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Abstract. Exploring three-block nonconvex optimization with a nonseparable structure has substantial
theoretical significance and potential applications in nonconvex background or foreground extraction
problems such as image and signal processing, phase retrieval, and so on. A class of novel generalized
three-block Bregman-type Peaceman–Rachford splitting methods are proposed, which integrates the in-
exact concepts of linear approximation. Under some generalization assumptions, the optimality condition
is used to establish global convergence. Furthermore, via constituting Cauchy sequence, strong conver-
gence is proved when the augmented Lagrangian function for the three-block nonconvex and nonsepa-
rable optimizations satisfies Kurdyka–Łojasiewicz property. Lastly, a preliminary numerical application
experiment associated with sparse signal reconstruction confirms the effectiveness.
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1. Introduction

Let f : Rn1 → R
⋃
{+∞}, g: Rn2 → R

⋃
{+∞} and h: Rn3 → R

⋃
{+∞} be proper and lower

semicontinuous, l: Rn1×Rn2×Rn3 → R be continuously differentiable, andA ∈ Rm×n1 ,B ∈ Rm×n2 ,
C ∈ Rm×n3 and b ∈ Rm be given matrix or vector. In this paper, we shall tackle the following
nonconvex and nonseparable optimization problem with a general linear constraint:

min f(x) + g(y) + h(z) + l(x, y, z),

s.t. Ax+By + Cz = b.
(1.1)

Significantly, the problem (1.1) finds numerous applications across different domains, e.g. image and
signal processing [26, 31]. It includes techniques like fused Lasso [11, 29], group Lasso [38], and to-
tal variation regularization [32]. Additionally, it is relevant in areas such as phase retrieval [35] and
nonconvex background/foreground extraction problems [37], specifically when addressing large-scale
issues [27].
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In particular, Zhao et al. [39] addressed a specific instance of (1.1) where n2 = n3 = m, and B and
C are identity matrices. The modified problem is as follows

min f(x) + g(y) + h(z) + l(x, y, z),

s.t. Ax+ y + z = b.
(1.2)

Further, if C = O, null matrix, and h(z) + l(x, y, z) ≡ ℑ(x, y) for any (x, y, z) ∈ Rn1 × Rn2 × Rn3 ,
then (1.1) reduces to the following two nonseparable problem:

min f(x) + g(y) + ℑ(x, y),
s.t. Ax+By = b,

(1.3)

which includes two separable optimization problems. Thus, unlike the two separable/nonseparable
problem (1.3) discussed in [18, 19] or the problem (1.2), the problem (1.1) that we are examining is
more.

As everyone knows, several methods are available for solving the nonseparable optimization prob-
lems with linear constraints, which including alternating direction method of multipliers (ADMM)
[16], Douglas–Rachford splitting method [3, 14, 22], and Peaceman–Rachford splitting method (PRSM)
[12, 30]. We note that the main method currently employed to solve the forms of (1.1) and (1.3) is
ADMM, and recent investigations have shown that incorporating appropriate Bregman distances into
ADMM can significantly simplify subproblem calculations or enable closed-form solutions, thereby
enhancing numerical efficiency. For instance, Li and Pong [21] introduced a variant of ADMM by in-
tegrating a Bregman distance parameter into the second subproblem. Wang et al. [34] extended this
idea by incorporating Bregman distances into two subproblems to relax constraints on the objective
function. Substantial progress has been made over the past few years in enhancing ADMM and its
comprehensive reviews, refer to [5, 20, 33] and references therein.

While ADMM has been extensively used to address the problem (1.1), recent research has increas-
ingly focused on PRSM as well. PRSM differs fromADMMprimarily due to its inclusion of an additional
intermediate update step, resembling a symmetric variant of ADMM. As noted by Gabay [15], PRSM
typically achieves faster convergence than ADMM, although it may require stricter conditions for con-
vergence, striking a balance between speed and robustness. Moreover, PRSM has been successfully
extended to handle multi-block problems [8, 25], highlighting its versatility across various optimiza-
tion contexts. Thus, there is a natural interest in adapting PRSM to address (1.1). For instance, Liu et
al. [23] proposed Bregman-PRSM for (1.3). In the context of the three-block nonseparable the problem
(1.1), Chao et al. [9] introduced Linear Bregman ADMM (LBADMM). However, it’s worth noting that
direct extensions of multi-block convex optimization problems, as shown by Chen et al. [10], do not
always guarantee convergence, which has sparked significant interest and discussion in the research
community. Explorations into three-block nonseparable problems are still relatively new and evolving.

Using splitting algorithms like ADMM or PRSM, particularly in the subproblem iteration of x for
separable optimization, that is, the nonseparable term l(x, y, z) = 0 in (1.1) for each (x, y, z) ∈ Rn1 ×
Rn2 × Rn3 , the iterative step is as follows

xk+1 ∈ argmin
x

{
Lβ(x, y

k, zk,Λk)
}

= argmin
x

{
f(x) +

β

2
∥Ax+Byk + Czk − b− 1

β
Λk∥2

}
, (1.4)

where

Lβ(x, y, z,Λ) = f(x) + g(y) + h(z) + l(x, y, z)− ⟨Λ, Ax+By + Cz − b⟩

+
β

2
∥Ax+By + Cz − b∥2 (1.5)
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is the augmented Lagrange function (ALF) with the Lagrange multiplier Λ ∈ Rm for (1.1). In practical
scenarios, solving (1.4) as n1 = m becomes straightforward when A is a unit matrix. However, this
is not always the case when A is not a unit matrix. To address this, one approach is to linearize the
Lagrangian penalty term β

2

∥∥Ax+Byk + Czk − b
∥∥2 by introducing a proximity term 1

2∥x − xk∥2T
during the subproblem update. Specifically, when T = αI−βA⊤A, the subproblem for x is formulated
as

xk+1 ∈ argmin
x

{
Lβ(x, y

k, zk,Λk) +
1

2

∥∥∥x− xk
∥∥∥2
T

}
= argmin

x

{
f(x) +

α

2

∥∥∥x− bk
∥∥∥2} , (1.6)

here bk is a known quantity. Clearly, solving (1.6) is often simplified compared to the original the
problem (1.4). The choice of an appropriate matrix T plays a crucial role in streamlining the solution
process, expediting iterative algorithms, and improving overall numerical effectiveness.

However, in many optimization scenarios, even with the inclusion of proximal terms in subprob-
lems, solving (1.6) remains challenging, especially if f(x) is difficult to minimize. To address this,
an alternative approach involves replacing the original function f(x) with a linear approximation
at each iteration, leveraging its differentiability. This linear approximation, f(x) ≈ f(xk) + (x −
xk)⊤∇f(xk), differs significantly from the proximity linearization used for the Lagrangian penalty
term β

2

∥∥Ax+Byk + Czk − b
∥∥2. While this inexact computation of x updates may increase the total

number of iterations and potentially slow down convergence, it significantly reduces the cost per itera-
tion, leading to overall computational savings. This technical approach of using linear approximations
to simplify the nonseparable structure in objective functions is explored in various previous work. See,
for example, [4, 17, 24] and their references. In summary, while choosing an appropriate matrix T can
simplify the solution process in iterative algorithms, the use of linear approximations for nonseparable
objective functions offers a practical compromise between computational efficiency and convergence
speed in challenging optimization problems.

