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Abstract. A class of CR-E-semi-preinvex interval-valued functions under the CR total order is pro-
posed, and the optimality conditions of the interval-valued optimization problem are studied. Through
theoretical derivation, the definition of the CR-E-semi-preinvex interval-valued function is obtained, and
an example is given to verify the existence of the CR-E-semi-preinvex interval-valued function. The re-
lated properties of the CR-E-semi-preinvex interval-valued function and a class of CR-E-semi-preinvex
interval-valued optimization problems are studied. The relationship between the CR-E-semi-preinvex
interval-valued function and the CR-E-semi-invex interval-valued function is obtained, and the sufficient
and necessary conditions are obtained for the KKT optimality of the CR-E-semi-preinvex interval-valued
optimization problem in the case of real-valued inequality constraints. This research expands the gener-
alized convexity of interval-valued functions under the total order relation, which enriches the research
on generalized convexity and makes the application of interval-valued optimization problems more ex-
tensive.
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1. Introduction

Convexity of functions has important implications in mathematics and practical applications, and
convex functions, as well as generalized convex functions, have a very wide range of applications in
fields such as optimization, economics, and engineering. In 1981, Hanson [6] introduced invex func-
tions, which opened the way to the extension of generalized convexity. Subsequently, in 1988, Weir et
al. introduced the concept of pre-invex functions in the literature [29]. In 1992, Yang[33] et al. extended
generalized convexity to the semi-pre-invex case and obtained the definition and properties of semi-pre-
invex functions. In 1999, Youness[34] introduced the concepts ofE-convex sets andE-convex functions
and studied their applications inE-convex optimization problems. In 2001, Yang [31] corrected several
errors in the literature [34] and gave several counterexamples to support these corrections. In 2009,
Fulgal[5] et al. proposed the definition of E-pre-invex functions and studied the properties of E-pre-
invex functions. In 2013, Peng et al. studied some properties of semi-G-preinvexity functions in the
literature [15] and semi-strict-G-semi-pre-invexity and its optimization were discussed in the literature
[20]. In 2014, Zhang[37, 36] et al. extended the invexity and pre-invexity of real-valued functions to
interval-valued functions and studied the application of pre-invex interval-valued functions in opti-
mization problems. In 2016, Yang [32] et al. introduced the definitions and properties of various types
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of generalized convex functions, as well as their applications in economic and operations research in
a more systematic way. Peng et al. proposed D-η-E-semi-pre-invex mappings in 2014 [18] and ob-
tained important applications of D-η-E-semi-strict-semi-pre-invex mappings in hidden constrained
optimization problems andG-E-semi-pre-invex functions were proposed in 2015 [23], proposed semi-
prequasi-invex type multiobjective optimization and generalized fractional programming problems in
2016 [19], and in the same year they proposed a study of vector-valued-D-E-pre-invariant truth-fitting
convexmappings in the literature[17], andG-E-semi-strict-semi-pre-invex functions and their applica-
tions to optimization problems were studied in 2017 [24]. In 2019, Wang [28] et al. gave theE-proposed
α-pre-invex function and its optimization theory. In 2020, Antczak [1] et al. studied a multiobjective
interval-valued optimization problem with equality constraint and inequality constraint and obtained
the E-KKT optimality conditions of the problem. In the same year, Chen [3] et al. introduced the con-
cept of α-E-semi-pre-invex function and investigated its application to multi-objective planning. Deng
et al. proposed the definition ofE-pre-invex interval-valued functions, and investigated the optimality
conditions for such optimization problems in 2021 [4], and a class of fractional multiobjective interval-
valued optimization problems withE-invexity is considered and obtained its optimality conditions and
duality theorems in 2024 [16]. In 2021, Peng [22] and others defined α-D-semi-pre-invex mappings,
studied the properties and decision theorems of such mappings, and investigated the applications of
such mappings in mathematical planning. In 2024, Peng and others generalized the E-α-pre-invex
interval-valued function and obtained optimality sufficiency conditions for such interval-valued opti-
mization problems with constraints as interval-valued functions in the literature [14], and a class of
preinvex vector interval optimization problems (VIOP) with gH-subdifferential is considered and the
optimality conditions and dual results are gained in the literature [21].

On the other hand, stochastic and uncertainty factors that appear in the real world are inevitable
due to some unexpected situations. Therefore, imposing uncertainty on traditional optimization prob-
lems becomes a very interesting research topic. In mathematical planning, we classify optimization
problems that appear random as stochastic optimization problems and optimization problems that ap-
pear uncertain (fuzzy) as fuzzy optimization problems. The interval-valued optimization problem is a
situation where uncertainty is taken into account in a regular optimization problem. In 1990 Ishibuchi
and Tanaka[8] firstly proposed partial order relation for closed intervals, i.e., LU-order, CW-order and
UC-order, etc. In 2006, Hu[7] et al. defined a full-order relation called CR-order relation, by using
the midpoints and half-widths of two intervals. After the concept of interval-valued functions was
introduced in 2007, Wu applied the partial order relation to interval-valued functions in the litera-
ture [30] to obtain the concept of convex interval-valued functions under the LU partial order relation.
Subsequently, Khan [35, 10, 9, 12, 11, 27] and other scholars generalized various types of generalized
convexity to interval-valued functions and derived their properties and other applications, etc. Still, the
convexity and generalized convexity of these interval-valued functions were defined under the partial
order relation, which means any two intervals may be noncomparable. In 2014, considering the imper-
fectness of the interval-order relation, Bhunia [2] and others, inspired by the literature [7], proposed
definitions of interval total order relations for maximization and minimization probletms respectively.
In 2020, Rahman [25] and others introduced the notion of CR-convex interval-valued functions and
investigated the optimality conditions for such optimization problems. In 2023, Shi [26] and others
more comprehensively summarized the definitions and properties of the total order relations in closed
intervals, and gave the definitions of pre-invex interval-valued functions under CR order, and studied
the relation of solutions in interval-valued optimization problems in the unconstrained case.

