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ABSTRACT. The proximal point algorithm (PPA) has been extensively studied in the literature, with its lin-
ear convergence rate well established. Recent studies have demonstrated that PPA retains linear conver-
gence under specific regularity conditions, including subdifferential error bound, the Polyak-Lojasiewicz
inequality, and quadratic growth. The generalized proximal point algorithm (GPPA), a relaxed variant of
PPA, offers numerical acceleration compared to the classical scheme. In this paper, we focus on examining
the linear convergence of GPPA under the same regularity conditions that apply to PPA.
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1. INTRODUCTION

In this paper, we consider the following optimization problem

min f(z), (1.1)

z€R™

where f is a proper closed and convex function. Let S = arg min,cp» f(x) be the optimal solution set
of problem (1.1), with f* denoting the optimal function value. We assume that S # () throughout the
paper. The proximal point algorithm (PPA), originally introduced by Martinet [14] and later generalized
by Rockafellar [18, 19], provides a fundamental framework for solving problem (1.1). Moreover, the PPA
serves as a unifying foundation for several classical optimization algorithms. In particular, well-known
iterative schemes such as the Douglas—Rachford splitting method [3, 12], the Peaceman-Rachford split-
ting method [12, 16], and the augmented Lagrangian method [7] can all be interpreted as special cases
of the PPA. This unifying property highlights the significance of the PPA, as it offers a comprehensive
framework for various important splitting algorithms. Starting with an arbitrary initial point xg, the
PPA generates a sequence {7y} via the iterative scheme

Tpt1 = prox, ¢(zk), (1.2)

where prox,  is the proximal mapping [15] of f, defined as

. 1
prox, ¢(zx) := arg min {f(m) +9x |z — :rkH?} ,

with the proximal parameter A > 0. The convergence properties of the PPA for convex optimization
have been extensively studied since the 1970s, and various sufficient conditions have been proposed
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to guarantee its linear convergence. For example, Rockafellar [19] first established the linear conver-
gence of the PPA under the assumption that (9f)~! is Lipschitz continuous at 0. Leventhal [10] later
relaxed this requirement to metric subregularity, while still ensuring the linear convergence of the PPA.
More recently, Liao et al. [11] proved the linear convergence of the PPA under several regularity condi-
tions, including subdifferential error bound, the Polyak-Lojasiewicz inequality, and quadratic growth.
These conditions are strictly weaker than those assumed in [19]. It is worth noting that for convex
functions, the quadratic growth condition is equivalent to the metric subregularity of 0f as shown
n [10]. However, from an analytical perspective, Liao et al. [11] observed that the quadratic growth
condition is more geometrically intuitive for establishing the linear convergence of the PPA, leading to
a simpler and more transparent proof. Furthermore, these regularity conditions also ensure the linear
convergence of a broad class of first-order methods [2, 5, 8, 17, 24].

A common approach to accelerate convergence is through relaxation techniques, which originate
from classical methods such as successive over-relaxation for solving linear systems [21, 23] and the
Krasnosel’skii-Mann iteration for fixed-point algorithms [9, 13]. The so-called generalized proximal
point algorithm (GPPA) is a relaxed version of the PPA [4], whose iterative scheme is given by

Tr+1 = (1 — )Tk + % prox,, ¢(z), (1.3)
where the relaxation parameter v, € (0, 1]. Note that for -y, = 1, this scheme reduces to classical PPA
(1.2). The linear convergence of the generalized PPA (GPPA) has been studied under various conditions.
Corman and Yuan [1] established the linear convergence of the GPPA under the strong convexity as-
sumption. Tao and Yuan [22] showed that the condition that (9 f)~! is Lipschitz continuous at 0 also
guarantees the linear convergence for the GPPA. Shen and Pan [20] further relaxed this requirement
to metric subregularity, while still ensuring the linear convergence of the algorithm.

The primary objective of this work is to extend the linear convergence analysis presented in [11]
to the GPPA. We establish the linear convergence rate of the GPPA for convex optimization problems
under the same regularity conditions. The remainder of this paper is organized as follows. In Section
2, we summarize some preliminaries that are useful for the subsequent analysis. In Section 3, we es-
tablish the linear convergence rate of the GPPA for convex optimization problems by employing these
regularity conditions. Finally, Section 4 concludes the paper.

2. PRELIMINARIES

In this section, we recall several essential concepts and lemmas that will be used in the subsequent
analysis. Let R” denote the n-dimensional Euclidean space, and let R := RU{4-00} denote the extended
real line. The symbols (-, -) and || - || represent the standard inner product and the Euclidean norm on R",
respectively. For a closed set S C R", the distance from a point 2z € R™ to S is defined as dist(z, S) :=
mingeg ||« — y||, and the projection of = onto S is denoted by IIg(x) := argminyegs ||z — y||. The
notation [f < v] := {z € R" | f(z) < v} denotes the v-sublevel set of a function f.