Based on the above analysis, in this paper, we consider linear approximation of l(x, y, z) in the
problem (1.1) as follows

l(x, yk, zk) ≈ l(xk, yk, zk) + (x− xk)⊤∇xl(x
k, yk, zk),

l(xk+1, y, zk) ≈ l(xk+1, yk, zk) + (y − yk)⊤∇yl(x
k+1, yk, zk),

l(xk+1, yk+1, z) ≈ l(xk+1, yk+1, zk) + (z − zk)⊤∇zl(x
k+1, yk+1, zk),

(1.7)
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here ∇xl denotes the gradient of the vector x for the function l. Aiming at the problem (1.1), com-
bining with Bregman distance, (1.7) and PRSM, the following novel generalized three-block Bregman
Peaceman–Rachford splitting method (3-GBPRSM) is proposed:



xk+1 ∈ argmin
x

{
f(x) + (x− xk)⊤∇xl(x

k, yk, zk)− ⟨Λk, Ax⟩

+
β

2

∥∥∥Ax+Byk + Czk − b
∥∥∥2 +△ϕ1(x, x

k)
}
,

Λk+ 1
2 =Λk − rβ(Axk+1 +Byk + Czk − b),

yk+1 ∈ argmin
y

{
g(y) + (y − yk)⊤∇yl(x

k+1, yk, zk)− ⟨Λk+ 1
2 , By⟩

+
β

2

∥∥∥Axk+1 +By + Czk − b
∥∥∥2 +△ϕ2(y, y

k)
}
,

zk+1 ∈ argmin
z

{
h(z) + (z − zk)⊤∇zl(x

k+1, yk+1, zk)− ⟨Λk+ 1
2 , Cz⟩

+
β

2

∥∥∥Axk+1 +Byk+1 + Cz − b
∥∥∥2 +△ϕ3(z, z

k)
}
,

Λk+1 =Λk+ 1
2 − sβ(Axk+1 +Byk+1 + Czk+1 − b),

(1.8)

where β > 0 is the penalty parameter, r and s are constants, △ϕ is Bregman distance with respect to
the differentiable convex function ϕ : Rn → R, namely (see [7])

△ϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y)⟩, ∀x, y ∈ Rn.

Specifically, when ϕ(x) = ∥x∥2, Bregman distance simplifies to ∥x − y∥2, which corresponds to the
classical Euclidean distance [2].

In this paper, the primary focus and key contribution revolve around the introduction and proof of
convergence for the novel 3-GBPRSM. This method is specifically designed to tackle nonconvex and
nonseparable optimization problems as defined in (1.1).

The novelties of this paper lie in the following aspects:

• The problems (1.1) are generalised and no longer special cases. Three-block nonconvex and
nonseparable optimization problem (1.1) is solved under the constraint that B and C are not
identity matrices.

• Expanding the range of values for the relaxation factors (r, s) broadens the representativeness
of 3-GBPRSM.

• Proposing an innovative linear approximation technique in the algorithm design to tackle the
presence of nonseparable structures in complex optimization problems.

• It presents a fresh perspective to introduce a novel optimization strategy via incorporating Breg-
man distance into the computation of subproblems.

As a result, 3-GBPRSM offers a versatile splitting algorithm framework for addressing the problem
(1.1), allowing for a comprehensive analysis of the theoretical properties applicable to a wide range of
Bregman-type PRSM in a unified manner.

The paper is organised as follows: In Section 2, we describe the basics and establish the foundational
framework for subsequent discussions. Then, we shall delve into convergence properties of 3-GBPRSM
for the three-block nonconvex and nonseparable problem (1.1) in Section 3. In Section 4, we present a
sparse signal reconstruction numerical example to demonstrate and validate our key findings. Finally,
we offer conclusions and potential directions for future research in Section 5.
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2. Preliminaries

Denote ∥ · ∥ as Euclidean norm of a vector. Let domf = {x ∈ Rn : f(x) < +∞} be the domain of
function f : Rn → R ∪ {+∞}. For a symmetric semi-positive (positive) definite matrix H ⪰ (≻) 0,
we know that ∥x∥2H = x⊤Hx and Λmin(H)∥x∥2 ≤ x⊤Hx ≤ Λmax(H)∥x∥2 holds for all x ∈ Rn,
where Λmin(H) and Λmax(H) represent the minimum eigenvalue and the maximum eigenvalue ofH ,
respectively.

Definition 2.1. Let f : Rn → R. If there exists a constant Lf > 0 such that |f(x)−f(y)| ≤ Lf |x−y|
for all x, y ∈ Rn, then f is said to be Lf -Lipschitz continuous.

Definition 2.2. Thedistance from a pointx ∈ Rn to a set S ⊆ Rn is defined as d(x, S) = infy∈S ∥y−x∥.
Specifically, if S = ∅, then d(x,S) = +∞.

Definition 2.3. Denote S ⊂ Rn as a nonempty convex set, and f is defined on S. If for any x1, x2 ∈ S
and each α ∈ (0, 1), the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

holds, then f is termed convex on S. Sepcifically, if x1 ̸= x2, and the strict inequality

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

owns, then f is called strictly convex on S.
Further, if for all x1, x2 ∈ S and any α ∈ (0, 1), one has a constant σ > 0 such that

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)−
1

2
σα(1− α)∥x1 − x2∥2,

then f is said to be strongly α-convex.

Definition 2.4. A differentiable function f is defined on a nonempty open convex set S ⊂ Rn. Then
(i) f is convex if and only if either

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ S,

or
⟨∇f(x)−∇f(y), x− y⟩ ≥ 0, ∀x, y ∈ S;

(ii) f is strongly σ-convex if and only if there exists a constant σ > 0 such that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σ

2
∥y − x∥2, ∀x, y ∈ S.

Definition 2.5. The subdifferential of a proper lower semicontinuous function f : Rn → R exhibits
the following several fundamental properties:

(i) For each x ∈ Rn, ∂̂f(x) ⊆ ∂f(x), and ∂f(x) is closed if ∂̂f(x) is a closed convex set.
(ii) If x∗k ∈ ∂f(xk) and limk→∞(xk, x

∗
k) = (x, x∗), then x∗ ∈ ∂f(x), ensuring ∂f(x) is closed.

(iii) 0 ∈ ∂f(x̂)when x̂ ∈ Rn is a local minimum of f . x̂ is a critical point of f whenever 0 ∈ ∂f(x̂),
the set of critical points of f is denoted by critf .

(iv) For a continuously differentiable function g : Rn → R, the subdifferential of the sum ∂(f +
g)(x) satisfies ∂(f + g)(x) = ∂f(x) +∇g(x) for all x ∈ domf .

The set Φη consists of all concave functions φ : [0, η) → [0,+∞) that adhere to the following
criteria: (i) φ(0) = 0; (ii) φ is continuous at 0 and differentiable on (0, η); (iii) φ′(t) > 0 for every
t ∈ (0, η).
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Lemma 2.6. ([1]) (Kurdyka–Łojasiewicz property, KLP) Let f : Rn → R ∪ {+∞} be a proper lower
semicontinuous function, and let x̄ ∈ dom(∂f), where dom(∂f):={x ∈ Rn| ∂f(x) ̸= ∅}. Define
[η1 < f < η2] := {x ∈ Rn| η1 < f(x) < η2}. If there exist η ∈ (0,+∞], a neighborhood U of x̄ and a
concave function φ ∈ Φη , then the following inequality holds for all x ∈ U ∩ [f(x̄) < f < f(x̄) + η]:

φ′(f(x)− f(x̄))d(0, ∂f(x)) ≥ 1,

where f is referred to as satisfying KLP at x̄. Meanwhile, φ is the associate function of f with KLP.

Lemma 2.7. ([7]) Let△ϕ(x, y) denote Bregman distance corresponding to a differentiable convex function
ϕ : Rn → R. The properties of△ϕ(x, y) are listed:

(i) Nonnegative: For all x, y ∈ Rn,△ϕ(x, y) ≥ 0 and △ϕ(x, x) = 0;
(ii) Convexity: △ϕ(x, y) is convex with respect to x, although it may not be convex at y;
(iii) Strong convexity: If ϕ is strongly σ-convex, then for all x, y ∈ Rn,△ϕ(x, y) ≥ σ

2 ∥x− y∥2 holds.

Lemma 2.8. ([1]) Assume that H(x, y, z) = p(x) + q(y) + h(z), here p : Rn1 → R ∪ {+∞}, q :
Rn2 → R ∪ {+∞} and h : Rn3 → R ∪ {+∞} are proper lower semicontinuous functions. Then for all(
x, y, z

)
∈ dom H = dom p× dom q × dom h, the following equality holds:

∂H(x, y, z) = ∂xH(x, y, z)× ∂yH(x, y, z)× ∂zH(x, y, z).

Lemma 2.9. ([6]) (Uniform KLP) Suppose Ω is a compact set and f : Rn → R ∪ {+∞} is a proper
and lower semicontinuous function. If f is constant on Ω and at any point of Ω f satisfies KLP what
is stated in Lemma 2.6. Then, there exist ζ > 0, η > 0 and φ ∈ Φη such that for all x̄ ∈ Ω and
x ∈ {x ∈ Rn : d(x,Ω) < ζ} ∩ [f(x̄) < f(x) < f(x̄) + η], the following inequality holds:

φ′(f(x)− f(x̄))d(0, ∂f(x)) ≥ 1.