Inspired by the literature [18, 4, 2, 25, 26], this paper is organized as follows. In Section 2, prelim-
inaries and a clear problem statement are provided. In Section 3, this paper proposes a new class of
generalized convex interval-valued functions under the total order relation, i.e., CR-E-semi-pre-invex
interval-valued functions. We discuss the main properties of such interval-valued functions, and we
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will provide an example to prove the existence of the function. In Section 4, we study the C-R global
optimal solution and C-R local optimal and optimality conditions of this class of interval-valued opti-
mization problems under real-valued inequality constraints.

2. Preliminaries

This section introduces some of the basics of intervals and the CR total order relation for intervals.
Let Rn be an n-dimensional Euclidean space, denote by I the family of sets consisting of all closed
intervals in Rn, i.e. I = {[a, a] : a, a ∈ R and a ≤ a}. Let A = [a, a] ∈ I, where a, a are the lower
and upper bounds of the closed interval A, respectively, and there are a = A, a = A. If AC = A+A

2

is called the center of A, AR = A−A
2 is called the radius of A. Then the intervals A =

⌈
A,A

⌉
can be

expressed in the center-radius form as A = ⟨AC , AR⟩, as follows:

A = [a, a] = [A,A] = [AC −AR, AC +AR] = ⟨AC , AR⟩ .

For two arbitrary closed intervals A = [A,A] = ⟨Ac, Ar⟩ and B = [B,B] = ⟨BC , BR⟩ in I, and
any real number λ, the following operations can be defined:

1) A + B = [A,A] + [B,B] = [A + B,A + B] and A + B = ⟨AC , AR⟩ + ⟨BC , BR⟩ = ⟨AC +
BC , AR +BR⟩;

2) λA = λ[A,A] =

{
[λA, λA], λ ≥ 0,

[λA, λA], λ < 0.
and λA = λ⟨AC , AR⟩ = ⟨λAC , |λ|AR⟩;

3) −A = [−A,−A] = ⟨−AC , AR⟩ ;
4) A−B = A+ (−B) = [A−B,A−B] = ⟨AC −BC , AR +BR⟩ .

Let T ⊆ Rn, I = {[a, a] : a, a ∈ R and a ≤ a}, then the interval-valued function is defined
as f : T → I, which can be expressed in the form of an upper-lower bound as f(x) = [f(x), f(x)],
where f, f : T → R are real-valued functions, ∀x ∈ T . It can also be expressed in center-radius form as

f(x) = ⟨fC(x), fR(x)⟩, wherefC(x), fR : T → R are real-valued functions and fC(x)(x) =
f(x)+f(x)

2 ,
fR(x) =

f(x)−f(x)

2 . That is, the representation of an interval-valued function can be in the form of
f(x) = [f(x), f(x)], where f(x) = fC(x) + fR(x), f(x) = fC(x) − fR(x). Therefore, these two
representations of interval-valued functions are equivalent, i.e. f(x) = [f(x), f(x)] = ⟨fC(x), fR(x)⟩.

In interval-valued optimization problems, intervals are usually compared using ordinal relations.
The ⪯CW order relation between the intervals A and B defined by Ishibuchi and Tanaka in the

literature [8] in 1990 is as follows:
1) A ⪯CW B ⇔ AC ⩽ BC andAW ⩽ BW ;
2) A ≺CW B ⇔ A ⪯CW B andA ̸= B.
where AC = A+A

2 is center of the closed interval A, AW = A−A
2 is the width of the closed interval

A. Obviously, ⪯CW is a partial order relation, which suggests that any two intervals may be non-
comparable, so in this paper, we will use the total order relation proposed in the literature [7] to ensure
comparability of intervals.

Definition 2.1. [7] LetA = [A,A] = ⟨AC , AR⟩,B = [B,B] = ⟨BC , BR⟩ ∈ I, The⪯CR order relation
is defined as follows:

1) A ⪯CR B ⇔

{
AC < BC , ifAC ̸= BC ,

AR ⩾ BR, ifAC = BC .
2) A = B ⇔ AC = BC andAR = BR

3) A ≺CR B ⇔ A ⪯CR B andA ̸= B
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Note that the ⪯CR order relation is self-reversing, symmetric, and transitive, and that any two el-
ements in the relation are comparable under the ⪯CR total order relation, which implies that the CR
order is more widely used than the CW order.

The concepts of weakly differentiable interval-valued functions andE-differentiable interval-valued
functions are introduced below.

Definition 2.2. [30] Let S be an open set in Rn. The interval-valued function f(x) = [f(x), f(x)] =
⟨fC(x), fR(x)⟩, f : S → I, is said to be weakly differentiable at x0 ∈ S if the real-valued functions
f(x) and f(x) are differentiable at x0 (that is, fC and fR are differentiable at x0).

Combining the relationship between f , f and fC , fR, the notion of E-differentiable interval-valued
functions in the literature[1] can be rewritten as follows:

Definition 2.3. [1] Let the set X ⊆ Rn, and the vector function E : Rn → Rn be given. An interval-
valued function f : X → I, f(x) = ⟨fC(x), fR(x)⟩ is said to be E-differentiable at x0 ∈ X if and
only if the real-valued functions f(E(•)), f̄(E(•)) or fC(E(•)), fR(E(•)) are all differentiable and
the following equation holds:
fC(E(x)) = fC(E(x))− fR(E(x)) +∇[fC(E(x))− fR(E(x))](x− x0) + θC(x0, x− x0)∥x− x0∥ ,
fR(E(x)) = fC(E(x)) + fR(E(x)) +∇[fC(E(x)) + fR(E(x))](x− x0) + θR(x0, x− x0)∥x− x0∥ .

