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Abstract. In the present article, we introduce a new class of mappings called Bregman hybrid multival-
ued mappings in Banach spaces. We then prove fixed points theorems for these mappings. Further, in the
absence of the Opial property of Banach spaces, we provide a variety of weak and strong convergence
theorems for a finite family of the above-mentioned mappings. We continue investigating the equilibrium
problems by applying our results to nonlinear bifunctions. Since the Bregman distance has no symmetric
property and does not require triangle inequality, the improved results can be considered as unifications
of the corresponding ones in the literature.
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1. Introduction

Along all lines of the article, we stand N and R as the set of natural numbers and the set of real num-
bers, respectively. Also, the set of extended real numbers will be shown by R, that is R = [−∞,+∞].
In the whole paper, we suppose a Banach space (E, ∥ · ∥) has a dual space E∗ and we indicate the
duality pairing by ⟨u, u∗⟩, ∀u ∈ E and u∗ ∈ E∗. The strong convergence and the weak convergence
of a sequence {xn}n∈N ⊂ E to x ∈ E are indicated by xn → x and xn ⇀ x, respectively. Let
SE = {x ∈ E : ∥x∥ = 1} and Y be a nonempty subset of E. We also consider P(Y ) as the all subsets
of Y . We denote respectively by

• K(Y ) := {U ∈ P(Y ) : U is nonempty and compact},
• Cv(Y ) := {U ∈ P(Y ) : U is nonempty and convex},
• Ccv(Y ) := {U ∈ P(Y ) : U is nonempty, closed and convex},
• Cb(Y ) := {U ∈ P(Y ) : U is nonempty, closed and bounded},
• Cbv(Y ) := {U ∈ P(Y ) : U is nonempty, closed, bounded and convex}.

Let g : E → R be a function. Let u ∈ int(dom(g)), v ∈ E, and we define the map go(u, v) by

go(u, v) = lim
t↓0

g(u+ tv)− g(x)

t
.

If for any v in E, the limit limt→0
g(u+tv)−g(u)

t exists, then g is called Gâteaux differentiable at u.
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In this case go(u, v) coincides with the gradient ∇g(u), as a member of E∗ satisfying that

⟨v,∇g(u)⟩ = lim
t→0

g(u+ tv)− g(u)

t
, ∀v ∈ E.

If g is Gâteaux differentiable on the whole of the interior of dom(g), then it is called Gâteaux differen-
tiable. Also g is called Fréchet differentiable at x ([3, p. 13], [19, p. 508]) if for any ϵ > 0, there is a
δ > 0 with ∥v − u∥ ≤ δ implies that

| g(v)− g(u)− ⟨v − u,∇g(u)⟩ |≤ ϵ∥v − u∥.

The norm-to-weak∗ continuity of ∇g is discussed in[3, Proposition 1.1.10] and the norm-to-norm con-
tinuity of ∇g is presented in [19, p. 508]. A function g : E → R is called lower semicontinuous if
{x ∈ E : g(x) ≤ r} is closed for every r in R. The set of all strictly convex, Gâteaux differentiable,
proper and lower semicontinuous functions g : E → R will be denoted by Θ0(E). Let g ∈ Θ0(E) be
given. We define the Bregman distance [4] (see also [2]) Dg : dom(g)× int(dom(g)) → R by

Dg(u, v) = g(u)− g(v)− ⟨u− v,∇g(v)⟩, ∀u, v ∈ E. (1.1)

We know that Dg(u, v) ≥ 0 for all u, v in E and Dg does not satisfy the properties of a classical
distance. If E is a Hilbert space, then Dg(u, v) = ∥u− v∥2.

The motivation of the present paper is to introduce the new concept of Bregman hybrid multivalued
mappings defined on the subsets of Banach spaces in the sense of Bregman distances. We consider
some notations and definitions required for the next sections. A subset Q ⊂ E is said to be Bregman
proximinal if, for each u ∈ E, there exists v ∈ Q such that

Dg(u, v) = Dg(u,Q) = inf{Dg(u,w) : w ∈ Q}.

Let P g(Q) denote the family of nonempty Bregman proximinal bounded subset of Q. The Bregman
Hausdorff distance on Cb(Q) is defined by

Hg(A,Q) = max

{
sup
u∈A

Dg(u,Q), sup
v∈Q

Dg(A, v)

}
for allA,D ∈ Cb(Q), whereDg(u,Q) = infq∈QDg(u, q) andDg(A, v) = infa∈ADg(a, v). A mapping
T : Q → Cb(Q) is called Bregman nonexpansive if

Hg(Tu, Tv) ≤ Dg(u, v) (1.2)

for all u, v ∈ Q. A point q ∈ Q is called a fixed point of mapping T : Q → E (resp., multivalued
mapping) T : Q → Cb(Q)) if q = Tq (resp., q ∈ Tq). The set of fixed points of T is indicated by F (T ).
If F (T ) ̸= ∅ and

Hg(Tq, Tu) ≤ Dg(q, u)

for all u ∈ Q and q ∈ F (T ), then T is called Bregman multivalued quasi-nonexpansive.

Definition 1.1. Assume Q ⊂ E is a nonempty set and T : Q → Cb(Q) is a mapping. Then T is called:
(i) hemicompact if corresponding to {wn}n∈N ⊂ Q with limn→∞ ∥wn − Twn∥ = 0, there exists a
subsequence {wnk

}k∈N ⊂ {wn}n∈N with wnk
→ q ∈ Q as k → ∞;

(ii) completely continuous whenever {wn}n∈N ⊂ Q is bounded, there exists {wnk
}k∈N ⊂ {wn}n∈N

such that {Twnk
}k∈N converges to a point of Q;

(iii) demiclosed at 0 if there exists {wn}n∈N ⊂ Q with wn ⇀ w(n → ∞) and ∥wn − Twn∥ → 0(n →
∞) imply w ∈ Tw.
For any N in N we set NN := {1, 2, 3, . . . , N}. If i ∈ NN and Ti : Q → E is a mapping (resp.,
multivalued mapping), then we denote by CFP({Ti}i∈NN

) the set of common fixed points of {Ti}i∈NN
.



FIXED POINT THEOREMS FOR BREGMAN HYBRID MULTIVALUED MAPPINGS 169

There is a large volume of fixed point results for single-valued operators and applications in Hilbert
and Banach spaces (see, for example, [8, 13, 14, 15, 24, 25, 26, 27, 34, 36, 38, 39, 40, 41, 43]). Recently, the
authors of [6] introduced the class of multivalued hybrid mappings as follows:
Assume Q is a nonvoid set in a Hilbert space H . An operator T : Q → Cb(Q) is called hybrid if

3H(Tw, Tv) ≤ ∥w − v∥2 + ∥Tw − v∥2 + ∥w − Tv∥2

for all w, v ∈ Q. For some results concerning the fixed points of these operators and other type of
multivalued mappings, we include [1, 14, 21, 22, 23, 36].

Inspired by the results of [19] and [6], we introduce a new class of Bregman multivalued mappings
in Banach spaces. Let Dg be the Bregman distance defined by (1.1). An operator T : Q → Cb(Q) is
called Bregman hybrid if

3Hg(Tu, Tv) ≤ Dg(u, v) +Dg(Tu, v) +Dg(u, Tv)

for all u, v ∈ Q.
Let Q ⊂ E be a nonempty set and T : Q → E be a nonexpansive mapping. The Opial property [31]

of E plays crucial roles in the study of various schemes of fixed point results, e.g., in [6, 12]. The Opial
property of E is as follows: If {un}n∈N ⊂ E with un ⇀ u in E, then one obtains

lim sup
n→∞

∥un − u∥ < lim sup
n→∞

∥un − v∥, for all v ∈ E \ {u}.

The well-known examples of spaces satisfying the Opial property are the Banach spaces lp(1 ≤ p < ∞)
and Hilbert spaces. But, some Banach spaces do not enjoy this property [9]. So we aim to investigate
new results for set-valued operators outside this structure in general Banach spaces.

In the present article, we first introduce a new class of Bregman hybrid operators in Banach spaces.
We then provide the existence of fixed points of these operators. Further, in the absence of Opial
property, we provide convergence theorems for the operators to investigate the relationships between
our theorems and the equilibrium problems. Our findings unify and enrich the results of [1, 5, 6].

2. Preliminaries

We include essential facts for the requirements of the next sections.
If g : E → R, then we define ∂g : E∗ → R by

∂g(w) = {w∗ ∈ E∗ : g(w) + ⟨v − w,w∗⟩ ≤ g(v), ∀v ∈ E}, ∀w ∈ E.

The maximal monotonicity of ∂g ⊂ E × E∗ is discussed in [37]. We also define g∗ : E∗ → R by

g∗(u∗) = sup
u∈E

{⟨u, u∗⟩ − g(u)}, ∀u∗ ∈ E∗.

It will easily verify that

⟨u, u∗⟩ ≤ g(u) + g∗(u∗), ∀(u, u∗) ∈ E × E∗,

and

(u, u∗) ∈ ∂g ⇐⇒ g(u) + g∗(u∗) = ⟨u, u∗⟩.

As a known fact, g ∈ Θ0(E) if and only if g∗ ∈ Θ0(E
∗). For a positive number r we set Br := {w ∈

E : ∥w∥ ≤ r}. A function g : E → R is called
• strongly coercive if

lim
∥u∥→+∞

g(u)

∥u∥
= +∞;

• locally bounded if g(Br) is bounded for all r > 0;
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• uniformly smooth on E ([42]) if σr : [0,+∞) → [0,+∞], indicated by

σr(t) = sup
u∈Br,v∈SE ,γ∈(0,1)

γg(u+ (1− γ)tv) + (1− γ)g(u− γtv)− g(u)

γ(1− γ)
,

satisfies

lim
s↓0

σr(t)

s
= 0, ∀r > 0;

• uniformly convex on bounded subsets of E ([42])) if the gauge ρr : [0,+∞) → [0,+∞], intro-
duced by

ρr(s) = inf
u,v∈Br,∥u−v∥=s,γ∈(0,1)

γg(u) + (1− γ)g(v)− g(αu+ (1− γ)v)

γ(1− γ)
,

satisfies

ρr(s) > 0, ∀r, s > 0;

We use the notations LB(E), UCB(E), USB(E) for the set of all functions g : E → R which are
locally bounded, uniformly convex on bounded subsets or uniformly smooth on bounded subsets of E,
respectively.

Lemma 2.1. [30] Let r > 0 be a constant and g ∈ UCB(E) be a convex function with the gauge function
ρr . Then

Dg

(
z,∇g∗

(
n∑

i=0

γi∇g(ui)

))
≤

n∑
i=0

γiDg(z, ui)− γkγlρ
∗
r(∥∇g(uk)−∇g(ul)∥), (2.1)

for all k, l ∈ {0, 1, 2, . . . , n}, ui ∈ Br , γi ∈ (0, 1) and i = 0, 1, 2, . . . , n with
∑n

i=0 γi = 1, where ρ∗r is
the gauge of g∗.
In addition, we have

ρr(∥u− v∥) ≤ Dg(u, v). (2.2)

Let g ∈ Θ0(E) be given. By (1.1), Dg verifies the three-point identity [4]

Dg(u,w) = Dg(u, v) +Dg(v, w) + ⟨u− v,∇g(v)−∇g(w)⟩, ∀u, v, w ∈ E. (2.3)

In particular,

Dg(u, v) = −Dg(v, u) + ⟨v − u,∇g(v)−∇g(u)⟩, ∀u, v ∈ E. (2.4)

The Bregman distance does not act as a classical distance, however, it does have the four-point identity
property [4]: for any v, w ∈ dom(g) and u, x ∈ int(dom(g)),

Dg(v, u)−Dg(u, x)−Dg(w, u) +Dg(w, x) = ⟨v − w,∇g(x)−∇g(u)⟩. (2.5)

Evidently, we know from [24] that

Dg∗(∇g(y),∇g(u)) = Dg(u, y) ∀u, y ∈ int(dom(g)). (2.6)

Lemma 2.2. [30] Let g ∈ Θ0(E) ∩ USB(E) be given. If the {un}n∈N and {vn}n∈N are bounded
sequences, then Dg(un, vn) → 0 ⇐⇒ ∥un − vn∥ → 0.

Definition 2.3. [29] If g ∈ Θ0(E) satisfies the following statements, it is called a Bregman function.
(i) g is continuous;
(ii) for any u ∈ E and s ∈ (0,∞), {v ∈ E : Dg(u, v) ≤ s} is a bounded set.
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Lemma 2.4. [3, 42] Let g : E → R satisfy the requirements of Definitions 2.3. Then
(i) ∇g norm-to-weak∗ continuous, onto and one-to-one;
(ii) ⟨u− v,∇g(u)−∇g(v)⟩ = 0 ⇐⇒ u = v;
(iii) {u ∈ E : Dg(u, v) ≤ s} is bounded ∀v ∈ E and s > 0;
(iv) g∗ is Gâteaux differentiable, domg∗ = E∗ and ∇g∗ = (∇g)−1.