Lemma 2.10. ([28]) Suppose that p : Ru → R is continuous and differentiable, and gradient ∇p is
Lp-Lipschitz continuous. Then

|p(y)− p(x)− ⟨∇p(x), x− y⟩| ≤ Lp

2
∥y − x∥2, ∀x, y ∈ Ru.

Lemma 2.11. (i) The sequence {ek} converges if it is monotonically decreasing and bounded below.
(ii) If {ek} is monotonic and there exists an infinite subsequence ekj → e, then limk→∞ ekj = e.

3. Convergence Analysis

Letting ω := (x, y, z) and ı := (x, y, z,Λ). Using ALF (1.5), we define
∂xLβ(ı) = ∂f(x) +∇xl(ω)−A⊤Λ + βA⊤(Ax+By + Cz − b),

∂yLβ(ı) = ∂g(y) +∇yl(ω)−B⊤Λ + βB⊤(Ax+By + Cz − b),

∂zLβ(ı) = ∂h(z) +∇zl(ω)− C⊤Λ + βC⊤(Ax+By + Cz − b),

∂ΛLβ(ı) = −(Ax+By + Cz − b).

(3.1)

From (3.1), we obtain the following result.

Lemma 3.1. Let (x⋆, y⋆, z⋆,Λ⋆) be a stable point of Lβ(x, y, z,Λ). Then 0 ∈ ∂Lβ(x
⋆, y⋆, z⋆,Λ⋆) if and

only if the following equalities own by Lemma 2.8:

A⊤Λ⋆ −∇xl (x
⋆, y⋆, z⋆) ∈ ∂f(x⋆), B⊤Λ⋆ −∇yl(x

⋆, y⋆, z⋆) ∈ ∂g(y⋆),

C⊤Λ⋆ −∇zl (x
⋆, y⋆, z⋆) ∈ ∂h(z⋆), Ax⋆ +By⋆ + Cz⋆ − b = 0.
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The ALF Lβ(x, y, z,Λ) satisfies the following property for all θ ∈ R and (x, y, z,Λ) ∈ Rn1 ×Rn2 ×
Rn3 × Rm:

Lβ(x, y, z,Λ− θ(Ax+By + Cz − b)) = Lβ(x, y, z,Λ) + θ∥Ax+By + Cz − b∥2. (3.2)

To simplify the analysis, we introduce the following symbols:

ω⋆ := (x⋆, y⋆, z⋆), ω̃ := (x̃, ỹ, z̃), ωk := (xk, yk, zk),

ı⋆ := (x⋆, y⋆, z⋆,Λ⋆), ık := (xk, yk, zk,Λk),

ı̂ := (x, y, z,Λ, ẑ), ı̂⋆ := (x⋆, y⋆, z⋆,Λ⋆, ẑ⋆), ı̂k := (xk, yk, zk,Λk, zk−1).

Some basic assumptions of problem (1.1) are given in order to analyze convergence.

Assumption 3.2. (i) h(z) and l(x, y, z) are differentiable. The gradient∇h and∇l are Lipschitz contin-
uous with constants Lh and Ll, respectively. That is, for all (x, y, z), (x̃, ỹ, z̃) ∈ Rn1 × Rn2 × Rn3 ,

∥∇h(z)−∇h(z̃)∥ ≤ Lh∥z − z̃∥,
∥(∇xl(ω)−∇xl(ω̃),∇yl(ω)−∇yl(ω̃),∇zl(ω)−∇zl(ω̃))∥ ≤ Ll∥(x− x̃, y − ỹ, z − z̃)∥.

(ii) ∇ϕi is Lipshitz continuous with constant Lϕi
for i = 1, 2, 3.

(iii) The parameters r and s, as well as the strong convex coefficient σϕi
of function ϕi for i = 1, 2, 3,

satisfy the following conditions:

r + s > 0,

σϕ1 >
18
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
(r + s)β

+ Ll,

σϕ2 >
18
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
(r + s)β

+
2rsβ

r + s
+ Ll,

σϕ3 >
18
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
(r + s)β

+
2rsβ

r + s
+ Ll.

(iv) 3-GBPRSM generates a bounded sequence of points {ık}.

Remark 3.3. According to the optimality conditions of 3-GBPRSM, one can get

0 ∈ ∂f(xk) +∇xl(x
k, yk, zk)−A⊤Λk + βA⊤(Axk+1 +Byk

+ Czk − b) +∇ϕ1(x
k+1)−∇ϕ1(x

k),

0 ∈ ∂g(yk+1) +∇yl(x
k+1, yk, zk)−B⊤Λk+ 1

2 + βB⊤(Axk+1

+Byk+1 + Czk − b) +∇ϕ2(y
k+1)−∇ϕ2(y

k),

0 ∈ ∂h(zk+1) +∇zl(x
k+1, yk+1, zk)− C⊤Λk+ 1

2 + βC⊤(Axk+1

+Byk+1 + Czk+1 − b) +∇ϕ3(z
k+1)−∇ϕ3(z

k).

(3.3)

Since {Lβ(ı
k)} does not necessarily have goodmonotonicity, we need to construct a appropriate benefit

function with decreasing properties. Thus, we consider the following benefit function:

L̂β (̂ı) = Lβ(ı
k) +

9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

∥z − ẑ∥. (3.4)

Also for 3-GBPRSM, assume that the initial point ı0 makes Lβ(ı
0) < +∞.
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To analyze the monotonicity of {L̂β (̂ı
k)}, let

δ1 : = δ1(r, s, β, σϕ1)

=
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
(r + s)β

−
σϕ1 − Ll

2
,

δ2 : = δ2(r, s, β, σϕ2)

=
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
(r + s)β

+
rsβ

r + s
−

σϕ2 − Ll

2
,

δ3 : = δ3(r, s, β, σϕ3)

=
9
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
(r + s)β

+
rsβ

r + s
−

σϕ1 − Ll

2
,

δ : = δ(r, s, β) = min {δ1, δ2, δ3}
= min {δ1(r, s, β, σϕ1), δ2(r, s, β, σϕ2), δ3(r, s, β, σϕ3)} .

(3.5)

Lemma 3.4. Suppose Assumption 3.2 holds, then for each k ≥ 0,

L̂β (̂ı
k+1)− L̂β (̂ı

k) ≤ −δ(∥xk+1 − xk||2 + ∥yk+1 − yk||2 + ∥zk+1 − zk||2), (3.6)
where the definition of δ is shown in (3.5).

Proof. First of all, xk+1 is the optimal solution to the subproblem of x. Then,

f(xk+1) + (xk+1 − xk)⊤∇xl(x
k, yk, zk)− ⟨Λk, Axk+1⟩+ β

2
∥Axk+1 +Byk + Czk − b∥2

≤ f(xk)− ⟨Λk, Axk⟩+ β

2
∥Axk +Byk + Czk − b∥2 −△ϕ(x

k+1, xk).

According to the definition of Lβ(ı) in (1.5), one has

Lβ(x
k+1, yk, zk,Λk)− Lβ(ı

k) ≤ l(xk+1, yk, zk)− l(xk, yk, zk)

− (xk+1 − xk)⊤∇xl(x
k, yk, zk)−△ϕ1

(
xk+1, xk

)
.

By the Lipschitz continuity of∇l, the strong convexity of△ϕ1 and Lemma 2.7, one can obtain that

Lβ(x
k+1, yk, zk,Λk)− Lβ(ı

k) ≤ Ll

2
∥xk+1 − xk∥2 −△ϕ1(x

k+1, xk)

≤ −
σϕ1 − Ll

2
∥xk+1 − xk∥2. (3.7)

Similarly, yk+1 is the optimal solution to the subproblem of y, thus

g(yk+1) + (yk+1 − yk)⊤∇yl(x
k+1, yk, zk)− ⟨Λk+ 1

2 , Byk+1⟩+ β

2
∥Axk+1 +Byk+1 + Czk − b∥2

≤ g(yk)− ⟨Λk+ 1
2 , Byk⟩+ β

2
∥Axk+1 +Byk + Czk − b∥2 −△ϕ2(y

k+1, yk).

