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ABSTRACT. In this paper we define unstable packing topological entropy hu
p( f ,Z) for any subsets (not

necessarily compact or invariant) in partially hyperbolic dynamical systems as a packing dimension char-
acteristic, and the unstable measure theoretical upper entropy hu

µ ( f ) for any µ ∈ M (M), where M (M)

denotes the collection of all Borel probability measures on M. For any non-empty compact subset Z ⊆ M,
we will prove a variational principle for unstable packing topological entropy: for any Borel subset Z of M,
the unstable packing topological entropy of Z equals the supremum of unstable measure theoretical upper
entropy over all Borel probability measures for which the subset Z has full measure.
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1. INTRODUCTION

In 1973, Bowen [1] introduced a definition of topological entropy of subset inspired by Hausdorff
dimension, which is now known as Bowen topological entropy or dimensional entropy. Bowen topolog-
ical entropy can be viewed as a dynamical analogy of Hausdorff dimension. It is natural to ask wether
the analogous concepts in dynamical systems for other forms of dimensions have the corresponding dy-
namical correspondences as well. This problem has already been partially answered. In particular, for
pointwise dimension of a measure, its dynamical correspondence is the Brin-Katok’s [3] local entropy.
For packing dimensions, its dynamical correspondence is the packing topological entropy, which was in-
troduced by Feng and Huang [2]. Applying the methods in geometric measure theory, they also provided
variational principles for Bowen topological entropy and packing topological entropy.

Partial hyperbolicity includes the hyperbolic part and the center part. Since the latter may have zero
exponents, one can firstly consider dynamical complexity caused by the hyperbolic part. It is generally
agreed that entropies are caused by the expansive part of dynamical systems. There are some existing
notions for such measurements, including the entropies given by Ledrappier and Young [6, 7] from the
measure theoretic point of view and the unstable volume growth given by Hua, Saghin, and Xia [8] from
the topological point of view. For C1-partially hyperbolic diffeomorphisms, Hu, Hua and Wu recently in-
troduced in [9] a concept called unstable topological entropy to characterize dynamical complexity of the
whole system caused by unstable manifolds and established a variational principle relating the unstable
topological entropy with the unstable metric entropy. Wang et al. [10] introduced and investigated the
unstable entropy and unstable pressure for random partially hyperbolic dynamical systems. For random
diffeomorphisms with domination, they also gave a version of the Shannon-McMillan-Breiman theo-
rem for unstable metric entropy and obtained a variational principle for unstable pressure. In 2019, Wu
[11] defined two notions of local unstable metric entropies and the notion of local unstable topological

∗Corresponding author.
E-mail address: 1794487145@qq.com (T. Luo), hdgsvymk@163.com (C. Zhou), wendazhang951@aliyun.com (W. Zhang)
2020 Mathematics Subject Classification: 37D35, 37D30.
Accepted: June 24, 2025.

149

https://tulipa-os.com/jdmh/volumes_articles.php
https://doi.org/10.69829/fpmo-025-0202-ta04
https://tulipa-os.com/


150 TIANKUI LUO, CHENSHI ZHOU, WENDA ZHANG

entropy relative to a Borel cover U of M, and showed that when U is an open cover with a small diame-
ter, the entropies coincide with the unstable metric entropy and unstable topological entropy, respectively.

In this paper, we will focus on unstable packing topological entropy in the framework of partially
hyperbolic dynamical systems. The unstable packing topological entropy by using the growth rates of
the cardinality of (n,ε) u-separated sets of a local unstable leaf at every point x ∈ M then taking the
supremum over x ∈ M (see Definition 2.1).

The main result of this paper is the following theorem.

Theorem 1.1. Suppose M is a finite dimensional, smooth, connected and compact Riemannian manifold
without boundary, and f : M → M is a C1-smooth partially hyperbolic diffeomorphism. If Z ⊆ M is
non-empty and compact, then

hu
p( f ,Z) = sup{h

u
µ( f ) | µ ∈ M (M)}and µ(Z) = 1}.

