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Abstract. This paper establishes new criteria for the existence and uniqueness of points of coincidence
and common fixed points for pairs of self-mappings in b-metric spaces. We introduce a generalized ex-
pansive condition of the form

d(fx, fy) +
β

s
[d(gx, fy) + d(gy, fx)] ≥ α1d(gx, gy) + α2d(fx, gx) + α3d(fy, gy),

where f and g are self-mappings on a b-metric space (X, d) with coefficient s ≥ 1, and α1, α2, α3 ≥ 0,
β ≥ 0 are parameters satisfying α1 + α2 + α3 > (1 + 2β)s and β < (1 + α3)

−1.
Under the assumptions that g(X) ⊆ f(X) and either f(X) or g(X) is complete, we prove: (1)

Existence of points of coincidence for f and g, (2) Uniqueness when α1 > 1 + 2βs−1, and (3) Existence
of unique common fixed points when f and g are weakly compatible.

These results generalize prior work on expansive mappings. The theory is validated through non-
trivial examples where classical theorems fail, particularly in discontinuous b-metric spaces. Our approach
provides a unified framework for analyzing expansive-type mappings in generalized metric spaces, with
potential applications in functional analysis and nonlinear operator theory.

Keywords. Expansive type mappings, b-Metric spaces, Common fixed points, Points of coincidence,
Weak compatibility.
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1. Introduction

The Banach contraction principle, introduced by Banach in 1922 [7], is a cornerstone of fixed point
theory. It asserts that every contraction mapping on a complete metric space admits a unique fixed
point. This result has profound implications not only in pure mathematics but also in applied disci-
plines, such as the theory of differential equations, where it underpins the proof of the Picard–Lindelöf
theorem [25]. Beyond ensuring the existence and uniqueness of fixed points, the Banach principle is
also constructive, offering an iterative scheme that converges to the fixed point, making it a vital tool
in computational mathematics.

Over time, various generalizations of Banach’s principle have emerged. One line of generalization
involves weakening the contractive condition. Classical examples include Kannan-type [18], Chatterjea-
type [11], and Rhoades-type contractions [21], as well as the work of Branciari [10] who developed
fixed point results in rectangular metric spaces. Another line of development focuses on generalizing the
underlying space itself. For instance, b-metric spaces, first introduced by Bakhtin [6] and later formalized
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by Czerwik [12], allow the triangle inequality to be relaxed using a constant s ≥ 1, thus extending the
reach of fixed point theory beyond classical metric spaces.

In parallel, research on common fixed points and points of coincidence for pairs of self-maps has gained
momentum. Jungck [14] extended Banach’s theorem to commuting maps and later introduced notions
such as weakly commuting [24], compatible [15], and weakly compatible mappings [16]. These con-
cepts enabled the derivation of fixed point results under more relaxed compatibility and continuity
assumptions. A comprehensive survey of such developments up to 2001 can be found in [20].

Another rich direction involves the study of expansive-type mappings, which satisfy inequalities
of the form d(Tx, Ty) ≥ βd(x, y) for some β > 1. While expansive mappings do not naturally
guarantee fixed points, researchers have identified suitable conditions under which they do. Wang [27]
initiated this study in complete metric spaces, with later extensions by Rhoades [22], Taniguchi [26],
and Kang [17]. In the context of more generalized spaces, Ahmed [3] established common fixed point
results for expansive-type mappings in 2-metric spaces using compatibility of type (A), and Şahin [28]
extended these ideas to cone metric spaces.

Recently, [19] established sufficient conditions for existence of point of coincidence and common
fixed points for a pair of self-maps satisfying the following expansive type conditions in b-metric spaces:

Theorem1.1. [19] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose the mappings g, f : X →
X satisfy the conditions

d(fx, fy) ≥ α1d(gx, gy) + α2d(fx, gx) + α3d(fy, gy) (1.1)
for all x, y ∈ X , where αi ≥ 0 for each i = 1, 2, 3 with α1 + α2 + α3 > s.

Assume the following hypotheses:
(i) α2 < 1 and α1 ̸= 0,

(ii) g(X) ⊆ f(X), and
(iii) f(X) or g(X) is complete.