Further, combining with the definition of Lβ(ı), one gets

Lβ(x
k+1, yk+1, zk,Λk+ 1

2 )− Lβ(x
k+1, yk, zk,Λk+ 1

2 )

≤ l(xk+1, yk+1, zk)− l(xk+1, yk, zk)− (yk+1 − yk)⊤∇yl(x
k+1, yk, zk)−△ϕ2

(
yk+1, yk

)
.

From the Lipschitz continuity of∇l, the strong convexity of△ϕ2 and Lemma 2.10, it follows that

Lβ(x
k+1, yk+1, zk,Λk+ 1

2 )− Lβ(x
k+1, yk, zk,Λk+ 1

2 ) ≤ Ll

2
∥yk+1 − yk∥2 −△ϕ2(y

k+1, yk)

≤ −
σϕ2 − Ll

2
∥yk+1 − yk∥2. (3.8)
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In the same way, the following inequality holds:

Lβ(ω
k+1,Λk+ 1

2 )− Lβ(x
k+1, yk+1, zk,Λk+ 1

2 ) ≤ Ll

2
∥zk+1 − zk∥2 −△ϕ3(z

k+1, zk)

≤ −
σϕ3 − Ll

2
∥zk+1 − zk∥2.

(3.9)

Secondly, it can deduce from (1.8) and (3.3) that

Λk+1 =
[
∂h(zk+1) +∇zl(x

k+1, yk+1, zk) +∇ϕ3(z
k+1)−∇ϕ3(z

k)
]
(C⊤)−1

+ β(1− s)(Axk+1 +Byk+1 + Czk+1 − b),

and combining with the Lipschitz continuity of∇h and∇l, we can derive

∥Λk+1 − Λk∥ ≤ ∥(C⊤)−1∥(Lh∥zk+1 − zk∥+ Ll∥xk+1 − xk∥+ Ll∥yk+1 − yk∥+ Ll∥zk − zk−1∥)

+ Lϕ3∥zk+1 − zk∥+ Lϕ3∥zk − zk−1∥

+ |1− s|β
[
∥A(xk+1 − xk)∥+ ∥B(yk+1 − yk)∥+ ∥C(zk+1 − zk)∥

]
≤ (Ll∥(C⊤)−1∥+ β|1− s|∥A∥)∥xk+1 − xk∥

+ (Ll∥(C⊤)−1∥+ β|1− s|∥B∥)∥yk+1 − yk∥

+
[
Lh∥(C⊤)−1∥+ β|1− s|∥C∥+ Lϕ3

]
∥zk+1 − zk∥

+
(
Ll∥(C⊤)−1 + Lϕ3

)
∥zk − zk−1∥. (3.10)

By Cauchy inequality, (3.10) means that
1

9
∥Λk+1 − Λk∥2 ≤

(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
∥xk+1 − xk∥

+
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
∥yk+1 − yk∥

+
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
∥zk+1 − zk∥

+
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
∥zk − zk−1∥. (3.11)

Besides, by using multipliers Λk+1 and Λk+ 1
2 to update the formulas, we have

Axk+1 +Byk + Czk − b = − 1

(r + s)β
(Λk+1 − Λk)− s

r + s
(yk+1 − yk)− s

r + s
(zk+1 − zk),

Axk+1 +Byk+1 + Czk+1 − b = − 1

(r + s)β
(Λk+1 − Λk) +

r

r + s
(yk+1 − yk) +

r

r + s
(zk+1 − zk).

(3.12)

According to (3.11), (3.12) and r + s > 0, the following inequality owns:

rβ∥Axk+1 +Byk + Czk − b∥2 + sβ∥Axk+1 +Byk+1 + Czk+1 − b∥2

=
1

(r + s)β
∥Λk+1 − Λk∥2 + rsβ

r + s
∥yk+1 − yk∥2 + rsβ

r + s
∥zk+1 − zk∥2

≤
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
(r + s)β

∥xk+1 − xk∥

+

(
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
(r + s)β

+
rsβ

r + s

)
∥yk+1 − yk∥

+

(
9
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
(r + s)β

+
rsβ

r + s

)
∥zk+1 − zk∥
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+
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

∥zk − zk−1∥. (3.13)

Finally, from (1.8) and (3.2), it is easy to know that

Lβ(x
k+1, yk, zk,Λk+ 1

2 )− Lβ(x
k+1, yk, zk,Λk) = rβ∥Axk+1 +Byk + Czk − b∥2,

Lβ(ı
k+1)− Lβ(ω

k+1,Λk+ 1
2 ) = sβ∥Axk+1 +Byk+1 + Czk+1 − b∥2.

Then, by (3.7)-(3.9) and (3.13), one can get

Lβ(ı
k+1)− Lβ(ı

k)

≤Lβ(x
k+1, yk+1, zk,Λk+ 1

2 )− σϕ3
− Ll

2
∥zk+1 − zk∥2

+ sβ∥Axk+1 +Byk+1 + Czk+1 − b∥2 − Lβ(ı
k)

≤Lβ(x
k+1, yk, zk,Λk+ 1

2 )− σϕ2
− Ll

2
∥yk+1 − yk∥2 − σϕ3

− Ll

2
∥zk+1 − zk∥2

+ sβ∥Axk+1 +Byk+1 + Czk+1 − b∥2 − Lβ(ı
k)

≤− σϕ1
− Ll

2
∥xk+1 − xk∥2 − σϕ2

− Ll

2
∥yk+1 − yk∥2 − σϕ3

− Ll

2
∥zk+1 − zk∥2

+ rβ∥Axk+1 +Byk + Czk − b∥2 + sβ∥Axk+1 +Byk+1 + Czk+1 − b∥2

≤

(
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
(r + s)β

− σϕ1 − Ll

2

)
∥xk+1 − xk∥

+

(
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
(r + s)β

+
rsβ

r + s
− σϕ2

− Ll

2

)
∥yk+1 − yk∥

+

(
9
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
(r + s)β

+
rsβ

r + s
− σϕ1

− Ll

2

)
∥zk+1 − zk∥

+
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

∥zk − zk−1∥,

which implies according to the definition of δ in (3.5) that[
Lβ(ı

k+1) +
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

∥zk+1 − zk∥

]

−
[
Lβ(ı

k) +
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

∥zk − zk−1∥
]

≤

(
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(A
⊤A)

)
(r + s)β

− σϕ1
− Ll

2

)
∥xk+1 − xk∥

+

(
9
(
L2
lΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(B
⊤B)

)
(r + s)β

+
rsβ

r + s
− σϕ2

− Ll

2

)
∥yk+1 − yk∥

+

(
9
(
L2
hΛmax(C

−1)(C−1)⊤ + β2(1− s)2Λmax(C
⊤C) + L2

ϕ3

)
(r + s)β

+
rsβ

r + s
− σϕ1

− Ll

2

)
∥zk+1 − zk∥

≤ −δ1(r, s, β, σϕ1
)∥xk+1 − xk∥2 − δ2(r, s, β, σϕ2

)∥yk+1 − yk∥2 − δ3(r, s, β, σϕ3
)∥zk+1 − zk∥2

≤ −δ
(
∥xk+1 − xk∥2 + ∥yk+1 − yk∥2 + ∥zk+1 − zk∥2

)
.

Thus, {L̂β (̂ı
k)} has sufficient descent property when δ > 0. The proof is completed. □
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Lemma 3.5. If Assumption 3.2 holds, then

+∞∑
k=0

∥∥∥ık+1 − ık
∥∥∥2 < +∞.

Proof. Since
{
ık
}
is bounded, the sequence

{
ı̂k
}
is also bounded. Then, there exists a subsequence{

ı̂kj
}
such that limj→+∞(̂ıkj ) = ı̂⋆. Given the lower semicontinuity of f , g and h. We know that the

Lipschitz differentiability of L̂β is lower semicontinuous. Thus

L̂β (̂ı
⋆) ≤ lim

kj→+∞
L̂β (̂ı

kj ) ≤ L̂β (̂ı
0) = Lβ(ı

0) < +∞.

From Lemma 3.5, it follows that
{
L̂β (̂ı

kj )
}

is bounded. Due to the monotonicity of
{
L̂β (̂ı

kj )
}
,{

L̂β (̂ı
k)
}
is also covergent. And for each k, L̂β

(
ı̂k
)
≥ L̂β (̂ı

⋆). By Lemma 3.5, we have

δ
( ∥∥∥xk+1 − xk

∥∥∥2 + ∥∥∥yk+1 − yk
∥∥∥2 + ∥∥∥zk+1 − zk

∥∥∥2 ) ≤ L̂β

(
ı̂k
)
− L̂β

(
ı̂k+1

)
.