2. PRELIMINARIES

Through this paper we consider partially hyperbolic dynamical system (M, f ), where f is a diffeo-
morphism, and M a finite dimensional, smooth, connected and compact Riemannian manifold without
boundary. We say f is partially hyperbolic, if there exists a nontrivial D f -invariant splitting T M =
Es⊕Ec⊕Eu of the tangent bundle into stable, central, and unstable distributions, such that all unit
vectors vσ ∈ Eσ

x (σ = s,c,u) with x ∈ M satisfy

∥ Dx f vs ∥<∥ Dx f vc ∥<∥ Dx f vu ∥,
and

∥ Dx f |Es
x
∥< 1 and ∥ Dx f−1 |Eu

x
∥< 1,

for some suitable Riemannian metric on M. The stable distribution Es and unstable distribution Eu

are integrable to the stable and unstable foliations W s and W u respectively such that TW s = Es and
TW u = Eu.

Take ε0 > 0 small. Let P = Pε0 denote the set of finite Borel partitions α of M whose elements
have diameters smaller than or equal to ε0. For each β ∈ P one can define a finer partition η by taking
intersection with local unstable manifold. Since W u is a continuous foliation, η is a measurable partition
with respect to any Borel probability measure on M. Let Pu denote the set of partitions η obtained in
this way and subordinate to unstable manifolds. Here a partition η of M is said to be subordinate to
unstable manifolds of f with respect to a measure µ if for µ-almost every x,η(x)⊂W u(x) and contains
an open neighborhood of x in W u(x). It is clear that if α ∈P satisfies µ(∂α) = 0, where ∂α :=∪A∈α∂A,
then the corresponding η given by η(x) = α(x)∩W u

loc(x) is a partition subordinate to unstable manifolds
of f .

Given any probability measure ν and any measurable partition η of M. The canonical system of
conditional measures for ν and η is a family of probability measures {ν

η
x : x ∈ M} with ν

η
x (η(x)) = 1

such that for every measurable set B ⊆ M,x 7→ ν
η
x (B) is measurable and

ν(B) =
∫

X
ν

η
x (B)dν(x).

This is also called the measure disintegration of ν over η . A classical result of Rokhlin (cf. [5]) says
that if η is a measurable partition, then there exists a system of conditional measures with respect to η .
It is essentially unique in the sense that two such systems coincide for sets with full ν-measure. The
set A ∈ Bν which are unions of atoms of η ∈ Pu, form a sub-σ -algebra of Bν denoted by η̂ . The
disintegration is characterized by the properties below:

• For every g ∈ L1(M,B,ν), the g ∈ L1(M,B,νη
x ) for ν-a.e. x ∈ M.

• The map x 7→
∫

M g(y)dν
η
x (y) is in L1(M, η̂ ,ν).
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• For every g ∈ L1(M,B,ν),E(g|η̂)(x) =
∫

M gdν
η
x for ν-a.e. x ∈ M.

For any g ∈ L1(M,B,ν), the following holds:∫
M

(∫
M

gdν
η
x
)
dν(x) =

∫
M

gdν .

We denote by du the metric induced by the Riemannian structure on the unstable manifold, and for
any positive integer n, let

du
n(x,y) = max

0≤ j≤n−1
du( f j(x), f j(y)).

For any ε > 0, the unstable (n,ε)-Bowen ball around x ∈ M is:

Bu
n(x,ε) = {y ∈W u(x) | du

n(x,y)< ε}.

Let W u(x,δ ) be the open ball inside W u(x) centered at x with radius δ with respect to the metric du.

Definition 2.1. For any s ∈ R, any δ > 0, any N ∈ N, any ε > 0, any x ∈ M and Z ⊆ M, set

Pu(s,N,ε,Z,W u(x,δ )) = sup∑
i

exp(−sni),

where the supremum is taken over all countable families of disjoint closed unstable Bowen balls
{Bu

ni
(yi,ε)}i∈I with yi ∈ Z ∩W u(x,δ ),ni ≥ N for all i, where Bu

ni
(yi,ε) := {y ∈W u(x)|du

ni
(yi,y)≤ ε}.

