, w̃k, rk) such that{

z̃k = zk − βk(Aw
k − b),

w̃k = argminw∈X {L(w, z̃k) + rd(w,wk)},
(3.1)

rk =
βk(z

k − z̃k)T (wk − w̃k)

||zk − z̃k||2
, (3.2)

in which d(w,wk) is defined in (2.1), r > 0 is a proximal parameter.
Step 2.
(a) If rk > v, step size βk is too large. βk := η ∗ βk ∗min{1, 1

rk
} and go to Step 1.

(b) If rk < v, step size βk is too small. βk+1:=max{βmin, η ∗ βk ∗ 1
rk
} for the next iteration and go to

Step 3.
(c) If µ < rk < v, step size βk is proper. βk+1:=max{βmin, βk} and go to Step 3.
Step 3. Let {wk+1, zk+1} = {w̃k, z̃k}. If the stopping criterion ||wk+1−wk||

||wk|| ≤ ϵ is met or a maximal
iteration number is attained, stop the algorithm, or else, k = k + 1, go to Step 1.

Lemma 2. If X = Rn, let the iterative sequence {tk} = {(wk, zk)} ∈ Ω generated by Algorithm 1,
then we have

(zk − zk+1)TA(wk − wk+1) ≤ v

β
||zk − zk+1||2, v ∈ (0, 2). (3.3)

Proof. It is easy to derive the above equation from Step 1 and Step 2(c) of Algorithm 1. □

Lemma 3. If X = Rn, let the iterative sequence {tk} = {(wk, zk)} ∈ Ω, {t∗} = {(w∗, z∗)} ∈ Ω∗

generated by Algorithm 1,, then we have

(t∗ − tk)TG(tk+1 − tk) ≥ ||tk+1 − tk||2G + β(wk − w∗)TM(wk+1 − w∗), (3.4)

where G =

(
βR(1 + µ) 0

0 I

)
, R = rIn with r > 0 is a proximal parameter.

Proof. Plugging (w, z) = (wk+1, zk+1) into the optimal condition (1.3) and substituting ∇f(w∗) =
Mw∗ + q, we get (

wk+1 − w∗

zk+1 − z∗

)T [(
M −AT

A 0

)(
w∗

z∗

)
+

(
q
−b

)]
≥ 0. (3.5)

From Step 1 and Step 3, we get zk+1 = zk − β(Awk − b), that is

(z∗ − zk+1)T [Awk − b+
1

β
(zk+1 − zk)] ≥ 0. (3.6)

Similarly, we have wk+1 = argminw∈X {L(w, zk+1) + rd(w,wk)} and get the following inequality

(w∗ − wk+1)T {Mwk+1 + q −AT zk+1 +R[(w − wk) + µ(wk −W 2
kw

−1)]} ≥ 0. (3.7)

It is trivial that
wk

(i)

2

w(i)
≥ 2wk

(i)−w(i) providing i = 1, · · · , n, w(i) ̸= 0, we substitute the inequality into
(3.7) and then we get

(w∗ − wk+1)T {Mwk+1 + q −AT zk+1 +R[(w − wk) + µ(w − wk)]} ≥ 0. (3.8)
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Invoking (3.6) and (3.8), and noticing (wk+1, zk+1) ∈ Ω, we have(
w∗ − wk+1

z∗ − zk+1

)T [(
M −AT

A 0

)(
wk+1

zk+1

)
+

(
q
−b

)
+

(
R(1 + µ) 0

−A 1
β I

)(
wk+1 − wk

zk+1 − zk

)]
≥ 0. (3.9)

The following inequality can be obtained from (3.5) and (3.9):(
wk+1 − w∗

zk+1 − z∗

)T (
−R(1 + µ) 0

A − 1
β

)(
wk+1 − wk

zk+1 − zk

)
≥ ||wk+1 − w∗||2M . (3.10)

Inequality (3.10) is equivalent to[(
wk+1 − wk

zk+1 − zk

)
−
(
w∗ − wk

z∗ − zk

)]T (
−R(1 + µ) 0

A − 1
β I

)(
wk+1 − wk

zk+1 − zk

)
≥ ||wk+1 − w∗||2M ,

and the above inequality can be rewritten as

(z∗ − zk)T (zk+1 − zk) + βR(1 + µ)(w∗ − wk)T (wk+1 − wk)

≥ −β(zk − z∗)TA(wk+1 − wk)− β(zk+1 − zk)TA(wk+1 − wk)

+ ||zk+1 − zk||2 + βR(1 + µ)||wk+1 − wk||2 + β||wk+1 − w∗||2M .