Summing this inequality from k = 1 to t, we obtain

δ

t∑
k=1

(∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥yk+1 − yk

∥∥∥2 + ∥∥∥zk+1 − zk
∥∥∥2)

≤ L̂β (̂ı
0)− L̂β (̂ı

q+1) ≤ L̂β (̂ı
0)− L̂β (̂ı

⋆) < +∞.

Since δ > 0, it follows that

+∞∑
k=0

∥xk+1 − xk∥2 < +∞,
+∞∑
k=0

∥yk+1 − yk∥2 < +∞,
+∞∑
k=0

∥zk+1 − zk∥2 < +∞.

In view of (3.11),
∑+∞

k=0 ∥Λk+1 − Λk∥2 < +∞ holds and so one has
∑+∞

k=0 ∥ık+1 − ık∥2 < +∞. □

Theorem 3.6. (Global convergent) Denote Ω and Ω̂ as the set of all clusters of the sequence {ık} and
{ı̂k}, respectively. Let Assumption 3.2 hold. Then:

(i) Ω and Ω̂ are nonempty convex, and d(ık,Ω) → 0, d(̂ık, Ω̂) → 0 as k → +∞.
(ii) Ω ⊆ critLβ.

(iii) Ω̂ = {(x⋆, y⋆, z⋆,Λ⋆, z⋆) : (x⋆, y⋆, z⋆,Λ⋆) ∈ Ω} .
(iv) The entire sequence of {L̂β (̂ı

k)} is convergent. Moreover
L̂β (̂ı

⋆) = limk→+∞ L̂β (̂ı
k) = infk L̂β (̂ı

k) for any ı̂⋆ ∈ Ω̂. Thus, L̂β is finite and constant on Ω̂.

Proof. we will prove each of the results one by one as follows.
(i) The conclusion holds due to the definition of Ω, Ω̂ and ı̂k, and the boundedness of {ık}.
(ii) Letting ı∗ = (x⋆, y⋆, z⋆,Λ⋆) ∈ Ω, then there exists a subsequence {ıkj} of {ık} such that {ıkj}

converges to ı⋆. It is known that limk→+∞ ∥ık+1 − ık∥ = 0 and limkj→+∞ ıkj+1 = ı⋆ by Lemma
3.5. Taking k = kj → +∞ in (1.8), then one can know that {Λkj+

1
2 } is bounded, so we have

limkj→+∞ Λkj+
1
2 = Λ⋆⋆. Let k = kj → +∞ take the limit in (1.8). Then one gets

Λ⋆⋆ = Λ⋆ − rβ(Ax⋆ +By⋆ + Cz⋆ − b), Λ⋆ = Λ⋆⋆ − sβ(Ax⋆ +By⋆ + Cz⋆ − b).
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And because r + s > 0, we can obtain from the above equation that Ax⋆ + By⋆ + Cz⋆ − b = 0,
Λ⋆⋆ = Λ⋆. Thus, ω⋆ is the optimal solution of (1.8), and the following inequality holds:

f(xkj+1) + (xkj+1 − xkj )⊤∇xl(x
kj , ykj , zkj )− ⟨Λkj , Axkj+1⟩

+
β

2
∥Axkj+1 +Bykj + Czkj − b∥2 +△ϕ1(x

kj+1, xkj )

≤ f(x⋆) + (x⋆ − xkj )⊤∇xl(x
⋆, ykj , zkj )− ⟨Λkj , Ax⋆⟩

+
β

2
∥Ax∗ +Bykj + Czkj − b∥2 +△ϕ1(x

⋆, xkj ).

Combining limkj→+∞ ıkj = limkj→+∞ ıkj+1 = ı⋆ and the continuous differentiability of ϕ, this in-
equality means that lim supkj→+∞f(xkj+1) ≤ f(x⋆). Noting the lower semicontinuity of f , f(x⋆) ≤
limkj→+∞ f(xkj+1) holds. So we can get

lim
kj→+∞

f(xkj+1) = f(x⋆). (3.14)

What is more, it is known that limkj→+∞ ∥xkj+1 − xkj∥ = 0, limkj→+∞ ∥ykj+1 − ykj∥ = 0 and
limkj→+∞ ∥zkj+1 − zkj∥ = 0 from Lemma 3.5. According to Assumption 3.2, one has

lim
kj→+∞

∥∥∥∇ϕ1

(
xkj+1

)
−∇ϕ1(x

kj
)∥∥∥ = 0, lim

kj→+∞

∥∥∥∇ϕ2

(
ykj+1

)
−∇ϕ2

(
ykj
)∥∥∥ = 0,

lim
kj→+∞

∥∥∥∇ϕ3

(
zkj+1

)
−∇ϕ3

(
zkj
)∥∥∥ = 0.

Hence, taking into account the closeness of ∂f , ∂g and ∂h, the continuity of∇l, as well as (3.14), letting
k = kj → +∞ take the limit in (3.3), then one gets A⊤Λ⋆ −∇xl(ω

⋆) ∈ ∂f(x⋆), B⊤Λ⋆ −∇yl(ω
⋆) ∈

∂g(y⋆), C⊤Λ⋆ −∇zl(ω
⋆) ∈ ∂h(z⋆) and Ax⋆ +By⋆ +Cz⋆ − b = 0, and so ı⋆ ∈ critLβ by Lemma 3.1.

(iii) The conclusion holds because of Lemma 3.5 and the definition of ı̂k.
(iv) Let ı̂⋆ ∈ Ω̂, and consider a subsequence {ı̂kj} that {ı̂kj} converges to ı̂⋆. According to (1.5),

(3.4) and (3.14), we have limkj→+∞ L̂β (̂ı
kj+1) = L̂β (̂ı

⋆). Given the monotonicity of {L̂β (̂ı
k)} and

Lemma 2.11, the entire sequence {L̂β (̂ı
k)} converges. Therefore,+∞ > L̂β (̂ı

0) ≥ limk→+∞ L̂β (̂ı
k) =

infk L̂β (̂ı
k) = L̂β (̂ı

⋆). This follows because L̂β (̂ı
k) ≤ L̂β (̂ı

0) < +∞. Hence, for all ı̂⋆ ∈ Ω, L̂β (̂ı
⋆) ≡

limk→+∞ L̂β (̂ı
k) < +∞ holds. The proof is completed. □

Remark 3.7. From ı̂k+1 = (xk+1, yk+1, zk+1,Λk+1, ẑk+1) and the definition of L̂β (̂ı) in (3.4), the fol-
lowing limiting subdifferential result is obtained

∂xL̂β (̂ı
k+1) = ∂f(xk+1) +∇xl(x

k+1, yk+1, zk+1)−A⊤Λk+1

+ βA⊤(Axk+1 +Byk+1 + Czk+1 − b),

∂yL̂β (̂ı
k+1) = ∂g(yk+1) +∇yl(x

k+1, yk+1, zk+1)−B⊤Λk+1

+ βB⊤(Axk+1 +Byk+1 + Czk+1 − b),

∂zL̂β (̂ı
k+1) = ∂h(zk+1) +∇zl(x

k+1, yk+1, zk+1)− C⊤Λk+1

+ βC⊤(Axk+1 +Byk+1 + Czk+1 − b)

+
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk),

∂ΛL̂β (̂ı
k+1) = −(Axk+1 +Byk+1 + Czk+1 − b),

∂ẑL̂β (̂ı
k+1) = −

9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk).

(3.15)
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To prove strong convergence of sequences generated by 3-GBPRSM, the following result is needed.

Lemma 3.8. Let

Ek+1
1 = βA⊤(Byk+1 −Byk) + βA⊤(Czk+1 − Czk)−A⊤(Λk+1 − Λk)

−
[
∇ϕ1(x

k+1)−∇ϕ2(x
k)
]
+∇xl(ω

k+1)−∇xl(x
k, yk, zk),

Ek+1
2 = B⊤(− s

r + s
(Λk+1 − Λk) +

rsβ

r + s
(yk+1 − yk + zk+1 − zk)

)
+∇yl(ω

k+1)−∇yl(x
k+1, yk+1, zk) + βB⊤(Czk+1 − Czk)

−
[
∇ϕ2(y

k+1)−∇ϕ2(y
k)
]
,

Ek+1
3 = ∇zl(ω

k+1)−∇zl(x
k+1, yk+1, zk)− sC⊤

r + s
(Λk+1 − Λk)

+
rsβC⊤

r + s
(yk+1 − yk)−

[
∇ϕ3(z

k+1)−∇ϕ3(z
k)
]

+
rsβ2C⊤ + 9

(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk),

Ek+1
4 =

1

(r + s)β
(Λk+1 − Λk)− r

r + s
(yk+1 − yk)− r

r + s
(zk+1 − zk),

Ek+1
5 = −

9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk).

