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ABSTRACT. In the present article, we introduce a new class of mappings called Bregman hybrid multival-
ued mappings in Banach spaces. We then prove fixed points theorems for these mappings. Further, in the
absence of the Opial property of Banach spaces, we provide a variety of weak and strong convergence
theorems for a finite family of the above-mentioned mappings. We continue investigating the equilibrium
problems by applying our results to nonlinear bifunctions. Since the Bregman distance has no symmetric
property and does not require triangle inequality, the improved results can be considered as unifications
of the corresponding ones in the literature.
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1. INTRODUCTION

Along all lines of the article, we stand N and R as the set of natural numbers and the set of real num-
bers, respectively. Also, the set of extended real numbers will be shown by R, that is R = [—o0, +00].
In the whole paper, we suppose a Banach space (F, || - ||) has a dual space E* and we indicate the
duality pairing by (u,u*), Vu € FE and u* € E*. The strong convergence and the weak convergence
of a sequence {z,}neny C E to x € E are indicated by x,, — z and x,, — z, respectively. Let
Sp={x € E:|z|| =1} and Y be a nonempty subset of E. We also consider P(Y") as the all subsets
of Y. We denote respectively by

e K(Y):={U € P(Y) : U is nonempty and compact},

e Cu(Y):={U € P(Y) : U is nonempty and convex},

o Ccv(Y) :={U € P(Y) : U is nonempty, closed and convex},

e Cb(Y):={U € P(Y) : U is nonempty, closed and bounded},

o Chw(Y) :={U € P(Y) : U is nonempty, closed, bounded and convex}.

Let g : E — R be a function. Let u € int(dom(g)), v € E, and we define the map ¢°(u,v) by

) — tin S 1) (@)
’ £10 t '

g(uttv)—g(u)

If for any v in F, the limit lim;_,¢ 0

exists, then g is called Gateaux differentiable at wu.
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In this case g°(u, v) coincides with the gradient Vg(u), as a member of E* satisfying that

, YveEeE.
t—0 t

If g is Gateaux differentiable on the whole of the interior of dom(g), then it is called Gateaux differen-
tiable. Also g is called Fréchet differentiable at x ([3, p. 13], [19, p. 508]) if for any € > 0, there is a
d > 0 with ||v — u|| < 6 implies that

| 9(v) = g(u) = (v —u, Vg(u)) [< ellv —u].

The norm-to-weak™® continuity of Vg is discussed in[3, Proposition 1.1.10] and the norm-to-norm con-
tinuity of Vg is presented in [19, p. 508]. A function g : E — R is called lower semicontinuous if
{z € E : g(x) < r}is closed for every r in R. The set of all strictly convex, Gateaux differentiable,
proper and lower semicontinuous functions g : E — R will be denoted by ©¢(E). Let g € O¢(FE) be
given. We define the Bregman distance [4] (see also [2]) D, : dom(g) x int(dom(g)) — R by

Dgy(u,v) = g(u) — g(v) — (u —v,Vg(v)), Yu,veE. (1.1)

We know that Dgy(u,v) > 0 for all u,v in E and D, does not satisfy the properties of a classical
distance. If E is a Hilbert space, then Dy(u,v) = ||u — v||.

The motivation of the present paper is to introduce the new concept of Bregman hybrid multivalued
mappings defined on the subsets of Banach spaces in the sense of Bregman distances. We consider
some notations and definitions required for the next sections. A subset () C E is said to be Bregman
proximinal if, for each u € F, there exists v € ) such that

Dy(u,v) = Dg(u, Q) = inf{Dy(u,w) : w € Q}.

Let P9(QQ) denote the family of nonempty Bregman proximinal bounded subset of ). The Bregman
Hausdorff distance on Cb(Q)) is defined by

Hy(A, Q) = max {sup Dy(u,Q),sup Dg(A,v)}
u€A vEQ

forall A, D € Cb(Q), where Dy(u, Q) = infyeq Dy(u, q) and Dy(A,v) = inf,ca Dy(a,v). Amapping
T : @ — Cb(Q) is called Bregman nonexpansive if

Hy(Tu,Tv) < Dg(u,v) (1.2)

for all u,v € Q. A point ¢ € Q is called a fixed point of mapping T : () — E (resp., multivalued
mapping) T : @ — Cb(Q)) if ¢ = T'q (resp., ¢ € Tq). The set of fixed points of T is indicated by F'(T').
If F(T) # @ and

HQ(T(L TU) S Dg(Q7 U)

forallu € Q and g € F(T), then T is called Bregman multivalued quasi-nonexpansive.

Definition 1.1. Assume ) C F is a nonempty setand 7" : Q) — Cb(Q) is a mapping. Then 7' is called:
(i) hemicompact if corresponding to {wy, }neny C @ with limy, o ||wy, — Twy,|| = 0, there exists a
subsequence {wy, }ren C {wy }neny With wy,, — ¢ € Q as k — oc;

(ii) completely continuous whenever {wy, }neny C @ is bounded, there exists {wp, tren C {wn tnen
such that {T'wy,, }ren converges to a point of Q);

(iii) demiclosed at 0 if there exists {wp, }nen C Q with w, — w(n — o0) and ||wy, — Twy| — 0(n —
00) imply w € Tw.

For any N in N we set Ny := {1,2,3,...,N}. Ifi € Ny and T; : Q — FE is a mapping (resp.,
multivalued mapping), then we denote by CFP ({7 };cn, ) the set of common fixed points of {7} }ien, -
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There is a large volume of fixed point results for single-valued operators and applications in Hilbert
and Banach spaces (see, for example, [8, 13, 14, 15, 24, 25, 26, 27, 34, 36, 38, 39, 40, 41, 43]). Recently, the
authors of [6] introduced the class of multivalued hybrid mappings as follows:

Assume () is a nonvoid set in a Hilbert space H. An operator T : ) — Cb((Q) is called hybrid if

3H(Tw,Tv) < |w—v|? + |[Tw — v|* + ||jw — Tovl?
for all w,v € Q. For some results concerning the fixed points of these operators and other type of
multivalued mappings, we include [1, 14, 21, 22, 23, 36].
Inspired by the results of [19] and [6], we introduce a new class of Bregman multivalued mappings

in Banach spaces. Let D, be the Bregman distance defined by (1.1). An operator ' : @ — Cb(Q) is
called Bregman hybrid if

3Hy(Tu,Tv) < Dgy(u,v) + Dy(Tu,v) + Dg(u, Tv)

forall u,v € Q.

Let (Q C E be a nonempty set and 7' : () — E be a nonexpansive mapping. The Opial property [31]
of F plays crucial roles in the study of various schemes of fixed point results, e.g., in [6, 12]. The Opial
property of E is as follows: If {uy, }neny C F with u,, — u in E, then one obtains

limsup ||y, — u|| < limsup ||u, —v||, forallv e E\ {u}.

n—oo n—oo

The well-known examples of spaces satisfying the Opial property are the Banach spaces I’(1 < p < c0)
and Hilbert spaces. But, some Banach spaces do not enjoy this property [9]. So we aim to investigate
new results for set-valued operators outside this structure in general Banach spaces.

In the present article, we first introduce a new class of Bregman hybrid operators in Banach spaces.
We then provide the existence of fixed points of these operators. Further, in the absence of Opial
property, we provide convergence theorems for the operators to investigate the relationships between
our theorems and the equilibrium problems. Our findings unify and enrich the results of [1, 5, 6].

2. PRELIMINARIES

We include essential facts for the requirements of the next sections.
If g : E — R, then we define dg : E* — R by

dg(w) ={w* € E* : g(w) + (v —w,w*) < g(v), YveE}, VweE.
The maximal monotonicity of g C E x E* is discussed in [37]. We also define ¢* : E* — R by

() = sup{ (u, %) —gla)}. V' € B,
It will easily verify that
(u,u*) < g(u) +¢g*(u*), V(u,u*) € E x E",
and
(u,u”) € 0g <= g(u) + g~ (u”) = (u, u”).

As a known fact, g € O(FE) if and only if g* € ©g(£™). For a positive number r we set B, := {w €
E : ||lw|| < r}. Afunction g : E — Ris called

e strongly coercive if

9w _
llull =400 ||l

e locally bounded if g(B,) is bounded for all r > 0;
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e uniformly smooth on E ([42]) if o, : [0, +00) — [0, +00], indicated by

o (t) = sup vg(u+ (1= 7)tv) + (1 = 7)g(u—ytv) — g(u)
u€Br,veSE,v€(0,1) ’Y(l - ’Y)

i

satisfies

t
lim 7r(?)
sJ0 S

=0, Vr>0;

e uniformly convex on bounded subsets of E ([42])) if the gauge p, : [0, +00) — [0, +00], intro-

duced by
1- — 1-—
p(s) = nf Y9(u) + (1 —7)g(v) — g(ow +( v)v)’
uw€ By |[u—v||=s,7€(0,1) (1 =)
satisfies

pr(s) >0, Vr,s>0;

We use the notations LB(E), UCB(E), USB(E) for the set of all functions g : E — R which are
locally bounded, uniformly convex on bounded subsets or uniformly smooth on bounded subsets of F,
respectively.

Lemma 2.1. [30] Letr > 0 be a constant and g € UC B(FE) be a convex function with the gauge function
pr. Then

Dy (%Vg* (Z %Vg(uz')>> < > %iDy(z wi) = e (IVg(ur) = Vg(w)l),  (2.1)
i=0 i=0

forallk,1 € {0,1,2,...,n},u; € By, v; € (0,1) andi =0,1,2,...,n with)y ;" v = 1, where p}: is
the gauge of g*.
In addition, we have

pr(llu—vll) < Dy(u,v). (2:2)
Let g € O (E) be given. By (1.1), D, verifies the three-point identity [4]
Dy(u,w) = Dg(u,v) + Dg(v,w) + (v — v, Vg(v) — Vg(w)), Yu,v,w € E. (2.3)
In particular,
Dy(u,v) = —Dg(v,u) + (v —u, Vg(v) — Vg(u)), VYu,veFE. (2.4)

The Bregman distance does not act as a classical distance, however, it does have the four-point identity
property [4]: for any v, w € dom(g) and u,x € int(dom(g)),

Dy(v,u) — Dg(u,z) — Dg(w,u) + Dyg(w, z) = (v —w, Vg(x) — Vg(u)). (2.5)
Evidently, we know from [24] that
Dg+(Vg(y), Vg(u)) = Dy(u, y) Yu,y € int(dom(g)). (2.6)

Lemma 2.2. [30] Let g € O¢(E) N USB(E) be given. If the {up}nen and {vy}nen are bounded
sequences, then Dg(uy,v,) = 0 <= ||up — vy|| — 0.

Definition 2.3. [29] If g € Oy(F) satisfies the following statements, it is called a Bregman function.
(i) g is continuous;
(ii) for any u € E and s € (0,00), {v € E : Dy(u,v) < s} is a bounded set.
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Lemma 2.4. [3,42] Let g : E — R satisfy the requirements of Definitions 2.3. Then
(i) Vg norm-to-weak® continuous, onto and one-to-one;

(ii) (u — v, Vg(u) — Vg(v)) =0 <= u = v;

(iii) {u € E : Dy(u,v) < s} is bounded Vv € E and s > 0;

(iv) g* is Gateaux differentiable, domg* = E* and Vg* = (Vg)~L.