Define

Pu(s,ε,Z,W u(x,δ )) = lim
N→∞

Pu(s,N,ε,Z,W u(x,δ )),

Pu(s,ε,Z,W u(x,δ )) = inf

{
∞

∑
i=1

Pu(s,ε,Zi,W u(x,δ )) |
∞⋃

i=1

Zi ⊇ Z

}
.

Define

hu
p( f ,ε,Z,W u(x,δ )) : = inf{s|Pu(s,ε,Z,W u(x,δ )) = 0}

= sup{s|Pu(s,ε,Z,W u(x,δ )) = ∞},

and

hu
p( f ,Z,W u(x,δ )) := lim

ε→0
hu

p( f ,ε,Z,W u(x,δ )).

We call

hu
p( f ,Z) := lim

δ→0
sup
x∈M

hu
p( f ,Z,W u(x,δ )).

the unstable packing topological entropy of f restricted simply, the unstable packing topological entropy.

Inspired by the idea of Brin and Katok [3], we give the definition for unstable upper metric entropy.

Definition 2.2. Let µ be a Borel probability measure on M, η ∈ Pu subordinate to unstable manifolds
and ε > 0 small enough. Define the unstable upper metric entropy of µ as

h
u
µ( f ) =

∫
M

h
u
µ( f ,x)dµ,

where

h
u
µ( f ,x) = lim

ε→0
limsup

n→∞

−1
n

log µ
η
x (B

u
n(x,ε)).
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3. THE PROOF FOR THE MAIN RESULT

Lemma 3.1. Let Z ⊆ M, s > 0, δ > 0 and x ∈ M. Assume Pu( f ,s,ε,Z,W u(x,δ )) = ∞. Then for any
finite interval (a,b) ⊆ R with a ≥ 0, and any N ∈ N, there exists a finite disjoint collection {Bu

ni
(yi,ε)}

with yi ∈ Z ∩W u(x,δ ), and ni ⩾ N, such that

∑
i

e−nis ∈ (a,b).

proof. Take N1 > N large enough such that e−N1s < b−a. As Pu( f ,s,ε,Z,W u(x,δ )) = ∞, one has

Pu(s,N1,ε,Z,W u(x,δ )) = ∞.

Then there is a finite disjoint collection {Bu
ni
(yi,ε)} with yi ∈ Z ∩W u(x,δ ), and ni ≥ N1 such that

∑
i

e−nis > b.

Since e−nis ≤ e−N1s < b−a, we can discard elements in this collection one by one until

∑
i

e−nis ∈ (a,b).

Proposition 3.2. Let f :M → M be a C1-smooth partially hyperbolic diffeomorphism. For any η ∈ Pu

and any Borel subset Z ⊆ M, one has

hu
p( f ,Z)≥ sup{

∫
M

h
u
µ( f ,x)dµ | µ ∈ M (M)and µ(Z) = 1}.

To prove Proposition 3.2, we need the following classical lemma in geometric measure theory see Theo-
rem 2.1 in [12].

Lemma 3.3. (5r-Lemma) Let (X ,d) be a compact metric space and B be a family of closed (open) balls
in X. Then there exist a finite or countable sub-family B′ of B consisting of mutually disjoint balls such
that ⋃

B∈B

B ⊆
⋃

B∈B′

5B.

Now we can prove Proposition 3.2.
proof. Take any µ ∈ M (M) with µ(Z) = 1. We may assume

∫
M h

u
µ( f ,x)dµ > s. For any s′ which is

less than the integral above, there exists an ε > 0, a ζ > 0, and a Borel set A ⊆ Z with µ(A) > 0 such
that for any x ∈ A, one has

h
u
µ( f ,x,ε)> s′+ζ ,

where h
u
µ( f ,x,ε) = limsup

n→∞

−1
n log µ

η
x (Bu

n(x,ε)).