Then f and g have a point of coincidence in X . Moreover, if α1 > 1, then the point of coincidence is unique.
If f and g are weakly compatible and α1 > 1, then f and g have a unique common fixed point in X .

Motivated by the work of Mohanta [19] and the broader developments in fixed point theory, the
present study aims to further generalize the expansive-type condition in b-metric spaces. We introduce
a broader class of inequalities involving self-maps and establish new sufficient conditions for the ex-
istence of points of coincidence and common fixed points. The results are supported with illustrative
examples that demonstrate the utility and novelty of the approach. Our findings contribute to the ongo-
ing effort to refine and extend fixed point theory in generalized metric spaces under relaxed contractive
and compatibility assumptions.

2. Preliminaries

This section recalls essential definitions, examples, and results from the theory of metric and b-metric
spaces required for subsequent analysis.

2.1. Foundational definitions.

Definition 2.1 (Metric Space). Let X be a non-empty set. A mapping d : X ×X → R+ is a metric if
for all x, y, z ∈ X :

(I ) d(x, y) = 0 ⇔ x = y (Identity)
(II ) d(x, y) = d(y, x) (Symmetry)

(III ) d(x, y) ≤ d(x, z) + d(z, y) (Triangle Inequality)
The pair (X, d) is called a metric space. A metric space is complete if every Cauchy sequence converges
in X .
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Definition 2.2. [12] Let X be a non-empty set and s ≥ 1 a real number. A mapping d : X ×X → R+

is a b-metric if for all x, y, z ∈ X :
(I ) d(x, y) = 0 ⇔ x = y

(II ) d(x, y) = d(y, x)
(III ) d(x, y) ≤ s [d(x, z) + d(z, y)] (s-Triangle Inequality)

The pair (X, d) is called a b-metric space with coefficient s. When s = 1, this reduces to a standard
metric space. The converse does not hold in general.

Remark 2.3. Every metric space is a b-metric space, but the converse fails when s > 1. Thus the class
of b-metric spaces strictly contains metric spaces.

2.2. Examples of b-metric spaces.

Example 2.4. [8] The space X = ℓp(R) for 0 < p < 1, where

ℓp(R) =

{
{xn} ⊂ R :

∞∑
n=1

|xn|p < ∞

}
,

equipped with d(x, y) = (
∑∞

n=1 |xn − yn|p)1/p for x = {xn}, y = {yn}, is a b-metric space with
s = 21/p. The s-triangle inequality follows from the subadditivity of t 7→ tp for t ≥ 0 and p ∈ (0, 1):(∑

|un + vn|p
)1/p

≤ 21/p
[(∑

|un|p
)1/p

+
(∑

|vn|p
)1/p

]
where un = xn − zn, vn = zn − yn.

Example 2.5. [8] LetX = Lp[0, 1] (0 < p < 1) be the space of real-valued functions with
∫ 1
0 |x(t)|pdt <

∞. The mapping d(x, y) =
(∫ 1

0 |x(t)− y(t)|pdt
)1/p

is a b-metric with s = 21/p.

Example 2.6. [4] Let X = {0, 1, 2} and define:

d(0, 1) = d(1, 0) = d(1, 2) = d(2, 1) = 1,

d(0, 2) = d(2, 0) = m ≥ 2,

d(x, x) = 0 ∀x ∈ X.

Then (X, d) is a b-metric space with s = m/2. For m > 2, the standard triangle inequality fails (e.g.,
d(0, 2) = m > d(0, 1) + d(1, 2) = 2), so it is not a metric space.

Example 2.7. [23] Let (X, d) be a metric space and p > 1. The mapping ρ(x, y) = (d(x, y))p is a
b-metric with s = 2p−1. For X = R and ρ(x, y) = |x− y|2, we have s = 2, but ρ is not a metric since
|0− 2|2 = 4 > |0− 1|2 + |1− 2|2 = 2.

2.3. Convergence and continuity in b-metric spaces.

Definition 2.8. [9] Let (X, d) be a b-metric space with coefficient s, and {xn} a sequence in X .
(i) {xn} converges to x ∈ X if limn→∞ d(xn, x) = 0 (denoted xn → x).

(ii) {xn} is Cauchy if limm,n→∞ d(xn, xm) = 0.
(iii) (X, d) is complete if every Cauchy sequence converges.

