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Abstract. The collection of model data, often troubled by problems like sample selection bias and mea-
surement errors, presents major challenges to the stability and reliability of Nash equilibrium solutions
in population games. This study addresses the pervasive challenge of data collection bias in population
game theory by introducing Hadamard well-posedness theory into population game models. It delves
into the Hadamard well-posedness of Nash equilibrium solutions in population game problems, estab-
lishing sufficient conditions for the Hadamard well-posedness of these solutions. Furthermore, it reveals
the connection between Hadamard well-posedness and the continuity of solution mappings, providing a
practical theoretical tool for the stability analysis and algorithm design of Nash equilibrium solutions in
population games.
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1. Introduction

In the real world, many game-theoretic problems involve strategic interactions among large-scale
groups. The theory of population games serves as a powerful analytical tool for addressing such issues,
and its applications have been extended to various fields, including biology, transportation science,
sociology, and management science. The theory of population games can be traced back to Nash’s ex-
planations of mass action in mixed strategy equilibrium in his doctoral thesis[9]. This work has inspired
in-depth research by many scholars [11, 14, 18]. In 2010, Sandholm [11] systematically proposed the
concept of population games for the first time and successfully proved the existence of Nash equilib-
rium for a class of population games. Subsequently, in 2016, Yang et al.[14] generalized Sandholm’s
research findings to the field of multi-objective population games and conducted the stability of the
weak Pareto-Nash equilibrium in multi-objective population games. In 2021, under the assumption
that the range of variation of uncertain parameters is known, Zhao et al. [18] further advanced the
theoretical research on the existence and stability of equilibrium in population games with uncertain
parameters.

The well-posedness of solutions is an important topic in the research of game theory. Yu et al.
[16] systematically studied the well-posedness of Nash equilibrium points for several classes of non-
cooperative game problems. Scalzo [12] studied the Hadamard well-posedness of non-cooperative
games under relatively weak conditions. Yang et al. [15] conducted the continuity of the α core in
different data perturbation environments and successfully proved the Hadamard well-posedness of
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abstract economic problems with a nonempty α core. Zeng et al. [17] shifted the research perspec-
tive to the multi-leader-follower games and explored the Levitin-Polyak well-posedness of the weak
Nash equilibrium solutions of the multi-leader-follower games. Khanh et al. [5], on the other hand, fo-
cused on a generalized parametric multiobjective game. By introducing the method of noncompactness
measure, Khanh established the sufficient conditions for the Levitin-Polyak well-posedness of the mul-
tiobjective generalized game problem. In the relevant research fields, Hadamard well-posedness and
Levitin-Polyak well-posedness stand out as the two main classes of well-posedness that have attracted
extensive attention and in-depth exploration by scholars. The concept of Hadamard well-posedness
has its roots in the investigation of mathematical models for physical phenomena. At its core is the
demand that the solution of a problem be continuously reliant on the problem data. This ensures that
when minor perturbations occur in the problem data, which encompasses both the problem mapping
and the domain of definition, the error between the approximate solution of the perturbed problem and
the optimal solution of the target problem can be kept within an acceptable scope. It is not difficult to
observe that there are significant gaps and deficiencies in the research on the Hadamard well-posedness
of the Nash equilibrium of population games, which urgently call for further exploration.

Inspired by the aforementioned research findings, in the face of the universal challenge of data col-
lection bias in population game models, we consider the Hadamard well-posedness of the Nash equi-
librium in population games. Specifically, we introduce the concept of Hadamard well-posedness for
population games. By leveraging the upper semicontinuity and compactness properties of the Nash
equilibrium mapping, we establish sufficient conditions for the Hadamard well-posedness of popula-
tion games. Moreover, we build a connection between the Hadamard well-posedness of population
games and the upper semicontinuity of the Nash equilibrium mapping. This provides a theoretical tool
for the stability analysis and the algorithm design of Nash equilibrium solutions in population games.

2. Preliminaries

This section introduces some basic symbols and definitions. First, the population game model is
introduced as follows (see [11] for more details).