(3.11)

When X = Rn, according to the optimal condition (1.3), the following equation holds

∇f(w∗) = AT z∗ i.e. Mw∗ + q = AT z∗. (3.12)

Similarly, when X = Rn, the following equation can be obtained from (3.9):

∇f(wk+1) = AT zk+1 i.e. Mwk+1 + q = AT zk+1. (3.13)

Since zk+1 = zk − β(Awk − b) and Aw∗ − b = 0, (zk − z∗)TA(wk+1 −wk) in inequality (3.11) could
be rewritten as

(zk − z∗)TA(wk+1 − wk)

= (AT zk −AT z∗)T (wk+1 − wk)

= [AT (zk+1 + β(Awk − b))−AT z∗]T (wk+1 − wk)

= (wk+1 − w∗)TM(wk+1 − wk) + (zk − zk+1)TA(wk+1 − wk),

(3.14)

where the last equality uses the relations (3.12) and (3.13). The following identity is true for arbitrary
vectors a, b, c:

(a− b)T (a− c) =
1

2
(||a− b||2 + ||a− c||2 − ||b− c||2). (3.15)

Taking a = wk+1, b = w∗, c = wk in (3.15), we get

(wk+1 − w∗)TM(wk+1 − wk) =
1

2
(||wk+1 − w∗||2M + ||wk+1 − wk||2M + ||wk − w∗||2M ). (3.16)

Substituting (3.16) into equation (3.14), we get

(zk − z∗)TA(wk+1 − wk) =
1

2
||wk+1 − w∗||2M +

1

2
||wk+1 − wk||2M − 1

2
||wk − w∗||2M

+ (zk − zk+1)TA(wk+1 − wk),
(3.17)

and then substituting (3.17) into the right-hand side of (3.11), we have

(z∗ − zk)T (zk+1 − zk) + βR(1 + µ)(w∗ − wk)T (wk+1 − wk)

≥||zk+1 − zk||2 + βR(1 + µ)||wk+1 − wk||2 + β(wk − w∗)TM(wk+1 − w∗).
(3.18)

Then the assertion is proved. □
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Lemma 4. If X = Rn, let the iterative sequence {tk} = {(wk, zk)} is generated by Algorithm 1, and

let H =

(
βR(1 + µ) 0

0 2−v
2 I

)
, we have

||tk+1 − t∗||2G ≤ ||tk − t∗||2G − ||tk − tk+1||2H . (3.19)

Proof. First, we have∥∥∥∥wk+1 − w∗

zk+1 − z∗

∥∥∥∥2
G

=

∥∥∥∥wk − w∗

zk − z∗

∥∥∥∥2
G

+

∥∥∥∥wk − wk+1

zk − zk+1

∥∥∥∥2
G

− 2

(
wk − w∗

zk − z∗

)T (
βR(1 + µ) 0

0 I

)(
wk − wk+1

zk − zk+1

)
= βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2 + βR(1 + µ)||wk − wk+1||2

+ ||zk − zk+1||2 − 2βR(1 + µ)(wk − w∗)T (wk − wk+1)− 2(zk − z∗)T (zk − zk+1)

≤ βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2 + βR(1 + µ)||wk − wk+1||2 + ||zk − zk+1||2

− 2||zk − zk+1||2 − 2βR(1 + µ)||wk − wk+1||2 − 2β(wk − w∗)TM(wk+1 − w∗)

= βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2 − βR(1 + µ)||wk − wk+1||2 − ||zk − zk+1||2

− 2β(wk − w∗)TM(wk+1 − w∗)

= βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2 − βR(1 + µ)||wk − wk+1||2 − ||zk − zk+1||2

− β||wk − w∗||2M − β||wk+1 − w∗||2M + β||wk − wk+1||2M ,

(3.20)

where the inequality uses (3.4). It holds that ||a||2 + ||b||2 = 1
2(||a + b||2 + ||a − b||2) for any vectors

a, b. Taking a = wk+1 − w∗, b = wk − w∗ in this identity, we obtain

||wk+1−w∗||2M + ||wk −w∗||2M =
1

2
||wk+1+wk − 2w∗||2M +

1

2
||wk −wk+1||2M ≥ 1

2
||wk −wk+1||2M .

(3.21)
Substituting (3.21) into (3.20), we obtain:

βR(1 + µ)||wk+1 − w∗||2 + ||zk+1 − z∗||2 ≤βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2

− βR(1 + µ)||wk − wk+1||2

− ||zk − zk+1||2 + 1

2
β||wk − wk+1||2M .

(3.22)

Combining (3.13)and (3.3), the last term of (3.22) can be reformulated as

||wk − wk+1||2M = (wk − wk+1)TM(wk − wk+1)

= (Mwk −Mwk+1)T (wk − wk+1)

= (zk − zk+1)T (wk − wk+1)

≤ v

β
||zk − zk+1||2, v ∈ (0, 2).