Theorem 2.5. [42] For a convex map g € LB(E), the following are equivalent:
(i) g is strongly coercive and belongs to UCB(E);

(i) domg* = E* and g* belongs to LB(E*) N USB(E*);
(iii) domg* = E* and Vg* is uniformly continuous on E*.
Theorem 2.6. [42] For a strongly coercive map g € Oy(E), we have the following equivalent assertions:
(i) g belongs to LB(E) NUSB(E);
(ii) Vg* is uniformly continuous on E*;
(iii) domg* = E* and g* belongs to LB(E*) NUSB(E™).
Lemma 2.7. (see [29]) Let Q € Cv(E) and g € ©Oy(E) be given. Then, foru € E and ug € Q,
Dy(up,u) = mingeq Dgy(v,u) if and only if

(v —up,Vg(u) — Vg(up)) <0, YveQ. (2.7)
Further, if Q@ € Ccv(Y) and g € Og(E), then for each u € E, there exists a unique uy € () with

D =min D .
(o, u) min g (v, u)

The Bregman projection chg : B — Q is a surjective mapping defined by P%(u) =wug forallu € E. Also
PC% has the following property [3]:

D, (v, Pgu) +D, (P(gu, u) < Dy (v, u) (2.8)
forallv e Q andu € E.
Lemma 2.8. [17, 28] Let g € Oy (FE) be given. If a sequence {uy, }neny C E has a weak limitu € E, then
D, verifies that
limsup Dy (uy, u) < limsup Dy(un,v), forallve E\ {u}.

n—oo n—oo
Furthermore, if Vg is weakly continuous, then for any sequence w, — w in E, D, satisfies that
lim sup Dy (w, wy,) < limsup Dy(v, wy,), forallve E\ {w}.
n—oo

n—o0

To achieve the goals, we consider and include the following facts.
Bregman condition (A). Let ¢ € Og(E) be fixed and @ be a subset of E. A multivalued operator
T : Q@ — Cb(Q) does satisfy Bregman Condition (A) if Dy(q,u) = Dy(Tq,u) for all u € E and
q € F(T).

Remark 2.9. Let g € Og(FE) be given. Then T satisfies Bregman Condition (A) if and only if T'¢ = {q},
Vg € F(T). It will evidently verify that (see, Lemma 2.7) the Bregman best approximation operator
P7, defined by

Plu={v €Tu: Dy(v,u) = Dg(Tu,u)},
enjoys Bregman Condition (A).
Lemma 2.10. Let g € Og(E) NUCB(E) be given. If {uy, }nen C E has a weak limit w € E, then
lim sup Dy (up,v) = limsup Dy (un, w) + Dg(w,v), Vv € E.

n—o0 n—oo
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Proof. Since z,, — u asn — oo, it yields

lim sup(u,, — w, Vg(w) — Vg(v)) =0, Vv e E.

n—o0

When combined with (2.5), this amounts to
lim sup Dy (ty, v) = limsup[Dy(uy,, w) + Dg(w,v) + (un —w, Vg(w) — Vg(v))]
n—oo n—oo

= limsup Dy (uy, w) + Dgy(w, v)

n—o0

for each v € E and this is the end of the proof. 0

In the absence of Opial’s property of F, the following lemma extends the corresponding one of [6]
and we include the details.

Lemma 2.11. Let g € Og(E) N UCB(E) be given. For any sequence {uy}neny C E, let u,v € E
be two vectors so that limy, oo Dg(tr, w) and lim,,_,o Dg(tp,v) exist. If {u,, }ren and {um, }ren are
subsequences of {un } nen which satisfy u,, — w and u,, — v, respectively, then u = v.

Proof. By contrary, if u # v then, considering the Bregman-Opial-like inequality, we get

lim sup Dy (un, u) = limsup Dy (un,,u) < limsup Dy (uy, ,v) = limsup Dg(up,v)
n—r00 k—ro0 k—ro0 n—00

= limsup Dy (um, ,v) < limsup Dgy(tp,,uw) = limsup Dy (un, u).
k—o00 k—00 n—r00

This contradicts our assumption and the proof is finished. g

Remark 2.12. Let g € Og(F) and @ € Ccv(F) be fixed. Then, any nonexpansive mapping 7" : Q — Q
with respect to the norm || - || of £ must be continuous, however any Bregman nonexpansive mapping
T : @ — Q@ is not necessarily continuous, see, for instance, [17].

Considering the Banach space [°°(N), the existence of a ;1 on {°°(N) with the following properties
can be found in [6]:
(1) {tn}nen € I®(N), t, >0, Vn € N = pu(t,) > 0;
@) t,=1,Vne N= pu(t,) =1,

3) u{tnt1tnen) = p({tntnen), V{tntnen € I°(N).
We call i as a Banach limit and we set pi,t,, = p({tn }nen)-

Let g € Op(E) and Q € Ccv(Y') be fixed. A mapping T : Q — Cb(FE)) is called Bregman quasi-
nonexpansive, if F(T') # () and

Hy(p,Tu) < Dy(p,u), Vué€Q,pée F(T).
We prove the significant lemma we shall use in the sequel.

Theorem 2.13. Let g € ©¢(F) be continuous and Q € Ccv(E) be given. Let T : Q — Cb(Q) be a
mapping and {uy, }nen C Q be bounded. If 1 is a mean on [*°(N) and

Man(Umy) < Nan(Um Q)
forallq € Q andv € T(q), then there exists w € Q withw € Tw.

Proof. We first select a mean p on [°°(N) and an arbitrarily chosen {u, }neny C Q. We define b : E* —
R by

h(z*) = pp(un, u*), u* € E*.
Due to the linearity of i, we get that h is linear. Observe that

()] =l (un, w)] < [l suppen [(un, w)| < llpll suppen [[unllu*]] = suppen [un[[[u"]]
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for allw* € E*. This verifies the linearity and continuity of h on £* and the reflexivity of E guarantees
the existence of a unique member w € E with the property that

h(z*) = pn{tn, u*) = (w,u*), u* € E*.

We verify the inclusion w € Q. If this is not the case, then the Hahn-Banach separation theorem [7]
assures the existence of v* € E* so that

Y < inf 3.
(w,v") ;QQ@,U)

Since {uy }nen C @, we conclude that
* : * < : * < * — * .
(1,0%) < 30 (0,0%) < 0k () < pon{n, 0°) = (o0, 0)

This contradicts the assumption and hence we get w € (). In view of (2.3), for any ¢ € @), v € T'q, one
has

Dg(unaQ) = Dg(unyv) + DQ(U>Q) + <un - va.g(v) - vy(‘]»’ \V/’I”L € N
Thus we have, for any y € T'q, that

tnDg(un,q) = pnDg(un,v) + punDg(v,q) + pin(un — v, Vg(v) — Vg(q))
= pnDg(un,v) + Dy(y,q) + (w — v, Vg(v) — Vg(q)).

By the assumption, we get that 11, Dg(uy,v) < pnDg(up,q) for all ¢ € @ and v € Tq. This implies
that

fin Dy (tn, @) < pin Dy (tn, q) + Dy(v, q) + (w — v, Vg(v) = Vg(q)) (2.9)
for all v € Q. Putting ¢ = w in (2.9) and taking into account (2.4), we infer that
0 < Dy(v,w)+ (w—wv,Vg(v) —Vg(z))

= —Dy(w,v) + (w — v, Vg(w) = Vg(v)) + (w — v, Vg(v) = Vg(w))
= —Dy(w,v).

This provides us with 0 < —Dg(w, v) which ensures that D,(w,v) = 0. Finally, Lemma 2.2 verifies
that w € T'w, and we obtain the desired conclusion. O

Lemma 2.14. [10] Let g € ©¢(E), S a semigroup, Q C E a nonempty set and X be a closed subspace of
0°(S). Let R = {T; : s € S} be arepresentation of S acting on Q with {Ts(u)}ses C Q being bounded
for some u € Q). Suppose a function ( : S — E satisfies that {((s) : s € S} C Q is bounded and 1 is a
mean on X. If we defineh : Q — R by

h(w) = psDy(C(s),w)  Vw € Q,
then there exists wg € Q) such that
h(wo) = min{h(w) : w € Q}.

Corollary 2.15. Let g € ©¢(E) NUCB(E) and Q € Ccv(Y') be given. Let {uy, }nen C E be bounded
and (1 be Banach limit. If a map h : Q — R is defined by

hMw) = pnDg(un, w), Yw € Q,
then there is a unique wy € Q with h(wp) = min{h(w) : w € Q}.

Lemma 2.16. Let g € O¢(E) N UCB(E) be continuous, strongly coercive, and bounded on bounded
subsets. Let Y € Ccvu(FE) be given. Then T := clconv : K(Y) — K(Y) is a Bregman multivalued
nonexpansive mapping, that is, if A, Q € K(Y'), then Hy(clconv(A), clconv(Q)) < H,(A, Q).
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Proof. Let A,Q € K(Y) and € > 0 be arbitrarily chosen. We set M; := sup{||Vg(a) — Vg(q)|| :
a € A,q € Q} < +0oo and choose a € cloconv(A). Then there exist aj,as, - ,a, € A and
A, A2, A € [0,1] such that Y317 A = 1 and [la — 377, Niai|| < 537-. Now, Lemma 2.2 en-
sures that Dy(a, Y311 Aia;) < g37-. Since Q is compact, there exists go € @ such that Dy(a;, qo) <
Hy(A,Q) + §foralli =1,2,..., N. This implies that

Dy(a, qo) ( Z)\ a,) + D, (Z )\iai,q()) <a — Z)\ a;, Vg (Z)\ az> Vy( q0)>
i=1
D, (a, Z )\iai> + Z AiDy(ai, qo0) + ||a — Z Aiail| ||Vg (Z )\iai> —Vy(q)
i=1 i=1 i=1 i=1
< Dg (a, Z )\iai> + Z /\iDg(ai, qo) + M ||la — Z i
i=1 i=1 i=1

€ n €
<g+ ;AiDg(ai,qo) +3 < Hy(A,Q) +e

IN

This proves that
cloconv(A) C N(Hy(A, Q) + €, cloconv(Q)).

Similarly it can be shown that cloconv(A) C N(Hy4(A, Q) + €, cloconv(Q)). Since € was arbitrary, the
result follows. g

The following fact immediately follows from Lemma 2.16.

Theorem 2.17. Let g € ©¢(E) N UCB(FE) be continuous. LetY € Ccu(E) be fixed. Let T := conv :
Y — K(Y) be a Bregman multivalued Lipschitz mapping with Lipschitz constant c. If convT : 'Y —
K(Y) is given by (clconvT')(x) = clconv(T'(x)), Yo € Y, then clconvT is a Bregman multivalued
Lipschitz mapping with Lipschitz constant c.

Theorem 2.18. Let g € ©¢(E) NUCB(E) be continuous andY € Ccv(E) be fixed. IfT : Y — K(Y)
is a Bregman multivalued Lipschitz mapping, then F'(T) is nonempty.