Let Γ = (P,X, F ) be a population game, where P = {1, 2, ..., N} is a society consisting of N ≥ 1
populations of agents. When N = 1, it represents a single-population game. For each population
p ∈ P , the agents in the population p form a continuum of massmp > 0. The set of strategies available
to agents in population p is denoted Sp = {1, 2, ..., np}, where np ∈ N+ represents the total number
of pure strategies in population p, and the value of np changes as p changes. Each agent in population
p independently selects a strategy from Sp. The set of population states for population p is

Xp =
{
xp = (xp1, x

p
2, ..., x

p
np) ∈ Rnp

+ : xp1 + xp2 + ...+ xpnp = mp
}
,

where xpi represents the mass of players in population p choosing strategy i ∈ Sp.
Let n =

∑
p∈P

np represent the total number of pure strategies in all populations. Denote by

X =
∏
p∈P

Xp =
{
x =

(
x1, x2, ..., xN

)
∈ Rn

+ : xp ∈ Xp
}
,

the set of social states, where x =
(
x1, x2, ..., xN

)
∈ X describe behavior in all p populations at once.

For each population p, let the continuous map F p,i : X → R be the payoff function when the pure
strategy i is taken, then

F p(x) =
(
F p,1(x), F p,2(x), ..., F p,np

(x)
)
,

represents the payoff function for all strategies in Sp. Denote F (x) =
(
F 1(x), F 2(x), ..., FN (x)

)
, then

F : X → Rn is a continuous map that assigns each social state a vector of payoffs.
In the sequel, we will introduce some important definitions and relevant lemmas.
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Definition 2.1. [2] Let Γ = (P,X, F ) be a population game. A social state x ∈ X is called a Nash
equilibrium of the population game Γ = (P,X, F ), if for each y ∈ X , we have ⟨F (x), y − x⟩ ≤ 0.

As is known from the reference [3], the Nash equilibrium x of the population game Γ can be equiv-
alently defined as: for any p ∈ P , i, j ∈ Sp, we have xp,i > 0 ⇒ F p,i(x) ≥ F p,j(x).
Definition 2.2. [7] Let A and B be two nonempty subsets of X , the Hausdorff distance between A
and B is defined as

H(A,B) = max {e(A,B), e(B,A)} ,
where e(A,B) = supa∈A d(a,B) and d(a,B) = infb∈B ∥a− b∥.
Definition 2.3. [8] Let X be a Banach space, g : X → R be an extended real-valued function, and
x0 ∈ X . If

g(x) > g(x0) ⇒ g(x) > lim sup g(xn), ∀xn → x0,

g is said to be upper-pseudocontinuous at x0. If −g is upper-pseudocontinuous at x0, g is said to be
lower-pseudocontinuous at x0. If g is upper-pseudocontinuous and lower-pseudocontinuous at x0, g
is said to be pseudocontinuous at x0.
Lemma 2.4. [12] Let g : X → R be a real-valued function. If g is pseudocontinuous on X , we have

g(x1) < g(x2) ⇒ ]g(x1), g(x2)[ ∩ g(X) ̸= ∅.

Lemma 2.5. [12] Let g : X → R be a real-valued function. Then g is pseudocontinuous onX if and only
if for any x, z ∈ X , g(x) < g(z) implies that there exist neighborhoods Nx, Nz of x, z respectively, such
that g(x′) < g(z′), ∀x′ ∈ Nx, ∀z′ ∈ Nz .

Lemma 2.6. [4] Let X and Y be two Hausdorff topological spaces, and F : X ⇒ Y be a set-valued
mapping. If F is closed and Y is compact, then the set-valued mapping F is upper semi-continuous onX .

Lemma 2.7. [12] LetM be the set consisting of population game problemsΓ = (P,X, F )with non-empty
Nash equilibrium solution sets, and let the Nash equilibrium solution mapping be S :M ⇒ X .

(1) If S is upper semi-continuous at Γ ∈M and S(Γ) is a non-empty compact set, then Γ is generalized
Hadamard well-posed.

(2) If S is upper semi-continuous at Γ ∈M and S(Γ) is a singleton set, then Γ is generalized Hadamard
well-posed.

Lemma 2.8. [6] Let (X, d) be a complete metric space. IfM is a closed subset of X , then (M,h) is also
complete.

Definition 2.9. [1] Let K be a compact subset of a Banach space X , and ψ : K × K → R be a
real-valued function. ψ is said to satisfy the triangle inequality, if

ψ(x, y) ≤ ψ(x, z) + ψ(z, y),∀x, y, z ∈ K.

Definition 2.10. [13] Let G : X ⇒ Y be a set-valued mapping, and x ∈ X .
(1) The set-valued mapping G is said to be upper semi-continuous at x, if for any open set U in Y

such that G(x) ⊆ U , there exists an open neighborhood V of x satisfying
G(x′) ⊆ U,∀x′ ∈ V.

(2) The set-valued mapping G is said to be lower semi-continuous at x, if for any open set U in Y
such that G(x) ∩ U ̸= ∅, there exists an open neighborhood V of x satisfying

G(x′) ∩ U ̸= ∅,∀x′ ∈ V.