Theorem 2.5. [42] For a convex map g ∈ LB(E), the following are equivalent:
(i) g is strongly coercive and belongs to UCB(E);
(ii) domg∗ = E∗ and g∗ belongs to LB(E∗) ∩ USB(E∗);
(iii) domg∗ = E∗ and∇g∗ is uniformly continuous on E∗.

Theorem 2.6. [42] For a strongly coercive map g ∈ Θ0(E), we have the following equivalent assertions:
(i) g belongs to LB(E) ∩ USB(E);
(ii) ∇g∗ is uniformly continuous on E∗;
(iii) domg∗ = E∗ and g∗ belongs to LB(E∗) ∩ USB(E∗).

Lemma 2.7. (see [29]) Let Q ∈ Cv(E) and g ∈ Θ0(E) be given. Then, for u ∈ E and u0 ∈ Q,
Dg(u0, u) = miny∈QDg(v, u) if and only if

⟨v − u0,∇g(u)−∇g(u0)⟩ ≤ 0, ∀v ∈ Q. (2.7)
Further, if Q ∈ Ccv(Y ) and g ∈ Θ0(E), then for each u ∈ E, there exists a unique u0 ∈ Q with

Dg(u0, u) = min
v∈Q

Dg(v, u).

The Bregman projection P g
Q : E → Q is a surjective mapping defined by P g

Q(u) = u0 for all u ∈ E. Also
P g
Q has the following property [3]:

Dg

(
v, P g

Qu
)
+Dg

(
P g
Qu, u

)
≤ Dg(v, u) (2.8)

for all v ∈ Q and u ∈ E.

Lemma 2.8. [17, 28] Let g ∈ Θ0(E) be given. If a sequence {un}n∈N ⊂ E has a weak limit u ∈ E, then
Dg verifies that

lim sup
n→∞

Dg(un, u) < lim sup
n→∞

Dg(un, v), for all v ∈ E \ {u}.

Furthermore, if∇g is weakly continuous, then for any sequence wn ⇀ w in E, Dg satisfies that

lim sup
n→∞

Dg(w,wn) < lim sup
n→∞

Dg(v, wn), for all v ∈ E \ {w}.

To achieve the goals, we consider and include the following facts.
Bregman condition (A). Let g ∈ Θ0(E) be fixed and Q be a subset of E. A multivalued operator
T : Q → Cb(Q) does satisfy Bregman Condition (A) if Dg(q, u) = Dg(Tq, u) for all u ∈ E and
q ∈ F (T ).

Remark 2.9. Let g ∈ Θ0(E) be given. Then T satisfies Bregman Condition (A) if and only if Tq = {q},
∀q ∈ F (T ). It will evidently verify that (see, Lemma 2.7) the Bregman best approximation operator
P g
T , defined by

P g
Tu = {v ∈ Tu : Dg(v, u) = Dg(Tu, u)},

enjoys Bregman Condition (A).

Lemma 2.10. Let g ∈ Θ0(E) ∩ UCB(E) be given. If {un}n∈N ⊂ E has a weak limit w ∈ E, then

lim sup
n→∞

Dg(un, v) = lim sup
n→∞

Dg(un, w) +Dg(w, v), ∀v ∈ E.
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Proof. Since xn ⇀ u as n → ∞, it yields
lim sup
n→∞

⟨un − w,∇g(w)−∇g(v)⟩ = 0, ∀v ∈ E.

When combined with (2.5), this amounts to
lim sup
n→∞

Dg(un, v) = lim sup
n→∞

[Dg(un, w) +Dg(w, v) + ⟨un − w,∇g(w)−∇g(v)⟩]

= lim sup
n→∞

Dg(un, w) +Dg(w, v)

for each v ∈ E and this is the end of the proof. □

In the absence of Opial’s property of E, the following lemma extends the corresponding one of [6]
and we include the details.

Lemma 2.11. Let g ∈ Θ0(E) ∩ UCB(E) be given. For any sequence {un}n∈N ⊂ E, let u, v ∈ E
be two vectors so that limn→∞Dg(un, u) and limn→∞Dg(un, v) exist. If {unk

}k∈N and {umk
}k∈N are

subsequences of {un}n∈N which satisfy unk
⇀ u and umk

⇀ v, respectively, then u = v.

Proof. By contrary, if u ̸= v then, considering the Bregman-Opial-like inequality, we get
lim sup
n→∞

Dg(un, u) = lim sup
k→∞

Dg(unk
, u) < lim sup

k→∞
Dg(unk

, v) = lim sup
n→∞

Dg(un, v)

= lim sup
k→∞

Dg(umk
, v) < lim sup

k→∞
Dg(umk

, u) = lim sup
n→∞

Dg(un, u).

This contradicts our assumption and the proof is finished. □

Remark 2.12. Let g ∈ Θ0(E) and Q ∈ Ccv(E) be fixed. Then, any nonexpansive mapping T : Q → Q
with respect to the norm ∥ · ∥ of E must be continuous, however any Bregman nonexpansive mapping
T : Q → Q is not necessarily continuous, see, for instance, [17].

Considering the Banach space l∞(N), the existence of a µ on l∞(N) with the following properties
can be found in [6]:
(1) {tn}n∈N ∈ l∞(N), tn ≥ 0, ∀n ∈ N =⇒ µ(tn) ≥ 0;
(2) tn = 1, ∀n ∈ N =⇒ µ(tn) = 1;
(3) µ({tn+1}n∈N) = µ({tn}n∈N), ∀{tn}n∈N ∈ l∞(N).
We call µ as a Banach limit and we set µntn := µ({tn}n∈N).

Let g ∈ Θ0(E) and Q ∈ Ccv(Y ) be fixed. A mapping T : Q → Cb(E)) is called Bregman quasi-
nonexpansive, if F (T ) ̸= ∅ and

Hg(p, Tu) ≤ Dg(p, u), ∀u ∈ Q, p ∈ F (T ).

We prove the significant lemma we shall use in the sequel.

Theorem 2.13. Let g ∈ Θ0(E) be continuous and Q ∈ Ccv(E) be given. Let T : Q → Cb(Q) be a
mapping and {un}n∈N ⊂ Q be bounded. If µ is a mean on l∞(N) and

µnDg(un, y) ≤ µnDg(un, q)

for all q ∈ Q and v ∈ T (q), then there exists w ∈ Q with w ∈ Tw.

Proof. We first select a mean µ on l∞(N) and an arbitrarily chosen {un}n∈N ⊂ Q. We define h : E∗ →
R by

h(x∗) = µn⟨un, u∗⟩, u∗ ∈ E∗.

Due to the linearity of µ, we get that h is linear. Observe that
|h(u∗)| = |µn⟨un, u∗⟩| ≤ ∥µ∥ supn∈N |⟨un, u∗⟩| ≤ ∥µ∥ supn∈N ∥un∥∥u∗∥ = supn∈N ∥un∥∥u∗∥
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for all u∗ ∈ E∗. This verifies the linearity and continuity of h on E∗ and the reflexivity of E guarantees
the existence of a unique member w ∈ E with the property that

h(x∗) = µn⟨un, u∗⟩ = ⟨w, u∗⟩, u∗ ∈ E∗.

We verify the inclusion w ∈ Q. If this is not the case, then the Hahn-Banach separation theorem [7]
assures the existence of v∗ ∈ E∗ so that

⟨w, v∗⟩ < inf
v∈Q

⟨v, v∗⟩.

Since {un}n∈N ⊂ Q, we conclude that

⟨w, v∗⟩ < inf
v∈Q

⟨v, v∗⟩ ≤ inf
n∈N

⟨un, v∗⟩ ≤ µn⟨un, u∗⟩ = ⟨w, u∗⟩.

This contradicts the assumption and hence we get w ∈ Q. In view of (2.3), for any q ∈ Q, v ∈ Tq, one
has

Dg(un, q) = Dg(un, v) +Dg(v, q) + ⟨un − v,∇g(v)−∇g(q)⟩, ∀n ∈ N.

Thus we have, for any y ∈ Tq, that

µnDg(un, q) = µnDg(un, v) + µnDg(v, q) + µn⟨un − v,∇g(v)−∇g(q)⟩
= µnDg(un, v) +Dg(y, q) + ⟨w − v,∇g(v)−∇g(q)⟩.

By the assumption, we get that µnDg(un, v) ≤ µnDg(un, q) for all q ∈ Q and v ∈ Tq. This implies
that

µnDg(un, q) ≤ µnDg(un, q) +Dg(v, q) + ⟨w − v,∇g(v)−∇g(q)⟩ (2.9)
for all v ∈ Q. Putting q = w in (2.9) and taking into account (2.4), we infer that

0 ≤ Dg(v, w) + ⟨w − v,∇g(v)−∇g(z)⟩
= −Dg(w, v) + ⟨w − v,∇g(w)−∇g(v)⟩+ ⟨w − v,∇g(v)−∇g(w)⟩
= −Dg(w, v).

This provides us with 0 ≤ −Dg(w, v) which ensures that Dg(w, v) = 0. Finally, Lemma 2.2 verifies
that w ∈ Tw, and we obtain the desired conclusion. □

Lemma 2.14. [10] Let g ∈ Θ0(E), S a semigroup,Q ⊂ E a nonempty set andX be a closed subspace of
ℓ∞(S). LetR = {Ts : s ∈ S} be a representation of S acting onQ with {Ts(u)}s∈S ⊂ Q being bounded
for some u ∈ Q. Suppose a function ζ : S → E satisfies that {ζ(s) : s ∈ S} ⊂ Q is bounded and µ is a
mean on X . If we define h : Q → R by

h(w) = µsDg(ζ(s), w) ∀w ∈ Q,

then there exists w0 ∈ Q such that

h(w0) = min{h(w) : w ∈ Q}.

Corollary 2.15. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(Y ) be given. Let {un}n∈N ⊂ E be bounded
and µ be Banach limit. If a map h : Q → R is defined by

h(w) = µnDg(un, w), ∀w ∈ Q,

then there is a unique w0 ∈ Q with h(w0) = min{h(w) : w ∈ Q}.

Lemma 2.16. Let g ∈ Θ0(E) ∩ UCB(E) be continuous, strongly coercive, and bounded on bounded
subsets. Let Y ∈ Ccv(E) be given. Then T := clconv : K(Y ) → K(Y ) is a Bregman multivalued
nonexpansive mapping, that is, if A,Q ∈ K(Y ), then Hg(clconv(A), clconv(Q)) ≤ Hg(A,Q).
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Proof. Let A,Q ∈ K(Y ) and ϵ > 0 be arbitrarily chosen. We set M1 := sup{∥∇g(a) − ∇g(q)∥ :
a ∈ A, q ∈ Q} < +∞ and choose a ∈ cloconv(A). Then there exist a1, a2, · · · , an ∈ A and
λ1, λ2, · · · , λn ∈ [0, 1] such that

∑n
i=1 λi = 1 and ∥a −

∑n
i=1 λiai∥ < ϵ

3M1
. Now, Lemma 2.2 en-

sures that Dg(a,
∑n

i=1 λiai) <
ϵ

3M1
. Since Q is compact, there exists q0 ∈ Q such that Dg(ai, q0) <

Hg(A,Q) + ϵ
3 for all i = 1, 2, . . . , N . This implies that

Dg(a, q0) = Dg

(
a,

n∑
i=1

λiai

)
+Dg

(
n∑

i=1

λiai, q0

)
+

〈
a−

n∑
i=1

λiai,∇g

(
n∑

i=1

λiai

)
−∇g(q0)

〉

≤ Dg

(
a,

n∑
i=1

λiai

)
+

n∑
i=1

λiDg(ai, q0) +

∥∥∥∥∥a−
n∑

i=1

λiai

∥∥∥∥∥
∥∥∥∥∥∇g

(
n∑

i=1

λiai

)
−∇g(q)

∥∥∥∥∥
≤ Dg

(
a,

n∑
i=1

λiai

)
+

n∑
i=1

λiDg(ai, q0) +M1

∥∥∥∥∥a−
n∑

i=1

λiai

∥∥∥∥∥
<

ϵ

3
+

n∑
i=1

λiDg(ai, q0) +
ϵ

3
< Hg(A,Q) + ϵ.

This proves that
cloconv(A) ⊂ N(Hg(A,Q) + ϵ, cloconv(Q)).