Since µ(A) =
∫

M µ
η
x (A)dµ > 0, there exists x ∈ M such that µ

η
x (A)> 0. Take a δ > 0 with W u(x,δ )⊇

η(x), then µ
η
x (A∩W u(x,δ ))> 0. We will show

Pu(s′,
ε

5
,Z,W u(x,δ )) = ∞,

which implies

hu
p( f ,Z,W u(x,δ ))≥ hu

p(
ε

5
,Z,W u(x,δ ))≥ s′.

To this end, it suffices to show that for any E ⊆ A with µ
η
x (E)> 0, one has

Pu(s′,ε,E,W u(x,δ )) = ∞.

Foe any n ∈ N, define

Eu
n := {y ∈ E ∩W u(x,δ ) | µ

η
x (B

u
n(y,ε))≤ e−n(s′+ζ )}.
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Note that for any N ∈N, E∩W u(x,δ ) =
⋃

∞
n=N Eu

n , and so µ
η
x (E∩W u(x,δ )) = µ

η
x (

⋃
∞
n=N Eu

n ). Then there
exists n ≥ N, such that

µ
η
x (E

u
n )≥

1
n(n+1)

µ
η
x (E ∩W u(x,δ )).

Fix such an n and consider the family {Bu
n(yi,

ε

5 ) | yi ∈ Eu
n}. By the Lemma 3.3, there exists a finite

pairwise disjoint sub-family {Bu
n(yi,

ε

5 )}i∈L with yi ∈ Eu
n such that⋃

i∈L

Bu
n(yi,ε)⊇

⋃
yi∈Eu

n

Bu
n(yi,

ε

5
)⊇ Eu

n .

Then we have

Pu(s′,N,
ε

5
,E,W u(x,δ ))≥ Pu(s′,N,

ε

5
,Eu

n ,W u(x,δ ))

≥ ∑
yi∈Eu

n

exp(−ns′)

≥ enζ
∑

yi∈Eu
n

exp(−n(s′+ζ ))

≥ enζ
∑

yi∈Eu
n

µ
η
x (B

u
n(yi,ε))

≥ enζ
µ

η
x (E

u
n )≥

enζ µ
η
x (E)

n(n+1)

Since lim
n→∞

enζ

n(n+1) = ∞, then

Pu(s′,
ε

5
,E,W u(x,δ )) = lim

N→∞
Pu(s′,N,

ε

5
,E,W u(x,δ )) = ∞.

Therefore Pu(s′, ε

5 ,A,W
u(x,δ )) = ∞, and then

hu
p( f ,Z)≥ h

u
µ( f ).

Now we can give the proof of the the main result. The following method is similar to the proof of
Theorem 1.3 in [2].

proof. Let Z ⊆ M with hu
p( f ,Z)> 0. We will show that for any s with 0 < s < hu

p( f ,Z), there exists a
compact set K ⊆ Z and µ ∈ M (M) with µ(K) = 1 such that h

u
µ( f )≥ s.

Inspired by the work of Joyce and Preiss on packing measures in [13], we are going to construct
inductively a sequence of compact sets {Ki}∞

i=1 and a sequence of finite measures {µi}∞
i=1, such that

Ki ⊆ Z and µi is supported on Ki for each i. Together with these two sequences, we also give a sequence
of positive numbers {γi}∞

i=1, and a sequence of integer-valued functions {mi}∞
i=1.

Step I. Construct K1, µ1, γ1, and m1.
Take t ∈ (s,hu

p( f ,Z)). Note that Pu( f , t,ε,Z,W u(x,δ )) = ∞. Set

H =
⋃{

G ⊆ M|G is open and Pu(t,ε,Z ∩G,W u(x,δ )) = 0
}
.