(3.23)

Substituting (3.23) into (3.22), we get

βR(1 + µ)||wk+1 − w∗||2 + ||zk+1 − z∗||2

≤ βR(1 + µ)||wk − w∗||2 + ||zk − z∗||2 − [βR(1 + µ)||wk − wk+1||2 + 2− v

2
||zk − zk+1||2].(3.24)
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Let t =
(
w
z

)
, G =

(
βR(1 + µ) 0

0 I

)
, H =

(
βR(1 + µ) 0

0 2−v
2 I

)
, we get

||tk+1 − t∗||2G ≤ ||tk − t∗||2G − ||tk − tk+1||2H .

The assertion is proved. □

Theorem 3.1. If X = Rn, let the iterative sequence {tk} = {(wk, zk)} ∈ Ω is generated by Algorithm
1. Therefore, the iterative sequence {tk} = {(wk, zk)} converges to a solution of (1.1).

Proof. Let (w∗, z∗) be the optimal solution of problem (1.1) and zk ̸= zk+1 holds for any k = 1, 2, . . . n,
then the sequence {||tk − t∗||2G} is strictly monotonic decreasing by (3.19), namely

||tk − t∗||2G ≤ ||tk−1 − t∗||2G ≤ . . . ≤ ||t0 − t∗||2G. (3.25)

From the above inequality, it follows that:

||tk||G ≤ ||tk − t∗||G + ||t∗||G ≤ ||t0 − t∗||G + ||t∗||G,

therefore, {tk} is proved to be bounded. Thus there is a cluster point t and a subsequence {tkj} such
that

||tkj − t||G → 0 (j → ∞), (3.26)

that is ||wkj − w||G → 0, ||zkj − z||G → 0 (j → ∞). We then turn to prove t = t∗.

Summing (3.19) over k = 0, 1, 2, . . ., we get

∞∑
k=0

||tk − tk+1||2H ≤ ||t0 − t∗||2G,

which implies

||tk − tk+1||H → 0(k → 0). (3.27)

For any (w, z) ∈ Ω, the optimality condition for the (k + 1)−th subproblem is as follows(
w − wk+1

z − zk+1

)T [(
∇f(wk+1)−AT zk+1

Awk+1 − b

)
+

(
R(1 + µ) 0

−A 1
β I

)(
wk+1 − wk

zk+1 − zk

)]
≥ 0.

Let k = kj − 1 in the above inequality, we get:(
w − wkj

z − zkj

)T [(
∇f(wkj )−AT zkj

Awkj − b

)
+

(
R(1 + µ) 0

−A 1
β I

)(
wkj − wkj−1

zkj − zkj−1

)]
≥ 0. (3.28)

Taking the limit (j → 0) on the inequality (3.28) and noticing (3.27), we obtain(
w − w
z − z

)T (
∇f(w)−AT z

Aw − b

)
≥ 0,

which means w = w∗, z = z∗. Together with (3.25), the original sequence {wk, zk)} also converges to
{w∗, z∗}. We prove the assertion. □
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3.2. The extended modified dual ascent method with LQP regularization. We consider the two
blocks separable convex optimization problem as follows

min{f(w) + g(u)|Aw +Bu = b, w ∈ X , u ∈ Y}, (3.29)

in which w, u ∈ Rn1 , Rn2 , respectively; b is defined as before, f(w) and g(u) are quadratic functions
and the feasible domains X and Y are non-empty closed convex sets. Without loss of generality, we
define f(w) as before, g(u) = 1

2u
TNu+ pTu and then ∇g(u) = Nu+ p. We assume that the solution

set of (3.29) is nonempty.
Let the Lagrange function L(w, u, z) of (3.29) be

L(w, u, z) = f(w) + g(u)− zT (Aw +Bu− b). (3.30)

Similarly to (1.3), we have the following equation, which is the first-order optimality conditions of
(3.29). (

l − l∗
)T

F (l∗) ≥ 0, ∀w ∈ X , u ∈ Y, z ∈ Rm, (3.31)

where

l :=

w
u
z

 , F (l) :=

∇f(w)−AT z
∇g(u)−BT z
Ax+By − b

 =

Mw + q −AT z
Nu+ p−BT z
Aw +Bu− b

 .

We propose the extended Modified Self-adaptive DAM with LQP regularization (DAMLQP) with two
blocks cases (3.29):
Algorithm 2: An extented modified self-adaptive dual ascent method with LQP regulariza-
tion for (3.29).
Step 0. Initial (w0, u0) = argminw∈X ,u∈YL(w, u, z

0), initial step size β0, lower bound of step size
βmin, parameters µ, v ∈ (0, 1) and µ < v, k = 0, η ∈ (0, 1), tolerance ϵ.
Step 1. Find (z̃k, w̃k, ũk, rk, sk) such that

z̃k = zk − βk(Aw
k +Buk − b),

w̃k = argminw∈X {L(w, uk, z̃k) + rd(w,wk)},
ũk = argminu∈Y{L(w̃k, u, z̃k) + sd(u, uk)}

(3.32)

rk =
β(zk − zk+1)TA(wk − wk+1)

||zk − zk+1||2
, sk =

β(zk − zk+1)TB(uk − uk+1)

||zk − zk+1||2
, (3.33)

where d(w,wk) and d(u, uk) are defined in (2.1), r, s > 0 are parameters.
Step 2.
(a) If rk > v, sk > v, step size βk is too large. βk := η ∗ βk ∗min{1, 1

rk
} and go to Step 1.