If the set-valued mapping G is both upper semi-continuous and lower semi-continuous at x, then
the set-valued mapping G is said to be continuous at x. If the set-valued mapping G is continuous at
every point x ∈ X , the set-valued mapping G is said to be continuous on X .
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3. Hadamard Well-Posedness of Population Games

In this section, the Hadamard well-posedness of the population game Γ is discussed. First, the con-
cept of Hadamard well-posedness for population games is given.

Let M be the set consisting of population games with nonempty solution sets. Additionally, the
metric ρ onM is defined as

ρ(Γ1,Γ2) =
∑
p∈P

sup
i∈Sp

sup
x∈X

∣∣∣F p,i
1 (x)− F p,i

2 (x)
∣∣∣+max

p∈P
H(X1, X2),

where H denotes the Hausdorff distance on X , and Γl = (P,Xl, Fl) ∈M , l = 1, 2.
In the sequel of this paper, for arbitrary x, y ∈ X , assume that Φ(x, y) = ⟨F (x), x− y⟩, Ω(y, x) =

−Φ(x, y) = ⟨F (x), y − x⟩.

Definition 3.1. LetM = {Γ | Γ = (P,X, F )} be the set of population games with nonempty solution
sets, and let the Nash equilibrium solution mapping be S :M ⇒ X .

(1) Γ ∈ M is said to be generalized Hadamard well-posed, if S(Γ) ̸= ∅, for any Γn ∈ M , Γn → Γ
and xn ∈ S(Γn), there exists a subsequence xnk

of xn such that xnk
→ x ∈ S(Γ).

(2) Γ ∈ M is said to be Hadamard well-posed if Γ is generalized Hadamard well-posed and S(Γ) is
a singleton set.

Next, we prove the completeness of the space (M,ρ) of population games with nonempty solution
sets. Then, by virtue of the properties of pseudocontinuity, we obtain the upper semicontinuity of the
Nash equilibrium solution mapping.

Lemma 3.2. (M,ρ) is a complete metric space.

Proof. Obviously, (M,ρ) is a metric space. Let {Γn}n∈N be a Cauchy sequence in M , where Γn =
(P,Xn, Fn). That is, for any ϵ > 0, there exists a positive integer N such that for any n,m ≥ N , we
have ρ(Γn,Γm) <

ϵ

4
. Thus,

max
p∈P

H(Xn, Xm) <
ϵ

4
and

∑
p∈P

sup
i∈Sp

sup
x∈X

∣∣F p,i
n (x)− F p,i

m (x)
∣∣ < ϵ

4
. (3.1)

Let
ρ′ =

∑
p∈P

sup
i∈Sp

sup
x∈X

∣∣F p,i
n (x)− F p,i

m (x)
∣∣ , (3.2)

then
{
F p,i
n

}
n∈N

is a Cauchy sequence in (R, ρ′). Thus, for any x ∈ X , i ∈ Sp, p ∈ P , we have∣∣F p,i
n (x)− F p,i

m (x)
∣∣ < ϵ

4
. (3.3)

From equation (3.3), we can obtain that
{
F p,i
n

}
n∈N

is a Cauchy sequence in the complete metric space

(R, d). So the sequence
{
F p,i
n

}
n∈N

converges. Combining with equation (3.2), we obtain that any

Cauchy sequence
{
F p,i
n

}
n∈N

in (R, ρ′) also converges. Since (R, ρ′) is a metric space, (R, ρ′) is a
complete metric space. That is, as n→ ∞, there exists F p,i ∈ R such that

F p,i
n → F p,i. (3.4)

Since (Rn, d) is complete,Rn
+ ⊆ Rn,Rn

+ is a closed set and {Xn}n∈N is a Cauchy sequence in (Rn
+, H),

according to Lemma 2.8, (Rn
+, H) is a complete metric space. Thus

Xn → X ∈ Rn
+. (3.5)
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By equation (3.1), letm→ +∞, combining with equations (3.4) and (3.5), we know that

max
p∈P

H(Xn, X) ≤ ϵ

4
and

∑
p∈P

sup
i∈Sp

sup
x∈X

∣∣F p,i
n (x)− F p,i(x)

∣∣ ≤ ϵ

4
, ∀p ∈ P, i ∈ Sp, x ∈ X,n ≥ N.