Definition 2.1. Let f(x) : R® — R be a proper closed convex function. Then for any given z € R",
the subdifferential of f at x is defined by

Of(x) ={s e R" | f(y) = f(z) + (s,y —x),Vy € R"}.
For problem (1.1), we summarize the following regularity conditions.

Definition 2.2. Let f(z) : R — R be a proper closed convex function, and let S be the optimal
solution set of problem (1.1), with f* denoting the optimal function value. Let v > 0,
(i) Restricted Secant Inequality (RSI): we say the restricted secant inequality holds, if there exists
a positive constant p, > 0 such that

py - dist?(z, S) < {g,x — Hg(x)), Ve e[f< f+v] andg € df(x). (RSI)
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(ii) Error Bound (EB): we say the error bound condition holds, if there exists a positive constant
te > 0 such that

dist(x, S) < pe - dist(0,0f(x)), Vaxe[f < f+v]. (EB)

(iii) Polyak-Lojasiewicz inequality (PL): we say the Polyak-Lojasiewicz inequality holds, if there
exists a positive constant y, > 0 such that

pp - (f(x) = f*) < dist*(0,0f(x)), Vxel[f<f +v]. (PL)

(iv) Quadratic Growth (QG): we say the quadratic growth condition holds, if there exists a positive
constant y1q > 0 such that

pq - dist?(2,S) < f(x) — f*, Vo e[f< f+1]. (QG)

Note that the above four regularity conditions are defined on the sublevel set [f < f*+v]. f v =
—+00, then they are global. The relationships between these regularity conditions have been extensively
studied for different function classes in the literature. In particular, Liao et al. [11] demonstrated the
equivalence between (EB), (QG), (PL), and (RSI) for nonsmooth convex functions, and extended these
results to weakly convex functions. We present the following conclusion in [11], which is useful in
subsequent analysis.

Lemma 2.3. [11, Theorem 3.1] Let f be a proper closed p-weakly convex function. The following rela-
tionship holds

(RSI) — (EB) = (PL) — (QG).
Furthermore, if any of the following two conditions is satisfied
o f(x) is convex
o the (QG) coefficient satisfies j1; > &,
then the following equivalence holds
(RSI) = (EB) = (PL) = (QG).

3. LINEAR CONVERGENCE RATE OF THE GENERALIZED PROXIMAL POINT ALGORITHM

When applying the regularity conditions introduced in Section 2 to prove the linear convergence
of the GPPA, it is important to first establish the sublinear convergence of the GPPA in terms of the
sequence of function values. This step ensures that the iterates eventually enter a sublevel set where the
regularity conditions are valid and can be effectively applied. While the sublinear convergence of the
PPA (1.2) in terms of function value gaps was well established by Giiler [6] over three decades ago, the
sublinear convergence of the GPPA (1.3) has, to the best of our knowledge, not yet been formally ana-
lyzed in the existing literature. Therefore, in this work, we aim to establish the sublinear convergence
of the GPPA.

Theorem 3.1 (Sublinear convergence rate). Let f : R” — R be a proper, closed, convex function. Assume
that the sequence {x}} is generated by the GPPA (1.3) with a positive stepsize sequence {\i, } ;>0 that is
uniformly bounded above by a constant A > 0. Then, we have

1 A
(A + 350 M) A Y0 A
Proof. Let p(x,) := prox,, ;(y). According to the iteration of GPPA (1.3), we have
1

)\*(ﬂﬁk —p(zr)) € Of (p(zk)).
!

2
[

flag) = f(a") < 5 (f (xo) — f(27))- (3.1)
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By the definition of the subdifferential for convex functions, we know

)2 fpan)) + (o= o)) a” = plan) ). 62)
On the other hand, we have
Ip(x) — 2*|* = [lz, — 2* > = lax — p(xn)lI” + 2 (p(xx) — 2, p(ax) — 27)
< o — 2*)1? + 2 (p(ak) — zp, plak) — ¥, (3.3)
where the first identity follows from simple algebraic manipulations
o — 27|* = ||k — p(ax) + plax) — 2°||
= [z = p(ai)l* = 2 (p(ar) =z, plax) — 2*) + [|p(ar) — 27|,

and the second inequality drops a nonnegative term ||z, — p(z)||>. Combing (3.2) with (3.3) leads to

fplaw) - Fa) < 51 o

According to the convexity of the function || - ||? and the iteration rule of the GPPA (1.3), when 0 <
v, < 1, we have

= 2*|* = 55— llp(ze) — 27| (3.4)

g1 — 2% = [[(1 = w)s, + yplar) — )2
= [[(1 =) (g — 2*) + e (p(xr) — 27|
< (1= )llan — 2|1 + yellp(zx) — )2 (3.5
Combining (3.4) with (3.5), we obtain

Flpla) — fa) < 55—

Moreover, by the convexity of f and the GPPA iteration (1.3), when 0 < ~;, < 1, we have
f@r) = f(&) = f(A = w)zp + wep(ar)) — f(z7)
< (X =) f(zr) + e (p(2k)) — f(27)
= (1 =) (f(zr) = £(2%)) + W (f (p(zr)) — f(27)).