Where, θC(x0, x− x0) → 0, θR(x0, x− x0) → 0 when x → x0.

Definition 2.4. [30] Let the setX ⊆ Rn, and the vector function E : Rn → Rn, and f be an interval-
valued function defined on X . If the real-valued functions f(E(•)), f̄(E(•)) or fC(E(•)), fR(E(•))
are continuously differentiable at x0 ∈ X , then f is said to be weakly continuous E-differentiable at
x0.

3. Definition and Properties of CR-E-Semi-Preinvex Interval-Valued Functions

In the sequel of this paper we assume that S ⊆ Rn, and T is any nonempty subset of S.
The concept of CR-convex interval-valued function was given by Rahman et al. in the literature [25].

Definition 3.1. [25] Let setX be any nonempty convex subset of Rn. A function f : X → I is said to
be a CR-convex interval-valued function if for ∀x, y ∈ X , ∀λ ∈ [0, 1], it satisfies:

f(λx+ (1− λ)y) ⪯CR λf(x) + (1− λ)f(y) .

Peng et al. proposed the definitions of E-semi-inconvex set, E-semi-invex function, and E-semi-
preinvex function in the literature [18].

Definition 3.2. [18] The set T is E-semi-invex on S with respect to η if there exists a nonzero vector-
valued function η : S × S × [0, 1] → S and a mapping E : S → S such that ∀x, y ∈ T , ∀λ ∈ [0, 1],
satisfies:

E(y) + λη(E(x), E(y), λ) ∈ T.

Definition 3.3. [18] Let T be an open set, the real-valued function f is a E-semi-invex function on
T with respect to η if there exists a nonzero vector function η : S × S × [0, 1] → S and a mapping
E : S → S such that E-differentiable real-valued function f : T → R for ∀x, y ∈ T , ∀λ ∈ [0, 1],
satisfies:

f(E(y)) + ηT (E(x), E(y), λ)∇f(E(y)) ⩽ f(E(x)) .

Definition 3.4. [18] If the set T is E-semi-invex on S with respect to a nonzero vector function η :
S × S × [0, 1] → S and a mapping E : S → S, the real-valued function f is an E-semi-preinvex
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real-valued function on T with respect to η if the real-valued function f for ∀x, y ∈ T , ∀λ ∈ [0, 1],
satisfies:

f(E(y) + λη(E(x), E(y), λ)) ⩽ λf(E(x)) + (1− λ)f(E(y)) ,

where lim
λ→0+

λη(E(x), E(y), λ) = 0.

In this paper, we give the definitions ofE-semi-invex interval-valued function andE-semi-preinvex
interval-valued function.

Definition 3.5. Let T be an open set and let there exist a nonzero vector function η : S×S×[0, 1] → S
and a mapping E : S → S. If for ∀x, y ∈ T , ∀λ ∈ [0, 1] the E-differentiable real-valued functions
fC(E(•)) and fR(E(•)) satisfy:{

η(E(x), E(y), λ)T∇fC(E(y)) = fC(E(x))− fC(E(y))

η(E(x), E(y), λ)T∇fR(E(y)) ⩾ fR(E(x))− fR(E(y))

or
η(E(x), E(y), λ)T∇fC(E(y)) < fC(E(x))− fC(E(y)) ,

then the interval-valued function function f : T → I is said to be a CR-E-semi-invex interval-valued
function on T with respect to η.

Definition 3.6. Let the set T be E-semi-invex on S with respect to a nonzero vector function η :
S × S × [0, 1] → S and a mapping E : S → S. The function f : T → R is a CR-E-semi-preinvex
interval-valued function, if for ∀x, y ∈ T , ∀λ ∈ [0, 1], satisfies:

f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)) ,

where lim
λ→0+

λη(E(x), E(y), λ) = 0.

The existence of a CR-E-semi-preinvex interval-valued function is verified by the following example.

Example 3.7. Let f(x) =
{
[−4x,−x], x ⩾ 0

[4x, x], x < 0
,∀x, y ∈ R, E(x) = x2 + 1, and η(x, y, λ) = λx− y.

Proof. It is clear that for ∀λ ∈ (0, 1), R is an E-semi-invex set about η. Prove below that f is a CR-E-
semi-preinvex interval-valued function on R with respect to η.

For x ⩾ 0,
f (E(y) + λη(E(x), E(y), λ))

= f
(
y2 + 1 + λ2x2 + λ2 − λy2 − λ

)
= [−4(y2 + 1 + λ2x2 + λ2 − λy2 − λ),−(y2 + 1 + λ2x2 + λ2 − λy2 − λ)],

λf(E(x)) = λf(x2 + 1) = [−4λ(x2 + 1),−λ(x2 + 1)],

(1− λ)f(E(y)) = (1− λ)f(y2 + 1) = [−4(1− λ)(y2 + 1),−(1− λ)(y2 + 1)],

therefore,

fC(E(y) + λη(E(x), E(y), λ)) = −5

2
(y2 + 1 + λ2x2 + λ2 − λy2 − λ) ,

λfC(E(x)) = −5

2
(λ(x2 + 1)) ,

(1− λ)fC(E(y)) = −5

2
(1− λ)(y2 + 1).

That is, for ∀λ ∈ (0, 1), we have
fC(E(y) + λη(E(x), E(y), λ)) < λfC(E(x)) + (1− λ)fC(E(y)) ,
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and
f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)).