(b) If rk < µ, sk < µ, step size βk is too small. βk+1 := max{βmin, η ∗ βk ∗ 1
rk
} for the next iteration

and go to Step 3.
(c) If µ < rk < v, µ < sk < v, step size βk is proper. βk+1 := max{βmin, βk} and go to Step 3.
Step 3. Let (wk+1, uk+1, zk+1) = (w̃k, ũk, z̃k). If the stopping criterion
max{ ||wk+1−wk||

||wk|| , ||u
k+1−uk||
||uk|| } ≤ ϵ is met or maximal iteration numbers are attained, stop the

algorithm, or else, k = k + 1, go to Step 1.

Lemma 5. Let the iterative sequence {lk} = {(wk, uk, zk)} ∈ Ω is generated by Algorithm 2, then we
have:

(l∗− lk)TG(lk+1− lk) ≥ ||lk+1 − lk||G
2
+β(wk−w∗)TM(wk+1−w∗)+β(uk−u∗)TN(uk+1−u∗),

(3.34)
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where G :=

βR(1 + µ) 0 0
0 βS(1 + µ) 0
0 0 I

.

Proof. Plugging (w, u, z) = (wk+1, uk+1, zk+1) into the optimal condition (3.31), and noticing∇f(w∗) =
Mw∗ + q, ∇g(u∗) = Nu∗ + p, we getwk+1 − w∗

uk+1 − u∗

zk+1 − z∗

T M 0 −AT

0 N −BT

A B 0

w∗

u∗

z∗

+

 q
p
−b

 ≥ 0. (3.35)

From Step 1 and Step 3, we have zk+1 = zk − β(Awk +Buk − b), and then we get:

(z∗ − zk+1)T [Awk +Buk − b+
1

β
(zk+1 − zk)] ≥ 0.

Similarly to (3.9), we have:

w∗ − wk+1

u∗ − uk+1

z∗ − zk+1

T



M 0 −AT

0 N −BT

A B 0

wk+1

uk+1

zk+1

+

 q
p
−b


+

R(1 + µ) 0 0
0 S(1 + µ) 0

−A −B 1
β I

wk+1 − wk

uk+1 − uk

zk+1 − zk



 ≥ 0, (3.36)

where R = rIn1 with r > 0 and S = sIn2 with s > 0 are proximal parameters.

The following inequality can be obtained from (3.35) and (3.36):wk+1 − w∗

uk+1 − u∗

zk+1 − z∗

T −R(1 + µ) 0 0
0 −S(1 + µ) 0
A B − 1

β I

wk+1 − wk

uk+1 − uk

zk+1 − zk

 ≥ ||wk+1 − w∗||2M

+ ||uk+1 − u∗||2N .

(3.37)

Inequality (3.37) is equivalent towk+1 − wk

uk+1 − uk

zk+1 − zk

−

w∗ − wk

u∗ − uk

z∗ − zk

T −R(1 + µ) 0 0
0 −S(1 + µ) 0
A B 1

β I

wk+1 − wk

uk+1 − uk

zk+1 − zk


≥ ||wk+1 − wk||2M + ||uk+1 − uk||2N .

We can reformulate the above inequality as follows:

βR(1 + µ)(w∗ − wk)T (wk+1 − wk) + βS(1 + µ)(u∗ − uk)T (uk+1 − uk) + (z∗ − zk)T (zk+1 − zk)

≥ −β(zk − z∗)TA(wk+1 − wk)− β(zk − z∗)TB(uk+1 − uk)− β(zk+1 − zk)TA(wk+1 − wk)

− β(zk+1 − zk)TB(uk+1 − uk) + βR(1 + µ)||wk+1 − wk||2 + βS(1 + µ)||uk+1 − uk||2

+ ||zk+1 − zk||2 + β(||wk+1 − w∗||2M + ||uk+1 − u∗||2N ).