Proof. Let 0 < v < 1 be a Lipschitz constant for 7" and wy € E be fixed. Choose w; € T'(wp). Since
T (wp), T (w1) € K(Y) and wy € T'(wp), there is a point we € T'(w1) such that

Dy (wi, wg) < Hy(T(wo), T (w1))

(see the remark which follows this proof). Now, since T'(w1 ), T'(w2) € Cb(E) and we € T'(w1), there
is a point w3 € T'(wy) such that

Dy(wz,w3) < Ho(T (w1), T (ws)).
Continuing the same process, we find {2, }nen C E such that
Dy(wp, wpi1) < Hy(T(wp—1), T(wy)), VneN.
We notice that
Dyt wns1) < Hy(T (1), T(wn)) < aDy(tn1,wn) < a[Hy(T(wn2), Twn_1))]
< 042Dg(wn 2, Wp—1) < -+ < " Dy(wo, wr)
for all n € N. Therefore,
Dy (wn, wptm) < Hg(T(wn—1), T(wn)) < aDg(wn—1,wn) < a[Hg(T(wn—2), T(wn-1))]
< a’D g(Wn—2,Wn_1) < -+ < a"Dy(wo, wr)
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for all m,n € N. Thus, {wy, }en is a Cauchy sequence in E which guarantees the existence of w € E
with w,, — w which yields Tw,, — T(w) € E and, since w,, € T(wy_1), Vn € N, it assures that
w € T'(w). The proof is completed. O

Remark 2.19. Let A, € Cb(F) and a € A be fixed. If v > 0, then there exists ¢ € @ such that
Dy(a, q) < Hg(A, Q)+ (in the argument of Theorem 2.18 the Lipschitz constant o and subsequently
o’ play the role of such an ). However, there may not be a point ¢ in @) such that Dy(a, q) < Hy(A, B)
(if @ is compact, then such a point ¢ does exist).

Lemma 2.20. [24] Let g € ©o(E) NUCB(E) be fixed and W, be defined by
Wy(u,u™) = g(u) — (u,u*) + g*(u*), u € E, u* € E*.

Then the following statements are satisfied:

(1) Dy(u, Vg*(u*)) = Wy(u,u*) forallu € E and u* € E*.

(2) Wy(u,u*) + (Vg*(u*) — u,v*) < Wy(u,u* +v*) forallu € E andu*,v* € E*.

Lemma 2.21. (see [41], Lemma 2.1) Suppose {&, }nen C [0, +00) fulfills the relation:

fn—i—l < (]— - An)fn + )\n77n7 Vn > Oa

where { A\, }nen and {0y, }nen have the properties:

(i) {A\n}nen C [0,1] and Y 07 ) A = 00, or in an equivalent form, II32 (1 — Ay,) = 0;

(ii) im sup,,_, . M < 0, or

(iii) 30" g Anfln < 00.

Then, lim,, 00 & = 0.

Lemma 2.22. [20] Suppose {an }nen C R is such that for some subsequence {k;}icny C N the inequality
ag;, < ay,+1 holds true for all i € N. Then there exists {n; };en C N withn; — oo such that for alll € N:

Gny < Qpyt1 and a; < any+1-

In fact,ny = max{j <k :a; < ajq1}.

3. FixEp PoINTs oF BREGMAN HYBRID MULTIVALUED OPERATORS

We intend to approximate the common fixed points for Bregman hybrid operators in Banach spaces.
We first provide some essential lemmas discussing the properties of Bregman hybrid operators.

Lemma 3.1. Let g € Og(E) NUCB(E) and QQ € Ccv(E) be fixed. Assume thatT : QQ — K(Q) is a
Bregman hybrid multivalued operator. If u,v € () and a € Tu, then

1
there exists b € Tv, Dg(a,b) < Hy(Tu,Tv) < Dgy(u,v) + i(u —a,Vg(v) — Vg(b)). (3.1)
Proof. Taking u,v € @) and a € T'u, in view of Remark 2.19, we find b € T'v such that

Dy(a,b) < Hy(Tu,Tv).
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Now, by (2.3), it yields that
3Hy(Tu,Tv) <Dgy(u,v) + Dg(Tu,v) + Dg(u, Tv)
< Dy(u,v) + Dy(a,v) + Dgy(u,b)
=Dy(u,v) + Dy(a,u) + (a —u, Vg(u) — Vg(v)) + Dy(u,v)
+ Dy(u,a) + (u — a, Vg(a) — Vg(b)) + Dy(a,b)
=2D,(u,v) + Dy(u,a) + Dy(a,u) + D (a b)
+ {a —u, Vg(u) = Vg(a) = (Vg(v) — Vg(b)))
=2Dg(u,v) + Dy(u,a) — Dy(u,a) + (a —u, Vg(a) — Vg(u))
+ {a—u, Vg(u) — Vg(a) — (Vg(v) = Vg(b))) + Dy(a,b)
=2Dg(u,v) + (u —a,Vg(v) — Vg(b)) + Dy(a,b)

<2Dg(u,v) + Hy(Tu, Tv) + %(u —a,Vg(v) — Vg(b)).

This gives
1
Hy(Tu,Tv) < Dgy(u,v) + §<u —a,Vg(v) — Vg(b)),
which is the end of the proof. g

Lemma 3.2. Let g € Og(E) NUCB(E) and Q € Ccv(FE) be fixed. Assume thatT : Q — K(Q)
is a Bregman hybrid multivalued operator. Let the sequence {uy }nen C @ be such that u, — q and
|z, — vl = 0 (n — o0) for some v,, € T'uy,. Then q € Tq.

Proof. We first select a sequence {uy, fneny C @ which has a weak limit ¢ € E and
lim |ju, —v,|| =0
n—oo

for some v, € Tu,. We then prove that ¢ € F(T'). By Lemma 3.2, we are led to the existence of
zn € Tq such that

Dy(vp, 2n) < Dg(un,p) + (un — vn, Vg(q) — Vg(2n))-
The compactness of T'p and the inclusion z,, € T'q, assures the existence of {zy, }ien C {zn}nen
such that z,, — z € Tp asi — oo. The weakly convergent sequence {z, }nen Will guarantee its
boundedness and hence we can define f : E — [0, 00) by
f(u) :=limsup Dg(up,,u), u € E.
1—+00
Applying Lemma 2.10, we arrive at
f(u) = limsup Dy(un,, q) + Dy(q,u), Yu € E.

1—00

Therefore f(u) = f(q) + Dgy(q, 2) and so we have
f(z) = f(@) + Dy(q, 2). (32)

In addition
f(z) = limsup Dy (up,, 2)
1—00
= lim Sup[Dg(um‘?vm) +D (Unw ) + (Um — Zn;; v-g(zni) - VQ(p)>]
1—00
< limsup Dy(vn,, 2).

i—00
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Thus,

f(z) < limsup Dy (yn, , 2)
1—00

= lim sup[Dy(
1—00

< limsup[Dgy(

1—00

Un;, Zm) +D (ana ) + <Uni — Zn;s v!](zni) - VQ(p»]
Um,p) <xnz — Un,, Vg(p) - Vg(“m))]
= limsup Dy (up,,p) (3.3)

1—00

= f(p).

Applying (3.2) and (3.3), we arrive at D,(q, z) = 0. Invoking Lemma 2.2, we are led to ||¢ — z|| = 0 and
hence ¢ € T'q. This is the end of proof. O

Lemma 3.3. Let g € O¢g(E) NUCB(E) and Q € Cv(E) be given. If T : Q — K(Q) is a Bregman
hybrid multivalued mapping with F(T) # (), then T is Bregman quasi-nonexpansive.

Proof. If we take g in F'(T') and z in @, then by Lemma 3.2, there is b € T'z with

H,(Tq, T2) < Dyla,2) + 34— 0, Vg(x) — Tg(0),

and thus Hy(Tq, Tx) < Dy(q, x) for any ¢ in F(T). O

Lemma 3.4. Let g € Oog(E) NUCB(FE) be given. Let Q C E be nonvoid and T : Q — K(Q) be a
Bregman hybrid multivalued operator. Then we have:

(i) If Q is closed, then F'(T') is closed.
(ii) If Q belongs to Cv(E) and T satisfies the Bregman condition (A), then F'(T') is convex.
Proof. (i) If F/(T) is an empty set, then it is closed. Let F'(7") be a nonempty set in E. If we take

a sequence {v, }neny C F(T) with v,, — v as n — oo, then invoking Lemma 2.2 we deduce that
Dy(vy,v) = 0and Dy(v,v,) — 0asn — oco. Let y € T'v be fixed. Returning to (2.3), ensures that

Dy(v,y) = Dg(v,vn) || +Dg(vn, y) + (v = vn, Vg(vn) — Vg(y))
< Dy(v,vn) + Hy(Tvn, Tv) + [[v = vn[[[Vg(vn) = Vg(y)
< Dy(v,vn) + Dg(vp,v) + Ma||v — vy]|.

where My =: sup{||Vg(v,) — Vg(w)|| : w € Tv, n € N} < 4o0. This amounts to
Dy(v,Tv) < Dy(v,vy) + Dy(vn,u) + Maljv — uy ||

and hence Dy(v,Tv) = 0 which entails to v € F(T'). This verifies the closedness of F'(7") and the
proof is completed.

(il) We will verify that F'(T") is convex. If ¢1, g2 € F(T), s € (0,1), then by setting u = sq1 + (1 —s)q2,
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- — (u—w, Vg(w))

—g(w) = (sq1 + (1 = s)g2 — w, Vg(w))

- —s{g1 —w, Vg(w)) — (1 = s)(g2 — w, Vg(w))
+sg9(q1) + (1 = s)g(q2) — [sg(q1) + (1 — s)g(q2)]

=g(u) + s[g(q1) — g(w) — (@1 — w, Vg(w))]

+ (1= 9)[g(g2) — g(w) — (g2 — w, Vg(w))]
=g(u) + sDg(q1,w) + (1 — s)Dy(g2, w) — [sg(q1) + (1 — 5)g(q2)]
=g(u) + sDg(Tq1,w) + (1 — 8)Dyg(T'q2,w) — [sg(q1) + (1 — s)g(q2)]
<g(u) + sHy(Tq1, Tu) + (1 — s)Hy(T'q2, Tu) — sg(q1) — (1 — s)g(q2)
<g(u) + sDy(q1,u) + (1 — 8)Dg(g2,u) — sg(q1) — (1 — s)g(q2)
=g(u) + s[g(q1) — g(uv) — (@1 — u, Vg(u))]

+ (1 = 5)[g(q2) — g(u) — (g2 — u, Vg(u))] — s9(q1) — (1 = s)g(q2)
(w) + [—g(u) = (s(@1 —u), Vg(u)) — {(1 = s)(g2 — u), Vg(u))]
+[sg(q1) + (1 = 8)g(q2)] — s9(q1) — (1 = s)g(q2)
=g(u) — g(u) — (s(q1 —u) + (1 — 5)(q2 — u), Vg(u))
=0 — (sq1 + (1 — s)g2 — u, Vg(u))

+s9(q1) + (1 = 5)g(q2) — sg(q1) — (1 — 8)g(g2)
=0.