Similarly it can be shown that cloconv(A) ⊂ N(Hg(A,Q)+ ϵ, cloconv(Q)). Since ϵ was arbitrary, the
result follows. □

The following fact immediately follows from Lemma 2.16.

Theorem 2.17. Let g ∈ Θ0(E) ∩ UCB(E) be continuous. Let Y ∈ Ccv(E) be fixed. Let T := conv :
Y → K(Y ) be a Bregman multivalued Lipschitz mapping with Lipschitz constant α. If convT : Y →
K(Y ) is given by (clconvT )(x) = clconv(T (x)), ∀x ∈ Y , then clconvT is a Bregman multivalued
Lipschitz mapping with Lipschitz constant α.

Theorem 2.18. Let g ∈ Θ0(E) ∩ UCB(E) be continuous and Y ∈ Ccv(E) be fixed. If T : Y → K(Y )
is a Bregman multivalued Lipschitz mapping, then F (T ) is nonempty.

Proof. Let 0 < α < 1 be a Lipschitz constant for T and w0 ∈ E be fixed. Choose w1 ∈ T (w0). Since
T (w0), T (w1) ∈ K(Y ) and w1 ∈ T (w0), there is a point w2 ∈ T (w1) such that

Dg(w1, w2) ≤ Hg(T (w0), T (w1))

(see the remark which follows this proof). Now, since T (w1), T (w2) ∈ Cb(E) and w2 ∈ T (w1), there
is a point w3 ∈ T (w1) such that

Dg(w2, w3) ≤ Hg(T (w1), T (w2)).

Continuing the same process, we find {xn}n∈N ⊂ E such that
Dg(wn, wn+1) ≤ Hg(T (wn−1), T (wn)), ∀n ∈ N.

We notice that
Dg(wn, wn+1) ≤ Hg(T (wn−1), T (wn)) ≤ αDg(wn−1, wn) ≤ α[Hg(T (wn−2), T (wn−1))]

≤ α2Dg(wn−2, wn−1) ≤ · · · ≤ αnDg(w0, w1)

for all n ∈ N. Therefore,
Dg(wn, wn+m) ≤ Hg(T (wn−1), T (wn)) ≤ αDg(wn−1, wn) ≤ α[Hg(T (wn−2), T (wn−1))]

≤ α2Dg(wn−2, wn−1) ≤ · · · ≤ αnDg(w0, w1)
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for all m,n ∈ N. Thus, {wn}n∈N is a Cauchy sequence in E which guarantees the existence of w ∈ E
with wn → w which yields Twn → T (w) ∈ E and, since wn ∈ T (wn−1), ∀n ∈ N, it assures that
w ∈ T (w). The proof is completed. □

Remark 2.19. Let A,Q ∈ Cb(E) and a ∈ A be fixed. If γ > 0, then there exists q ∈ Q such that
Dg(a, q) < Hg(A,Q)+γ (in the argument of Theorem 2.18 the Lipschitz constant α and subsequently
αi play the role of such an γ). However, there may not be a point q in Q such that Dg(a, q) ≤ Hg(A,B)
(if Q is compact, then such a point q does exist).

Lemma 2.20. [24] Let g ∈ Θ0(E) ∩ UCB(E) be fixed andWg be defined by

Wg(u, u
∗) = g(u)− ⟨u, u∗⟩+ g∗(u∗), u ∈ E, u∗ ∈ E∗.

Then the following statements are satisfied:
(1) Dg(u,∇g∗(u∗)) = Wg(u, u

∗) for all u ∈ E and u∗ ∈ E∗.
(2)Wg(u, u

∗) + ⟨∇g∗(u∗)− u, v∗⟩ ≤ Wg(u, u
∗ + v∗) for all u ∈ E and u∗, v∗ ∈ E∗.

Lemma 2.21. (see [41], Lemma 2.1) Suppose {ξn}n∈N ⊂ [0,+∞) fulfills the relation:

ξn+1 ≤ (1− λn)ξn + λnηn, ∀n ≥ 0,

where {λn}n∈N and {δn}n∈N have the properties:
(i) {λn}n∈N ⊂ [0, 1] and

∑∞
n=0 λn = ∞, or in an equivalent form, Π∞

n=0(1− λn) = 0;
(ii) lim supn→∞ ηn ≤ 0, or
(iii)

∑∞
n=0 λnηn < ∞.

Then, limn→∞ ξn = 0.

Lemma 2.22. [20] Suppose {an}n∈N ⊂ R is such that for some subsequence {ki}i∈N ⊂ N the inequality
aki < aki+1 holds true for all i ∈ N. Then there exists {nl}l∈N ⊂ N with nl → ∞ such that for all l ∈ N:

anl
≤ anl+1 and al ≤ anl+1.

In fact, nl = max{j ≤ k : aj < aj+1}.

3. Fixed Points of Bregman Hybrid Multivalued Operators

We intend to approximate the common fixed points for Bregman hybrid operators in Banach spaces.
We first provide some essential lemmas discussing the properties of Bregman hybrid operators.

Lemma 3.1. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Assume that T : Q → K(Q) is a
Bregman hybrid multivalued operator. If u, v ∈ Q and a ∈ Tu, then

there exists b ∈ Tv, Dg(a, b) ≤ Hg(Tu, Tv) ≤ Dg(u, v) +
1

2
⟨u− a,∇g(v)−∇g(b)⟩. (3.1)

Proof. Taking u, v ∈ Q and a ∈ Tu, in view of Remark 2.19, we find b ∈ Tv such that

Dg(a, b) ≤ Hg(Tu, Tv).
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Now, by (2.3), it yields that
3Hg(Tu, Tv) ≤Dg(u, v) +Dg(Tu, v) +Dg(u, Tv)

≤ Dg(u, v) +Dg(a, v) +Dg(u, b)

=Dg(u, v) +Dg(a, u) + ⟨a− u,∇g(u)−∇g(v)⟩+Dg(u, v)

+Dg(u, a) + ⟨u− a,∇g(a)−∇g(b)⟩+Dg(a, b)

=2Dg(u, v) +Dg(u, a) +Dg(a, u) +Dg(a, b)

+ ⟨a− u,∇g(u)−∇g(a)− (∇g(v)−∇g(b))⟩
=2Dg(u, v) +Dg(u, a)−Dg(u, a) + ⟨a− u,∇g(a)−∇g(u)⟩
+ ⟨a− u,∇g(u)−∇g(a)− (∇g(v)−∇g(b))⟩+Dg(a, b)

=2Dg(u, v) + ⟨u− a,∇g(v)−∇g(b)⟩+Dg(a, b)

≤2Dg(u, v) +Hg(Tu, Tv) +
1

2
⟨u− a,∇g(v)−∇g(b)⟩.

This gives

Hg(Tu, Tv) ≤ Dg(u, v) +
1

2
⟨u− a,∇g(v)−∇g(b)⟩,

which is the end of the proof. □

Lemma 3.2. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Assume that T : Q → K(Q)
is a Bregman hybrid multivalued operator. Let the sequence {un}n∈N ⊂ Q be such that un ⇀ q and
∥xn − vn∥ → 0 (n → ∞) for some vn ∈ Tun. Then q ∈ Tq.

Proof. We first select a sequence {un}n∈N ⊂ Q which has a weak limit q ∈ E and
lim
n→∞

∥un − vn∥ = 0

for some vn ∈ Tun. We then prove that q ∈ F (T ). By Lemma 3.2, we are led to the existence of
zn ∈ Tq such that

Dg(vn, zn) ≤ Dg(un, p) + ⟨un − vn,∇g(q)−∇g(zn)⟩.

The compactness of Tp and the inclusion zn ∈ Tq, assures the existence of {zni}i∈N ⊂ {zn}n∈N
such that zni → z ∈ Tp as i → ∞. The weakly convergent sequence {xn}n∈N will guarantee its
boundedness and hence we can define f : E → [0,∞) by

f(u) := lim sup
i→∞

Dg(uni , u), u ∈ E.

Applying Lemma 2.10, we arrive at
f(u) = lim sup

i→∞
Dg(uni , q) +Dg(q, u), ∀u ∈ E.

Therefore f(u) = f(q) +Dg(q, z) and so we have
f(z) = f(q) +Dg(q, z). (3.2)

In addition
f(z) = lim sup

i→∞
Dg(uni , z)

= lim sup
i→∞

[Dg(uni , vni) +Dg(vni , z) + ⟨vni − zni ,∇g(zni)−∇g(p)⟩]

≤ lim sup
i→∞

Dg(vni , z).
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Thus,

f(z) ≤ lim sup
i→∞

Dg(yni , z)

= lim sup
i→∞

[Dg(vni , zni) +Dg(zni , z) + ⟨vni − zni ,∇g(zni)−∇g(p)⟩]

≤ lim sup
i→∞

[Dg(uni , p) + ⟨xni − vni ,∇g(p)−∇g(uni)⟩]

= lim sup
i→∞

Dg(uni , p) (3.3)

= f(p).

Applying (3.2) and (3.3), we arrive at Dg(q, z) = 0. Invoking Lemma 2.2, we are led to ∥q− z∥ = 0 and
hence q ∈ Tq. This is the end of proof. □

Lemma 3.3. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Cv(E) be given. If T : Q → K(Q) is a Bregman
hybrid multivalued mapping with F (T ) ̸= ∅, then T is Bregman quasi-nonexpansive.

Proof. If we take q in F (T ) and x in Q, then by Lemma 3.2, there is b ∈ Tx with

Hg(Tq, Tx) ≤ Dg(q, x) +
1

2
⟨q − q,∇g(x)−∇g(b)⟩,

and thus Hg(Tq, Tx) ≤ Dg(q, x) for any q in F (T ). □

Lemma 3.4. Let g ∈ Θ0(E) ∩ UCB(E) be given. Let Q ⊂ E be nonvoid and T : Q → K(Q) be a
Bregman hybrid multivalued operator. Then we have:
(i) If Q is closed, then F (T ) is closed.
(ii) If Q belongs to Cv(E) and T satisfies the Bregman condition (A), then F (T ) is convex.

Proof. (i) If F (T ) is an empty set, then it is closed. Let F (T ) be a nonempty set in E. If we take
a sequence {vn}n∈N ⊂ F (T ) with vn → v as n → ∞, then invoking Lemma 2.2 we deduce that
Dg(vn, v) → 0 and Dg(v, vn) → 0 as n → ∞. Let y ∈ Tv be fixed. Returning to (2.3), ensures that

Dg(v, y) = Dg(v, vn) ∥ +Dg(vn, y) + ⟨v − vn,∇g(vn)−∇g(y)⟩
≤ Dg(v, vn) +Hg(Tvn, T v) + ∥v − vn∥∥∇g(vn)−∇g(y)∥
≤ Dg(v, vn) +Dg(vn, v) +M2∥v − vn∥.

where M2 =: sup{∥∇g(vn)−∇g(w)∥ : w ∈ Tv, n ∈ N} < +∞. This amounts to

Dg(v, Tv) ≤ Dg(v, vn) +Dg(vn, u) +M2∥v − un∥

and hence Dg(v, Tv) = 0 which entails to v ∈ F (T ). This verifies the closedness of F (T ) and the
proof is completed.

(ii) We will verify that F (T ) is convex. If q1, q2 ∈ F (T ), s ∈ (0, 1), then by setting u = sq1+(1−s)q2,
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we show that u ∈ F (T ). Let w ∈ T (u) be fixed. In the light of Lemma 3.2, we get

Dg(u,w) =g(u)− g(w)− ⟨u− w,∇g(w)⟩
=g(u)− g(w)− ⟨sq1 + (1− s)q2 − w,∇g(w)⟩
=g(u)− g(w)− s⟨q1 − w,∇g(w)⟩ − (1− s)⟨q2 − w,∇g(w)⟩

+ sg(q1) + (1− s)g(q2)− [sg(q1) + (1− s)g(q2)]

=g(u) + s[g(q1)− g(w)− ⟨q1 − w,∇g(w)⟩]
+ (1− s)[g(q2)− g(w)− ⟨q2 − w,∇g(w)⟩]

=g(u) + sDg(q1, w) + (1− s)Dg(q2, w)− [sg(q1) + (1− s)g(q2)]

=g(u) + sDg(Tq1, w) + (1− s)Dg(Tq2, w)− [sg(q1) + (1− s)g(q2)]

≤g(u) + sHg(Tq1, Tu) + (1− s)Hg(Tq2, Tu)− sg(q1)− (1− s)g(q2)

≤g(u) + sDg(q1, u) + (1− s)Dg(q2, u)− sg(q1)− (1− s)g(q2)

=g(u) + s[g(q1)− g(u)− ⟨q1 − u,∇g(u)⟩]
+ (1− s)[g(q2)− g(u)− ⟨q2 − u,∇g(u)⟩]− sg(q1)− (1− s)g(q2)

=g(u) + [−g(u)− ⟨s(q1 − u),∇g(u)⟩ − ⟨(1− s)(q2 − u),∇g(u)⟩]
+ [sg(q1) + (1− s)g(q2)]− sg(q1)− (1− s)g(q2)

=g(u)− g(u)− ⟨s(q1 − u) + (1− s)(q2 − u),∇g(u)⟩
=0− ⟨sq1 + (1− s)q2 − u,∇g(u)⟩

+ sg(q1) + (1− s)g(q2)− sg(q1)− (1− s)g(q2)

=0.