(3.16)

If Assumption 3.2 holds, then Ek+1 := (Ek+1
1 , Ek+1

2 , Ek+1
3 , Ek+1

4 , Ek+1
5 ) ∈ ∂Lβ(ı

k+1) holds. For all
k ≥ 0, there exists ζ > 0 such that

(0, ∂Lβ(ı
k+1)) ≤ ζ(∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk+1 − zk∥+ ∥zk − zk−1∥). (3.17)

Proof. Firstly, let ξ1k+1 ∈ ∂f(xk+1). According to (3.3), we have

ξ1
k+1 +∇xl(x

k, yk, zk) + βA⊤(Axk+1 +Byk + Czk − b)−A⊤Λk +∇ϕ1(x
k+1)−∇ϕ1(x

k) = 0.

Combining (3.16) and (3.1), we have

Ek+1
1 = βA⊤(Byk+1 −Byk) + βA⊤(Czk+1 − Czk)−A⊤(Λk+1 − Λk)

−
[
∇ϕ1(x

k+1)−∇ϕ2(x
k)
]
+∇xl(ω

k+1)−∇xl(x
k, yk, zk) +

{
ξ1

k+1 +∇xl(x
k, yk, zk)

−A⊤Λk + βA⊤(Axk+1 +Byk + Czk − b) +∇ϕ1(x
k+1)−∇ϕ1(x

k)
}

= ξ1
k+1 +∇xl(x

k+1, yk+1, zk+1)−A⊤Λk+1 + βA⊤(Axk+1 +Byk+1 + Czk+1 − b)

∈ ∂xL̂β (̂ı
k+1).

Secondly, according to (3.3), taking ξ2k+1 ∈ ∂g(yk+1), then

ξ2
k+1 +∇yl(x

k+1, yk, zk) + βB⊤(Axk+1 +Byk+1 + Czk − b)

−B⊤Λk+ 1
2 +∇ϕ2(y

k+1)−∇ϕ2(y
k) = 0,
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and it follows from (3.16) and (3.1) that

Ek+1
2 = B⊤

(
− s

r + s
(Λk+1 − Λk) +

rsβ

r + s
(yk+1 − yk + zk+1 − zk)

)
+∇yl(ω

k+1)

−∇yl(x
k+1, yk+1, zk) + βB⊤(Czk+1 − Czk)−

[
∇ϕ2(y

k+1)−∇ϕ2(y
k)
]

= B⊤
(
sβ(Axk+1 + yk+1 + zk+1 − b)

)
+∇yl(ω

k+1)−∇yl(x
k+1, yk+1, zk)

+ βB⊤(Czk+1 − Czk)−
[
∇ϕ2(y

k+1)−∇ϕ2(y
k)
]

= B⊤(Λk+ 1
2 − Λk+1) +∇yl(ω

k+1)−∇yl(x
k+1, yk, zk) + βB⊤(Czk+1

− Czk)−
[
∇ϕ2(y

k+1)−∇ϕ2(y
k)
]
+
{
ξ2

k+1 +∇yl(x
k+1, yk, zk)−B⊤Λk+ 1

2

+βB⊤(Axk+1 +Byk+1 + Czk − b) +∇ϕ2(y
k+1)−∇ϕ2(y

k)
}

= ξ2
k+1 +∇yl(x

k+1, yk+1, zk+1)−B⊤Λk+1 + βB⊤(Axk+1 +Byk+1 + Czk+1 − b)

∈ ∂yL̂β (̂ı
k+1).

According to (3.3), there exists ξ3k+1 ∈ ∂h(zk+1) such that

ξ3
k+1 +∇zl(x

k+1, yk+1, zk) + βC⊤(Axk+1 +Byk+1 + Czk+1 − b)

− C⊤Λk+ 1
2 +∇ϕ3(z

k+1)−∇ϕ3(z
k) = 0.

Similarly, substituting (3.3) for Λk+ 1
2 in (1.8), it holds

sβC⊤(Axk+1 +Byk+1 + Czk+1 − b) =ξ3
k+1 +∇zl(x

k+1, yk+1, zk)− C⊤Λk+1

+ βC⊤
(
Axk+1 +Byk+1 + Czk+1 − b

)
+∇ϕ3(z

k+1)−∇ϕ3(z
k).

Combining with (3.12), (3.15) and (3.16), the following equation holds:

Ek+1
3 = ∇zl(ω

k+1)−∇zl(x
k+1, yk+1, zk)− sC⊤

r + s
(Λk+1 − Λk)

+
rsβC⊤

r + s
(yk+1 − yk)−

[
∇ϕ3(z

k+1)−∇ϕ3(z
k)
]

+
rsβ2C⊤ + 9

(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk)

= ξ3
k+1 +∇zl(ω

k+1)− C⊤Λk+1 + βC⊤(Axk+1 +Byk+1 + Czk+1 − b)

+
9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk)

∈ ∂zLβ(ı
k+1).

Further, it can be deduced that

Ek+1
4 =

1

(r + s)β
(Λk+1 − Λk)− r

r + s
(yk+1 − yk)− r

r + s
(zk+1 − zk)

= −(Axk+1 +Byk+1 + Czk+1 − b)

= ∂ΛLβ

(
ık+1

)
.
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Again, it follows from (3.15) and (3.16) that

Ek+1
5 = −

9
(
L2
lΛmax(C

−1)(C−1)⊤ + L2
ϕ3

)
(r + s)β

(zk+1 − zk) = ∂ẑL̂β (̂ı
k+1).

Hence, we have Ek+1 ∈ ∂L̂β (̂ı
k+1).

Finally, combining (3.16) and the Lipschitz continuity of∇ϕ1,∇ϕ2,∇ϕ3 and∇l, there exists ς1 > 0
such that

∥Ek+1∥ ≤ ς1

(
∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk+1 − zk∥+ ∥Λk+1 − Λk∥

)
.

Additionally, by (3.10), there exists ς2 > 0 such that

∥Λk+1 − Λk∥ ≤ ς2

(
∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk+1 − zk∥+ ∥zk − zk−1∥

)
.

Considering the above two inequalities and Ek+1 ∈ ∂Lβ(ı
k+1), one has

d(0, ∂Lβ(ı
k+1)) ≤∥Ek+1∥

≤ς1(1 + ς2)
(
∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk+1 − zk∥

)
+ ς1ς2∥zk − zk−1∥

≤ζ∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk+1 − zk∥+ ∥zk − zk−1∥,

where ζ := max
{
ς1
(
1 + ς2

)
, ς1ς2

}
. □

Theorem 3.9. (Strong convergence) If Assumption 3.2 is satisfied and L̂β satisfies KLP, then
+∞∑
k=0

∥∥∥ık+1 − ık
∥∥∥ < +∞.

Additionally, {ık} converges to a critical point of Lβ .

Proof. According to Theorem 3.6 (iv), L̂β (̂ı
∗) = limk→+∞ L̂β (̂ı

k) = infk L̂β (̂ı
k) for all ı̂∗ ∈ Ω̂. Now

we examine two scenarios.
Firstly, if an integer k0 satisfy L̂β

(
ı̂k0
)
= L̂β (̂ı

∗). For all k ≥ k0, we can obtain from (3.6) that

δ(∥xk+1 − xk∥2 + ∥yk+1 − yk∥2 + ∥zk+1 − zk∥2) ≤ L̂β (̂ı
k)− L̂β (̂ı

k+1) ≤ L̂β (̂ı
k0)− L̂β (̂ı

∗) = 0.

Thus, xk+1 = xk, yk+1 = yk and zk+1 = zk hold for all k ≥ k0. This together with (3.6), it follows that
Λk+1 = Λk for all k ≥ k0. Further, ık+1 = ık0 ∈ Ω holds for all k ≥ k0. The conclusion holds.