(lax — 2" = llans1 — 2*]P) (36)

Rearranging the terms yields
() = F@) + f@) = 1) < fplan)) = Fa). 67)

Combining (3.6) and (3.7), we obtain

Ae(f(@r1) = fan)) + A (f (2r) — f(27)) < % (llwr = 2*[* = llzgpr — 2[7) . (3.8)

Summing inequality (3.8) from ¢t = 0 to k — 1, we obtain a telescoping sum

k-1
Z M(f (o) = F)) + > Aem(f () — f(z¥)) < % (e = 2** = |zes — 2*)1?)
= t=0
< 2 llzo — 2”1 (39)

According to the definition of the proximal mapping

plan) = arg iy { £@) + o =l |



162 N. XIAN, K. GUO

we have

1
f(o(zr)) < flp(ze)) + me(xk) —a]|? < flaw).
By the convexity of f, it follows that

f@rer) = f (L= )z, + wep(wr))
< (L =) f(@k) + v f (k)
< f(wp).
Hence, the sequence { f(x)}x>0 is nonincreasing. Therefore, we can deduce that

k-1 k—1
Mf(r) = (o)) + (flax) = F(@) Y Aewe < A(f(xw) = f(wo)) + (f(zh-1) = F(27) D Meve
=0 =0

k—1 k—1

< M) = @) + Y vl f (i) = f(a))
t=0 t=0

< <o — ¥,

where the last inequality follows from (3.9). By applying simple algebraic manipulations to the inequal-
ity above, we finally obtain
1 H A
< _ Y LNkl
2 ()\ + Ef:ol )\{W) A+ Zt:o AtV

This completes the proof. g

flar) < f(2") + o — || +

(f (o) = f(a"))-

Remark 3.2. Note that by choosing a constant proximal parameter A, = A > 0 and a constant relaxation
parameter v, = v > 0 in (3.1), the GPPA (1.3) directly achieves the standard sublinear convergence
rate of O(1/k).

Next, we extend the results in [11] by proving that the GPPA (1.3) also achieves linear convergence
under the same regularity conditions. In particular, we establish the linear convergence of the GPPA
through three distinct approaches:

(i) leveraging the Polyak-Lojasiewicz (PL) inequality to show the linear convergence of the func-
tion value sequence;
(ii) utilizing the error bound (EB) condition to prove the linear convergence of the iterate sequence;

(iii) applying the quadratic growth (QG) condition to establish the linear convergence of the iterate

sequence.

Theorem 3.3 (Linear convergence rate). Let f : R" — R be a proper, closed, convex function. Assume
that f satisfies one of the regularity conditions (PL), (EB), (QG), or (RSI) over the sublevel set [f < f*+v].
Assume that the sequence {x}} is generated by the GPPA (1.3) with a positive stepsize sequence {\j, } >0
that is uniformly bounded above by a constant X > 0. Then, for all k > ko, the iterates {x},} of the
GPPA (1.3) exhibit a linear convergence rate, that is,

f@pyr) = 7 <wr(fze) = ),
dist(xg41,5) < Ordist(xg, S),
where the constants are

_ 2 Ak — Hp ATk
2+ ppAk

Wy <1, Ok:min{l—(l -1

1 1
S S PV L D S— i O |
JI+ /\i/ugm 2Nt + 1)7’“}
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lzo — || + 2X(f (o) — frov)

ko =

2v mlnk>0 {)\k’yk}

Proof. The result in (3.1) ensures that the iterate xj reaches the sublevel set [f < f* + 1] after at most
ko iterations. (If f(z¢) < f* + v, then f(zx) < f(zo) < f*+vforal k > 0;If f(z) > f* + v, then
xy, reaches the set [f < f* + 1] after at most ky iterations.) According to Lemma 2.3, once x, is within
[f < f*+v], the regularity conditions (EB), (PL), (QG) and (RSI) are equivalent. For the analysis below,
we assume 7, € [f < f*+v].