This assures that Dg(u, w) = 0 and Lemma 2.2 gives that inf{|ju — w|| : w € Tu} = 0 and hence
u € Tu which ends the proof. 0

Lemma 3.5. Letg € Og(E)NUCB(FE) and@Q € Ccv(E) be fixed. LetT : Q — Cb(Q) be a multivalued
operator. Assume there exist wog € () and a bounded sequence {wy, }nen with wy, € Twy_1 for everyn in
N such that for each v € @), there exists a € T'v with the property that

pinDg(wn, a) < pnDg(wp, v).
Then F(T') is nonempty in Q.
Proof. Define a mapping h : Q — R by

h(v) := pnDg(wy,v), Yv € Q.

Then h is well-defined and Theorem 2.13 ensures the existence of a unique element vy € () such that
h(vp) = min{h(v) : v € Q}. So, for some ag € T'vy, we deduce that

h(ag) = pnDy(wn, ag) < pnDy(wn,vo) = h(vg).

Since ap € @ and vy € @ is a unique element such that h(vg) = min{h(v) : v € Q}, we get
vg = ag € T'vg arriving at the end of proof. O

Theorem 3.6. Let g € Og(E) NUCB(E) and Q € Ccv(E) be fixed. If T : Q — K(Q) is a Bregman
hybrid operator, then we have the equivalent assertions as follows:

(1) There exist zg € () and a bounded sequence { z } nen with z, € Tz,_1 for everyn in N;

(2) F(T) is non-void.
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Proof. Evidently, the implication (2) = (1) achieves from the assumptions. Let us verify (1) = (2).
Assume that there exist z9 € @ and a bounded sequence {z,, },en with 2, € Tz,_1 for every n in N.
Let v € (). The relations (2.5) and (3.1) ensure the existence of b € T'v with

Dg(2n+1,b) <D (Zn, ) + <Zn - Zn—‘,—lyv.g(v) - Vg(b)>
< Dy(zn+41,b) < Dy(2n,v) + Dg(2n,b) + Dg(2n+1,v) — Dg(2n,y) — Dg(2n+1,b)
<= 2Dy(2n4+1,b) — Dg(2n,b) < Dy(2p,v) + Dg(2p+1,0).

Now, Lemma 3.5 guarantees the nonemptiness of F'(T") which ends the proof. U

Next, we are ready to verify convergence results for Bregman hybrid multivalued operators in weak
and strong topology.

Theorem 3.7. Let g € Oog(E) NUCB(E) and Q € Ccv(FE) be fixed. Fori € Ny, letT; : Q — K(Q)

be Bregman hybrid operators with (., F(T;) # 0. Let v, , € (0,1) foralli € Ny and "N o vin = 1,
Vn € N. Foru; € Q let {up }nen be produced by

N

Unt1 € P (Vg* (70,an(un) + Z%an(TZun)>> , Vn > 1. (3.4)
i=1

Let the statements below be satisfied:

(i) T; verifies Bregman Condition (A) for any i € Ny;

(i) lim inf,, 0 Yo,nYi,;n > 0 for eachi € Ny.

Then, limy, o0 Dy (tn, Tiu,) = 0, Vi € Ny.

Proof. Let q € ﬂl | F(T;). As T; verifies Bregman Condition (A) for any ¢ € Ny, we see that

N
Dy(q,unt1) = Dy (q, Py (Vg* (Vo,an(un) + Z%,Ng(y%)») ; (yn € Tiun)

=1

N
=D, (qvw* (70,Ng(un) + Z%,Wg(yf;)»  (yn € Tiu)

i=1

< Y0, Dy (g, ttn) +Z%n (@ Yn), (yn € Tyun)
=, nD Q7un + Z%,n zQ7yn) (y:z € Tzun) (3.5)

g’YUn Q7un +Z’an zQ7Tun)
< DQ(Qa Un)
Hence, lim,,_,oc Dy(q, un) exists which leads to the boundedness of {2, },en. Setting

1 ::sup{HVg(un)—Vg(yfl)H :9=1,2,..., N, yiLGTiun,nGN} < 00
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Invoking Lemma 2.1, we find

N
Dyg(q,unt1) =Dy (q, Py (Vg* (man(un) + Z%,Nﬁ%)) )) , (yn € Tiun)

=1

N
=Dy <q7 vy <70,Ng(un) +) %inVyg (%)))  (yh, € Tyun)

=1
</70 nD (Q7 un)

+ Z% nD(a,yh) — Yomvimpr, ([|Va(un) = Vayi)|) . (vi € Tixn)
:’70 nD (Q7 un)
+ Z%n Tiq,yh) — YonYimPr, (|Vo(un) = Vg (ui)]) 5 (vs € Tizn)

<fYO nD (q7 un)

+ Z'Yz n ZQaTUn) ’70,n'7i,n[):1 (HVQ(UH) — Vg (y;,) ) , (y; S Tzun)

<Dg(q,un) —Y0.0%inPr, (IV9(un) = Va(yn)l), (i, € Tiuy)
where p;. is the gauge of g*. It follows that
YoV, (1V9(tn) = Va(yp)ll) < Dy(g, tn) — Dy(a, un1), (v, € Tiun)-
Since lim inf,, 0 70,nVi,n > 0 for all ¢ € Ny, we obtain
lim [[Vg(un) = Vg(y,)ll = 0
n—oo
and hence by Theorem 2.6 we get
lim Ju, — y]| =0 (3.6)
n—oo
which incorporating with Lemma 2.2 yields to
lim Dy (up,ys) = 0.

n—oo

This amounts to

lim Dgy(up, Tiup) < hm Dy(tun,ys) =0 (3.7)
n—o0 — 00
for all « € Ny which ends the proof. g

Theorem 3.8. Let g € Og(E) NUCB(E) and Q € Ccv(E) be fixed. Fori € Ny, let {T; : Q —
K(Q)}Y., be Bregman hybrid multivalued mappings with (., F(T;) # 0. Let {yin}nen C (0,1),
Vi € Ny and Zﬁio Yin = 1, Vn € N. Suppose we have the statements as below:

(i) I; satisfies Bregman Condition (A) for all i € Ny;

(i) lim inf,, o0 Yo,nYi,;n > 0 foralli € Ny.

Then, {uy } nen proposed by (3.4) converges in weak topology to an element of CFP ({1} }ieny ) -

Proof. Evidently, Theorem 3.9 guarantees the boundedness of {uy, },cn which entails to the existence
of subsequence {uy, }ien of {un fnen with u,, — p € Q. From (3.4), we conclude that ||u, — y%|| — 0
asn — oo for all i € Ny. Invoking Lemma 3.2, we have p € ﬂ | F(T;). Let us choose {uy, }ren with
Up, — ¢. Then employing Lemma 3.2, it reveals that ¢ € ﬂl 1 F(T;). By Lemma 2.2, we have ¢ = p
and this completes the proof. g
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Theorem 3.9. Let g € Og(E)NUCB(E) and Q € Ccv(E) be fixed. Let the assumptions of Theorem 3.7
hold and one of the T; satisfies Definition 1.1 (ii). Then there exists p in CFP({T; }ien, ) Withu, — p € E.

Proof. If there exists i9g € Ny with T, being satisfy Definition 1.1(ii) then there exists {@nk}keN C
{un }nen with Dy(p, Tjyuy, ) — 0, for some p € Q. This implies there exists a subsequence 2,0 € Tiup,,
such that

lim Dg(p7 Z;Ok) = Oa

k—o0

Setting M3 :=sup {||Vg (2 ) ||, [Vg(un, )| : k € N||} < 400, it follows from (3.7), for 222 € Tyun,,
that

Dg(paunk) = Dg (pa Z:zok) + Dg (anaunk) + <p* an7v9( 210 ) - VQ(unk)>
< Dg ( ’Z:lok) + Dg (znk’unk + Hp - Z H HVQ VQ(unk)H
D (p> nk)+D (nk,unk)-i-Mng—Z H—>Oask—>oo

In view of Lemma 3.1, for ynk € Tiuy,, there exists v . €Tip such that

Hy(Tip, Tyun,) < Dy(p,tny) + (p = v}, V(un,) = Va(yp,))
< Dy(puny) + [Ip = o3, | [|V9(uny) = Vo(yh, )| -
We use (3.6) to find that
lim Hy(Tip, Tivn,) =0 (3.3)

n—oo

for all ¢ € Ny. In addition, for each i € Ny, we get

Ernploying (3.7)-(3.8), we achieve Dg4(p, T;p) = 0 for all i € Ny. The closedness of T;p assures that
p € NX, F(T,). In the light of Theorem 3.7, we arrive at the existence of the limit lim,, oo Dy(p, )
which entails that lim,,_,~ || un, —p ||= 0. O

Theorem 3.10. Let g € O¢(E) NUCB(E) and Q € Ccv(E) be fixed. Let the assumptions of Theorem
3.9 hold and one of the T; be hemicompact. Then there exists p in CFP({T;}icn, ) such that {un}nen
converges to p in the norm topology of F.

Proof. If there exists iy € Ny with T;; being hemicompact, then by (3.7) we see that lim,, o Dg(tn, Tjyu
0. This guarantees the existence of a subsequence {up, }ren of {up }neny With u,, — p € Q. From
Lemma 3.2, for y}lk € Tiuy,, there is an v%k € T;p with

Hy(Tyuny, Tip) < Dy(tny, p) + (tny = Yy Va(p) = Vg (v7,))
< Dy (tnye, p) + [uny, = vm, || [Va(p) = Vg (oy,, )] -
It follows from (3.6) that
lim Hy(Tiun,,Tip) =0

n—oo

for all i € Ny. For each ¢ € Ny, we get, for any z € T;p, that
D (p, Z) =D (p, unk) +D (unkaTzunk) + Hg(TiunkaEp)'
D, (U:Lka Unk) +D ( z) = s Uny ) + (unmyfmk)

Dy(
+ (Un, — 2, V9(uh,) = Vg (un,)) + Hy(Titin,, Tip).
D (pa ) g(p unk)+D (unvaunk)+H (Tunkasz)

n) =
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that
lim Hy (Tiup,, Tip) =0, Vi € Ny (3.9)
n—oo
If i € Ny, then we obtain
Dg(p7 sz) < Dg(p7 unk) + Dg(unkvnunk> + Hg (Eunkalep) . (3~10)

Since uy, — p, by (3.7)-(3.9), we arrive at D, (p, T;p) = 0 for every i € Ny. By the closeness of T;p we
discover that p € ﬂfil F(T;). By Theorem 3.9, we get lim,,_,~ || un — p || exists which implies that
limy, o0 || un —p ||=0 O

Corollary 3.11. Let g € O¢(E)NUCB(E) and Q € Ccv(E) be fixed. Fori € Ny, letT; : Q — K(Q)
be a Bregman hybrid operator with ﬂfil F(T;) # 0. Let ;. , € (0,1) foralli € Ny and Zfio Yim = 1,
Vn € N. Let z1 € Q be arbitrarily chosen and {x,, }nen be produced by

N

Tn+1 € PY (Vg* ('yo,an(wn) + Z%,Nﬂﬂ%))) , Vn>1 (3.11)
i=1

Suppose each of the statements below hold true:

(i) for eachi € Ny, T;q = {q} for each q € F(T);

(ii) lim infn_>oo Yo,nYin > 0,V? € Ny.