Secondly, if L̂β (̂ı
k) > L̂β (̂ı

⋆) for all k ≥ 0. As is known from Theorem 3.6 (iv), L̂β takes a constant
on Ω̂. Thus, L̂β satisfies the uniform KLP by Lemma 2.9. For ζ and η in Lemma 2.9, since d(̂ık, Ω̂) → 0

and L̂β (̂ı
⋆) = infk L̂β (̂ı

k), there exists a positive integer k̃ such that

d(̂ık, Ω̂) < ζ, L̂β (̂ı
⋆) < L̂β (̂ı

k) < L̂β (̂ı
⋆) + η, ∀k > k̃.

Combining with Lemma 2.9, one can get

φ′(L̂β (̂ı
k)− L̂β (̂ı

⋆))d(0, ∂L̂β (̂ı
k)) ≥ 1, ∀k > k̃. (3.18)

In addition, the following inequality holds:

φ(L̂β (̂ı
k)− L̂β (̂ı

⋆))− φ(L̂β (̂ı
k+1)− L̂β (̂ı

⋆)) ≥ φ′(L̂β (̂ı
k)− L̂β (̂ı

⋆))(L̂β (̂ı
k)− L̂β (̂ı

k+1)). (3.19)

Simultaneously, for any k > k̃, it can be derived from (3.18) and (3.17) in Lemma 3.8 that
1

φ′(L̂β (̂ık)− L̂β (̂ı⋆))
≤ d
(
0, ∂L̂β

(
ı̂k
))

≤ ζ(∥xk − xk−1∥+ ∥yk − yk−1∥+ ∥zk − zk−1∥+ ∥zk−1 − zk−2∥).
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We can get from (3.19) and φ′(L̂β

(
ı̂k
)
− L̂β

(
ı̂∗
))

> 0 that

L̂β (̂ı
k)− L̂β (̂ı

k+1) ≤
φ
(
L̂β

(
ı̂k
)
− L̂β

(
ı̂k
))

− φ
(
L̂β

(
ı̂k−1

)
− L̂β (̂ı

⋆)
)

φ
(
L̂β (̂ık)− L̂β (̂ı⋆)

)
≤ ζ

(
∥xk − xk−1∥+ ∥yk − yk−1∥+ ∥zk − zk−1∥+ ∥zk−1 − zk−2∥

)
·
[
φ(L̂β (̂ı

k)− L̂β (̂ı
⋆))− φ(L̂β (̂ı

k+1)− L̂β (̂ı
⋆))
]
.

Let△p,q = φ(L̂β (̂ı
p)− L̂β (̂ı

⋆))−φ(L̂β (̂ı
q)− L̂β (̂ı

⋆)). Combining the above inequalities with Lemma
3.5, for each k > k̃, one has

δ(∥xk+1 − xk∥2 + ∥yk+1 − yk∥2 + ∥zk+1 − zk∥2)

≤ζ(∥xk − xk−1∥+ ∥yk − yk−1∥+ ∥zk − zk−1∥+ ∥zk−1 − zk−2∥)△k,k+1,

further implies that(
2∥xk+1 − xk∥2 + 2∥yk+1 − yk∥2 + 2∥zk+1 − zk∥2

) 1
2

≤
(
∥xk − xk−1∥+ ∥yk − yk−1∥+ ∥zk − zk−1∥+ ∥zk−1 − zk−2∥

) 1
2

√
2ζ

δ
△k,k+1 .

According to (a + b) ≤
√
2(a2 + b2) for all a, b ≥ 0 and the above inequality, we can obtain that for

any i > k̃

∥xi+1 − xi∥+ ∥yi+1 − yi∥+ ∥zi+1 − zi∥

≤
(
∥xi − xi−1∥+ ∥yi − yi−1∥+ ∥zi − zi−1∥+ ∥zi−1 − zi−2∥

) 1
2

√
2ζ

δ
△k,k+1 .

Thus,

4
(
∥xi+1 − xi∥+ ∥yi+1 − yi∥+ ∥zi+1 − zi∥

)
≤2
(
∥xi − xi−1∥+ ∥yi − yi−1∥+ ∥zi − zi−1∥+ ∥zi−1 − zi−2∥

) 1
2

√
8ζ

δ
△k,k+1

≤∥xi − xi−1∥+ ∥yi − yi−1∥+ ∥zi − zi−1∥+ ∥zi−1 − zi−2∥+ 8ζ

δ
△k,k+1 . (3.20)

The final inequality holds due to 2
√
ab ≤ a+ b for all a, b ≥ 0. By summing up (3.20) from i = k+1(≥

k̃ + 1) to i = q and rearranging terms, one can get

3

q∑
i=k+1

∥xi+1 − xi∥+ 3

q∑
i=k+1

∥yi+1 − yi∥+ 2

q∑
i=k+1

∥zi+1 − zi∥

≤2∥zk+1 − zk∥ − 2∥zq+1 − zq∥+ ∥xk+1 − xk∥ − ∥xq+1 − xq∥+ ∥yk+1 − yk∥

− ∥yq+1 − yq∥+ ∥zk − zk−1∥ − ∥zq − zq−1∥+ 8ζ

δ
△k+1,q+1

≤2∥zk+1 − zk∥+ ∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk − zk−1∥+ 8ζ

δ
△k+1,q+1

≤2∥zk+1 − zk∥+ ∥xk+1 − xk∥+ ∥yk+1 − yk∥+ ∥zk − zk−1∥+ 8ζ

δ
φ
(
L̂β (̂ı

k+1)− L̂β (̂ı
⋆)
)
.

(3.21)
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The final inequality holds according to φ(Lβ(ı
q+1)− Lβ(ı

⋆)) ≥ 0. When k = k̃, by (3.21) one has

3

q∑
i=k̃+1

∥xi+1 − xi∥+ 3

q∑
i=k̃+1

∥yi+1 − yi∥+ 2

q∑
i=k̃+1

∥zi+1 − zi∥

≤2∥zk̃+1 − zk̃∥+ ∥xk̃+1 − xk̃∥+ ∥yk̃+1 − yk̃∥+ ∥zk̃ − zk̃−1∥+ 8ζ

δ
φ
(
L̂β (̂ı

k̃+1)− L̂β (̂ı
⋆)
)

≤+∞,

and so
∑+∞

k=0 ∥xk+1 − xk∥ < +∞,
∑+∞

k=0 ∥yk+1 − yk∥ < +∞ and
∑+∞

k=0 ∥zk+1 − zk∥ < +∞. Thus,
it follows from (3.10) that

∑+∞
k=0 ∥Λk+1 − Λk∥ < +∞. Hence, one gets

+∞∑
k=0

∥ık+1 − ık∥ ≤
+∞∑
k=0

∥xk+1 − xk∥+
+∞∑
k=0

∥yk+1 − yk∥+
+∞∑
k=0

∥zk+1 − zk∥+
+∞∑
k=0

∥Λk+1 − Λk∥

< +∞.

Therefore, {ık} forms a Cauchy sequence, demonstrating convergence. According toTheorem 3.6, {ık}
converges to the critical point of Lβ . This completes the proof. □

4. An Application and Numerical Simulation

Sparse signal reconstruction from incomplete observation data sets is a significant focus within the
field of compressed sensing. The primary goal is to identify the most compact representation of a
solution to a set of linear equations expressed the problem as [13]:

min ∥x∥0
s.t. Ex = b,

(4.1)

whereE ∈ Rm×n is a measurement matrix, b ∈ Rm represents observation data, and ∥x∥0 denotes the
number of nonzero elements of x. In brief, the aforementioned models are characterized as NP-hard
models. To address this challenge, researchers frequently replace l0 regularization with l 1

2
regulariza-

tion. Instead of directly tackling (4.1), it is common for researchers to work on the following problem,
as indicated by Xu et al. [36]:

min e∥x∥
1
2
1
2

+
1

2
∥y∥2

s.t. Ex− y = b,
(4.2)

where ∥x∥ 1
2
=

(
n∑

i=1
|xi|

1
2

)2

and e > 0 is a regularization parameter.