Then Pu( f , t,ε,Z ∩H,W u(x,δ )) = 0. Let Z′ = Z \H = Z ∩ (M \H). For any open set G ⊆ M, either
Z ∩G = /0 or Pu(t,ε,Z′∩G,W u(x,δ ))> 0. To show this, assume

Pu(t,ε,Z′∩G,W u(x,δ )) = 0,

then

Pu(t,ε,Z ∩G,W u(x,δ ))≤ Pu(t,ε,Z′∩G,W u(x,δ ))+Pu(t,ε,Z ∩H,W u(x,δ )) = 0,

which implies G ⊂ H, and Z′∩G = /0.
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Then Pu(t,ε,Z′∩G,W u(x,δ )) = Pu(t,ε,Z ∩G,W u(x,δ )) = ∞, and then

Pu(s,ε,Z′∩G,W u(x,δ )) = ∞,

which implies Pu(s,ε,Z′∩G,W u(x,δ )) = ∞.

By Lemma 3.1, we can find a finite set K1 ⊂ Z′ ∩W u(x,δ ), an integer-valued function m1(y) on K1
such that the collection {Bu

m1(y)(y,ε)}y∈K1 is disjoint and

∑
y∈K1

e−m1(y)s ∈ (1,2).

Define a finite measure µ1 := ∑
y∈K1

e−m1(y)sδy, in which δy denotes the Dirac measure at y. Take a small

γ1 > 0 such that for any function q : K1 →W u(x,δ ) with du(y,q(y))≤ γ1. Then we have for each y ∈ K1,

(
Bu

(q(y),γ1)∪Bu
m1(y)(q(y),ε)

)
∩

 ⋃
ξ∈K1\{y}

Bu
(q(ξ ),γ1)∪Bu

m1(ξ )(q(ξ ),ε)

= /0 (3.1)

Here and afterwards, we always assume Bu
(y,ε) = {ξ |ξ ∈W u(x,δ ),du(y,ξ )≤ ε}.

Since K1 ⊂ Z′∩W u(x,δ ), for any y ∈ K1,

Pu(t,ε,Z ∩B(y,
γ1

4
),W u(x,δ ))≥ Pu(t,ε,Z′∩B(y,

γ1

4
),W u(x,δ ))> 0.

Therefore we can choose a compact set Z1 of W u(x,δ ) such that Z ⊃ Z1 ⊃ K1, and for each y ∈ K1,

Pu(t,ε,Z1 ∩B(y,
γ1

4
),W u(x,δ ))> 0.

Step II . Construct K2 and µ2.
By 3.1, the familys of balls {Bu

(y,γ1)}y∈K1 are pairwise disjoint. For each y ∈ K, since Pu(t,ε,Z1 ∩
B(y, γ1

4 ),W
u(x,δ )) > 0, we can construst as in step I afinite set E2(y) ⊂ Z1 ∩B(y, γ1

4 )∩W u(x,δ ), and an
integer-valued function

m2 : E2(y)→ N∩ [max{m1(y)|y ∈ K1},∞)

such that
(II-a) Pu(t,ε,Z1 ∩G,W u(x,δ ))> 0 for any open set Gwith G∩E2(y) ̸= /0;
(II-b) The elements in {Bu

m2(y)(ξ ,ε)}y∈E2(y) are disjoint, and

µ1({y})< ∑
ξ∈E2(y)

e−m2(y)s < (1+2−2)µ1({y}).

To this end, we fix y ∈ K1 and denote F = Z1 ∩B(y, γ1
4 ). Let

Hy :=
⋃
{G ⊆ M|G is open and Pu(t,ε,F ∩G,W u(x,δ )) = 0}

Set F ′ = F \Hy. Then as in step I, we can show

Pu(t,ε,F ′,W u(x,δ )) = Pu(t,ε,F ′,W u(x,δ ))> 0

and

Pu(t,ε,F ′∩G,W u(x,δ ))> 0

for any open set G with G∩F ′ ̸= /0. As s < t, then

Pu(s,ε,F ′,W u(x,δ )) = ∞.
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Again by Lemma 3.1, one can find a finite set E2(y)⊂ F ′ and a map m2 : E2(y)→
N∩ [max{m1(y)|y ∈ K1},∞) such that (II-b) hold. Observe that if an open set G satisfies G∩E2(y) ̸= /0,
then G∩F ′ ̸= /0, and then