(3.38)

Similarly to (3.12), (3.13) and invoking zk+1 = zk − β(Awk + Buk − b), Aw∗ + Bu∗ − b = 0,
(zk − z∗)TA(wk+1 − wk) + (zk − z∗)TB(uk+1 − uk) in inequality (3.38) are written as:
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(zk − z∗)TA(wk+1 − wk) + (zk − z∗)TB(uk+1 − uk)

= [AT (zk+1 + β(Awk +Buk − b))−AT z∗]T (wk+1 − wk)

+ [BT (zk+1 + β(Awk +Buk − b)−BT z∗]T (uk+1 − uk)

= (wk+1 − w∗)TM(wk+1 − wk) + (uk+1 − u∗)TN(uk+1 − uk)

+ (zk − zk+1)TA(wk+1 − wk) + (zk − zk+1)TB(uk+1 − uk).

(3.39)

Similarly, we get

(wk+1 − w∗)TM(wk+1 − wk) =
1

2
(||wk+1 − w∗||2M + ||wk+1 − wk||2M − ||wk − w∗||2M ),

(uk+1 − u∗)TN(uk+1 − uk) =
1

2
(||uk+1 − u∗||2N + ||uk+1 − uk||2N − ||uk − u∗||2N ).

(3.40)

The right-hand side of equation (3.39) is substituted into (3.40), then taking (3.39) into (3.38), we can get

βR(1 + µ)(w∗ − wk)T (wk+1 − wk) + βS(1 + µ)(u∗ − uk)T (uk+1 − uk) + (z∗ − zk)T (zk+1 − zk)

≥ βR(1 + µ)||wk+1 − wk||2 + βS(1 + µ)||uk+1 − uk||2 + ||zk+1 − zk||2

+
1

2
β(||wk+1 − w∗||2M + ||wk − w∗||2M − ||wk+1 − wk||2M )

+
1

2
β(||uk+1 − u∗||2N + ||uk − u∗||2N − ||uk+1 − uk||2N )

= βR(1 + µ)||wk+1 − wk||2 + βS(1 + µ)||uk+1 − uk||2 + ||zk+1 − zk||2

+ β(wk − w∗)TM(wk+1 − w∗) + β(uk − u∗)TN(uk+1 − u∗).

The assertion is proved. □

Lemma 6. Let the iterative sequence {lk} = {(wk, uk, zk)} ∈ Ω is generated by Algorithm 2, and let

H :=

βR(1 + µ) 0 0
0 βS(1 + µ) 0
0 0 (1− v)I

, v ∈ (0, 1), then we have

||lk+1 − l∗||2G ≤ ||lk − l∗||2G − ||lk − lk+1||2H . (3.41)

Proof. First, we have∥∥∥∥∥∥
wk+1 − w∗

uk+1 − u∗

zk+1 − z∗

∥∥∥∥∥∥
2


βR(1 + µ) 0 0

0 βS(1 + µ) 0
0 0 I



=

∥∥∥∥∥∥
wk − w∗

uk − u∗

zk − z∗

∥∥∥∥∥∥
2


βR(1 + µ) 0 0

0 βS(1 + µ) 0
0 0 I


+

∥∥∥∥∥∥
wk − wk+1

uk − uk+1

zk − zk+1

∥∥∥∥∥∥
2


βR(1 + µ) 0 0

0 βS(1 + µ) 0
0 0 I


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− 2

wk − w∗

uk − u∗

zk − z∗

T βR(1 + µ) 0 0
0 βS(1 + µ) 0
0 0 I

wk − wk+1

uk − uk+1

zk − zk+1


= βR(1 + µ)||wk − w∗||2 + βS(1 + µ)||uk − u∗||2 + ||zk − z∗||2 + βR(1 + µ)||wk − wk+1||2

+ βS(1 + µ)||uk − uk+1||2 + ||zk − zk+1||2 − 2βR(1 + µ)(wk − w∗)T (wk − wk+1)

− 2βS(1 + µ)(uk − u∗)T (uk − uk+1)− 2(zk − z∗)T (zk − zk+1)

≤ βR(1 + µ)||wk − w∗||2 + βS(1 + µ)||uk − u∗||2 + ||zk − z∗||2 + βR(1 + µ)||wk − wk+1||2

+ βS(1 + µ)||uk − uk+1||2 + ||zk − zk+1||2 − 2βR(1 + µ)||wk+1 − wk||2

− 2βS(1 + µ)||uk+1 − uk||2 − 2||zk+1 − zk||2 − 2β(wk − w∗)TM(wk+1 − w∗)

− 2β(uk − u∗)TN(uk+1 − u∗)

= βR(1 + µ)||wk − w∗||2 + βS(1 + µ)||uk − u∗||2 + ||zk − z∗||2 − βR(1 + µ)||wk − wk+1||2

− βS(1 + µ)||uk − uk+1||2 − ||zk − zk+1||2 − β(||wk − w∗||2M + ||wk+1 − w∗||2M
− ||wk+1 − wk||2M )− β(||uk − u∗||2N + ||uk+1 − u∗||2N − ||uk+1 − uk||2N ),

(3.42)

where the inequality uses (3.34).
Similarly to (3.21), we obtain

||wk+1 − w∗||2M + ||wk − w∗||2M ≥ 1

2
||wk − wk+1||2M ,

||uk+1 − u∗||2N + ||uk − u∗||2N ≥ 1

2
||uk − uk+1||2N .