(i)

(i)

Firstly, we use (PL) to show the linear convergence of the function value sequence of GPPA
(1.3). According to the iteration of GPPA (1.3) and the convexity of f, we have

1

3 (@ = plax)) € Of (p(zk)), (3.10)
k

and when 0 < v < 1, we have
f@e1) = = F((1—w)zk +wp(xr)) —
< (1 =) f(zr) + e f(p(xr)) — f°
= (1 —v)(f(zk) = f7) + w(f(p(zg)) — f7). (3.11)
Then, the following inequalities hold

) = F0) 2 5 o) — anll* > 3 dist? 0,07 (p(2))
> M09 1)) — ), 612)

where the first inequality follows from the definition of proximal mapping, the second comes
from the optimality in (3.10), and the last inequality applies the (PL) inequality. Rearranging
and subtracting f* from both sides of (3.12) leads to the result
2
- < — — ). 3.13
flplar) = f* < 2F o (f(zx) = f7) (3.13)
Combining (3.11) and (3.13), we have
v 24 ppAk — ppA

2+ ppAe
2""#1025!@ /;z;Ak'Yk < 1.
Now, we employ (EB) to demonstrate the linear convergence of the iterate sequence of GPPA

(1.3). According to the firmly nonexpensive of the proximal point operator for a convex function
f, we have

(f(zr) = f7),

where

lz = ylI* > lIp(z) = pW)1> + Iz — p(z)) — (y — p(W))]I*.
Setting x = x, and y = x*, we have
ok — 21 = llp(ax) — 21 + o — p(ai) I (3.14)
Then, the following inequalities hold

2
e = p(ai)I* = Ajdist®(0,0f (p(x4))) = //y;distQ(p(wk),S)j (3.15)

e
where the first inequality comes from the optimality (3.10), the second applies the (EB) condi-
tion. Combining (3.14) with (3.15), we have

* * )‘2 .
Ip(ax) — 2% < [y, — 2*)* - ;’SdlstZ(p(xk),S)-

e
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Using the fact that
dist* (p(w1), S) < [|p(a) — «*|*.

So we have

dist*(p(zx), S) < e — ¥

—)\2+2

Setting v = IIg(x)) = argmin, g ||z — yl|, we have

dist(p(ar), S) < ——1e—dist(zy, S). (3.16)
VAR u2

According to the convexity of the distance function and the iteration of GPPA (1.3), we have

dist(zg41,S5) = dist((1 — vk)xr + yxp(zk), S)
< (1 — g )dist(xg, S) + yrdist(p(xg), S). (3.17)

Combining (3.16) with (3.17), we have

1
dist(z41,5) < ¢1—(1— 7)% - dist(zg, S),
1+
where
1
-1 — |y <1

1+ X/

Finally, we apply (QG) to establish the linear convergence of the iterate sequence of GPPA (1.3).
By definition, we have

fUTs(zy)) = f* and || ITs(ax) — agl” = dist? (zx, 9).
Since g(z) := f(x)+ ﬁ | — 2| is i strongly convex, its first-order lower bound at p(xy,)
is

o+ L dise? (zk, S) = f(Ils(wk)) +

H _
W | ITs(xy) — ||

2)\

> f(p(wr)) + m Ip(zk) — zkll® + (0, Hs(zk) — pla))
+ o HTs(o) = )l (318)

From (3.18), we drop the positive term ﬁ |p(xx) — 21||* and use the fact that
[ s (k) — p(ag)]| = dist(p(ar), S),

leading to

1= fpzr)) + 2i\kdist2(xk,5) > 2i\kdist2(p(:ck),5).

Combining this inequality with (QG) and simple rearrangement, we obtain

1

\/2)\qu +1

dist(p(xg), S) < dist(zg, S). (3.19)
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By the convexity of the distance function and the iteration of the GPPA (1.3), combining (3.17)
with (3.19), we get

1
dist(xp41,8) <<1— (1 - —— -dist(zg, S),
(Tx11,9) < Dp 11 Vi (7g,5)
where
1
- (1-—— |y < L

,/2)\k,u,q + 1

g

Remark 3.4. In Theorem 3.3, if x( is in the sublevel set [f < f* + v], combining this with the fact
that the function values { f(zx) }x>0 are nonincreasing, we immediately have f(x;) < f* + v for all
k > 0. Otherwise, if f(z) > f* + v, then the result in (3.1) ensures that the iterate x, reaches the set
[f < f* + v] after at most

_ llzo — 2*|* + 2A(f(w0) — f* —v)
2vming>o {\kYk

ko >0

iterations.

4. CONCLUSION

In this work, we have studied the linear convergence of the generalized proximal point algorithm
(GPPA) for convex optimization problems. Our main theoretical contribution demonstrates that the
GPPA attains linear convergence under certain regularity conditions, including subdifferential error
bound, the Polyak-Lojasiewicz inequality, and quadratic growth.
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