Then, for everyi € Ny, limy, o0 Dy(zp, Tizy) = 0.

Corollary 3.12. Let g € O¢g(E)NUCB(E) and Q € Ccv(E) be fixed. Fori € Ny, let T; : Q — K(Q)
be a Bregman hybrid operator with (., F(T;) # 0. Let yin € (0,1) foralli € Ny and "N (v = 1
foralln € N. Suppose each of the statements below hold:

() Vi € Ny, Tig = {q}, Vg € F(T);

(ii) lim inf,, o0 Y0,nVi,;n > 0 foralli € Ny.

Then there exists p in CFP({T; }icn, ) such that x, — q asn — oc.

Corollary 3.13. Ifthe assumptions of Corollary 3.11 hold true and one of the T; satisfies satisfies Definition
1.1(ii), then there exists q in CFP({T; }ien, ) such that z, — q asn — oo.

Corollary 3.14. Let g € ©g(E) NUCB(FE) and Q € Ccv(E) be fixed. If the assumptions of Corollary
3.11 hold and one of the T; is hemicompact. Then there exists q in CFP({T} }ien, ) Withx, — q asn — oo.

Since PC%Ti satisfies Bregman Condition (A)( ¢ € Ny), we meet the following corollaries.

Corollary 3.15. Let g € O¢(E)NUCB(E) and Q € Ccv(E) be fixed. Fori € Ny, letT; : Q — K(Q)
be an operator with ﬂf\il F(T;) # 0. Let v; , € (0,1) foralli € Ny and Eé\io Yin =1 foralln > 1.
For any fixed element uy € Q, let the sequence {uy, },en be indicated by

N

Un+1 € P <V9* <vo,an(un) + Z%,an(Tiun)>> Vn € N. (3.12)
i=1

Let the following statements be satisfied:

(i) for each i € Ny, PC%TZ' is a Bregman hybrid operator;

(ii) lim inf,, 00 Y0,nVi,;n > 0 foralli € Ny.

Then, Vi € Ny, limy, o0 Dg(un, Tiu,) = 0.

Proof. By Theorem 3.7, we obtain ||u, — v} || — 0 as n — oo and ¢}, € PC%Tiun leads to
Dg(umTiun> < Dg(umpc%Tzun) < Dg (umy;) —0 (3-13)

whenever n — oo for every ¢ € Ny. 0
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Corollary 3.16. Let g € O¢(E) NUCB(E) and Q € Ccv(E) be fixed. Fori € Ny, letT; : Q — K(Q)
be such that ﬂfil F(T;) # 0 and I — T; is demiclosed at 0. Let v;,, € (0,1) foralli € Ny and
Ei]\io vin = 1,Vn € N. Let the following statements be satisfied:

(i) PéTi is a Bregman hybrid operator, Vi € Ny, .

(ii) liminf,,— YonYin > 0,Vi € Ny.

Then there exists p in CFP({T; }ien, ) such that x,, — p asn — occ.

Corollary 3.17. If the assumptions of Corollary 3.15 hold true and one of the PéTi satisfies Definition
1.1(ii), then there exists q in CFP({T} }ien, ) with x, — p asn — oo.

Corollary 3.18. Ifthe assumptions of Corollary 3.15 hold and one of the Pg}Ti is hemicompact. Then there
exists ¢ in CFP({T; }ieny ) with x,, — q asn — 0.

4. HALPERN-TYPE ITERATION AND ITS CONVERGENCE

This section devotes to an investigation of the Halpern algorithm for the approximation of fixed
points of {7} : i € Ny}, where T;’s are Bregman hybrid multivalued operators from a set Q € Ccv(E).
We will verify the strong convergence of the Bregman-Halpern iterative algorithms by relaxing the
hemicompactness assumption on these mappings.

Lemma4.1. Letg € O¢(E)NUCB(E)NUSB(E) be a continuous function. Let Q € Ccv(E) be fixed
and T : Q — E a Bregman hybrid multivalued mapping which enjoys the demiclosedness principle. If
{tn}nen C E is bounded with u,, — Tu,, — 0 and 4 = Pg,(T)u, then

lim sup(u,, — @, Vg(u) — Vg(a)) < 0.

n—oo
Proof. By the assumption on 7', we find a subsequence {uy, }ien of {up tnen with u,, = v € F(T)
and
limsup(up — @, Vg(u) — Vg(@)) = lim (un, — @, Vg(u) — Vg(a)).
71— 00

n—oo
Combining this with (2.8), entails to
lim sup (un — @, V() — Vg(@)) = (v — i, Vg(u) — Vg(i)) < 0
n—oo

and hence the proof. g

Theorem 4.2. Let Q € Ccv(E) and g € Og(E) NUCB(E) N USB(E) be continuous. Assume that
{T; : Q — E}Y., are Bregman hybrid operators verifying that F' := NN, F(T;) is nonempty. Let
{¥n}nen C [0,1] and {0; n}nenuqoy C (0,1) satisfy the statements as follows:

(@) limy, 00 v = 0;

(b) >0y Y = 00;

(c)0 < liminf, o 00 nbin <limsup, .o Oonbin <1,1=0,1,2,...,N;

(@) o = 1.
Let us define a sequence {xy, }nen by the iteration process

veFE, x; €@ chosen arbitrarily,
Yn € V" 100, V9(n) + 11, 050V g(Tiwn)], (4.1)
Tnt1 = PV [1mVg(v) + (1 = 1) Va(yn)l,

Then z,, — Piv asn — oo, where PY. : E — F is the Bregman projection.
Proof. First, the inclusion F'(T') € Ccv(FE) is guaranteed by Lemma 3.1. Setting

S _ pYg
0 = Ppv,
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two essential steps are the requirements of the proof:

Step 1. The boundedness of {2, }nen, {¥n tnen and {w! € Tz, :n € N, i = 0,1,2,..., N} is the
first task. First, we verify the boundedness of {z), } ,en. For any fixed element ¢ in F'(T"), by the relation
(4.3), we get

DQ((L Yn) = D, (f), Vg* [907an(xn) + Zi\il 9z‘,nV9(w%)]) ) (w% € Tizy)
< 00 n (Q7 SUn) + Zz]\;l ei,nD (q’ . )
< 0071 (%xn) +Zl 101 nD (%Txn)
<0, Dy (g, n) + Zl 1 0;, nHy (T'q, Tizy)
< 00 n (C_Ia xn) + 21:1 ez,nD (q )

Thanks to Lemma 2.1 and the above inequalities, we get

Dy(q,2n+1) = Dy(q, PV 1 Vg(v) + (1 = 72)Vg(yn)])
= Dg(q7 Vg*[/YnVQ(U) + (1 - ’Vn)v.g(yn)])
S ’Yan(% ’U) + (1 - 7n)D9<Q7 yn) (4'2)
< rVan((Lv) + (1 - ’VR)DQ(QWTH)
<max{Dgy(q,v), Dy(q,xn)}.

Inductively, we find
Dg(q7 xn—i—l) < maX{DQ(qa U)? Dg(Qa .Tl)}, Vn € N. (43)
Thus (4.3) gives the boundedness of {D4(q, ) }nen and so for some real number My > 0 we have
Dy(q,zp) < My, Vn € N. (4.4)
Furthermore, Lemma 2.4(3) ensures the boundedness of {, },en and by the properties of {T;}Y | we
get for any p € F' that

The boundedness of {w! },cn is easily obtained by the boundedness of {, }nen. Also, trivial argu-

ments by using Step 1 show that {Vg(x,) }nens {V9(yn) tnen, {Vg(2n) tnen and {Vg(wfl)}neN are
bounded in E*. By an appeal to Theorem 2.5 reveals that o = sup{||z,|, [|[Vg(w})|| : n € N, i =
0,1,2,...,N} < ooandlet p;, : E* — R be the gauge of g*.

Step 2. We verify the existence of ¥ € () such that z,, — ¥ asn — oo.

First, the boundedness of {z, },cn and the Eberlin-Smulian Theorem [7] assure the existence of sub-
sequence {Zp, }ien of {xp nen that z,, = 0 € Q. Now, by Lemma 2.1, for every n € Nand i € Ny,
one has

Dy (0, yn) < Dy(0,20) — 000ip}, (| Vg(zn) — Vg(w})]))- (4.6)

Incorporating Lemma 2.7 with (4.6) and (4.2), we arrive at

Dg({)a‘TnJrl) < D(0,v) + (1 = vn) D(0, yn) ‘
< YDy (0,0) + (1 = 1) [Dg (0, 20) — Oobipy, (IVg(xn) — Vg(wy,)|)]-

Let My := sup{|Dy(0,v) — Dg(, )| + Oobip, ([ Vg(zn) — Vg(wi)]) : n € N, i € Ny}. Applying
(4.9) we get

(4.7)

0007, (I Vg(wn) = Vg(wp)[)) < D(0,20) = D(, 2nt1) + Y M. (4.8)
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Setting z, = Vg*[1,Vg(v) + (1 —7,)Vg(yn)], we see that z,, 11 = P}z, and therefore by Lemma 2.7,

(4.6) and (4.2), we have

Dy(9,2n41) = Dy(0, Przn)
< Dy(0, Vg*[1aVg(0) + (1 = v2)Vg(yn)])
= Wy (0, %Vg(v) + (1 =) Vag(yn))
< Wy(0, % Vg() + (1 =) Vg(yn) — %(Vg( ) — ( )
—(g* [V g(v) + (1 =) Vg(yn)] = 0, = (Vg(v) — Vg(9)))
= Wy(0,7%Vg(v) + (1 — 1) Vg( nyn)) + Y (zn — 0, Vg(v) — Vg(9))
Dy(0,Vg* 7 Vg(v) + (1 = vu)Vg(yn)]) + ynlzn — 0, Vg(v) Vg(9))

Q(A 0) + (1 = vn) D(0, yn) + Ynlzn — 0, Vg(v) — Vg(0))
_'Yn)Dg(van) + Ynlzn — 0, Vg(v) — Vg(0)).

We continue the process by the following two arguments:

A I
=g
U
<
<>

Case 1. If { Dy (0, z) } 52, is nonincreasing for some ng € N, then { D (0, z,,) } nen converges to some
real number and hence Dy (0, xy,) — Dy(?, £p41) — 0 whenever n — oco. Combining this fact with

condition (c), assures that
Tim 7, (I[Vg(n) = Vg(wp)ll) =
and hence
lim [[Vg(zn) — Vg(wy,)|| = 0.
n—oo
Due to the uniform continuity of Vg*, we get that

lim ||z, —w’| =0, i € Ny.
n—00

On the other hand, applying Lemma 2.2 and (4.10) we conclude that
lim Dy (w),z,) =0, i € Ny.

n—oo
This implies that
D, (w%, yn) < (1 —6,)Dy (w%, Tn) + 0Dy (w%, wh) = (1 = 0,)Dg(wl, z,) — 0
as n — 0o. Also, we have

Dg(@/na zn) S Van(ynv U) + (1 - 'Yn)Dg(ynv yn) = 'YnDQ(me) —0
as n — 0o. Next, Lemma 2.2 and (4.10)-(4.12) reveal that

S [lyn =il =0, lim [lan = 2] = 0.