Pu(t,ε,Z1 ∩G,W u(x,δ ))≥ Pu(t,ε,F ′∩G,W u(x,δ ))> 0,

which implies (II-a) .
Since the family {Bu

(y,γ1)}y∈K1 are disjoint, E2(y)∩E2(y′) = /0, for different y,y′ ∈ K1. Set K2 =⋃
y∈K1

E2(y) and

µ2 := ∑
y∈E2

e−m2(y)sδy.

By 3.1 and (II-b) , the elements in {Bu
m2(y)

(y,ε)}y∈K2 are pairwise disjoint. Hence we can take 0< γ2 <
γ1
4

such that for any function q : K2 →W u(x,δ ) with du(y,q(y))≤ γ2, for y ∈ K2, one has

(
Bu

(q(y),γ2)∪Bu
m2(y)(q(y),ε)

)
∩

 ⋃
ξ∈K2\{y}

Bu
(q(ξ ),γ2)∪Bu

m2(ξ )(q(ξ ),ε)

= /0 (3.2)

for each y ∈ K2. Choose a compact set Z2, such that Z1 ⊃ Z2 ⊃ K2 and for any y ∈ K2,

Pu(t,ε,Z2 ∩B(y,
γ2

4
),W u(x,δ ))> 0.

Step III . Assume that Ki, µi, mi(·) and γi have been constructed for i = 1, . . . , p. For any function
q : Kp →W u(x,δ ) with du(y,q(y))≤ γp, for y ∈ Kp, one has

(
Bu

(q(y),γp)∪Bu
mp(y)(q(y),ε)

)
∩

 ⋃
ξ∈Kp\{y}

Bu
(q(ξ ),γp)∪Bu

mp(ξ )(q(ξ ),ε)

= /0 (3.3)

for each y ∈ Kp; Take a compact set Zp, such that Zp−1 ⊃ Zp ⊃ Kp and

Pu(t,ε,Zp ∩B(y,
γp

4
),W u(x,δ ))> 0.

for each y ∈ Kp. Then we can construct the terms are pairwise disjoint for i = p+1 as we do in step II.
Note that the elements in {Bu

(y,γp)}y∈Kp are pairwise disjoint. For each y ∈ Kp, from

Pu(t,ε,Zp ∩B(y,
γp

4
),W u(x,δ ))> 0

we can construst as in step II afinite set Ep+1(y)⊂ Zp∩B(y, γp
4 )∩W u(x,δ ), and an integer-valued function

mp+1 : Ep=1(y)→ N∩ [max{mp(y)|y ∈ Kp},∞)

such that
(III-a) Pu(t,ε,Zp ∩G,W u(x,δ ))> 0 for any open set G with G∩Ep+1(y) ̸= /0;
(III-b) {Bu

mp+1(y)(ξ ,ε)}y∈Ep+1(y) are disjoint, and satisfy

µp({y})< ∑
ξ∈Ep+1(y)

e−mp+1(y)s < (1+2−(p+1))µp({y}).

It is obvious that Ep+1(y)∩Ep+1(y′) = /0 for different y,y′ ∈ Kp. Set Kp+1 =
⋃

y∈Kp
Ep+1(y) and

µp+1 := ∑
y∈Ep+1

e−mp+1(y)sδy.



156 TIANKUI LUO, CHENSHI ZHOU, WENDA ZHANG

By 3.3 and (III-b) , the elements in {Bu
mp+1(y)(y,ε)}y∈Kp+1 are disjoint. Hence we can take 0 < γp+1 <

γp
4

such that for any function q : Kp+1 →W u(x,δ ) with du(y,q(y))≤ γp+1, for y ∈ Kp+1, one has

(
Bu

(q(y),γp+1)∪Bu
mp+1(y)(q(y),ε)

)
∩

 ⋃
ξ∈Kp+1\{y}

Bu
(q(ξ ),γp+1)∪Bu

mp+1(ξ )(q(ξ ),ε)

= /0 (3.4)

for each y ∈ Kp+1. Choose a compact set Zp+1, such that Zp ⊃ Zp+1 ⊃ Kp+1 and for any y ∈ Kp+1,

Pu(t,ε,Zp+1 ∩B(y,
γp+1

4
),W u(x,δ ))> 0.