This assures that Dg(u,w) = 0 and Lemma 2.2 gives that inf{∥u − w∥ : w ∈ Tu} = 0 and hence
u ∈ Tu which ends the proof. □

Lemma 3.5. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. Let T : Q → Cb(Q) be a multivalued
operator. Assume there exist w0 ∈ Q and a bounded sequence {wn}n∈N with wn ∈ Twn−1 for every n in
N such that for each v ∈ Q, there exists a ∈ Tv with the property that

µnDg(wn, a) ≤ µnDg(wn, v).

Then F (T ) is nonempty in Q.

Proof. Define a mapping h : Q → R by

h(v) := µnDg(wn, v), ∀v ∈ Q.

Then h is well-defined and Theorem 2.13 ensures the existence of a unique element v0 ∈ Q such that
h(v0) = min{h(v) : v ∈ Q}. So, for some a0 ∈ Tv0, we deduce that

h(a0) = µnDg(wn, a0) ≤ µnDg(wn, v0) = h(v0).

Since a0 ∈ Q and v0 ∈ Q is a unique element such that h(v0) = min{h(v) : v ∈ Q}, we get
v0 = a0 ∈ Tv0 arriving at the end of proof. □

Theorem 3.6. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. If T : Q → K(Q) is a Bregman
hybrid operator, then we have the equivalent assertions as follows:
(1) There exist z0 ∈ Q and a bounded sequence {zn}n∈N with zn ∈ Tzn−1 for every n in N;
(2) F (T ) is non-void.
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Proof. Evidently, the implication (2) =⇒ (1) achieves from the assumptions. Let us verify (1) =⇒ (2).
Assume that there exist z0 ∈ Q and a bounded sequence {zn}n∈N with zn ∈ Tzn−1 for every n in N.
Let v ∈ Q. The relations (2.5) and (3.1) ensure the existence of b ∈ Tv with

Dg(zn+1, b) ≤ Dg(zn, v) + ⟨zn − zn+1,∇g(v)−∇g(b)⟩
⇐⇒ Dg(zn+1, b) ≤ Dg(zn, v) +Dg(zn, b) +Dg(zn+1, v)−Dg(zn, y)−Dg(zn+1, b)

⇐⇒ 2Dg(zn+1, b)−Dg(zn, b) ≤ Dg(zn, v) +Dg(zn+1, v).

Now, Lemma 3.5 guarantees the nonemptiness of F (T ) which ends the proof. □

Next, we are ready to verify convergence results for Bregman hybrid multivalued operators in weak
and strong topology.

Theorem 3.7. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. For i ∈ NN , let Ti : Q → K(Q)

be Bregman hybrid operators with
⋂N

i=1 F (Ti) ̸= ∅. Let γi,n ∈ (0, 1) for all i ∈ NN and
∑N

i=0 γi,n = 1,
∀n ∈ N. For u1 ∈ Q let {un}n∈N be produced by

un+1 ∈ P g
Q

(
∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g(Tiun)

))
, ∀n ⩾ 1. (3.4)

Let the statements below be satisfied:
(i) Ti verifies Bregman Condition (A) for any i ∈ NN ;
(ii) lim infn→∞ γ0,nγi,n > 0 for each i ∈ NN .
Then, limn→∞Dg(un, Tiun) = 0, ∀i ∈ NN .

Proof. Let q ∈
⋂N

i=1 F (Ti). As Ti verifies Bregman Condition (A) for any i ∈ NN , we see that

Dg(q, un+1) = Dg

(
q, P g

Q

(
∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g(yin)

)))
, (yin ∈ Tiun)

= Dg

(
q,∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g(yin)

))
, (yin ∈ Tiun)

⩽ γ0,nDg(q, un) +
N∑
i=0

γi,nDg(q, y
i
n), (y

i
n ∈ Tiun)

= γ0,nDg(q, un) +

N∑
i=0

γi,nDg(Tiq, y
i
n), (y

i
n ∈ Tiun) (3.5)

⩽ γ0,nDg(q, un) +

N∑
i=0

γi,nHg(Tiq, Tiun)

⩽ Dg(q, un).

Hence, limn→∞Dg(q, un) exists which leads to the boundedness of {xn}n∈N. Setting

r1 := sup
{∥∥∇g(un)−∇g

(
yin
)∥∥ : i = 1, 2, . . . , N, yin ∈ Tiun, n ∈ N

}
< ∞
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Invoking Lemma 2.1, we find

Dg(q, un+1) =Dg

(
q, P g

Q

(
∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g(yin)

)))
, (yin ∈ Tiun)

=Dg

(
q,∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g
(
yin
)))

, (yin ∈ Tiun)

⩽γ0,nDg(q, un)

+
N∑
i=1

γi,nDg(q, y
i
n)− γ0,nγi,nρ

∗
r1

(∥∥∇g(un)−∇g(yin)
∥∥) , (yin ∈ Tixn)

=γ0,nDg(q, un)

+

N∑
i=1

γi,nDg(Tiq, y
i
n)− γ0,nγi,nρ

∗
r1

(∥∥∇g(un)−∇g
(
yin
)∥∥) , (yin ∈ Tixn)

⩽γ0,nDg(q, un)

+
N∑
i=1

γi,nHg(Tiq, Tiun)− γ0,nγi,nρ
∗
r1

(∥∥∇g(un)−∇g
(
yin
)∥∥) , (yin ∈ Tiun)

⩽Dg(q, un)− γ0,nγi,nρ
∗
r1(∥∇g(un)−∇g(yin)∥), (yin ∈ Tiun)

where ρ∗r1 is the gauge of g∗. It follows that

γ0,nγi,nρ
∗
r1(∥∇g(un)−∇g(yin)∥) ≤ Dg(q, un)−Dg(q, un+1), (y

i
n ∈ Tiun).

Since lim infn→∞ γ0,nγi,n > 0 for all i ∈ NN , we obtain
lim
n→∞

∥∇g(un)−∇g(yin)∥ = 0

and hence by Theorem 2.6 we get
lim
n→∞

∥un − yin∥ = 0 (3.6)

which incorporating with Lemma 2.2 yields to
lim
n→∞

Dg(un, y
i
n) = 0.

This amounts to
lim
n→∞

Dg(un, Tiun) ≤ lim
n→∞

Dg(un, y
i
n) = 0 (3.7)

for all i ∈ NN which ends the proof. □

Theorem 3.8. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. For i ∈ NN , let {Ti : Q →
K(Q)}Ni=1 be Bregman hybrid multivalued mappings with

⋂N
i=1 F (Ti) ̸= ∅. Let {γi,n}n∈N ⊂ (0, 1),

∀i ∈ NN and
∑N

i=0 γi,n = 1, ∀n ∈ N. Suppose we have the statements as below:
(i) Ti satisfies Bregman Condition (A) for all i ∈ NN ;
(ii) lim infn→∞ γ0,nγi,n > 0 for all i ∈ NN .
Then, {un}n∈N proposed by (3.4) converges in weak topology to an element of CFP ({Ti}i∈NN

) .

Proof. Evidently, Theorem 3.9 guarantees the boundedness of {un}n∈N which entails to the existence
of subsequence {uni}i∈N of {un}n∈N with uni → p ∈ Q. From (3.4), we conclude that ∥un − yin∥ → 0

as n → ∞ for all i ∈ NN . Invoking Lemma 3.2, we have p ∈
⋂N

i=1 F (Ti). Let us choose {unk
}k∈N with

unk
⇀ q. Then employing Lemma 3.2, it reveals that q ∈

⋂N
i=1 F (Ti). By Lemma 2.2, we have q = p

and this completes the proof. □
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Theorem 3.9. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. Let the assumptions of Theorem 3.7
hold and one of the Ti satisfies Definition 1.1 (ii). Then there exists p in CFP({Ti}i∈NN

) with un ⇀ p ∈ E.

Proof. If there exists i0 ∈ NN with Ti0 being satisfy Definition 1.1(ii) then there exists {unk
}k∈N ⊂

{un}n∈N withDg(p, Ti0unk
) → 0, for some p ∈ Q. This implies there exists a subsequence zi0nk

∈ Tiunk

such that

lim
k→∞

Dg(p, z
i0
nk
) = 0,

Setting M3 := sup
{∥∥∇g

(
zi0nk

)
∥, ∥∇g(unk

)∥ : k ∈ N
∥∥} < +∞, it follows from (3.7), for zi0nk

∈ Tiunk
,

that

Dg(p, unk
) = Dg

(
p, zi0nk

)
+Dg

(
zi0nk

, unk

)
+
〈
p− zi0nk

,∇g(zi0nk
)−∇g(unk

)
〉

≤ Dg

(
p, zi0nk

)
+Dg

(
zi0nk

, unk

)
+
∥∥p− zi0nk

∥∥∥∥∇g(zi0nk
)−∇g(unk

)
∥∥

≤ Dg

(
p, zi0nk

)
+Dg

(
zi0nk

, unk

)
+M3

∥∥p− zi0nk

∥∥→ 0 as k → ∞.

In view of Lemma 3.1, for yink
∈ Tiunk

, there exists vink
∈ Tip such that

Hg(Tip, Tiunk
) ≤ Dg(p, unk

) +
〈
p− vink

,∇g(unk
)−∇g(yink

)
〉

≤ Dg(p, unk
) +

∥∥p− vink

∥∥∥∥∇g(unk
)−∇g(yink

)
∥∥ .

We use (3.6) to find that

lim
n→∞

Hg(Tip, Tiunk
) = 0 (3.8)

for all i ∈ NN . In addition, for each i ∈ NN , we get

Dg(p, Tip) ≤ Dg(unk
, p) +Dg(unk

, Tiunk
) +Hg(Tiunk

, Tip).

Employing (3.7)-(3.8), we achieve Dg(p, Tip) = 0 for all i ∈ NN . The closedness of Tip assures that
p ∈

⋂N
i=1 F (Ti). In the light of Theorem 3.7, we arrive at the existence of the limit limn→∞Dg(p, un)

which entails that limn→∞ ∥ un − p ∥= 0. □

Theorem 3.10. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let the assumptions of Theorem
3.9 hold and one of the Ti be hemicompact. Then there exists p in CFP({Ti}i∈NN

) such that {un}n∈N
converges to p in the norm topology of E.

Proof. If there exists i0 ∈ NN withTi0 being hemicompact, then by (3.7) we see that limn→∞ Dg(un, Ti0un) =
0. This guarantees the existence of a subsequence {unk

}k∈N of {un}n∈N with unk
→ p ∈ Q. From

Lemma 3.2, for yink
∈ Tiunk

, there is an vink
∈ Tip with

Hg(Tiunk
, Tip) ≤ Dg(unk

, p) +
〈
unk

− yink
,∇g(p)−∇g

(
vink

)〉
≤ Dg(unk

, p) +
∥∥unk

− yink

∥∥∥∥∇g(p)−∇g(vink
)
∥∥ .

It follows from (3.6) that

lim
n→∞

Hg(Tiunk
, Tip) = 0

for all i ∈ NN . For each i ∈ NN , we get, for any z ∈ Tip, that

Dg(p, z) =Dg(p, unk
) +Dg(unk

, Tiunk
) +Hg(Tiunk

, Tip).

Dg

(
vink

, unk

)
+Dg(p, z) =Dg(p, unk

) +Dg

(
unk

, yink

)
+
〈
yink

− p,∇g(yink
)−∇g (unk

)
〉
+Hg(Tiunk

, Tip).