From Lemma 4.1 and (4.13), we infer that

lim sup(z, — 0, Vg(v) — Vg(9)) = limsup(x,, — 0, Vg(v) — Vg(0)) < 0.

n—oo n—oo

This combined with Lemma 2.21 gives the desired conclusion.

(4.10)

(4.11)

(4.12)

(4.13)

Case 2. If for some subsequence {n;};cny C N, the strict inequality Dy(0, ;) < Dg(0,2p,+1) holds
true for all i € N, then applying Lemma 2.22, yields to the existence of a sequence {my}reny C N
which is nondecreasing and mj, — oo as k — 00, Dg(0,Zm,) < Dg(0,Zm,+1) and Dy (0, x) <

Dy(0, @, +1) for all k£ € N. The relation (4.7) assures that

ka(l - amk)pig(HVQ(ka) - Vg(wink)ﬂ) < Dg(@ﬂ xmk) - DQ(@vxmkﬂ-l) + Ym Ma < v, My

for all £ € N. Also the assumptions (a) and (c) imply that
Jim g7, (IVg(2m,) = Vg(wy,)Il) = 0.
—00
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Using the same procedures in Case 1, we obtain

lim sup(zy,, — 0, Vg(v) — Vg(0)) = lim sup(z,,, — 0, Vg(v) — Vg(9)) < 0.

k—oo k—o0
In the light of (4.12), we get
Dy, mgs1) < (1= A ) Dy, Zmy) + Y (o — 8, Vg(0) = V(@) (419)

Since Dy(0, Zm,, ) < D(0, Zm,+1), we have that

’YmkD(@v xmk) < Dg(@’ ‘ka) - Dg(ﬁv xmk+1) + Yy, <ka - {}v Vg(v) - Vg(f))>
For the particular case v,,, > 0, we infer that

Dy (0, Ty, ) < {2y, — 0, Vg(v) = Vg(0)).

(4.15)

Employing (4.13) leads to

kli_}n;j Dy(0, zy,, ) = 0.

Then, (4.13) ensures that limy_, oo D(0, Ty, +1) = 0. In addition, we obtain D (0, xi) < Dg(0, T, +1)
for each k£ € N and hence z,,,, — 0 as k — oo. This entails to z,, — 9 as n — oo which completes the
proof. O

Remark 4.3. Theorem 4.2 improves the main results of [6] as follows:

(1) From the spaces structural point of view, the duality operator is generalized to a Bregman function
on general Banach spaces.

(2) For the mappings, the hybrid set-valued operators are generalized to the case of Bregman hybrid
set-valued operators.

5. BREGMAN ATTRACTIVE POINT THEOREMS FOR SET-VALUED MAPPINGS

Kocourek et al. [18] introduced the generalized hybrid operators in Hilbert spaces. In a series of
papers [16, 18, 32, 33], the authors investigated fixed point and attractive points for the single and
multivalued mappings and obtained some applications of equilibrium problems in various settings of
Hilbert and Banach spaces.

Let Q C E be nonvoid and 7' : @ — 2¥\ {0} be a set-valued mapping. This section aims to
introduce and investigate the notion of Bregman attractive points of 7" denoted by

AL(T) ={w € E: Dy(w, Tu) < Dy(w,u), Yu € Q}. (5.1)
An element w € () is called a Bregman strongly attractive member of 7" if
Hy(w,Tu) < Dy(w,u), Yu € Q, (5.2)

where H, is the Bregman Hausdorff distance defined by
Hy(A, B) = max{sup Dy(u, B),sup Dy(A,v)}.
u€A vEB

We denote by BSA(T) the set of all Bregman strongly attractive points of T, that is, BSA(T) =
{w € E : Hy(p,Tu) < Dg(w,u) for all w € Q}. It is obvious that BSA(T) C AgQ(T). The
mapping 7 is called Bregman (a, 3)-generalized hybrid set-valued if there exist a, 3 € R such that
aHy(Tu,Tv) + (1 — a)Dy(u, Tv) < Dg(v,Tu) + (1 — B)Dgy(u,v), Yu,v € Q. Also, the set of
all the Bregman common attractive points and the set of all the Bregman common strongly attractive
points of the set-valued operators 7} and 75 are denoted by(BC AP (T1,15)) and (BCSAP(T1,T%)),
respectively.

The following results will be used in the proof of our main results in what follows.
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Bregman condition (B). Let g € Og(E) NUCB(FE) and Q € Ccv(E) be fixed. A multivalued map-
ping T : Q@ — Cb(Q) is said to satisfy Bregman Condition (B) if Dy(p,z) = Dy(Tp,z) forallz € E
and p € A%(T).

Lemma 5.1. [11] Let g € Oog(E) NUCB(E) and Q € Ccv(E) be fixed. For a mappingT : Q — Q, if
AZ?(T) # (0, then F(T) is nonempty.

Lemma 5.2. [11] Let g € Og(E)NUCB(E) and Q € Ccv(E) be fixed. For a mappingT : Q — E, the
set AZ?(T) is nonempty, convex, and closed in E.

Lemma 5.3. [10, 11] Let g € ©¢(E)NUCB(E) and Q € Ccv(E) be fixed. If T : Q — E is a Bregman
quasi-nonexpansive operator, then A‘Z? (TYNQ = F(T).

Lemma 5.4. Let g € ©g(E) NUCB(E) and Q € Ccv(FE) be fixed. Let Pc% : E — @ be the Bregman
projection. Let {xy, }nen be a sequence in E. If Dy(q, 1) < Dy(q, zn) foranyq € Q andn € N, then
Pc%:cn —qo € Q.

Proof. Let {xy, }nen C E be such that the inequality Dy(q, zn+1) < Dgy(q, x,) holds true for any ¢ € @
and n € N. Setting u,, = Péxn for any n € N, in view of (2.3), (2.8) and (2.9), we deduce that

Dg(un,um) =Dy (tn, Tm) + Dg(xm, um) + (Un — Tm, Vg(zm) — Vg(um))

(Umxn) +D (wm,u )+ (tn — T, Vg(Tm) — Vg(um))
Dy (tn; ¥p) + Dg(Tm, um) + (Un — Tm, Vg(Tm) — Vg(um))
Dy(

Up, Tn) — (um?x )+ (Um — Tm, Vg(um) — Vg(zm))
+ (Un — T, Vg(zm) — Vg(um))
=Dy (tn, Tn) — Dg(tm, Tm) + (Un — Um, Vg(xm) — Vg(um))

<Dy (tn, xn) — Dg(tm, Tm).
Letting m,n — oo and considering Lemma 2.2, we get that {u, },en is a Cauchy sequence in () and

hence by the completeness of () we get that the sequence u,, = qo € Q. O

We now generalize iterative schemes mentioned in [6] to the case of multivalued operators 77 and
T5 through the use of Bregman distances:

wy € Q
Yn = Vg*[(1 = 0,)Vg(wn) + 6, Vg(vn)] (5.3)
Wn41 = Pé[vg*[(l — )Vg(vn) + an9<un)]]
for all n € N, where v, € Thwy, uy, € T1y, and {7V fnen, {0n}nen C (0,1).
Definition 5.5. Let ¢ € Og(E) N UCB(E) and Q € Ccv(E) be fixed. Let Ty, Ty : Q — 2F\
{0} be multivalued operators. The set of all the Bregman common attractive points of 7} and T is
demonstrated by BCAP(T1,T5) = {w € E : max{Dy(w, Su), Dg(w,Tu)} < Dg(w,u),Vu € Q}. It
is evident that z € BOAP(Ty, Tz) which means that w € A% (T1) N AY(T»).

Definition 5.6. Let g € Og(E) NUCB(FE) and Q € Ccv(FE) be fixed. For the set-valued mappings

Ty, Ty : Q — 27\ {0} we define the set of all the Bregman common strongly attractive points by
BCSAP(T,T) = {w € E : max(Hy(w, T1u), Hy(w, Tou)) < Dg(w,u),Vw € Q}.

Apparently, we have w € BCSAP(Ty,Ty) which means that w € BSA(Ty) N BSA(T5).

Bregman condition (B). Let ¢ € ©¢(E) N UCB(F) and @ € Ccv(E) be fixed. We say that T :
@ — Cb(Q) enjoys Bregman Condition (B) if D, (g, u) = Dy(T'q,u) forallu € F'and q € A%(T).

Now we investigate important properties concerning the above sets in Banach spaces.
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Lemma 5.7. Let g € Og(E) N UCB(E) and Q € Ccv(E) be fixed. Let T : Q — 2E\ {0} be a
multivalued operator. If T fulfills the Bregman condition (B), then A% (T) is convex and closed in E.

Proof. (i) If A7)(T') = 0, then it is closed. Assume that F/(T') # (). Extracting a sequence {wn }nen C
A‘Z? (T") with the strong limit w, in the light of Lemma 2.2 we deduce that D, (wy,, w) — 0and Dy(w, wy,) —
0 asm — oco. Let y € T'w be fixed. Applying (2.3), we obtain

Dy(w,y) = Dg(w, wp) || +Dg(wn,y) + (w — wn, Vg(wn) — Vg(y))
< Dy(w,wy) + Hy(Twp, Tw) + |w — wy||[|Vg(wn) — Vg(y)l|
< Dg(wvw'n) + Dg(wmw) + M5Hw - wTLH?

where M5 =: sup{||Vg(w,) — Vg(z)|| : z € Tw, n € N} < 4oc. This amounts to
Dy(w, Tw) < Dy(w, wn) + Dg(wn, w) + Ms|lw — wn||

and hence Dy(w, wz) = 0 which implies that w € A% (T'). We conclude that A%(T) is closed and the
proof is completed.

(ii) We verify that A%(T) is convex. For any ¢1,q2 € A%(T), s € (0,1), we set w = sq1 + (1 — s)go.
We verify that w € A“Z?(T ). Let z € T'(w) be fixed. According to Lemma 3.2, we receive
—9(2) = (w = 2,Vg(2))
=g(w) —g(2) = (sq1 + (1 — 5)g2 — 2, Vg(2))
—9(z) —s

=g(w) — g(2) — s{q1 — 2, Vg(2)) — (1 — 8){q2 — 2, Vg(2))

+sg9(q1) + (1 — 8)g(g2) — [s9(q1) + (1 — 5)9(g2)]
=g(w) + slg(q1) — g(2) — (@1 — 2, Vg(2))]

+ (1= 8)[g(g2) — 9(2) — (g2 — 2, Vg(2))]
=g(w) + sDg(q1,2) + (1 — 8)Dy(g2, 2) — [sg9(q1) + (1 — $)g(gq2)]
=g(w) + sDg(Tq1, 2) + (1 — 5)Dg(Tqz,2) — [s9(q1) + (1 — 5)g(q2)]
<g(w) + sDy(q1,w) + (1 — 8)Dy(g2, w) — sg(q1) — (1 — s)g(q2)
=g(w) + slg(q1) — g(w) — (@1 — w, Vg(w))]

+ (1 = 9)[g(q2) — 9(w) — (g2 — w, Vg(w))] — sg(q1) — (1 — 5)g(g2)
=g(w) + [~g(w) — (s(q1 — w), Vg(w)) — (1 — 5)(g2 — w), Vg(w))]

+ [s9(q1) + (1 = 8)g(q2)] — sg(q1) — (1 — 5)g(q2)
(

+ s9(q1) + (1 — s)g(q2) — sg(q1) — (1 — s)g(q2)

=0.