Figure 1. Function image of Example 3.7 when x ⩾ 0

For x < 0,
f(E(y) + λη(E(x), E(y), λ))

= [4(y2 + 1 + λ2x2 + λ2 − λy2 − λ), y2 + 1 + λ2x2 + λ2 − λy2 − λ],

λf(E(x)) = [4λ(x2 + 1), λ(x2 + 1)] ,

(1− λ)f(E(y)) = [4(1− λ)(y2 + 1), (1− λ)(y2 + 1)],

hence,
fC(E(y) + λη(E(x), E(y), λ)) =

5

2
(y2 + 1 + λ2x2 + λ2 − λy2 − λ) ,

λfC(E(x)) =
5

2
(λ(x2 + 1)) ,

(1− λ)fC(E(y)) =
5

2
(1− λ)(y2 + 1) ,

similarly, for ∀λ ∈ (0, 1), we have

f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)).

Figure 2. Function image of Example 3.7 when x < 0

In summary, f is a CR-E-semi-preinvex interval-valued function on R with respect to η. □
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Theorem 3.8. Let the set T be E-semi-invex on S with respect to a nonzero vector function η : S ×
S × [0, 1] → S and a mapping E : S → S. Then the function f : T → R is a CR-E-semi-preinvex
interval-valued function if and only if fC is an E-semi-preinvex real-valued function about η.

Proof. Let fC be E-semi-preinvex real-valued function on T with respect to η. Then for ∀x, y ∈ T ,
∀λ ∈ [0, 1], we have

fC(E(y) + λη(E(x), E(y), λ)) ⩽ λfC(E(x)) + (1− λ)fC(E(y)) .

When fC(E(y)+λη(E(x), E(y), λ)) ̸= λfC(E(x))+ (1−λ)fC(E(y)), for ∀x, y ∈ T , ∀λ ∈ [0, 1],
there are

fC(E(y) + λη(E(x), E(y), λ)) < λfC(E(x)) + (1− λ)fC(E(y))

⇒ f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)) .

It can be obtained that the function f is a CR-E-semi-preinvex interval-valued function about η.
Conversely, let f be E-semi-preinvex interval-valued function on T with respect to η, Then for

∀λ ∈ (0, 1), ∀x, y ∈ T , we have

f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y))

⇒ fC(E(y) + λη(E(x), E(y), λ)) < λfC(E(x)) + (1− λ)fC(E(y)).

Which completes the proof. □

Theorem 3.9. Let the set T be E-semi-invex on S with respect to a nonzero vector function η : S × S ×
[0, 1] → S and a mapping E : S → S. The function fl : T → I and f2 : T → I are CR-E-semi-preinvex
interval-valued functions on T with respect to η, and if there exists a real number k ⩾ 0, then both kf and
f1 + f2 are CR-E-semi-preinvex interval-valued functions on T with respect to η.

Proof. Clearly,

k(f1(E(y)+λη(E(x), E(y), λ))) ⪯CR k(λf1(E(x))+(1−λ)f1(E(y)) = λkf1(E(x))+(1−λ)kf1(E(y)),

i.e., kf1 is a CR-E-semi-preinvex interval-valued function on T with respect to η.
Moreover, if we let f(x) = f1(x) + f2(x), it is obvious that

f(E(y) + λη(E(x), E(y), λ))

= f1(E(y) + λη(E(x), E(y), λ)) + f2(E(y) + λη(E(x), E(y), λ))

⪯CR λf1(E(x) + (1− λ)f1(E(y)) + λf2(E(x)) + (1− λ)f2(E(y))

= λ(f1(E(x)) + f2(E(x))) + (1− λ)(f1(E(x)) + f2(E(x)))

= λf(E(x)) + (1− λ)f(E(y)) ,

which implies that f1 + f2 is a CR-E-semi-preinvex interval-valued function on T with respect to
η. □

Inspired by the literature [13], the following condition CE is given:

Lemma 3.10. [Condition CE] If η : Rn×Rn× [0, 1] → Rn andE : Rn → Rn are a vector function and
a mapping, respectively, then the vector function η satisfies the condition CE , if for ∀x, y ∈ T , ∀λ ∈ [0, 1],
satisfies:

C1E : η(E(x), E(y) + λη(E(x), E(y), λ), λ) = (1− λ)η(E(x), E(y), λ) ,

C2E : η(E(y), E(y) + λη(E(x), E(y), λ), λ) = −λη(E(x), E(y), λ) .
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Theorem 3.11. Let the set T be an E-semi-invex set on S with respect to a nonzero vector function
η : S × S × [0, 1] → S and a surjective mapping E : S → S. The following two propositions hold if the
interval-valued function f : T → I is E-differentiable:

1) If f(x) = [f(x), f(x)] = ⟨fC(x), fR(x)⟩ is a CR-E-semi-preinvex interval-valued function on T
with respect to η, then f is a CR-E-semi-invex interval-valued function on T with respect to the same η.

2) If f(x) = [f(x), f(x)] = ⟨fC(x), fR(x)⟩ is a CR-E-semi-invex interval-valued function on T with
respect to η, and the vector function η satisfies conditionCE (Lemma 3.10), then f is a CR-E-semi-preinvex
interval-valued function on T with respect to the same η.