(3.43)

Substituting (3.43) into (3.42), we obtain

βR(1 + µ)||wk+1 − w∗||2 + βS(1 + µ)||uk+1 − u∗||2 + ||zk+1 − z∗||2

≤ βR(1 + µ)||wk − w∗||2 + βS(1 + µ)||uk − u∗||2 + ||zk − z∗||2 − βR(1 + µ)||wk − wk+1||2

− βS(1 + µ)||uk − uk+1||2 − ||zk − zk+1||2 + 1

2
β||wk − wk+1||2M +

1

2
β||uk − uk+1||2N .

(3.44)

Similarly to (3.23), we have

||wk − wk+1||2M = (Mwk −Mwk+1)T (wk − wk+1) = (zk − zk+1)TA(wk − wk+1)

≤ v

β
||zk − zk+1||2,

||uk − uk+1||2N = (Nuk −Nuk+1)T (uk − uk+1) = (zk − zk+1)TB(uk − uk+1)

≤ v

β
||zk − zk+1||2.

(3.45)

Substituting (3.45) into (3.44), we get

βR(1 + µ)||wk+1 − w∗||2 + βS(1 + µ)||uk+1 − u∗||2 + ||zk+1 − z∗||2

≤ βR(1 + µ)||wk − w∗||2 + βS(1 + µ)||uk − u∗||2 + ||zk − z∗||2

− [βR(1 + µ)||wk − wk+1||2 + βS(1 + µ)||uk − uk+1||2 + (1− v)||zk − zk+1||2]. v ∈ (0, 1)

Recalling the definitions of G and H , the assertion is proved. □

Theorem 3.2. Let the iterative sequence {lk} = {(wk, uk, zk)} ∈ Ω is generated by Algorithm 2, then
it converges to a solution of (3.29).
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This proof is similar to that of Theorem 3.1, thus it is omitted.

4. Numerical Experiments

We will investigate the performance of our proposed algorithm in this section, thus we do some exper-
iments on solving a synthetic problem. The experiments were written on a laptop computer with Intel
Core i5-8250U CPU at 1.60GHz, 8GB memory and Windows 10 operating system. All the codes were
written on MATLAB R2017b.

4.1. Setup of experiments. We take the following optimization problem into account:

min
1

2
||x− c||2

s.t Ax = b,

x ≥ 0,
(4.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. For solving problem (4.1), there have been quite a few efficient
algorithms/solvers such as ALM, CPPA, CVX , etc. For simplicity, we only include CPPA and CVX in
our experiments. Let z ∈ Rm be the Lagrange multiplier. For solving (4.1), the subproblem of CPPA is
as follows:

x̃k = argmin{1
2
||x− c||2 − zk

T
(Ax− b)|x ≥ 0},

which can be solved by x̃k = max{0, c+AT zk+rxk

1+r }.
The subproblem of our algorithm (DAMLQP) is as follows:

x̃k = argmin{1
2
||x− c||2 − zk

T
(Ax− b) + rd(x, xk)}, (4.2)

where d(x, xk) is defined as (2.1). The optimality condition of (4.2) is equivalent to the following equa-
tion

x− c−AT zk+1 + r[x− xk + µ(xk − xk. ∗ xk./x)] = 0, (4.3)
where .∗ and ./ denote the elementwise production and division, respectively. Multiplying 1

rx elemen-
twisely on both sides of (4.3), we get

(1 +
1

r
)x. ∗ x− [

c+AT zk+1

r
+ (1− µ)xk]. ∗ x− µxk. ∗ xk = 0. (4.4)

Noticing (4.4) is in fact a separable equation, letting u = 1 + 1
r , v = c+AT zk+1

r + (1 − µ)xk, w =

−µxk. ∗ xk, (4.4) can be solved by x = v+
√
v.∗v−4uw
2u , where √ denotes elementwise square root

operation.
Based on the optimality condition of (4.1)

(x− c−AT z, x) = 0,

x ≥ 0,

x− c−AT z ≥ 0,

Ax = b,

(4.5)

the random problem can be generated by the following procedure such that the accurate solution of
(4.1) is known:

CVX: http://cvxr.com/cvx/download/
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m = 50; n =2000;
A = rand(m,n); xop = max(0,rand(n,1)*2-1); b = A*xop;
p = setdiff(1:n,find(xop))’;
q = zeros(n,1);q(p)=rand(size(p));
lamop = randn(m,1);
c = xop - q - (lamop’*A)’;

We compare the speed performance of all test algorithms of both iteration number and computation
time. When either a maximal iteration number (denoted by “maxit”) is attained or the relative error
between the current iterate xk and the accurate solution x∗ defined as

err(xk, x∗) :=
||xk − x∗||

||x∗||
becomes less than some tolerance (denoted by “tol”), i.e., err(xk, x∗) < tol, algorithms are stopped.
The default setting of maxit is 3000 unless otherwise specified.