This implies that Dy(w, z) = 0. Thus, by Lemma 2.2, we obtain inf{||w — z|| : 2 € Tw} = 0 and hence
w € Tw. 4

Remark 5.8. Let g € ©g(E) N UCB(E) and Q € Ccv(E) be fixed. Let 71, Ty : Q — 2P\ {0} be

multivalued operators. According to Lemma 5.7, the BCAP(T1,T3) is closed and convex. Trivially,

we get BSA(Ty) and BSA(T») are convex and closed and so BSCAP(Ty,T5) is convex and closed.
Now we verify the following results for our main theorem of the section.
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Lemma 5.9. Let g € Og(E) NUCB(FE) and QQ € Ccv(E) be fixed. Let T : () — Clc(Q) be a Bregman
quasi-nonexpansive operator, then A% (T)=F(T).

Proof. One trivially has AY (T o(T) D F(I). It suffices to verify that AI(T o) CF (T) Let w € A% (T o(T),
then Dy (w,Tu) < Dg(w, u) Vu € (). By Lemma 2.2, weareledtoD(wT ) < Dy(w, w)—O The
closedness of T'w assures that w € T'w and therefore w € F(T). O

Lemma 5.10. Let g € Og(E) NUCB(FE) and Q € Ccu(E) be fixed. Let T1,T> : QQ — Ccv(Q) be two
mappings. If BCAP(T1,Tz) # 0, then F(T1) N F(T3) # 0. Particularly, ifw € BCAP(T1,T5), then
PC%U) S F(Tl) N F(TQ).

Proof. Let z € BCAP(T1,T5), then z € A% (Th) and z € A%(Tg). There exists a unique element u =
chz € @ such that Dy(z,u) = Dgy(z,Q). Hence, Dy(z,Q) < Dy(z,Tou) < Dy(z,u) = Dy(z,Q),
which yields Dy(z, Q) = Dy(z, Tou) = Dy(z,u). Also, Dy(z, Tou) = infyeryy Dy(2,y) = Dg(2, yo),
for some yy € Thu. By Lemma 2.7 we find that v = yy € T'u. Hence, u € F(T%). In a similar manner,
we discover u € F'(T1) which yields F/(T1) N F(T») # 0 and u = Pz € F(T1) N F(T). O

Theorem 5.11. Let g € Og(E) NUCB(E) and Q € Ccv(E) be fixed. Let T1,T5 : Q — Ccv(Q) be
two Bregman (v, 3)-generalized hybrid mappings with BCSAP(Ty,Ts) # 0. If {wy, }nen is identified
by (5.3), where {yn}nen, {On}tnen C (0,1) with liminf, oo n0n(1 — 6,) > 0, then w, — q €

BCSAP(Ty,Ts). Moreover, ¢ = lim,,_, 0 PJ%CSAP(Tl ) Wn

Proof. Let z € BCSAP(T1,T»). Then by (5.3), we get
Dy(2,yn) = Dy(2, Vg™ [(1 = 0)Vg(wn) + 6,V g(vn)))

(1 =6,)Dy(z,wy) + 0n,Dg(2,vy)
< (1 =0n)Dy(2z,wy) + 0, Hy(z, Towy,)
< (1= 0n)Dy(2z,wy) + 0,Dy (2, wy,)
< Dy(z,wy)

and
Dy (2 wns1) = Dy (2 PGV (1 = %) Vg (vn) +7aV(un)]))
< Dy (2, Vg*[(1 = m)Vg(vn) + v Vg(u,)])

(
< (1 =) Dy(z,vn) + 1Dy(z, un)
< (L =) Hy(z, Town) + v Hy(z, Tryn)
< (1 =) Dy(z,wn) + Dy(z,yn)
< (=) Dy(z,wn) + Dy (2, wn)

= Dg(za wn)a
where v, € Thwy, Uy € T1yp. It follows that lim,, o Dgy(2, wy,) exists and the {wy, }nen is bounded.
Setting r3 := sup{||Vg(w,) — Vg(v,) || || : » € N} < 400, by Lemma 2.1, we are led to
Dy(2,wn+1) =Dy (2 PV (1 = 1) V(vn) + 70 Vg (un)]])

<(1 = m)Dg(z,wn) + 1mDg(2, yn)

=(1 = ) Dy(2,wn) + 10Dy (2, Vg™ [(1 = 0r)Vg(wn) + 6, Vg(vn)])

<(1 =)Dy (2,wp) + (1 — 65) Dy (2, wy)

+ YnbnDg (2, vn) — 1bn(1 — 0n)pr, ([ Vg(wn) — Vg(vn) [|)
§D9(27wn) — YnbOn (1 — en)Pig(H Vg(wn) — Vg(vn) )
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This implies that
Ynbn (1 — en)P:J(H Vg(wn) — Vg(vn) []) < Dg(z,wn) - Dg(z,wm_l) — 0 (n — 00).

Since lim inf;, ;00 Yn0n(1 — 6,,) > 0, we deduce that p; (|| Vg(w,) — Vg(v,) ||) — 0as n — oo and
hence

lim [[Vg(w,) — Vg(va)| = 0.

n—oo

By the uniform continuity of Vg, we get that

lim |Jw, —vy| = 0.
n—oo

Also, by Lemma 2.2 we have

nh_)ngo Dy(wp,v,) = 0.

Noticing that v,, € Tow,, it is obtained
Dgy(wn,vn) > Dy(w, Tow,) = 0 (n — 00).

Since {wy, }nen is bounded, from the closedness of @) and in view of the Eberlin-Smulian Theorem [7],
the sequence {wy, },en must have a subsequence {wy, }icn that w,, — ¢ € Q. For any y € @, we get

OéHg(TQan7T23/) + (1 - @)Dg(wnj,TQQ) < BDg(Tanj7y) + (1 - /B)D9<wnjay)7

where

H, (Tgwnj,Tgy) =maxs sup Dy(x,Try), sup D, (Tanj,z) .
mGTanj ZGTgy

From the above inequality, we are led to
aDg(‘T’ TZy) + (1 - oz)Dg(wnj,Tgy) S BDg(yv T2wnj) + (]‘ - B)Dg(wnjay) (54)

for any x € Tow,,. Employing the properties of D, we receive a sequence {z,(j )} jeN € {Twn, }jen
such that

: @\ _ 1
jlggo D, (wnj,z ) = Jlggo D, (wnj,Tgwnj) .

Further arguments ensures the existence of w € Tyy with D, (z]gj ), ng/) =D, (z,(gj ), w) and com-
bining with (5.4), we have

aDQ (Zl(gj)7w) + (1 - a)Dg(wnj,Tw) < BDg (yv ZIE;J)> + (1 - 6)Dg(wnjay)
Applying i and using the three-point identity, we deduce that

anlDy (27,100, ) + Dyg(wny, w) + (2 = wn, Vg(wn,) = Vg(w) ) + (1 = ) Dy(uwn,, Toy)
(5.5)

= BUIDy (. wn,) + Dy (wn;, 2" ) + (y = wny Vglwn,) = Vg (7)) = (1 = B)Dy(wn, )] < 0.

It follows that

Dg(wn].,Tgy) - Dg(wnj’y) < 0.
Since wy,; — q(j — 00), then Dy(q, Toy) — Dy(q,y) < 0. Similarly, we can verify that D,(q, T1y) —
Dgy(q,y) < 0 which leads to ¢ € BCSAP(T1,T). Let us verify that w,, — g(n — c0). Suppose first
that w,; — q1(j — o) and wy, — ga(k — 00). Continuing the same process as above enables us
to show that ¢; and g3 belong to BCSAP(T,1%) and lim,,_,, exists. Define lim,, oo Dy[(wp, q1) —
Dgy(wy, g2)] = . Since E is a reflexive Banach space, we obtain

(u—2v,Vg(p) — Vg(w)) = Dy(u,w) + Dy(v,p) — Dy(u,p) — Dg(v,w).
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Therefore,

(wn, Vg(g2) = Vg(q1)) = Dg(wn, q1) + Dy(0, g2) — Dg(wn, g2) — Dy(0, q1).

This amounts to

Dg(wn, q1) — Dyg(wn, q2) = (wn, Vg(g2) — Vg(q1)) — Dy(0,q2) + Dy(0, q1),

and hence
Dg(wnj7QI) - Dg(wnj7q2> = <wn]7v9(Q2) - Vg(Q1)> - Dg(ov Q2) + Dg(oaql)v

Dy(wny s q1) — Dg(wny,, ¢2) = (wny,, Vg(q2) — Vg(aq1)) — Dg(0,q2) + Dy(0, q1)

Now, we use wy,; — q1(j — o0) and wy,, — g2(k — 00) to get that
L= {q1,Vg(a2) — Vg(q1)) — Dg(0,q2) + Dg(0,q1),

1= {42, Vg(q2) — Vg(a1)) — Dg(0,q2) + Dy(0, q1).
Then
(@1 — 42, Vg(q2) — Vg(q1)) = 0,

which, together with Lemma 2.4, implies ¢; = ¢o. Hence, w,, — ¢ € BCSAP(T1,T»). Let us verify
that ¢ = lim,,_ 00 P]CF};CSAP(TI Ty)Wn- Since Dy(z, wp+1) < Dy(z,wy), V2 € BCSAP(T1,T3) and
n € N, Lemma 5.4 assures that

: g _
A Prcsapr ) tn = P

for some p € BCSAP(T1,T>). By Lemma 2.7, we get

(PBosaper mywn = 2 V9(wn) = V9(Ppogapgsrywn)) 2 0,

for all z € BCSAP(T1,13) and n € N. Therefore, (p — z,Vg(q) — Vg(p)) > 0 forall z €
BCSAP(T,T») and in particular, (p — ¢, Vg(q) — Vg(p)) > 0 which implies
q=p=limp ;o P JgCSAP(Tl,TQ)wn- O

6. APPLICATION TO EQUILIBRIUM PROBLEM

This section is devoted to an investigation of equilibrium and fixed point problems via Bregman dis-
tances. As we know these problems received strong connections with important problems in nonlinear
and applied sciences. Here, the target is to reach a common solution of an equilibrium and fixed point
problem of nonlinear operators.

Let Q € Ccv(FE) be fixed. If f : @ x @ — R, then the equilibrium problem states that:

findu € @, with 0 < f(u,v), Yv € Q. (6.1)
Taking into account (6.1) we set
EP(f) = {u € Q: f(u,0) > 0, Yo € Q}.

Lemma 6.1. Let g € Og(E) NUCB(E) and Q € Ccv(E) be fixed. Let {xy, }neny C E satisfy that
(i) For eachv € E, limy,_,o Dy(v, xy,) exists.

(i)) If {wn, } jen C {@n}nen satisfies that x,,, — u (j — 00), thenu € Q.