Proof. 1) Let f be a CR-E-semi-preinvex interval-valued function on T with respect to η, for ∀x, y ∈ T ,
∀λ ∈ [0, 1], there is

f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)) ,

accordingly,
fC(E(y) + λη(E(x), E(y), λ)) < λfC(E(x)) + (1− λ)fC(E(y))

or {
fC(E(y) + λη(E(x), E(y), λ)) = λfC(E(x)) + (1− λ)fC(E(y))

fR(E(y) + λη(E(x), E(y), λ)) ⩾ λfR(E(x)) + (1− λ)fR(E(y))

equivalent to
1

λ
(fC(E(y) + λη(E(x), E(y), λ)− fC(E(y))) < fC(E(x))− fC(E(y))

or {
1
λ(fC(E(y)) + λη(E(x), E(y), λ)− fC(E(y))) = fC(E(x))− fC(E(y))
1
λ(fR(E(y)) + λη(E(x), E(y), λ)− fR(E(y))) ⩾ fR(E(x))− fR(E(y))

let λ → 0+, get
η(E(x), E(y), λ)T∇fC(E(y)) < fC(E(x))− fC(E(y))

or {
η(E(x), E(y), λ)T∇fC(E(y)) = fC(E(x))− fC(E(y))

η(E(x), E(y), λ)T∇fR(E(y)) ⩾ fR(E(x))− fR(E(y))

that is, f is a CR-E-semi-invex interval-valued function on T With respect to the same η.
2) Conversely, let f be a CR-E-semi-invex interval-valued function on T with respect to η, E(ŷ) =

E(y) + λη(E(x), E(y), λ), and according to Definition 3.5, for ∀x, y ∈ T , ∀λ ∈ [0, 1], there is

fC(E(ŷ)) + η(E(y), E(ŷ), λ)T∇fC(E(ŷ)) < fC(E(y))

or {
fC(E(ŷ)) + η(E(y), E(ŷ), λ)T∇fC(E(ŷ)) = fC(E(y))

fR(E(ŷ)) + η(E(y), E(ŷ), λ)T∇fR(E(ŷ)) ⩾ fR(E(y))

for ∀x, ŷ, there is
fC(E(ŷ)) + η(E(x), E(ŷ), λ)T∇fC(E(ŷ)) < fC(E(x))

or {
fC(E(ŷ)) + η(E(x), E(ŷ), λ)T∇fC(E(ŷ)) = fC(E(x))

fR(E(ŷ)) + η(E(x), E(ŷ), λ)T∇fR(E(ŷ)) ⩾ fR(E(x))

from the above equation, we have

fC(E(ŷ)) + λη(E(x), E(ŷ), λ)T∇fC(E(ŷ)) + (1− λ)η(E(y), E(ŷ), λ)T∇fC(E(ŷ))

< λfC(E(x)) + (1− λ)fC(E(x))
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or 
fC(E(ŷ)) + λη(E(x), E(ŷ), λ)T∇fC(E(ŷ)) + (1− λ)η(E(y), E(ŷ), λ)T∇fC(E(ŷ))

= λfC(E(x)) + (1− λ)fC(E(x))

fR(E(ŷ)) + λη(E(x), E(ŷ), λ)T∇fR(E(ŷ)) + (1− λ)η(E(y), E(ŷ), λ)T∇fR(E(ŷ))

⩾ λfR(E(x)) + (1− λ)fR(E(y))

according to condition CE (Lemma 3.10)
η(E(x), E(y) + λη(E(x), E(y), λ), λ) = η(E(x), E(ŷ), λ) = (1− λ)η(E(x), E(y), λ)

η(E(y), E(y) + λη(E(x), E(y), λ), λ) = η(E(y), E(ŷ), λ) = −λη(E(x), E(y), λ)

hence
fC(E(ŷ)) < λfC(E(x)) + (1− λ)fC(E(y))

or {
fC(E(ŷ)) = λfC(E(x)) + (1− λ)fC(E(y))

fR(E(ŷ)) ⩾ λfR(E(x)) + (1− λ)fR(E(y))

we have
f(E(ŷ)) = f(E(y) + λη(E(x), E(y), λ)) ⪯CR λf(E(x)) + (1− λ)f(E(y)) .

□

Theorem 3.12. Let the set T be an E-semi-invex set on S with respect to a nonzero vector function
η : S × S × [0, 1] → S and a surjective mapping E : S → S. If the vector function η satisfies the
condition CE , and the interval-valued function f : T → I for ∀x, y ∈ T , ∀λ ∈ [0, 1] satisfies:

f(E(y) + η(E(x), E(y), λ)) ⪯CR f(E(x)) ,

then the interval-valued function f is a CR-E-semi-preinvex interval-valued function on T with respect to
η if and only if for ∀x, y ∈ T , ϕ(λ) =: f(E(y) + λη(E(x), E(y), λ)) is convex on [0,1].

Proof. 1) Let the function f : T → I be a CR-E-semi-preinvex interval-valued function on T with
respect to η, for ∀x, y ∈ T , ∀λ ∈ [0, 1], ∀κ1, κ2 ∈ [0, 1].

When κ1 = κ2, we have
ϕ(κ2 + λ(κ1 − κ2)) = ϕ(κ2) = λϕ(κ1) + (1− λ)ϕ(κ2) ,

that is, ϕ(λ) is convex on [0,1].
When κ1 > κ2, i.e., κ1 − κ2 > 0, κ2 ̸= 1, and

0 <
κ1 − κ2
1− κ2

⩽ 1

Under condition CE , for ∀x, y ∈ T , ∀λ ∈ [0, 1],
η(E(y)+λη(E(x), E(y), λ), E(y), λ) = −η(E(y), E(y)+λη(E(x), E(y), λ), λ) = λη(E(x), E(y), λ)

(3.1)
Similarly, from condition CE (Lemma 3.10) and equation 3.1, we get
η(E(y) + κ1η(E(x), E(y), λ), E(y) + κ2η(E(x), E(y), λ), λ) = (κ1 − κ2)η(E(x), E(y), λ) (3.2)

from equation 3.2, we get
ϕ(κ2 + λ(κ1 − κ, ))

= f(E(y) + (κ2 + λ(κ1 − κ2))η(E(x), E(y), λ)

= f(E(y) + κ2η(E(x), E(y), λ) + λ(κ1 − κ2)η(E(x), E(y), λ))

= λϕ(κ1) + (1− λ)ϕ(κ2).
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When κ1 < κ2, similarly, ϕ(κ2 + λ(κ1 − κ2)) ⪯CR λϕ(κ1) + (1 − λ)ϕ(κ2). In summary, ϕ(λ) is
convex on [0,1].