Dg(p, Tip) ≤Dg(p, unk
) +Dg(unk

, Tiunk
) +Hg(Tiunk

, Tip).
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that

lim
n→∞

Hg (Tiunk
, Tip) = 0, ∀i ∈ NN (3.9)

If i ∈ NN , then we obtain

Dg(p, Tip) ≤ Dg(p, unk
) +Dg(unk

, Tiunk
) +Hg (Tiunk

, Tip) . (3.10)

Since unk
→ p, by (3.7)-(3.9), we arrive at Dg(p, Tip) = 0 for every i ∈ NN . By the closeness of Tip we

discover that p ∈
⋂N

i=1 F (Ti). By Theorem 3.9, we get limn→∞ ∥ un − p ∥ exists which implies that
limn→∞ ∥ un − p ∥= 0 □

Corollary 3.11. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. For i ∈ NN , let Ti : Q → K(Q)

be a Bregman hybrid operator with
⋂N

i=1 F (Ti) ̸= ∅. Let γi,n ∈ (0, 1) for all i ∈ NN and
∑N

i=0 γi,n = 1,
∀n ∈ N. Let x1 ∈ Q be arbitrarily chosen and {xn}n∈N be produced by

xn+1 ∈ P g
Q

(
∇g∗

(
γ0,n∇g(xn) +

N∑
i=1

γi,n∇g(Tixn)

))
, ∀n ≥ 1. (3.11)

Suppose each of the statements below hold true:
(i) for each i ∈ NN , Tiq = {q} for each q ∈ F (T );
(ii) lim infn→∞ γ0,nγi,n > 0, ∀i ∈ NN .
Then, for every i ∈ NN , limn→∞Dg(xn, Tixn) = 0.

Corollary 3.12. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. For i ∈ NN , let Ti : Q → K(Q)

be a Bregman hybrid operator with
⋂N

i=1 F (Ti) ̸= ∅. Let γi,n ∈ (0, 1) for all i ∈ NN and
∑N

i=0 γi,n = 1
for all n ∈ N. Suppose each of the statements below hold:
(i) ∀i ∈ NN , Tiq = {q}, ∀q ∈ F (T );
(ii) lim infn→∞ γ0,nγi,n > 0 for all i ∈ NN .
Then there exists p in CFP({Ti}i∈NN

) such that xn ⇀ q as n → ∞.

Corollary 3.13. If the assumptions of Corollary 3.11 hold true and one of theTi satisfies satisfies Definition
1.1(ii), then there exists q in CFP({Ti}i∈NN

) such that xn → q as n → ∞.

Corollary 3.14. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. If the assumptions of Corollary
3.11 hold and one of the Ti is hemicompact. Then there exists q in CFP({Ti}i∈NN

) with xn → q as n → ∞.

Since P g
QTi satisfies Bregman Condition (A)( i ∈ NN ), we meet the following corollaries.

Corollary 3.15. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. For i ∈ NN , let Ti : Q → K(Q)

be an operator with
⋂N

i=1 F (Ti) ̸= ∅. Let γi,n ∈ (0, 1) for all i ∈ NN and
∑N

i=0 γi,n = 1 for all n ⩾ 1.
For any fixed element u1 ∈ Q, let the sequence {un}n∈N be indicated by

un+1 ∈ P g
Q

(
∇g∗

(
γ0,n∇g(un) +

N∑
i=1

γi,n∇g(Tiun)

))
∀n ∈ N. (3.12)

Let the following statements be satisfied:
(i) for each i ∈ NN , P g

QTi is a Bregman hybrid operator;
(ii) lim infn→∞ γ0,nγi,n > 0 for all i ∈ NN .
Then, ∀i ∈ NN , limn→∞Dg(un, Tiun) = 0.

Proof. By Theorem 3.7, we obtain ∥un − yin∥ → 0 as n → ∞ and yin ∈ P g
QTiun leads to

Dg(un, Tiun) ≤ Dg(un, P
g
QTiun) ≤ Dg

(
un, y

i
n

)
→ 0 (3.13)

whenever n → ∞ for every i ∈ NN . □
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Corollary 3.16. Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. For i ∈ NN , let Ti : Q → K(Q)

be such that
⋂N

i=1 F (Ti) ̸= ∅ and I − Ti is demiclosed at 0. Let γi,n ∈ (0, 1) for all i ∈ NN and∑N
i=0 γi,n = 1, ∀n ∈ N. Let the following statements be satisfied:

(i) P g
QTi is a Bregman hybrid operator, ∀i ∈ NN , .

(ii) lim infn→∞ γ0,nγi,n > 0, ∀i ∈ NN .
Then there exists p in CFP({Ti}i∈NN

) such that xn ⇀ p as n → ∞.

Corollary 3.17. If the assumptions of Corollary 3.15 hold true and one of the P g
QTi satisfies Definition

1.1(ii), then there exists q in CFP({Ti}i∈NN
) with xn → p as n → ∞.

Corollary 3.18. If the assumptions of Corollary 3.15 hold and one of the P g
QTi is hemicompact. Then there

exists q in CFP({Ti}i∈NN
) with xn → q as n → ∞.

4. Halpern-Type Iteration and Its Convergence

This section devotes to an investigation of the Halpern algorithm for the approximation of fixed
points of {Ti : i ∈ NN}, where Ti’s are Bregman hybrid multivalued operators from a set Q ∈ Ccv(E).
We will verify the strong convergence of the Bregman-Halpern iterative algorithms by relaxing the
hemicompactness assumption on these mappings.

Lemma 4.1. Let g ∈ Θ0(E)∩UCB(E)∩USB(E) be a continuous function. LetQ ∈ Ccv(E) be fixed
and T : Q → E a Bregman hybrid multivalued mapping which enjoys the demiclosedness principle. If
{un}n∈N ⊂ E is bounded with un − Tun → 0 and û = P g

F (T )u, then

lim sup
n→∞

⟨un − û,∇g(u)−∇g(û)⟩ ≤ 0.

Proof. By the assumption on T , we find a subsequence {uni}i∈N of {un}n∈N with uni ⇀ v ∈ F (T )
and

lim sup
n→∞

⟨un − û,∇g(u)−∇g(û)⟩ = lim
i→∞

⟨uni − û,∇g(u)−∇g(û)⟩.

Combining this with (2.8), entails to

lim sup
n→∞

⟨un − û,∇g(u)−∇g(û)⟩ = ⟨v − û,∇g(u)−∇g(û)⟩ ≤ 0

and hence the proof. □

Theorem 4.2. Let Q ∈ Ccv(E) and g ∈ Θ0(E) ∩ UCB(E) ∩ USB(E) be continuous. Assume that
{Ti : Q → E}Ni=1 are Bregman hybrid operators verifying that F := ∩N

i=1F (Ti) is nonempty. Let
{γn}n∈N ⊂ [0, 1] and {θi,n}n∈N∪{0} ⊂ (0, 1) satisfy the statements as follows:
(a) limn→∞ γn = 0;
(b)
∑∞

n=1 γn = ∞;
(c) 0 < lim infn→∞ θ0,nθi,n ≤ lim supn→∞ θ0,nθi,n < 1, i = 0, 1, 2, . . . , N ;
(d)
∑N

i=0 θ0,i = 1.
Let us define a sequence {xn}n∈N by the iteration process

v ∈ E, x1 ∈ Q chosen arbitrarily,
yn ∈ ∇g∗[θ0,n∇g(xn) +

∑N
i=1 θi,n∇g(Tixn)],

xn+1 = P g
Q∇g∗[γn∇g(v) + (1− γn)∇g(yn)],

(4.1)

Then xn → P g
F v as n → ∞, where P g

F : E → F is the Bregman projection.

Proof. First, the inclusion F (T ) ∈ Ccv(E) is guaranteed by Lemma 3.1. Setting

v̂ = P g
F v,
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two essential steps are the requirements of the proof:
Step 1. The boundedness of {xn}n∈N, {yn}n∈N and {wi

n ∈ Tixn : n ∈ N, i = 0, 1, 2, . . . , N} is the
first task. First, we verify the boundedness of {xn}n∈N. For any fixed element q in F (T ), by the relation
(4.3), we get

Dg(q, yn) = Dg

(
v̂,∇g∗[θ0,n∇g(xn) +

∑N
i=1 θi,n∇g(wi

n)]
)
, (wi

n ∈ Tixn)

≤ θ0,nDg(q, xn) +
∑N

i=1 θi,nDg(q, w
i
n)

≤ θ0,nDg(q, xn) +
∑N

i=1 θi,nDg(q, Tixn)

≤ θi,nDg(q, xn) +
∑N

i=1 θi,nHg(Tq, Tixn)

≤ θ0,nDg(q, xn) +
∑N

i=1 θi,nDg(q, xn)
= Dg(q, xn).

Thanks to Lemma 2.1 and the above inequalities, we get

Dg(q, xn+1) = Dg(q, P
g
Q∇g∗[γn∇g(v) + (1− γn)∇g(yn)])

= Dg(q,∇g∗[γn∇g(v) + (1− γn)∇g(yn)])
≤ γnDg(q, v) + (1− γn)Dg(q, yn)
≤ γnDg(q, v) + (1− γn)Dg(q, xn)
≤ max{Dg(q, v), Dg(q, xn)}.

(4.2)

Inductively, we find

Dg(q, xn+1) ≤ max{Dg(q, v), Dg(q, x1)}, ∀n ∈ N. (4.3)

Thus (4.3) gives the boundedness of {Dg(q, xn)}n∈N and so for some real number M4 > 0 we have

Dg(q, xn) ≤ M4, ∀n ∈ N. (4.4)

Furthermore, Lemma 2.4(3) ensures the boundedness of {xn}n∈N and by the properties of {Ti}Ni=1 we
get for any p ∈ F that

D(p, wi
m) ≤ Dg(p, xm), ∀m ∈ N, i ∈ NN . (4.5)

The boundedness of {wi
n}n∈N is easily obtained by the boundedness of {xn}n∈N. Also, trivial argu-

ments by using Step 1 show that {∇g(xn)}n∈N, {∇g(yn)}n∈N, {∇g(zn)}n∈N and {∇g(wi
n)}n∈N are

bounded in E∗. By an appeal to Theorem 2.5 reveals that r2 = sup{∥xn∥, ∥∇g(wi
n)∥ : n ∈ N, i =

0, 1, 2, . . . , N} < ∞ and let ρ∗r2 : E∗ → R be the gauge of g∗.
Step 2. We verify the existence of v̂ ∈ Q such that xn → v̂ as n → ∞.
First, the boundedness of {xn}n∈N and the Eberlin-Smulian Theorem [7] assure the existence of sub-
sequence {xni}i∈N of {xn}n∈N that xni ⇀ v̂ ∈ Q. Now, by Lemma 2.1, for every n ∈ N and i ∈ NN ,
one has

Dg(v̂, yn) ≤ Dg(v̂, xn)− θ0θiρ
∗
r2(∥∇g(xn)−∇g(wi

n)∥). (4.6)

Incorporating Lemma 2.7 with (4.6) and (4.2), we arrive at

Dg(v̂, xn+1) ≤ γnD(v̂, v) + (1− γn)D(v̂, yn)
≤ γnDg(v̂, v) + (1− γn)[Dg(v̂, xn)− θ0θiρ

∗
r2(∥∇g(xn)−∇g(wi

n)∥)].
(4.7)

Let M4 := sup{|Dg(v̂, v)−Dg(v̂, xn)|+ θ0θiρ
∗
r2(∥∇g(xn)−∇g(wi

n)∥) : n ∈ N, i ∈ NN}. Applying
(4.9) we get

θ0θiρ
∗
r2(∥∇g(xn)−∇g(wi

n)∥) ≤ D(v̂, xn)−D(v̂, xn+1) + γnM4. (4.8)
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Setting zn = ∇g∗[γn∇g(v)+(1−γn)∇g(yn)], we see that xn+1 = P g
F zn and therefore by Lemma 2.7,

(4.6) and (4.2), we have

Dg(v̂, xn+1) = Dg(v̂, PF zn)
≤ Dg(v̂,∇g∗[γn∇g(v̂) + (1− γn)∇g(yn)])
= Wg(v̂, γn∇g(v) + (1− γn)∇g(yn))
≤ Wg(v̂, γn∇g(v) + (1− γn)∇g(yn)− γn(∇g(v)−∇g(v̂)))
−⟨g∗[γn∇g(v) + (1− γn)∇g(yn)]− v̂,−γn(∇g(v)−∇g(v̂))⟩
= Wg(v̂, γn∇g(v) + (1− γn)∇g(Tnyn)) + γn⟨zn − v̂,∇g(v)−∇g(v̂)⟩
= Dg(v̂,∇g∗[γn∇g(v) + (1− γn)∇g(yn)]) + γn⟨zn − v̂,∇g(v)−∇g(v̂)⟩
≤ γnDg(v̂, v̂) + (1− γn)D(v̂, yn) + γn⟨zn − v̂,∇g(v)−∇g(v̂)⟩
= (1− γn)Dg(v̂, xn) + γn⟨zn − v̂,∇g(v)−∇g(v̂)⟩.