To ensure a fair comparison, the parameters in all algorithms were manually tuned to maximize their
performance. In CPPA, we set r = 30, γ = 1.5 when m=100, 150 and 200; r = 10, γ=1 when m=10
and 50. In DAMLQP, the step size β is self-adaptive and can be initialized with arbitrary value. The
parameter v usually takes v = 1.7. The parameters r and µ take r = 3× 10−5 and µ = 3× 10−3 when
m=100, 150 and 200, while they take r = 10−4 and µ = 3× 10−4 when m=10 and 50.

4.2. Numerical results on synthetic problems. First of all, the convergence behavior of our al-
gorithms is investigated and we test three cases: (m,n) = (50, 5000), (100,5000) and (150,10000). The
iteration progress of relative error are plotted in Figure 1. Since CVX usually uses interior-point method
whose per-iteration cost is not comparable to that of DAMLQP and CPPA, so CVX is not included here.
From Figure 1, it can be seen that the convergence speed of DAMLQP is overall satisfactory compared
with that of CPPA, implying that our algorithm can rapidly obtain an accurate solution of problem (4.1).
Also, we can observe that the iteration number of our algorithm is about 50% less than that of CPPA
in all three cases.

Figure 1. Numerical results with (m,n)=(50,5000), (100,5000) and (150,10000), respectively

Then, we turn to investigate the speed performance of test algorithms under several different settings
of (m,n). “Iter” represents the iteration number and “Time” denote the computation time (in seconds).
We run CVX first, denote its output as xCVX and set tol := err(xCVX, x

∗), then run DAMLQP and
CPPA until err(xk, x∗) < tol is met. The mean values of iteration numbers and computation time over
10 random instances are presented in Table 1. Moreover, CVX is excluded when (m,n) = (200, 18000)
owning to its excessively long computation time. As the per-iteration costs of different algorithms
are different, the iteration number may not be a good measure of numerical efficiency. It is more in-
formative to show the computation time rather than the iteration number. TimeCPPA denotes the
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computation time of CPPA, Time||ATA|| denotes the computation time of ||ATA||, Timesum denotes
the sum of Time||ATA|| and TimeCPPA. On one hand, ||ATA|| is necessary in order to implement CPPA;
on the other hand, Time||ATA|| could be much longer than TimeCPPA, so we list it separately. In con-
trary, ||ATA|| is not required in the implementation of DAMLQP as illustrated in Remark 3.1. From
Table 1, we can see that DAMLQP outperforms CVX in terms of computation time in all cases. In 8
cases among all 11 cases, DAMLQP outperforms CPPA in terms of computation time when Time||ATA||
is not included. Take (m,n) = (100, 10000) as an example, the computation time of DAMLQP is
58.19% that of CPPA. If Time||ATA|| is included, the advantages of our algorithm will be more obvious.
In this case, the computation time of DAMLQP is 0.56% that of Timesum. Furthermore, the perfor-
mance advantage becomes more pronounced when the setting of ratio n

m is larger. For instance, when
(m,n) = (100, 2000)( n

m = 20), the computation time of DAMLQP is 11.4% less than that of CPPA,
when (m,n) = (200, 5000)( n

m = 25), the computation time of DAMLQP is 41.8% less than that of
CPPA.

Table 1. Iteration number and computation time with different settings of (m,n)

(m,n)
CVX CPPA DAMLQP
Time Iter. Timesum Time||ATA|| TimeCPPA Iter. Time

(50,2000) 6.594 263 0.449 0.423 0.028 191.3 0.026
(50,5000) 9.469 243 3.662 3.627 0.035 120 0.03
(100,2000) 6.813 374 0.423 0.388 0.035 259 0.031
(100,5000) 16.938 351 3.774 3.681 0.093 150 0.073
(100,10000) 33.094 315 24.17 23.938 0.232 105 0.135
(100,20000) 54.359 441.6 191.537 190.605 0.932 235.2 0.578
(150,2000) 71.703 584.4 0.418 0.366 0.052 492 0.089
(150,5000) 500.125 574.4 4.126 3.876 0.25 448.1 0.303
(200,2000) 90.875 693.6 0.441 0.359 0.082 562.7 0.183
(200,5000) 564.5 626.2 4.924 4.313 0.611 575.7 0.546
(200,18000) - 712.6 168.77 165.77 2.998 480.1 2.917