2) Letϕ(λ) =: f(E(y)+λη(E(x), E(y), λ)) is convex on [0,1], and f(E(y)+η(E(x), E(y), λ)) ⪯CR

f(E(x)), we have

f(E(y) + λη(E(x), E(y), λ)) = ϕ(λ) = ϕ(λ · 1 + (1− λ) · 0),

That is, the function f is a CR-E-semi-preinvex interval-valued function on T with respect to η. □

4. Optimality Conditions for CR-E-Semi-Preinvex Interval-Valued Optimization Under
Ineqality Constraints

Consider the following interval-valued optimization problem containing inequality constraints:

(IVOP) minf(x) = [f(x), f(x)] = ⟨fC(x), fR(x)⟩ ,
s.t.gi(x)⩽0, i = 1, 2, · · · ,m,

x ∈ T ,

where, f : T → I is an interval-valued function and gi : Rn → R, i = 1, 2, · · · ,m are real-valued
functions. Let X = {x ∈ T : gi(x) ⩽ 0, i = 1, · · · ,m} be the feasible set of problem (IVOP), and
x ∈ X is the feasible solution of the optimization problem (IVOP).

For the above optimization problem, the concepts of local minimum and global minimum solutions
are given in the literature [25].

Definition 4.1. [25] The point x∗ ∈ X , i.e., x∗ is a feasible solution of (IVOP), and x∗ is said to be
a C-R local minimum solution of the optimization problem (IVOP) (abbreviated as the local minimum
solution), if there exists a δ > 0 for ∀x ∈ B(x∗, δ) ∩X , such that f(x∗) ⪯CR f(x). Where f(x∗) =
[f(x∗), f(x∗)] = ⟨fC(x∗), fR(x∗)⟩, B(x∗, δ) is a neighborhood of x∗.

Definition 4.2. [25] The point x∗ ∈ X , i.e., x∗ is a feasible solution of (IVOP), and x∗ is said to be a
C-R global minimum solution of the optimization problem (IVOP) (abbreviated as the global minimum
solution) if for ∀x ∈ X we have f(x∗) ⪯CR f(x).

Consider a class of interval-valued optimization problems related to (IVOP):
Let η : Rn × Rn × [0, 1] → Rn is a nonzero vector function, and E : Rn → Rn is a one-to-one

mapping.
(IVOPE) minf(E(x)) = [f(E(x)), f(E(x))] = ⟨fC(E(x)), fR(E(x))⟩ ,

s.t.gi(E(x))⩽0, i = 1, 2, · · · ,m,

x ∈ T ,

where, f : T → I is an interval-valued function and gi(E(x)) : Rn → R, i = 1, 2, · · · ,m are
real-valued functions. Let XE = {x ∈ T : gi(E(x)) ⩽ 0, i = 1, · · · ,m} be the feasible set of problem
(IVOPE), and x ∈ XE is the feasible solution of the optimization problem (IVOPE).

Similarly to the literature [4], combined with the E-type-I optimal solutions proposed by Deng et
al., in this paper, we give the concepts of E-local minimum and E-global minimum solutions of opti-
mization problems (IVOP) and the relationship between the solutions of optimization problems (IVOP)
and (IVOPE).

Definition 4.3. Let x∗ be a feasible solution of (IVOP), if there exists a δ > 0 such that f(E(x∗)) ⪯CR

f(E(x)), ∀x ∈ B(x∗, δ) ∩ XE , then x∗ is a E-local minimum solution of the optimization prob-
lem (IVOP). Where f(E(x∗)) = [f(E(x∗)), f(E(x∗))] = ⟨fC(E(x∗)), fR(E(x∗))⟩, and B(x∗, δ) is a
neighborhood of x∗.
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Definition 4.4. Let x∗ be a feasible solution of (IVOP) if for ∀x ∈ XE , there is f(E(x∗)) ⪯CR f(E(x)),
then x∗ is a E-global minimum solution of the optimization problem (IVOP). Where f(E(x∗)) =
[f(E(x∗)), f(E(x∗))] = ⟨fC(E(x∗)), fR(E(x∗))⟩.

Definition 4.5. Let set T be an E-semi-invex set on S with respect to a nonzero vector function
η : S × S × [0, 1] → S and a surjective mapping E : S → S. If x∗ is a global minimum solution
of the optimization problem (IVOP), then there exists z ∈ XE such that E(z) = x∗, and z is a global
minimum solution of the optimization problem (IVOPE).

The necessary conditions for the optimality of interval-valued optimization problems in the uncon-
strained case under CR order have been given in the literature [25].

Lemma 4.6. [25] Let set T be an E-semi-invex set on S with respect to a nonzero vector function η :
S × S × [0, 1] → S and a surjective mapping E : S → S, f : T → I is a E-differentiable CR-E-
semi-preinvex interval-valued function on T with respect to η, if x∗ ∈ T is a local minimum solution
in the optimization problem of an unconstrained minimization interval-valued function f(E(x)) = [f
(E(x)), f(E(x))] = ⟨fC(E(x)), fR(E(x))⟩, then,

∇fC(x
∗) = 0, iffC ̸= constant,

∇fR(x
∗) = 0, iffC = constant.