(4.9)

We continue the process by the following two arguments:
Case 1. If {Dg(v̂, xn)}∞n=n0

is nonincreasing for some n0 ∈ N, then {Dg(v̂, xn)}n∈N converges to some
real number and hence Dg(v̂, xn) − Dg(v̂, xn+1) → 0 whenever n → ∞. Combining this fact with
condition (c), assures that

lim
n→∞

ρ∗r2(∥∇g(xn)−∇g(wi
n)∥) = 0

and hence
lim
n→∞

∥∇g(xn)−∇g(wi
n)∥ = 0.

Due to the uniform continuity of ∇g∗, we get that

lim
n→∞

∥xn − wi
n∥ = 0, i ∈ NN . (4.10)

On the other hand, applying Lemma 2.2 and (4.10) we conclude that

lim
n→∞

Dg

(
wi
n, xn

)
= 0, i ∈ NN . (4.11)

This implies that

Dg

(
wi
n, yn

)
≤ (1− θn)Dg

(
wi
n, xn

)
+ θnDg

(
wi
n, w

i
n

)
= (1− θn)Dg(w

i
n, xn) → 0 (4.12)

as n → ∞. Also, we have

Dg(yn, zn) ≤ γnDg(yn, v) + (1− γn)Dg(yn, yn) = γnDg(yn, v) → 0

as n → ∞. Next, Lemma 2.2 and (4.10)-(4.12) reveal that

lim
n→∞

∥∥yn − wi
n

∥∥ = 0, lim
n→∞

∥xn − zn∥ = 0. (4.13)

From Lemma 4.1 and (4.13), we infer that

lim sup
n→∞

⟨zn − v̂,∇g(v)−∇g(v̂)⟩ = lim sup
n→∞

⟨xn − v̂,∇g(v)−∇g(v̂)⟩ ≤ 0.

This combined with Lemma 2.21 gives the desired conclusion.
Case 2. If for some subsequence {ni}i∈N ⊂ N, the strict inequality Dg(v̂, xni) < Dg(v̂, xni+1) holds
true for all i ∈ N, then applying Lemma 2.22, yields to the existence of a sequence {mk}k∈N ⊂ N
which is nondecreasing and mk → ∞ as k → ∞, Dg(v̂, xmk

) < Dg(v̂, xmk+1) and Dg(v̂, xk) ≤
Dg(v̂, xmk+1) for all k ∈ N. The relation (4.7) assures that

θmk
(1− θmk

)ρ∗r2(∥∇g(xmk
)−∇g(wi

mk
)∥) ≤ Dg(v̂, xmk

)−Dg(v̂, xmk+1) + γmk
M4 ≤ γmk

M4

for all k ∈ N. Also the assumptions (a) and (c) imply that

lim
k→∞

ρ∗r2(∥∇g(xmk
)−∇g(wi

mk
)∥) = 0.
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Using the same procedures in Case 1, we obtain
lim sup
k→∞

⟨zmk
− v̂,∇g(v)−∇g(v̂)⟩ = lim sup

k→∞
⟨xmk

− v̂,∇g(v)−∇g(v̂)⟩ ≤ 0.

In the light of (4.12), we get
Dg(v̂, xmk+1) ≤ (1− γmk

)Dg(v̂, xmk
) + γmk

⟨zmk
− v̂,∇g(v)−∇g(v̂)⟩. (4.14)

Since Dg(v̂, xmk
) ≤ D(v̂, xmk+1), we have that

γmk
D(v̂, xmk

) ≤ Dg(v̂, xmk
)−Dg(v̂, xmk+1) + γmk

⟨zmk
− v̂,∇g(v)−∇g(v̂)⟩

≤ γmk
⟨zmk

− v̂,∇g(v)−∇g(v̂)⟩. (4.15)

For the particular case γmk
> 0, we infer that
Dg(v̂, xmk

) ≤ ⟨zmk
− v̂,∇g(v)−∇g(v̂)⟩.

Employing (4.13) leads to
lim
k→∞

Dg(v̂, xmk
) = 0.

Then, (4.13) ensures that limk→∞D(v̂, xmk+1) = 0. In addition, we obtain Dg(v̂, xk) ≤ Dg(v̂, xmk+1)
for each k ∈ N and hence xmk

→ v̂ as k → ∞. This entails to xn → v̂ as n → ∞ which completes the
proof. □

Remark 4.3. Theorem 4.2 improves the main results of [6] as follows:
(1) From the spaces structural point of view, the duality operator is generalized to a Bregman function
on general Banach spaces.
(2) For the mappings, the hybrid set-valued operators are generalized to the case of Bregman hybrid
set-valued operators.

5. Bregman Attractive Point Theorems for Set-Valued Mappings

Kocourek et al. [18] introduced the generalized hybrid operators in Hilbert spaces. In a series of
papers [16, 18, 32, 33], the authors investigated fixed point and attractive points for the single and
multivalued mappings and obtained some applications of equilibrium problems in various settings of
Hilbert and Banach spaces.

Let Q ⊂ E be nonvoid and T : Q → 2E \ {∅} be a set-valued mapping. This section aims to
introduce and investigate the notion of Bregman attractive points of T denoted by

Ag
Q(T ) = {w ∈ E : Dg(w, Tu) ≤ Dg(w, u), ∀u ∈ Q}. (5.1)

An element w ∈ Q is called a Bregman strongly attractive member of T if
Hg(w, Tu) ≤ Dg(w, u), ∀u ∈ Q, (5.2)

where Hg is the Bregman Hausdorff distance defined by
Hg(A,B) = max{sup

u∈A
Dg(u,B), sup

v∈B
Dg(A, v)}.

We denote by BSA(T ) the set of all Bregman strongly attractive points of T , that is, BSA(T ) =
{w ∈ E : Hg(p, Tu) ≤ Dg(w, u) for all u ∈ Q}. It is obvious that BSA(T ) ⊆ Ag

Q(T ). The
mapping T is called Bregman (α, β)-generalized hybrid set-valued if there exist α, β ∈ R such that
αHg(Tu, Tv) + (1 − α)Dg(u, Tv) ≤ βDg(v, Tu) + (1 − β)Dg(u, v), ∀u, v ∈ Q. Also, the set of
all the Bregman common attractive points and the set of all the Bregman common strongly attractive
points of the set-valued operators T1 and T2 are denoted by(BCAP (T1, T2)) and (BCSAP (T1, T2)),
respectively.

The following results will be used in the proof of our main results in what follows.
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Bregman condition (B). Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. A multivalued map-
ping T : Q → Cb(Q) is said to satisfy Bregman Condition (B) if Dg(p, x) = Dg(Tp, x) for all x ∈ E
and p ∈ Ag

T (T ).

Lemma 5.1. [11] Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. For a mapping T : Q → Q, if
Ag

Q(T ) ̸= ∅, then F (T ) is nonempty.

Lemma 5.2. [11] Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. For a mapping T : Q → E, the
set Ag

Q(T ) is nonempty, convex, and closed in E.

Lemma 5.3. [10, 11] Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. If T : Q → E is a Bregman
quasi-nonexpansive operator, then Ag

Q(T ) ∩Q = F (T ).

Lemma 5.4. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let P g
Q : E → Q be the Bregman

projection. Let {xn}n∈N be a sequence in E. IfDg(q, xn+1) ≤ Dg(q, xn) for any q ∈ Q and n ∈ N, then
P g
Qxn → q0 ∈ Q.

Proof. Let {xn}n∈N ⊂ E be such that the inequality Dg(q, xn+1) ≤ Dg(q, xn) holds true for any q ∈ Q
and n ∈ N. Setting un = P g

Qxn for any n ∈ N, in view of (2.3), (2.8) and (2.9), we deduce that

Dg(un, um) =Dg(un, xm) +Dg(xm, um) + ⟨un − xm,∇g(xm)−∇g(um)⟩
≤Dg(un, xn) +Dg(xm, um) + ⟨un − xm,∇g(xm)−∇g(um)⟩
=Dg(un, xn) +Dg(xm, um) + ⟨un − xm,∇g(xm)−∇g(um)⟩
=Dg(un, xn)−Dg(um, xm) + ⟨um − xm,∇g(um)−∇g(xm)⟩

+ ⟨un − xm,∇g(xm)−∇g(um)⟩
=Dg(un, xn)−Dg(um, xm) + ⟨un − um,∇g(xm)−∇g(um)⟩
≤Dg(un, xn)−Dg(um, xm).

Letting m,n → ∞ and considering Lemma 2.2, we get that {un}n∈N is a Cauchy sequence in Q and
hence by the completeness of Q we get that the sequence un → q0 ∈ Q. □

We now generalize iterative schemes mentioned in [6] to the case of multivalued operators T1 and
T2 through the use of Bregman distances:

w1 ∈ Q
yn = ∇g∗[(1− θn)∇g(wn) + θn∇g(vn)]
wn+1 = P g

Q[∇g∗[(1− γn)∇g(vn) + γn∇g(un)]]
(5.3)

for all n ∈ N, where υn ∈ T2wn, un ∈ T1yn and {γn}n∈N, {θn}n∈N ⊂ (0, 1).

Definition 5.5. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T1, T2 : Q → 2E \
{∅} be multivalued operators. The set of all the Bregman common attractive points of T1 and T2 is
demonstrated by BCAP (T1, T2) = {w ∈ E : max{Dg(w, Su), Dg(w, Tu)} ≤ Dg(w, u), ∀u ∈ Q}. It
is evident that z ∈ BCAP (T1, T2) which means that w ∈ Ag

Q(T1) ∩Ag
Q(T2).

Definition 5.6. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. For the set-valued mappings
T1, T2 : Q → 2E \ {∅} we define the set of all the Bregman common strongly attractive points by

BCSAP (T1, T2) = {w ∈ E : max(Hg(w, T1u), Hg(w, T2u)) ≤ Dg(w, u),∀w ∈ Q}.
Apparently, we have w ∈ BCSAP (T1, T2) which means that w ∈ BSA(T1) ∩BSA(T2).

Bregman condition (B). Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. We say that T :
Q → Cb(Q) enjoys Bregman Condition (B) if Dg(q, u) = Dg(Tq, u) for all u ∈ E and q ∈ Ag

Q(T ).
Now we investigate important properties concerning the above sets in Banach spaces.
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Lemma 5.7. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T : Q → 2E \ {∅} be a
multivalued operator. If T fulfills the Bregman condition (B), then Ag

Q(T ) is convex and closed in E.

Proof. (i) If Ag
Q(T ) = ∅, then it is closed. Assume that F (T ) ̸= ∅. Extracting a sequence {wn}n∈N ⊂

Ag
Q(T )with the strong limitw, in the light of Lemma 2.2 we deduce thatDg(wn, w) → 0 andDg(w,wn) →

0 as n → ∞. Let y ∈ Tw be fixed. Applying (2.3), we obtain

Dg(w, y) = Dg(w,wn) ∥ +Dg(wn, y) + ⟨w − wn,∇g(wn)−∇g(y)⟩
≤ Dg(w,wn) +Hg(Twn, Tw) + ∥w − wn∥∥∇g(wn)−∇g(y)∥
≤ Dg(w,wn) +Dg(wn, w) +M5∥w − wn∥,

where M5 =: sup{∥∇g(wn)−∇g(z)∥ : z ∈ Tw, n ∈ N} < +∞. This amounts to

Dg(w, Tw) ≤ Dg(w,wn) +Dg(wn, w) +M5∥w − wn∥

and hence Dg(w,wx) = 0 which implies that w ∈ Ag
Q(T ). We conclude that Ag

Q(T ) is closed and the
proof is completed.

(ii) We verify that Ag
Q(T ) is convex. For any q1, q2 ∈ Ag

T (T ), s ∈ (0, 1), we set w = sq1 + (1− s)q2.
We verify that w ∈ Ag

Q(T ). Let z ∈ T (w) be fixed. According to Lemma 3.2, we receive

Dg(w, z) =g(w)− g(z)− ⟨w − z,∇g(z)⟩
=g(w)− g(z)− ⟨sq1 + (1− s)q2 − z,∇g(z)⟩
=g(w)− g(z)− s⟨q1 − z,∇g(z)⟩ − (1− s)⟨q2 − z,∇g(z)⟩

+ sg(q1) + (1− s)g(q2)− [sg(q1) + (1− s)g(q2)]

=g(w) + s[g(q1)− g(z)− ⟨q1 − z,∇g(z)⟩]
+ (1− s)[g(q2)− g(z)− ⟨q2 − z,∇g(z)⟩]

=g(w) + sDg(q1, z) + (1− s)Dg(q2, z)− [sg(q1) + (1− s)g(q2)]

=g(w) + sDg(Tq1, z) + (1− s)Dg(Tq2, z)− [sg(q1) + (1− s)g(q2)]

≤g(w) + sDg(q1, w) + (1− s)Dg(q2, w)− sg(q1)− (1− s)g(q2)

=g(w) + s[g(q1)− g(w)− ⟨q1 − w,∇g(w)⟩]
+ (1− s)[g(q2)− g(w)− ⟨q2 − w,∇g(w)⟩]− sg(q1)− (1− s)g(q2)

=g(w) + [−g(w)− ⟨s(q1 − w),∇g(w)⟩ − ⟨(1− s)(q2 − w),∇g(w)⟩]
+ [sg(q1) + (1− s)g(q2)]− sg(q1)− (1− s)g(q2)

=g(w)− g(w)− ⟨s(q1 − w) + (1− s)(q2 − w),∇g(w)⟩
=0− ⟨sq1 + (1− s)q2 − w,∇g(w)⟩

+ sg(q1) + (1− s)g(q2)− sg(q1)− (1− s)g(q2)

=0.