To justify the above observation, with fixed m = 10, 50 and 100, we let n increases from 1000 to
20000 with interval 1000, and plot the computation time v.s. dimension n in Figure 2. It can be seen that
when m = 10 and 100, our algorithm is usually faster than CVX and CPPA in terms of computation
time. For example, when m =10, as the dimension n increases from 5000 to 18000, TimeDAMLQP

increases from 0.029 to 0.125 (approximately 3 times), whereas TimeCPPA increases from 0.048 to 0.246
(approximately 40 times), Time||ATA|| increases from 10.276 to 191.422 (approximately 19 times) and
TimeCVX increases from 5.247 to 27.738 (approximately 5 times). This may indicate that our algorithm
has both higher efficiency and better dimensional scalability. When m = 50, it is shown that CPPA
may be preferable for smaller n (n ≤ 11000). For example, CPPA is approximately 23.9% faster than
our algorithm when n = 10000, but its performance advantage diminishes as n grows. For example,
our algorithm is approximately 29.4% faster than CPPA when n = 17000.

The above experimental results were obtained under a mild tolerance setting around 10−4. We ob-
serve from Figure 1 that our algorithm converges faster at the final stage of the iteration progress, so
we would like to study the numerical behavior of the tested algorithms under more challenging toler-
ance settings. Under different tolerance settings, we tested over 10 instances randomly, and the average
computation time and iteration number of the test algorithms are shown in Table 2.
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Figure 2. the computation time v.s. dimension n: when n ∈ [1000, 20000], m =
10, 50 and 100, respectively

Table 2 indicates that, with these more challenging tolerance settings, in 20 cases among all 24 cases,
DAMLQP is faster than CPPA by 17.6% in average. Specially, when (m,n) = (50, 3000) and tol =
10−8, the computation time of DAMLQP is 9.3% less than that of CPPA. In contrary, when the tolerance
is decreased to 10−12, the computation time of DAMLQP is 19.4% less than that of CPPA. Furthermore,
when the ratio n

m increases, the advantage of our algorithm is more conspicuous. Take the case tol =

10−13 as an example, when (m,n) = (100, 3000)( n
m = 30), the computation time of DAMLQP is

20.3% less than that of CPPA. In contrary, when (m,n) = (100, 10000)( n
m = 100), the computation

time of DAMLQP is 31.6% less than that of CPPA, which suggests that the speed advantage of our
algorithm is more obvious with more challenging settings of tolerance.

Table 2. Iteration number with different tolerance and (m,n)

tolerance
(m,n)=(50,3000) (m,n)=(100,3000)

DAMLQP CPPA DAMLQP CPPA
Iter. Time Iter. Time Iter. Time Iter. Time

10−8 277.7 0.039 599.1 0.043 469.8 0.082 790.8 0.071
10−9 297.3 0.042 664.4 0.048 516.5 0.090 885.5 0.080
10−10 321.2 0.045 730.1 0.052 559.2 0.097 977.6 0.088
10−11 341 0.048 796 0.057 592.6 0.103 1072.5 0.103
10−12 360.4 0.050 862.1 0.062 654.9 0.113 1164.7 0.128
10−13 382.4 0.053 928.9 0.067 734.5 0.126 1259.6 0.158

tolerance
(m,n)=(100,10000) (m,n)=(200,18000)

DAMLQP CPPA DAMLQP CPPA
Iter. Time Iter. Time Iter. Time Iter. Time

10−8 337.1 0.364 782 0.490 610.3 3.116 897.4 3.312
10−9 361.9 0.390 874.4 0.543 646 3.288 992.4 3.648
10−10 388.1 0.415 968.3 0.598 698.2 3.541 1088.1 4.016
10−11 421.8 0.451 1059.5 0.658 732.9 3.703 1184.1 4.394
10−12 454.9 0.486 1152.9 0.734 814.9 4.099 1279.9 4.773
10−13 526.8 0.557 1247.5 0.814 990.1 4.905 1381.4 5.176

We may conclude that for solving the synthetic problem (4.1), our algorithm outperforms CVX
markedly; its performance is competitve compared with CPPA and its performance advantage is more
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conspicuous when Time||ATA|| is included. Moreover, our algorithm is preferable with larger dimension
n and smaller tolerance tol.

5. Conclusion

In this paper, by combining DAM algorithm and LQP regularization, we propose a new algorithm
DAMLQP for solving the linearly constrained quadratic convex problems. When the objective function
f(x) is quadratic, we derived the relaxed step size condition such that its convergence speed is poten-
tially faster. Moreover, the step size β can be initialized with arbitrary value in DAMLQP, thus it could
be more suitable for practical problems. Preliminary numerical results demonstrated the effectiveness
of our proposed algorithm in terms of both computation time and dimension scalability.
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