Theorem 4.7. [E-KKT Necessary Conditions] Let set T be an E-semi-invex set on S with respect to a
nonzero vector function η : S × S × [0, 1] → S and a surjective mapping E : S → S, f : T → I
is a E-differentiable CR-E-semi-preinvex interval-valued function on T with respect to η, gi : T → R,
i = 1, 2, · · · ,m are E-differentiable E-semi-preinvex real-valued functions on T with respect to the same
η. If x∗ ∈ X is a local minimum solution of the optimization problem (IVOPE), then there exist Lagrange
multipliers µi ∈ R, i = 1, 2, · · · ,m, such that the following equation holds:

∇fC(E(x∗)) +

m∑
i=1

µi∇gi(E(x∗)) = 0 (4.1)

µigi(E(x∗)) = 0, i = 1, 2, · · · ,m (4.2)
gi(E(x∗)) ⩽ 0, ∀i = 1, 2, · · · ,m (4.3)

µi ⩾ 0, i = 1, 2, · · · ,m.

Proof. Introducing the slack variable y2, the inequality constraint becomes hi(E(x)) = gi(E(x)) +
y2i = 0, i = 1, 2, ...,m, then the Lagrange function of the optimization problem (IVOPE) is:

L(x, µi, yi) =
[
L(x, µi, yi), L(x, µi, yi)

]
=

[
f(E(x)), f(E(x))

]
+

m∑
i=1

µi(gi(E(x)) + y2i )

= [f(E(x)) +
m∑
i=1

µi(gi(E(x)) + y2i ), f(E(x)) +
m∑
i=1

µi(gi(E(x)) + y2i )]

= ⟨LC(x, µi, yi), LR(x, µi, yi)⟩ =

〈
fC(E(x)) +

m∑
i=1

µi(gi(E(x)) + y2i ), fR(E(x))

〉
Where,

LC(x, µi, yi) =
f(E(x)) +

∑m
i=1 µi(gi(E(x)) + y2i ) + f(E(x)) +

∑m
i=1 µi(gi(E(x)) + y2i )

2

= fC(E(x)) +
m∑
i=1

µi(gi(E(x)) + y2i )
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LR(x, µi, yi) =
f(E(x)) +

∑m
i=1 µi(gi(E(x)) + y2i )− f(E(x))−

∑m
i=1 µi(gi(E(x)) + y2i )

2
= fR(E(x))

At this point, x∗ ∈ XE is a local minimum solution of the optimization problem (IVOPE), that is, x∗ is a
local minimum solution to the unconstrained optimization problem of theminimization interval-valued
function L(x, µi, yi), by Lemma 4.6,

∇LC(x
∗, µi, yi) = 0, ifLC ̸= constant,

∇LR(x
∗, µi, yi) = 0, ifLC = constant.

Since the constraints are not constant, then LC is not constant, that is, ∇LC(x
∗, µi, yi) = 0, we

have:
∂LC

∂x∗k
=

∂fC
∂x∗k

+
m∑
i=1

µi
∂gi
∂x∗k

= 0, k = 1, 2, · · · , n, x∗ = (x∗1, x
∗
2, · · · , x∗n) (4.4)

∂LC

∂yi
= 2µiyi = 0, i = 1, 2, · · · ,m (4.5)

∂LC

∂µi
= gi(E(x∗)) + y2i = 0, i = 1, 2, · · · ,m (4.6)

from equation (4.4),

(
∂fC
∂x1

,
∂fC
∂x2

, · · · , ∂fC
∂xn

) +

m∑
i=1

µi(
∂gi
∂x1

,
∂gi
∂x2

, · · · , ∂gi
∂xn

) = 0,

that is,

∇fC (E(x∗)) +

m∑
i=1

µi∇gi (E(x∗)) = 0,

from equation (4.5), 2µiyi = 0 implies that at least one of µi and yi is zero, where µi ⩾ 0. When
yi = 0, from equation (4.6), we have gi(E(x∗)) = 0, it means at least one of µi and gi is zero. Hence,
µigi(E(x∗)) = 0 and gi(E(x∗)) ⩽ 0, µi ⩾ 0, i = 1, 2, · · · ,m. □

To give sufficient conditions for the optimality of the optimization problem (IVOPE), we first give
sufficient conditions for the optimality of the real-valued optimization problem (PE).

Lemma 4.8. Let x∗ be a feasible point of the following optimization problem (PE), where the feasible set
of (PE) is the same as the optimization problem (IVOPE). We call x∗ ∈ XE a global minimum solution of
the optimization problem (PE) if for ∀x ∈ XE there is φ(E(x∗)) ⩽ φ(E(x)).

(PE)minφ(E(x)),

s.t.gi(E(x)) ⩽ 0 , i = 1, 2, · · · ,m ,

x∈ T .

Let the set T beE-semi-invex set on S with respect to the nonzero vector function η : S×S× [0, 1] → S
and the surjective mapping E : S → S, and φ : T → R, is an E-differentiable E-semi-invex real-valued
function on T with respect to the η, gi : T → R, i = 1, 2, · · · ,m are E-differentiable E-semi-invex
real-valued functions on T with respect to the same η. Then the point x∗ is a global minimum solution of
the optimization problem (PE), if there exist Lagrange multipliers 0 ⩽ µi ∈ R, i = 1, 2, · · · ,m, such that
the following equation holds:

∇φ(E(x∗)) +
m∑
i=1

µi∇gi(E(x∗)) = 0 (4.7)

µigi(E(x∗)) = 0 , i = 1, 2, · · · ,m (4.8)



106 X.-Y. TAN, Z.-Y. PENG, S. REICH AND Y. SHEHU

Proof. When i /∈ J(E(x∗)) = {i : gi(E(x∗)) = 0, i = 1, 2, · · · ,m}, from equation (4.8), we have µi =
0, then:

m∑
i=1

µi∇gi(E(x∗)) =
∑

i∈J(E(x∗))

µi∇gi(E(x∗)) (4.9)