This implies that Dg(w, z) = 0. Thus, by Lemma 2.2, we obtain inf{∥w− z∥ : z ∈ Tw} = 0 and hence
w ∈ Tw. □

Remark 5.8. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T1, T2 : Q → 2E \ {∅} be
multivalued operators. According to Lemma 5.7, the BCAP (T1, T2) is closed and convex. Trivially,
we get BSA(T1) and BSA(T2) are convex and closed and so BSCAP (T1, T2) is convex and closed.

Now we verify the following results for our main theorem of the section.
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Lemma 5.9. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T : Q → Clc(Q) be a Bregman
quasi-nonexpansive operator, then Ag

Q(T ) = F (T ).

Proof. One trivially has Ag
Q(T ) ⊃ F (T ). It suffices to verify that Ag

Q(T ) ⊂ F (T ). Let w ∈ Ag
Q(T ),

then Dg(w, Tu) ≤ Dg(w, u), ∀u ∈ Q. By Lemma 2.2, we are led to Dg(w, Tw) ≤ Dg(w,w) = 0. The
closedness of Tw assures that w ∈ Tw and therefore w ∈ F (T ). □

Lemma 5.10. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T1, T2 : Q → Ccv(Q) be two
mappings. If BCAP (T1, T2) ̸= ∅, then F (T1) ∩ F (T2) ̸= ∅. Particularly, if w ∈ BCAP (T1, T2), then
P g
Qw ∈ F (T1) ∩ F (T2).

Proof. Let z ∈ BCAP (T1, T2), then z ∈ Ag
Q(T1) and z ∈ Ag

Q(T2). There exists a unique element u =

P g
Qz ∈ Q such that Dg(z, u) = Dg(z,Q). Hence, Dg(z,Q) ≤ Dg(z, T2u) ≤ Dg(z, u) = Dg(z,Q),

which yields Dg(z,Q) = Dg(z, T2u) = Dg(z, u). Also, Dg(z, T2u) = infy∈T2uDg(z, y) = Dg(z, y0),
for some y0 ∈ T2u. By Lemma 2.7 we find that u = y0 ∈ Tu. Hence, u ∈ F (T2). In a similar manner,
we discover u ∈ F (T1) which yields F (T1) ∩ F (T2) ̸= ∅ and u = P g

Qz ∈ F (T1) ∩ F (T2). □

Theorem 5.11. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T1, T2 : Q → Ccv(Q) be
two Bregman (α, β)-generalized hybrid mappings with BCSAP (T1, T2) ̸= ∅. If {wn}n∈N is identified
by (5.3), where {γn}n∈N, {θn}n∈N ⊂ (0, 1) with lim infn→∞ γnθn(1 − θn) > 0, then wn ⇀ q ∈
BCSAP (T1, T2). Moreover, q = limn→∞ P g

BCSAP (T1,T2)
wn.

Proof. Let z ∈ BCSAP (T1, T2). Then by (5.3), we get
Dg(z, yn) = Dg(z,∇g∗[(1− θn)∇g(wn) + θn∇g(vn)])

≤ (1− θn)Dg(z, wn) + θnDg(z, vn)

≤ (1− θn)Dg(z, wn) + θnHg(z, T2wn)

≤ (1− θn)Dg(z, wn) + θnDg(z, wn)

≤ Dg(z, wn),

and
Dg(z, wn+1) = Dg

(
z, P g

Q[∇g∗[(1− γn)∇g(vn) + γn∇g(un)]]
)

≤ Dg (z,∇g∗[(1− γn)∇g(vn) + γn∇g(un)])

≤ (1− γn)Dg(z, vn) + γnDg(z, un)

≤ (1− γn)Hg(z, T2wn) + γnHg(z, T1yn)

≤ (1− γn)Dg(z, wn) +Dg(z, yn)

≤ (1− γn)Dg(z, wn) + γnDg(z, wn)

= Dg(z, wn),

where vn ∈ T2wn, un ∈ T1yn. It follows that limn→∞Dg(z, wn) exists and the {wn}n∈N is bounded.
Setting r3 := sup{∥∇g(wn)−∇g(vn) ∥ ∥ : n ∈ N} < +∞, by Lemma 2.1, we are led to

Dg(z, wn+1) =Dg

(
z, P g

Q[∇g∗[(1− γn)∇g(vn) + γn∇g(un)]]
)

≤(1− γn)Dg(z, wn) + γnDg(z, yn)

=(1− γn)Dg(z, wn) + γnDg(z,∇g∗[(1− θn)∇g(wn) + θn∇g(vn)])

≤(1− γn)Dg(z, wn) + γn(1− θn)Dg(z, wn)

+ γnθnDg(z, vn)− γnθn(1− θn)ρ
∗
r3(∥ ∇g(wn)−∇g(vn) ∥)

≤Dg(z, wn)− γnθn(1− θn)ρ
∗
r3(∥ ∇g(wn)−∇g(vn) ∥)
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This implies that

γnθn(1− θn)ρ
∗
r3(∥ ∇g(wn)−∇g(vn) ∥) ≤ Dg(z, wn)−Dg(z, wn+1) → 0 (n → ∞).

Since lim infn→∞ γnθn(1− θn) > 0, we deduce that ρ∗r3(∥ ∇g(wn)−∇g(vn) ∥) → 0 as n → ∞ and
hence

lim
n→∞

∥∇g(wn)−∇g(vn)∥ = 0.

By the uniform continuity of ∇g, we get that

lim
n→∞

∥wn − vn∥ = 0.

Also, by Lemma 2.2 we have
lim
n→∞

Dg(wn, vn) = 0.

Noticing that υn ∈ T2wn, it is obtained

Dg(wn, υn) ≥ Dg(w, T2wn) → 0 (n → ∞).

Since {wn}n∈N is bounded, from the closedness of Q and in view of the Eberlin-Smulian Theorem [7],
the sequence {wn}n∈N must have a subsequence {wni}i∈N that wni ⇀ q ∈ Q. For any y ∈ Q, we get

αHg(T2wnj , T2y) + (1− α)Dg(wnj , T2y) ≤ βDg(T2wnj , y) + (1− β)Dg(wnj , y),

where

Hg

(
T2wnj , T2y

)
= max

{
sup

x∈T2wnj

Dg(x, T2y), sup
z∈T2y

Dg

(
T2wnj , z

)}
.

From the above inequality, we are led to

αDg(x, T2y) + (1− α)Dg(wnj , T2y) ≤ βDg(y, T2wnj ) + (1− β)Dg(wnj , y) (5.4)

for any x ∈ T2wnj . Employing the properties of Dg , we receive a sequence {z(j)k }j∈N ⊆ {Twnj}j∈N
such that

lim
j→∞

Dg

(
wnj , z

(j)
k

)
= lim

j→∞
Dg

(
wnj , T2wnj

)
.

Further arguments ensures the existence of w ∈ T2y with Dg

(
z
(j)
k , T2y

)
= Dg

(
z
(j)
k , w

)
and com-

bining with (5.4), we have

αDg

(
z
(j)
k , w

)
+ (1− α)Dg(wnj , T2y) ≤ βDg

(
y, z

(j)
k

)
+ (1− β)Dg(wnj , y)

Applying µ and using the three-point identity, we deduce that

αµ[Dg

(
z
(j)
k , wnj

)
+Dg(wnj , w) +

〈
z
(j)
k − wnj ,∇g(wnj )−∇g(w)

〉
+ (1− α)Dg(wnj , T2y)]

(5.5)

− βµ[Dg(y, wnj ) +Dg

(
wnj , z

(j)
k

)
+
〈
y − wnj ,∇g(wnj )−∇g

(
z
(j)
k

)〉
− (1− β)Dg(wnj , y)] ≤ 0.

It follows that
Dg(wnj , T2y)−Dg(wnj , y) ≤ 0.

Since wnj ⇀ q(j → ∞), then Dg(q, T2y)−Dg(q, y) ≤ 0. Similarly, we can verify that Dg(q, T1y)−
Dg(q, y) ≤ 0 which leads to q ∈ BCSAP (T1, T2). Let us verify that wn ⇀ q(n → ∞). Suppose first
that wnj ⇀ q1(j → ∞) and wnk

⇀ q2(k → ∞). Continuing the same process as above enables us
to show that q1 and q2 belong to BCSAP (T1, T2) and limn→∞ exists. Define limn→∞Dg[(wn, q1)−
Dg(wn, q2)] = l. Since E is a reflexive Banach space, we obtain

⟨u− v,∇g(p)−∇g(w)⟩ = Dg(u,w) +Dg(v, p)−Dg(u, p)−Dg(v, w).
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Therefore,

⟨wn,∇g(q2)−∇g(q1)⟩ = Dg(wn, q1) +Dg(0, q2)−Dg(wn, q2)−Dg(0, q1).

This amounts to

Dg(wn, q1)−Dg(wn, q2) = ⟨wn,∇g(q2)−∇g(q1)⟩ −Dg(0, q2) +Dg(0, q1),

and hence

Dg(wnj , q1)−Dg(wnj , q2) = ⟨wnj ,∇g(q2)−∇g(q1)⟩ −Dg(0, q2) +Dg(0, q1),

Dg(wnk
, q1)−Dg(wnk

, q2) = ⟨wnk
,∇g(q2)−∇g(q1)⟩ −Dg(0, q2) +Dg(0, q1)

Now, we use wnj ⇀ q1(j → ∞) and wnk
⇀ q2(k → ∞) to get that

l = ⟨q1,∇g(q2)−∇g(q1)⟩ −Dg(0, q2) +Dg(0, q1),

l = ⟨q2,∇g(q2)−∇g(q1)⟩ −Dg(0, q2) +Dg(0, q1).

Then
⟨q1 − q2,∇g(q2)−∇g(q1)⟩ = 0,

which, together with Lemma 2.4, implies q1 = q2. Hence, wn ⇀ q ∈ BCSAP (T1, T2). Let us verify
that q = limn→∞ P g

BCSAP (T1,T2)
wn. Since Dg(z, wn+1) ≤ Dg(z, wn), ∀z ∈ BCSAP (T1, T2) and

n ∈ N, Lemma 5.4 assures that
lim
n→∞

P g
BCSAP (T1,T2)

wn = p,

for some p ∈ BCSAP (T1, T2). By Lemma 2.7, we get

⟨P g
BCSAP (T1,T2)

wn − z,∇g(wn)−∇g(P g
BCSAP (S,T )wn)⟩ ≥ 0,

for all z ∈ BCSAP (T1, T2) and n ∈ N. Therefore, ⟨p − z,∇g(q) − ∇g(p)⟩ ≥ 0 for all z ∈
BCSAP (T1, T2) and in particular, ⟨p− q,∇g(q)−∇g(p)⟩ ≥ 0 which implies
q = p = limn→∞ P g

BCSAP (T1,T2)
wn. □

6. Application to Eqilibrium Problem

This section is devoted to an investigation of equilibrium and fixed point problems via Bregman dis-
tances. As we know these problems received strong connections with important problems in nonlinear
and applied sciences. Here, the target is to reach a common solution of an equilibrium and fixed point
problem of nonlinear operators.

Let Q ∈ Ccv(E) be fixed. If f : Q×Q → R, then the equilibrium problem states that:

find u ∈ Q, with 0 ≤ f(u, v), ∀v ∈ Q. (6.1)

Taking into account (6.1) we set

EP (f) = {u ∈ Q : f(u, v) ≥ 0, ∀v ∈ Q}.