That is to say, ρ(Γn,Γ) ≤ ϵ

2
< ϵ, where Γ = (P,X, F ) ∈ M . Therefore, any Cauchy sequence

{Γn}n∈N inM converges to Γ ∈M . So (M,ρ) is a complete metric space. □

Lemma 3.3. Let X be a non-empty compact set. The following two conditions hold:
(1) For any y ∈ X , Φ(·, y) is pseudocontinuous on X ,
(2) Φ satisfies the triangle inequality.

Then S is upper semi-continuous on Γ ∈M .

Proof. Assume that
graph(S) = {(Γ, x) ∈M ×X : x ∈ S(Γ)} .

Let {Γm, xm} be a sequence inM ×X , and (Γm, xm) → (Γ, x) ∈M ×X , with xm ∈ S(Γm), where
Γm = {P,Xm, Fm}. Since xm ∈ S(Γm), we have xm ∈ Xm. As Γm → Γ, we obtain that

d(x,X) ≤ d(x, xm) + d(xm, Xm) +H(Xm, X)

≤ d(x, xm) + ρ(Γm,Γ) → 0,
Therefore, x ∈ X .

Next, we prove that x ∈ S(Γ). By contradiction, assume that x /∈ S(Γ), then there exists y ∈ X
such that

Φ(x, y) = ⟨F (x), x− y⟩ < 0.

SinceΦ(y, y) = 0, we haveΦ(x, y) < Φ(y, y). Since for any y ∈ X , Φ(·, y) is pseudocontinuous onX ,
by Lemma 2.4, there exists z ∈ X such that Φ(x, y) < Φ(z, y) < Φ(y, y). Then, by Lemma 2.5, there
exists a neighborhood O of x such that Φ(x′, y) < Φ(z, y) < Φ(y, y), for all x′ ∈ O. This implies that

Ω(y, y) < Ω(y, z) < Ω(y, x′), ∀x′ ∈ O. (3.6)

Since xm → x, there exists a positive integerK such that whenm > K , we have xm ∈ O. Combining
with equation (3.6), we get Ω(y, xm) − Ω(y, y) > 0. That is, ⟨F (xm), y − xm⟩ > 0. This contradicts
the fact that xm ∈ S(Γm), so S is closed. By Lemma 2.6, S is upper semi-continuous on Γ ∈M . □

By virtue of the semi-continuity of the Nash equilibrium mapping and the compactness results, we
establish the sufficient conditions for the Hadamard well-posedness of population games. Meanwhile,
we establish the relationship between the Hadamardwell-posedness of population games and the upper
semi-continuity of the Nash equilibrium mapping.

Theorem 3.4. Let X be a non-empty compact set. The following conditions hold:
(1) For any y ∈ X , Φ(·, y) is pseudocontinuous on X ,
(2) Φ satisfies the triangle inequality.

Then the population game Γ is generalized Hadamard well-posed.

Proof. According to Theorem 1 in reference [10], the population game Γ is non-empty and compact.
By Lemma 3.3, S is upper semi-continuous on Γ ∈ M . Therefore, by Lemma 2.7, the population game
problem Γ is generalized Hadamard well-posed. □

Theorem 3.5. Assume that the population game Γ is generalized Hadamard well-posed. Then S is upper
semi-continuous on Γ ∈M .
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Proof. By contradiction. For any Γ ∈M , assume that S is not upper semi-continuous on Γ ∈M . That
is, there exists an open neighborhood V of S(Γ) such that for any open neighborhood U(Γ) of Γ, there
exists Γ′ ∈ U(Γ) with S(Γ′) ̸⊂ V . In particular, take the open neighborhood Γ +

1

n
B ∈ U(Γ) of Γ

where B is the open unit ball in M . Thus there exists Γn ∈ Γ +
1

n
B such that S(Γn) ̸⊂ V , which

means there exists xn ∈ S(Γn) with xn /∈ V .
Since Γn ∈ Γ +

1

n
B, we have Γn → Γ as n → ∞. Since the population game Γ is generalized

Hadamard well-posed, for any xn ∈ S(Γn), there exists a subsequence xnk
of xn such that xnk

→
x ∈ S(Γ). Obviously, V is also a neighborhood of x. Then there exists a positive integer N such
that when k > N , we have xnk

/∈ V . This contradicts the fact that xnk
∈ V . Therefore, S is upper

semi-continuous on Γ ∈M . □

4. Conclusion

There are few articles investigating the Hadamard well-posedness of Nash equilibrium solutions for
population games. This paper is intended to fill the gap by introducing the Hadamard well-posedness of
Nash equilibrium solutions for population games, and establish sufficient conditions for the Hadamard
well-posedness of these solutions. Furthermore, we explore the connection between Hadamard well-
posedness and the continuity of the Nash equilibrium mappings.
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