Since φ, gi are both E-differentiable E-semi-invex real-valued functions, from equation (4.7)-(4.9),
for any feasible point x ∈ XE of the optimization problem (PE), there is:

φ(E(x))− φ(E(x∗))

⩾ ηT (E(x), E(x∗), λ)∇φ(E(x∗))

= −
m∑
i=1

µiη
T (E(x), E(x∗), λ)∇gi(E(x∗))

= −
∑

i∈J(E(x∗))

µiη
T (E(x), E(x∗), λ)∇gi(E(x∗))

⩾ −
∑

i∈J(E(x∗))

µi(gi(E(x)− gi(E(x∗)))) ⩾ 0

That is, for any x ∈ XE , the inequality φ(E(x∗)) ⩽ φ(E(x)) holds, then x∗ is a global minimum
solution of the optimization problem (PE). □

Definition 4.9. If there exist Lagrange multipliers 0 ⩽ µ∗
i ∈ R, i = 1, 2, · · · ,m, such that the equa-

tions (4.1)-(4.3) hold at point x∗ ∈ XE , then (x∗, µ∗) ∈ XE ×Rm is said to be the E-KKT point of the
optimization problem (IVOPE).

Theorem 4.10. [E-KKT Sufficient Conditions] Let set T be an E-semi-invex set on S with respect to a
nonzero vector function η : S × S × [0, 1] → S and a surjective mapping E : S → S, f : T → I
is a E-differentiable CR-E-semi-preinvex interval-valued function on T with respect to η, gi : T → R,
i ∈ J(E(x∗)) are E-differentiable E-semi-invex real-valued functions on T with respect to the same η. If
(x∗, µ∗) ∈ XE ×Rm is the point E -KKT of the optimization problem (IVOPE), then x∗ ∈ XE is a global
minimum solution of the optimization problem (IVOPE), and E(x∗) ∈ X is a global minimum solution of
the optimization problem (IVOP).

Proof. By Theorem (3.11), since f is an E-differentiable CR-E-semi-preinvex interval-valued function
on T with respect to η, then f is a CR-E-semi-invex interval-valued function on T with respect to the
same η. Since (x∗, µ∗) is the E-KKT point of the optimization problem (IVOPE), by Lemma 4.8, x∗ is
a global minimum solution to an optimization problem with objective function fC(E(x)) and with the
same constraints as the optimization problem (IVOPE), that is, for ∀x̂(̸= x∗) ∈ XE , we have:

fC(E(x∗)) ⩽ fC(E(x̂)) (4.10)

On the contrary, if x∗ is not a global minimum solution of the optimization problem (IVOPE), then
there exists x̂(̸= x∗) ∈ XE , such that f(E(x̂)) ≺CR f(E(x∗)), since fC(E(x̂)) ̸= fC(E(x∗)), then
fC(E(x̂)) < fC(E(x∗)), which contradicts (4.10), so that x∗ ∈ XE is a global minimum solution of the
optimization problem (IVOPE). From Definition 4.5, we get E(x∗) ∈ X is a global minimum solution
of the optimization problem (IVOP). □
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Example 4.11. Consider the following interval-valued optimization problem:

(IVOPE1) minf(E(x)) = [f(E(x)), f(E(x))] = ⟨fC(E(x)), fR(E(x))⟩ ,
s.t.g1(E(x))⩽0,

g2(E(x))⩽0,

x ∈ T ,

where T=[0,1], and for ∀x, y ∈ [0, 1], we have f(x) = [x2 + 2, x2 + 4], g1(x) = 2x− 9, g2(x) = −x,
η(x, y, λ) = λx− y, let E(x) = x2.

Proof. It is easy to see that T is anE-semi-invex set with respect to η and f is anE-differentiable CR-E-
semi-preinvex interval-valued function on T with respect to η, g1, g1 areE-differentiableE-semi-invex
real-valued function on T with respect to the same η. By calculation, we know that fC(x) = x2+x+2,
fR(x) = 2 − x, thus, f(E(x)) = [x4 + 2x2, x4 + 4], fC(E(x)) = x4 + x2 + 2, fR(E(x)) = 2 − x2,
g1(E(x)) = 2x2 − 9, g2(E(x)) = −x2.

According toTheorem (4.10), we have (x̂, µ1, µ2) ∈ XE×R2 such that the following equation holds:
4x̂3 + 2x̂+ 4µ1x̂− 2µ2x̂ = 0

µ1(2x̂
2 − 9) = 0 = −µ2x̂

2

2x̂2 − 9 ⩽ 0

−µ2x̂
2 ⩽ 0

hence, x̂ = 0, µ1 = 0, µ2 = 1, that is (0, 0, 1) ∈ XE × R2
+ is the E-KKT point of the optimization

problem (IVOPE1), and x̂ = 0 is a global minimum solution of the optimization problem (IVOPE1).

Figure 3. Function image of Example 4.11

□

5. Conclusion

In this paper, two new classes of generalized convex interval-valued functions–CR-E-semi-invex
interval-valued and CR-E-semi-preinvex interval-valued functions are obtained by using the CR to-
tal order relation, and a connection between them is derived. The relationship between C-R global
minimum solution (C-R local minimum solution) and E-global minimum solution (E-local minimum
solution) associated with CR-E-semi-preinvex interval-valued optimization problems is investigated
and sufficient and necessary conditions for the optimality of this class of optimization problems are
established.
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In future research, the duality of CR-E-semi-preinvex interval-valued optimization problems can
be investigated based on this paper. Moreover, can the CR total order relation be applied in other
generalised convex interval-valued functions with much weaker convexity? And is it possible to find
other total order relations that can be applied to interval-valued optimization problems? These two
questions are of profound significance and merit meticulous and in-depth exploration, as they hold the
potential to unlock new insights and drive advancements in the relevant fields.
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