Lemma 6.1. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let {xn}n∈N ⊂ E satisfy that
(i) For each v ∈ E, limn→∞Dg(v, xn) exists.
(ii) If {xnj}j∈N ⊂ {xn}n∈N satisfies that xnj ⇀ u (j → ∞), then u ∈ Q.
Then xn ⇀ x0 for some x0 ∈ Q as n → ∞.
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Proof. By contradiction, we assume the existence of u ∈ E with u ̸= x0. Then there exist subsequences
{xnk

}k∈N and {xnl
}l∈N of {xn}n∈N such that xnk

⇀ x0 as k → ∞ and xnl
⇀ y0 as l → ∞. Employing

Lemma 2.8 for all y ∈ E \ {x0}, we get that

lim sup
k→∞

Dg(x0, xnk
) < lim sup

k→∞
Dg(u, xnk

) = lim sup
j→∞

Dg(u, xnj )

< lim sup
j→∞

Dg(x0, xnj ) = lim sup
k→∞

Dg(x0, xnk
).

This contradicts our assumptions and hence finishes the proof. □

To investigate the equilibrium problem, for f : Q×Q → R, we need to impose the following conditions
on the bifunction f :
(A1) f(u, u) = 0 for all u ∈ Q;
(A2) f(u, v) + f(v, u) ≤ 0 for all u, v ∈ Q;
(A3) for each u, v, w ∈ Q,

lim
s→0+

sup f(sw + (1− s)u, v) ≤ f(u, v);

(A4) if u ∈ Q is fixed, then v 7−→ f(u, v) is lower semi-continuous and convex.

Lemma 6.2. [35] Let g ∈ Θ0(E)∩UCB(E) andQ ∈ Ccv(E) be fixed. Let f : Q×Q → R be satisfied
(A1)-(A4) and r > 0 and u ∈ Q be arbitrarily chosen. Then, there exists w ∈ Q such that

f(w, v) +
1

r
⟨v − w,∇g(w)−∇g(u)⟩ ≥ 0.

for all v ∈ Q.

Lemma 6.3. [35] Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. For r > 0, u ∈ E, assume
Tr : E → Q is defined by:

Tru = {z ∈ Q : f(z, v) +
1

r
⟨v − z,∇g(z)−∇g(u)⟩ ≥ 0 ∀v ∈ Q}, ∀u ∈ X.

Then Tr enjoys the properties:
(i) Tr is single valued;
(ii) for any u, v ∈ E, one has

⟨Trx− Trv,∇g(Tru)−∇g(Trv)⟩ ≤ ⟨Tru− Trv,∇g(u)−∇g(v)⟩;

(iii) F (Tr) = EP (f);
(iv) EP (f) is convex and closed;
(v) Tr is Bregman quasi-nonexpansive;
(vi) Dg(q, Tru) +Dg(Tru, u) ≤ Dg(q, u), ∀q ∈ F (Tr).

Proposition 6.4. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let T be a Bregman (α, β)-
generalized hybrid multivalued operator with F (T ) ̸= ∅. Then T is Bregman quasi-nonexpansive.

Proof. By the assumption on T , we obtain

αHg(Tu, Tv) + (1− α)Dg(u, Tv) ≤ βDg(v, Tu) + (1− β)Dg(u, v), ∀u, v ∈ E.

If q ∈ F (q), then for all v ∈ E,

αDg(q, Tv) + (1− α)Dg(q, Tv) ≤ αHg(Tq, Tv) + (1− α)Dg(q, Tv)

≤ βDg(Tq, v) + (1− β)Dg(q, v)

≤ βDg(q, v) + (1− β)Dg(q, v),

which yields Dg(q, Tv) ≤ Dg(q, v) and hence the result is obtained. □
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Theorem 6.5. Let g ∈ Θ0(E) ∩ UCB(E) and Q ∈ Ccv(E) be fixed. Let f : E ×E → R be a function
which satisfies (A1)-(A4) and S1, S2 be two Bregman (α, β)-generalized hybrid operators of E to Clc(E)
such thatΩ := F (S1)

⋂
F (S2)

⋂
EP (f) ̸= ∅,Ag

Q(S1) = BSA(S1) andA
g
Q(S2) = BSA(S2). Assume

that {γn}n∈N ⊆ [0, 1] and {rn}n∈N ⊂ (0,∞) satisfying lim infn→∞ rn > 0 and there exits b in (0, 1)
with lim infn→∞ γnθn(1 − θn) > 0 and {θn}n∈N ⊂ [b, 1]. If {xn}n∈N is the sequence generated by
x = x1 ∈ Q and 

un = Trnxn
yn = ∇g∗[(1− θn)∇g(xn) + θn∇g(vn)]
xn+1 = P g

Q[∇g∗[(1− γn)∇g(vn) + γn∇g(wn)]], ∀n ∈ N,
(6.2)

where υn ∈ S2xn, wn ∈ S1yn and {γn}n∈N ⊂ (0, 1). Then xn ⇀ v ∈ Ω, where v = limn→n P
g
Ωxn.

Proof. Since F (S1)
⋂
F (S2) ̸= ∅, by Proposition 6.4, S1 and S2 are Bregman quasi-nonexpansive map-

pings. In the light of Lemmas 6.2 and 6.3 we see that F (S1) and F (S2) are closed and convex sets
satisfying F (S1) = Ag

Q(S1) and F (S2) = Ag
Q(S2). If we select q ∈ Ω, then it is evidently verified that

q ∈ BCSAP (S1, S2). By Lemma 6.3(ii), we deduce that

Dg(q, un) = Dg (Trnq, Trnxn) ≤ Dg(q, xn) (6.3)

Combining with (6.2), we obtain

Dg(q, yn) = Dg(q,∇g∗[(1− θn)∇g(xn) + θn∇g(vn)])

≤ (1− θn)Dg(q, xn) + θnDg(q, vn)

≤ (1− θn)Dg(q, xn) + θnHg(q, Tun)

≤ (1− θn)Dg(q, xn) + θnDg(q, un)

≤ Dg(q, xn). (6.4)

On the other hand, setting r4 := sup{∥∇g(xn)−∇g(vn)∥ : n ∈ N} < +∞, we get

Dg(q, xn+1) =Dg(q, P
g
Q[∇g∗[(1− γn)∇g(vn) + γn∇g(wn)]])

≤(1− γn)Dg(q, vn) + γnDg(q, wn)

≤(1− γn)Hg(q, Tun) + γnHg(q, Syn)

≤(1− γn)Dg(q, un) + γn(1− θn)Dg(q, xn) (6.5)
+ γnθnDg(q, vn)− γnθn(1− θn)ρ

∗
r4(∥∇g(xn)−∇g(vn)∥)

≤Dg(q, xn)− γnθn(1− θn)ρ
∗
r4(∥∇g(xn)−∇g(vn)∥)

≤Dg(q, xn),

which assures that limn→∞Dg(q, xn) exists. This yields the boundedness of {xn}n∈N and {yn}n∈N
and taking into account Lemma 2.1, (6.4) and (6.5), we get

Dg(q, xn+1) ≤ Dg(q, xn)− γnθn(1− θn)ρ
∗
r4(∥∇g(xn)−∇g(vn)∥).

Letting n → ∞ and noticing lim infn→∞ γnθn(1 − θn)ρ
∗
r4(∥∇g(xn) − ∇g(vn)∥) > 0, we obtain

that d(xn, υn) → 0. It can easily be shown that

∥ ∇g(yn)−∇g(xn) ∥=∥ θn(∇g(vn)−∇g(xn) ∥= θn ∥ ∇g(vn)−∇g(xn) ∥→ 0 (n → ∞). (6.6)

In the light of the uniform continuity of ∇g∗, we arrive at

lim
n→∞

∥yn − xn∥ = 0.
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By Lemma 6.3, we get
Dg(q, un) +Dg(un, q) = ⟨un − q,∇g(Trnxn)−∇g(Trnq)⟩

= ⟨Trnxn − Trnq,∇g(Trnxn)−∇g(Trnq)⟩
= ⟨un − q,∇g(Trnxn)−∇g(Trnq)⟩
≤ ⟨Trnxn − Trnq,∇g(xn)−∇g(q)⟩
= ⟨un − q,∇g(xn)−∇g(q)⟩
= Dg(q, un) +Dg(q, xn)−Dg(un, xn).

This amounts to
Dg(q, un) ≤ Dg(q, xn)−Dg(xn, un).

Incorporating this with (6.3), amounts to
Dg(q, yn) ≤ (1− θn)Dg(q, xn) + θnDg(q, un)

≤ (1− θn)Dg(q, xn) + θn(Dg(q, xn)−Dg(xn, un))

= Dg(xn, q)− θn(xn, un),

which shows that
θnDg(un, xn) ≤ Dg(q, xn)−Dg(q, yn). (6.7)

Since {θn}n∈N ⊂ [b, 1], it follows from (6.7) that
bDg(xn, un) ≤ θnDg(xn, un) ≤ Dg(q, xn)−Dg(q, un)

= Dg(q, yn) +Dg(yn, xn) + ⟨q − yn,∇g(yn)−∇g(xn)⟩ −Dg(q, yn)

≤ Dg(q, yn) + ∥q − yn∥∥∇g(yn)−∇g(xn)∥.

By the boundedness of {∇g(xn)}n∈N and {∇g(yn)}n∈N, tending n → ∞, and using (6.6), we get
limn→∞Dg(xn, un) = 0. Hence by Lemma 2.2 we arrive at

lim
n→∞

∥ xn − un ∥= 0. (6.8)

From the assumption lim infn→∞ rn > 0, we conclude that

lim
n→∞

∥∥∥∥∇g(xn)−∇g(un)

rn

∥∥∥∥ = lim
n→∞

1

rn
∥ ∇g(xn)−∇g(un) ∥= 0.

In the light of Theorem 2.6, we get

lim
n→∞

∥∥∥∥xn − un
rn

∥∥∥∥ = lim
n→∞

1

rn
∥ xn − un ∥= 0. (6.9)

By the relations (6.5), (6.6) and (6.8) we know that
lim
n→∞

Dg(vn, un) = 0, lim
n→∞

Dg(un, yn) = 0. (6.10)

Next, we find a subsequence {xni}i∈N of {xn}n∈N which is weakly convergent to u ∈ E. Also (6.8)
guarantees that uni ⇀ u(i → ∞). Let us verify that u ∈ Ω. Employing Lemma 6.3, we arrive at

f(un, z) +
1

rn
⟨z − un,∇g(un)−∇g(xn)⟩ ≥ 0, ∀z ∈ E.

Applying condition (A2), we are led to
⟨z − un,∇g(un)−∇g(xn)⟩ ≥ f(z, un), ∀z ∈ E,

This entails to 〈
z − un,

∇g(uni)−∇g(xni)

rni

〉
≥ f(z, un), ∀z ∈ E. (6.11)
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Employing (6.9)-(6.11) and (A4) we find that
f(z, u) ≤ 0, ∀z ∈ E.

If s ∈ (0, 1] and z ∈ E, then we consider zs = sz + (1 − s)u, hence zs ∈ E and f(zs, u) ≤ 0.
Additionally, we have,

0 = f(zs, zs) ≤ sf(zs, z) + (1− s)f(zs, u) ≤ sf(zs, z).

This ensures that f(zs, z) ≥ 0 for every z ∈ E. If we take the supremum lims→0+ sup f(zs, z) ≥ 0 and
employ (A3), then we arrive at u ∈ EP (f). Let us verify that u ∈ F (S1)∩ F (S2). Due to the fact that
F (S1) ∩ F (S2) = BCSAP (S1, S2), by continuing the same process of Theorem 5.11, we can show
that u ∈ BCSAP (S1, S2) = F (S2) ∩ F (S2). Thus, E = Ω verifies the requirement (ii) of Lemma
6.1. Besides, we see that limn→∞Dg(q, xn) exists for q ∈ Ω. Consequently, Lemma 6.1 assures the
existence of v ∈ Ω such that xn ⇀ v (n → ∞). In addition, for any q ∈ Ω, we get

Dg(q, xn+1) ≤ Dg(q, xn),∀n ∈ N

In view of Lemma 5.4, we find w ∈ F (S1) ∩ F (S2) ∩ EP (f) with P g
Ωxn → w as n → ∞. This entails

that
⟨v − P g

Ωxn,∇g(xn)−∇g(P g
Ωxn)⟩ ≤ 0,

and hence, in view of (2.3), we arrive at
Dg(v, w) ≤ ⟨v − w,∇g(v)−∇g(w)⟩ ≤ 0.

According to Lemma 2.4, we obtain v = w and xn ⇀ v(= limn→∞ P g
Ωxn) as n → ∞ which ends the

proof. □

7. Conclusion

We have introduced a new class of mappings called Bregman hybrid multivalued mappings in Banach
spaces. We have investigated the equilibrium problems by applying our results to nonlinear bifunctions.
We also intend to contribute our results to the other cases of multivalued mappings in a future research
work, see, [32].
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