Based on (4.2) and the inherent nonseparable structure, we formulate the following optimization
problem with a linear constraint:

min e ∥x∥
1
2
1
2

+
1

2
∥y∥2 + 1

2
∥D1x+D2y + z∥2

s.t. Ax+By + z = b,
(4.3)

which was studied by Chao et al. [9].
To assess the effectiveness of our approach, we employ 3-GBPRSM (1.8), where we define ϕ1(x) =

1
2

(
xµ1I1−βATA

)2, ϕ2(y) =
1
2

(
yµ2I2−βBTB

)2 and ϕ3(z) =
1
2 (zµ3I3−β)

2. The algorithm can be outlined
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as follows

xk+1 = S
( 1

µ1

[
G1x

k −DT
1 (D1x

k +D2y
k + zk)− βAT (Byk + zk − b− Λk

β
)

]
;
2e

µ1

)
,

Λk+ 1
2 = Λk − rβ(Axk+1 +Byk + zk − b),

yk+1 =
1

1 + µ2

[
G2y

k −DT
2 (D1x

k+1 +D2y
k + zk)− βBT (Axk+1 + zk − b− Λk+ 1

2

β
)

]
,

zk+1 =
1

1 + µ3 + β

[
µ3z

k − (D1x
k+1 +D2y

k+1)− β(Axk+1 +Byk+1 − b− Λk+ 1
2

β
)

]
,

Λk+1 = Λk+ 1
2 − sβ(Axk+1 +Byk+1 + zk+1 − b),

where S represents the half shrinkage operator by [36], which is defined as
S(x; τ) = {sτ (x1), . . . , sτ (xn)}⊤ with

sτ (xi) =


2xi
3

(
1 + cos

2

3
(π − ℘(xi))

)
, |xi| >

3
√
54

4
τ

3
2 ,

0, otherwise,

and

℘(xi) = arccos

(
τ

8

(
|xi|
3

)− 3
2

)
for any x = (x1, x1, · · · , xn) ∈ Rn and each τ ∈ R.

In this example, the measurement matrixA andB are generated from a standard normal distribution
with mean 0 and variance 1. After generating these matrices, they are further adjusted to ensure that
their columns possess a unit l 1

2
norm. The variables x and y are created with 100 nonzero entries,

following a Gaussian distribution. Initially, all variables x0, y0, z0, and Λ0 are initialized to 0. The
vector b is defined as b = Ax0 + By0 + z0 + ν, where ν is sampled from a normal distribution with
mean 0 and a covariance matrix scaled by 10−3I . The regularization parameters are set as follows:
µ1 = 30, µ2 = 30, µ3 = 1, β = 20, and e = 0.1. At the k-th iteration, the residual is defined
as rk = Axk + Byk + zk − b. The termination criterion for stopping the algorithm is defined as
∥rk∥2 ≤

√
m10−4.

To evaluate the effectiveness of our approach 3-GBPRSM, we conducted a comparative analysis be-
tween 3-GBPRSM and LBADMM as proposed by Chao et al. [9]. The numerical results are summarized
in Table 1. The implementation was performed using MATLAB R2022a on a computer running Win-
dows 10, Intel Core i7-8550U 1.80GHz CPU with 8GB of memory. The reported results include two key
metrics: the number of iterations (“Iter”) and objective function value (“f -val”). The findings unequivo-
cally demonstrate the superior performance of 3-GBPRSM when compared to LBADMM. Additionally,
a subset of computational results has been visualized in Figs. 1-3, depicting trends in the objective
function value (“Objective-value”) and the residual ∥rk∥ = ∥Axk +Byk + zk − b∥ (∥r∥2).

5. Concluding Remarks

In this paper, we introduced a class of novel generalized algorithms, known as 3-GBPRSMs, which
employ a Bregman-type linear approximation and incorporate the concept of inexactness. Under gen-
eral assumptions, global convergence of 3-GBPRSMs was established by leveraging optimality con-
ditions. Furthermore, we provided rigorous proof of strong convergence for 3-GBPRSMs when aug-
mented Lagrangian function adheres to KLP. Notably, when correlation function within KLP exhibits a
specific structural pattern, we can guarantee both linear and sublinear convergence rates. Finally, the
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Figure 1. Comparison of convergence when n1 = n2 = m = 1500

Figure 2. Comparison of convergence as n1 = n2 = m = 3000

Figure 3. Comparison of convergence with n1 = n2 = m = 6000
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Table 1. Comparison of iteration effect between 3-GBPRSM and LBADMM

(n1, n2,m) Alg Iter min ∥r∥2/f -val
30 60 90 120 150

(1500,1500,1500)
LBADMM ∥r∥2 0.0149 0.0095 0.005 - - 0.0038

f -val 426.08 346.53 324.89 - - 318.91

3-GBPRSM ∥r∥2 0.6265 0.0569 0.0245 0.0177 0.0146 0.0039
f -val 438.59 319.35 290.67 280.04 274.69 260.78

(1500,1500,2000)
LBADMM ∥r∥2 0.0115 0.0038 - - - 0.0038

f -val 358.19 313.47 - - - 313.47

3-GBPRSM ∥r∥2 0.1075 0.0591 0.0359 0.0282 0.0239 0.0044
f -val 344.30 301.48 287.84 281.86 278.48 273.04

(2000,1500,2000)
LBADMM ∥r∥2 0.0128 0.0071 - - - 0.0041

f -val 323.08 268.37 - - - 250.43

3-GBPRSM ∥r∥2 0.1288 0.0752 0.0533 0.0303 0.0223 0.0045
f -val 300.34 248.74 232.10 224.65 220.37 212.37

(1500,2000,2000)
LBADMM ∥r∥2 0.0120 0.0052 - - - 0.0034

f -val 307.54 258.88 - - - 256.21

3-GBPRSM ∥r∥2 0.1065 0.0615 0.0362 0.0279 0.0244 0.0044
f -val 295.90 251.53 238.73 233.02 229.92 224.68

(2000,2000,1500)
LBADMM ∥r∥2 0.0103 0.0059 0.0043 - - 0.0036

f -val 191.75 155.40 142.17 - - 138.76

3-GBPRSM ∥r∥2 0.1377 0.0580 0.0586 0.0391 0.0237 0.0038
f -val 187.60 151.49 138.46 131.93 127.82 114.30

(2000,2000,2000)
LBADMM ∥r∥2 0.0138 0.0078 - - - 0.0045

f -val 290.18 238.95 - - - 223.16

3-GBPRSM ∥r∥2 0.1539 0.0783 0.0594 0.0427 0.0274 0.0044
f -val 271.56 223.43 207.81 200.38 196.29 187.47

(3000,3000,3000)
LBADMM ∥r∥2 0.0153 0.0083 - - - 0.0046

f -val 402.24 329.20 - - - 309.03

3-GBPRSM ∥r∥2 0.1842 0.1131 0.0898 0.0665 0.0414 0.0054
f -val 377.90 310.96 290.38 281.13 275.90 264.72

(4000,4000,4000)
LBADMM ∥r∥2 0.0181 0.0111 - - - 0.0062

f -val 518.49 429.72 - - - 404.94

3-GBPRSM ∥r∥2 0.2006 0.1143 0.0898 0.0880 0.0684 0.0061
f -val 490.57 406.26 378.64 365.34 357.64 343.14

(5000,5000,5000)
LBADMM ∥r∥2 0.0202 0.0107 0.0092 - - 0.0068

f -val 650.80 536.43 500.10 - - 495.73

3-GBPRSM ∥r∥2 0.2320 0.1243 0.0948 0.0705 0.0672 0.0069
f -val 610.59 505.52 472.83 457.62 448.87 432.42

(6000,6000,6000)
LBADMM ∥r∥2 0.0215 0.0129 - - - 0.0076

f -val 782.04 647.29 - - - 609.35

3-GBPRSM ∥r∥2 0.2463 0.1382 0.0898 0.0705 0.0734 0.0075
f -val 733.79 608.00 566.64 546.59 535.86 513.78

efficacy of 3-GBPRSMs was validated through numerical application experiments in connection with
sparse signal reconstruction.

Furthermore, the following open questions, offered as points of reference, are poised to provide
valuable guidance for future research endeavors:
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(a) Whether the problem (1.1) can be equivalently transformed by introducing indicator functions with
auxiliary variables?

(b) How to improve the Lagrange multiplier updating technique in traditional splitting algorithms to
make them converge faster?

(c) Whether the novel algorithm 3-GBPRSM (1.8) can be generalised to multi-block problems?
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