Then x, — xq for some xg € () asn — 0.
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Proof. By contradiction, we assume the existence of u € E with u # x¢. Then there exist subsequences
{xn, }ren and {zp, }1en of {@y, nen such that z,,, — zgask — ooand x,, — yoas! — oo. Employing
Lemma 2.8 forall y € E \ {zo}, we get that
lim sup Dy (w0, Tn, ) < limsup Dy (u, zy, ) = limsup Dy(u, vp,;)
k—o0 k—o00 ' j—00

< limsup Dy(xo, Tn,;) = limsup Dy(xo, Tn, )-
j—o0 k—o00

This contradicts our assumptions and hence finishes the proof. g
To investigate the equilibrium problem, for f : @ X Q@ — R, we need to impose the following conditions

on the bifunction f:

(A1) f(u,u) =0 forallu € Q;

(A2) f(u,v) + f(v,u) <0 forallu,v € Q;

(A3) for each u, v, w € Q,

limJr sup f(sw + (1 — s)u,v) < f(u,v);

5—0
(A4) ifu € Q is fixed, thenv — f(u,v) is lower semi-continuous and convex.

Lemma 6.2. [35] Letg € Og(E)NUCB(E) and Q € Ccv(E) be fixed. Let f : Q x Q@ — R be satisfied
(A1)-(A4) and r > 0 and u € Q be arbitrarily chosen. Then, there exists w € () such that
1
fw,0) + —(v —w, Vg(w) = Vg(u)) = 0.
forallv € Q.

Lemma 6.3. [35] Let g € ©¢(E) NUCB(E) and Q € Ccv(E) be fixed. Forr > 0, w € E, assume
T, : E — (Q is defined by:

! (v—2,Vg(2) = Vg(u)) > 0Vv € Q}, Vu € X.

r

Tiu={z€Q: f(z,v) +

Then T, enjoys the properties:
(i) T, is single valued;
(ii) for any u,v € E, one has
(Thx — T,v,Vg(Tru) — Vg(Tv)) < (Tru — T,v,Vg(u) — Vg(v));
(iii) F(T;) = EP(f);
(iv) EP(f) is convex and closed;

(v) T is Bregman quasi-nonexpansive;

(i) Dy(q, Truw) + Dy(Tru,u) < Dy(q,u), Yq € F(T;).

Proposition 6.4. Let g € ©¢g(E) NUCB(E) and Q € Ccu(E) be fixed. Let T be a Bregman («, [3)-
generalized hybrid multivalued operator with F'(T') # (. Then T is Bregman quasi-nonexpansive.

Proof. By the assumption on 7', we obtain
aHy(Tu,Tv) + (1 — a)Dy(u, Tv) < fDg(v,Tu) + (1 — B)Dy(u,v), Yu,v € E.
If g € F(q), thenforallv € E,
aDy(q,Tv) + (1 — a)Dy(q, Tv) < aHy(Tq,Tv) + (1 — a)Dy(q, Tv)
< BDy(Tq,v) + (1 = B)Dy(q, v)
< BDg(q,v) + (1 = B)Dy(q, v),
which yields Dy(q,Tv) < Dy(q,v) and hence the result is obtained. O
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Theorem 6.5. Let g € Og(E)NUCB(E) and () € Ccu(E) be fixed. Let f : E x E — R be a function
which satisfies (A1)-(A4) and S1, Sa be two Bregman («v, 3)-generalized hybrid operators of E to Clc(E)
such thatQ := F(S1) N F(S2) EP(f) # 0, A%(Sl) = BSA(S)) andA‘ZQ(SQ) = BSA(Ss). Assume
that {Vn tnen C [0,1] and {rp}nen C (0, 00) satisfying liminf,_ o r,, > 0 and there exits b in (0,1)
with liminf,, o0 705 (1 — 6,) > 0 and {0, }neny C [b,1]. If {xp}nen is the sequence generated by
r=2x1 € Q and

Up = Trnxn
Yn = Vg*[(1 = 0,)Vg(xn) + 0, Vg(vn)] (6.2)
Tna1 = PH[Vg*[(1 = 1) Vg(on) + mVg(wn)]], ¥n € N,

where vy, € Soxy, wy, € S1ypn and {yy}nen C (0,1). Then z, — v € Q, where v = limy,_,, Py,

Proof. Since F(S1) () F(S2) # 0, by Proposition 6.4, S; and Sy are Bregman quasi-nonexpansive map-
pings. In the light of Lemmas 6.2 and 6.3 we see that /'(S;) and F'(S2) are closed and convex sets
satisfying F'(S1) = A%(Sl) and F'(S2) = A%(Sg). If we select g € (, then it is evidently verified that
q € BCSAP(S1,S2). By Lemma 6.3(ii), we deduce that

Dg(Qa un) = Dg (TrnQ7 Trnﬂfn) < Dg(‘]v xn) (6-3)
Combining with (6.2), we obtain

Dg(Q>?/n) = Dg(vi.g*[
< (1—=06n)Dy

1—0n)Vg(zn
q,Tn) + OnDyg
< (1= 0)Dy(g,20) + 6 Hy (g, Tun)

<(1- Hn)Dg q,Tp) + Qan q,un)

< Dy(q, ). (6.4)

+60,Vg(v,)])
q;Vn)

o~ o~ o~

On the other hand, setting 4 := sup{||Vg(z,) — Vg(v,)| : n € N} < 400, we get

Dy(q, 2nt1) =Dg(q, PGV " [(1 — 1) Vg(vn) + 1 Vg(wn)]])
<(1 =) Dy(q,v5) + 10 Dy(q, wn)
<(1-— 'Yn)Hg(Qa Tuy,) + 'Yan(q, Syn)
S(l - 7n>Dg(Qa Up) + 'Yn(l - HN)Dg@v xn) (6.5)
+ Y0 Dg(q, vn) — 1On(L = 0n)pr, ([IVg(2n) — Vg(vn)l])
<Dy(q: Tn) — 1bn(1 — 0n)pr, ([Vg(2r) — Vg(vn)l])
<Dy(q, n),

which assures that lim,, oo Dy(q, z,) exists. This yields the boundedness of {z,, }ncn and {yy, }rnen
and taking into account Lemma 2.1, (6.4) and (6.5), we get

Dy(q, 2nt1) < Dy(q, 2n) — Ynbn(1 — 0n)pr, (IVg(zn) — Vg(vn)l])-

Letting n — oo and noticing lim inf,, o0 ¥u0n (1 — 6,) 05, (| Vg(2n) — Vg(vn)||) > 0, we obtain
that d(xy,, v,) — 0. It can easily be shown that

1 V9(yn) = Vg(zn) =1 0n(Vg(vn) = Vg(@n) [|= On [| Vg(vn) = Vg(an) [[= 0 (n — 00). (6.6)

In the light of the uniform continuity of Vg*, we arrive at

lim |y, — zn| = 0.
n—oo
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By Lemma 6.3, we get
Dg(‘]» un) + Dg(um Q) =

I
S
Q
R
£
3
~—
+
>
Q
—~
=
8
\z_/
-
Q
—~
g
S
8
3
~—

This amounts to
Dg(‘la up) < Dg(q7xn) - Dg(xn,un).
Incorporating this with (6.3), amounts to
Dy(g:yn) < (1= 00)Dy(q, 2n) + 0nDy(q; un)
< (1= 0n)Dy(q, 2n) + 0n(Dy(q, 2n) — Dg(xn, un))
= Dg(xna q) — On(Zn, un),
which shows that
ean(unawn) < Dg(‘]a Tp) — Dg(%yn)- (6.7)
Since {0y, }nen C [b, 1], it follows from (6.7) that
bDg (T, tun) < OpDg(zn,un) < Dy(q, 2n) — Dy(q; un)
= Dy(q,Yn) + Dg(Yns Tn) + ¢ = Yn, V9(yn) — Vg(2n)) — Dg(q, yn)
< Dy(q,yn) + lg = yallIVg(yn) = Vg(zn)-

By the boundedness of {Vg(x,)}nen and {Vg(yn)}nen, tending n — oo, and using (6.6), we get
limy, 00 Dg(2n, uy) = 0. Hence by Lemma 2.2 we arrive at

lim ||z, —uy, ||=0. (6.8)

n—oo

From the assumption lim inf,,_,, 7, > 0, we conclude that

lim H g(zn) glun) || _ lim — || Vg(an) — Vg(un) [|= 0.

n—00 Tn n—00 Ty
In the light of Theorem 2.6, we get

Tp — Un

1
= lim — ||z —uy, ||=0. (6.9)
r

’r’n n—oo n

By the relations (6.5), (6.6) and (6.8) we know that

lim
n—oo

nh_)rgo Dgy(vpn,upn) =0, nlg]go Dg(tn,yn) = 0. (6.10)
Next, we find a subsequence {zy, }ien of {2y }nen Which is weakly convergent to v € E. Also (6.8)

guarantees that u,, — u(i — 00). Let us verify that u € €. Employing Lemma 6.3, we arrive at

flup, 2z) + %(z — Up, Vg(up) — Vg(z,)) >0, Vz € E.

n

Applying condition (A2), we are led to
<Z - unvv.g(un) - Vg(xn)) > f(Z,’LLn), Vz € Ea

This entails to

<z o, YOun) = Vo(an,)

Tn,;

7

> > f(z,up), V2 € E. (6.11)
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Employing (6.9)-(6.11) and (A4) we find that
f(z,u) <0, Vz e E.

If s € (0,1] and z € E, then we consider z; = sz + (1 — s)u, hence z; € E and f(zs,u) < 0.
Additionally, we have,

0= f(zs,25) < 5f(2s,2) + (1 —5)f(zs,u) < sf(zs,2).

This ensures that f(zs, 2z) > 0 for every z € E. If we take the supremum lim,_,y+ sup f(zs, 2) > 0 and
employ (A3), then we arrive at u € EP(f). Let us verify that u € F'(S1) N F(S2). Due to the fact that
F(S1) N F(S2) = BCSAP(S1,S2), by continuing the same process of Theorem 5.11, we can show
that w € BOSAP(S1,S2) = F(S2) N F(S2). Thus, E = () verifies the requirement (ii) of Lemma
6.1. Besides, we see that lim, o Dy(q, z,) exists for ¢ € €. Consequently, Lemma 6.1 assures the
existence of v € () such that 2, — v (n — o0). In addition, for any g € ), we get

DQ(Qa $n+1) < Dg(q,xn)vvn eN

In view of Lemma 5.4, we find w € F(S) N F(S2) N EP(f) with Pz, — w as n — oco. This entails
that

(v — Pgan, Vg(zn) — Vg(Pizna)) < 0,
and hence, in view of (2.3), we arrive at
Dy(v,w) < (v —w,Vg(v) — Vg(w)) < 0.

According to Lemma 2.4, we obtain v = w and z,, = v(= lim; Péxn) as n — oo which ends the
proof. g

7. CONCLUSION

We have introduced a new class of mappings called Bregman hybrid multivalued mappings in Banach
spaces. We have investigated the equilibrium problems by applying our results to nonlinear bifunctions.
We also intend to contribute our results to the other cases of multivalued mappings in a future research
work, see, [32].
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