As in the above steps, we can construct by induction the sequences {Ki} {µi} {mi(·)} and {γi}. We
summaris some of their basic properties as follows:
(a) For each i, the family Fi := {Bu

(y,γi)|y ∈ Ki} are disjoint. Each element in Fi+1 is a subset of
Bu(y, γi

2 ) for some y ∈ Ki.
(b) For any y ∈ Ki and ξ ∈ Bu(y,γi),

Bu
mi(y)(ξ ,ε)∩

⋃
ξ∈Ki\{y}

Bu
(ξ ,γi) = /0

and

µi
(
Bu

(y,γi)
)
= e−mi(y)s ⩽ ∑

y∈Ei+1(x)
e−mi+1(y)s ⩽

(
1+2−i−1)

µi
(
Bu

(y,γi)
)
,

where Ei+1(y) = Bu (y,γi)∩Ki+1.
The second part in (b) implies

µi (Fi)⩽ µi+1 (Fi) = ∑
F∈Fi+1:F⊂Fi

µi+1(F)⩽
(
1+2−i−1)

µi (Fi) , Fi ∈ Fi.

Using the above inequalities repeatedly, we have for any j > i

µi (Fi)⩽ µ j (Fi)⩽
j

∏
n=i+1

(
1+2−n)

µi (Fi)⩽Cµi (Fi) , ∀Fi ∈ Fi, (3.5)

where C := ∏
∞
n=1 (1+2−n) < ∞. Let µ̃be a limit point of {µi} in the weak-star topology.Set K =⋂

∞
n=1

⋃
i⩾n Ki. Then µ̃ is supported on K. Note that K =

⋂
∞
p=1 Zp. Then K is a compact set of Z.

On the other hand, By 3.5, for any y ∈ Ki

e−mi(y)s = µi
(
Bu

(y,γi)
)
⩽ µ̃ (Bu (y,γi))⩽Cµi

(
Bu

(x,γi)
)
=Ce−mi(y)s.

In particular, 1⩽∑y∈K1 µ1
(
Bu

(y,γ1)
)
⩽ µ̃(K)⩽∑y∈K1 Cµ1

(
Bu

(y,γ1)
)
⩽ 2C. Note that K ⊂

⋃
y∈Ki

Bu (y, γi
2

)
⊆

W u(x,δ ). By the first part of (b), for any y ∈ Ki and ξ ∈ Bu
(y,γi),

µ̃

(
Bu

mi(y)(ξ ,ε)
)
⩽ µ̃

(
Bu

(
y,

γi

2

))
⩽Ce−mi(y)s.

As K =
⋂

∞
n=1

⋃
i≥n Ki, for each ξ ∈ K and i ∈ N there exists y ∈ Ki such that ξ ∈ Bu

(y, γi
2 ). Hence

µ̃

(
Bu

mi(y)
(ξ ,ε)

)
⩽ Ce−mi(y)s. Define a measure µ = µ̃

µ̃(K) . Then µ ∈ M (M) and µ(K) = 1. Moreever,

for any ξ ∈ K, there exists a sequence Ki ↑ ∞, such that µ(Bu
Ki
(ξ ,ε)) ≤ Ce−Kis

µ̃(K) . Take η ∈ Pu such that

η(x)⊆W u(x,δ ). Then µ(Bu
Ki
(ξ ,ε)) = µ

η
x (Bu

Ki
(ξ ,ε)≤ Ce−Kis

µ̃(K) . It follows that hu
µ( f )≥ s.
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