Remark 2.9. [9] In a b-metric space (X, d):
(i) Convergent sequences have unique limits.

(ii) Every convergent sequence is Cauchy.
(iii) The b-metric d need not be continuous.
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Example 2.10. [13] Let X = N ∪ {∞} with d : X ×X → R:

d(m,n) =


0 m = n∣∣ 1
m − 1

n

∣∣ m,n even or one is ∞
5 m,n odd, distinct, or one is ∞.
2 otherwise

Then (X, d) is a b-metric space (s = 5/2). The sequence xn = 2n converges to ∞, but d(xn, 1) = 2 ̸→
d(∞, 1) = 5, so d is discontinuous.

Theorem 2.11. [2] Let (X, d) be a b-metric space with coefficient s. If {xn} → x and {yn} → y, then:
1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, x = y implies limn→∞ d(xn, yn) = 0. Moreover, for any z ∈ X :
1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Proof. From the s-triangle inequality:

d(x, y) ≤sd(x, xn) + s2d(xn, yn) + s2d(yn, y),

d(xn, yn) ≤sd(xn, x) + s2d(x, y) + s2d(y, yn).

Taking limits yields the first result. The second follows similarly from d(x, z) ≤ sd(x, xn)+ sd(xn, z).
□

2.4. Mappings in b-metric spaces.

Definition 2.12. Let (X, d) be a b-metric space. A mapping T : X → X is:
(i) Continuous at x0 if for every ϵ > 0, there exists δ > 0 such that d(x, x0) < δ implies

d(Tx, Tx0) < ϵ.
(ii) Continuous if it is continuous at every x ∈ X .

Definition 2.13. [19] A mapping T : X → X on a b-metric space (X, d) is expansive if there exists
k > s such that:

d(Tx, Ty) ≥ kd(x, y) ∀x, y ∈ X.

Definition 2.14. [23] Mappings f, T : X → X are compatible if limn→∞ d(fTxn, Tfxn) = 0 when-
ever {xn} satisfies limn→∞ fxn = limn→∞ Txn = t for some t ∈ X .

Definition 2.15. [23] Let f, T : X → X be mappings.
(i) A point x ∈ X is a coincidence point of f and T if fx = Tx.

(ii) A point w = fx = Tx is a point of coincidence.
(iii) f and T are weakly compatible if fTx = Tfx for all coincidence points x.

Example 2.16. Let X = [0, 1], Sx = x2, Tx = x/2. Then C(S, T ) = {0, 1/2} with common fixed
point 0.

Example 2.17. Let X = [1,∞) with standard metric, f(x) = 4x − 3, T (x) = x2. At x = 1:
fT (1) = Tf(1) = 1. At x = 3: fT (3) = f(9) = 33 ̸= 81 = T (9) = Tf(3). Hence f and T are not
weakly compatible.

Proposition 2.18. [1] Let S and T be weakly compatible self-maps of a nonempty set X . If S and T
have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of S and T .
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Proof. Let v be the unique point of coincidence of S and T . Then v = Su = Tu for some u ∈ X . By
weak compatibility of (S, T ), we have:

Sv = STu = TSu = Tv,

which shows that Sv = Tv, making v a fixed point. □

This implies that Sv = Tv = w (say). Thus, w is also a point of coincidence of S and T . Therefore,
by the uniqueness of the point of coincidence of the selfmaps S and T , we have v = w.

Thus, v is the unique common fixed point of S and T .

3. Main Results

In this section, we prove some point of coincidence and common fixed point results in b-metric
spaces.

Theorem 3.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings f, g : X →
X satisfy the condition:

d(fx, fy) +
β

s
[d(gx, fy) + d(gy, fx)] ≥ α1d(gx, gy) + α2d(fx, gx) + α3d(fy, gy), (3.1)

for all x, y ∈ X , x ̸= y where αi is nonnegative real numbers for each i = 1, 2, 3 and β ≥ 0 with
α1 + α2 + α3 > (1 + 2β)s and β < 1

1+α3
. Assume the following hypotheses:

(i) α2 < 1 and α1 ̸= 0,
(ii) g(X) ⊆ f(X), and

(iii) f(X) or g(X) is complete.

Then f and g have a point of coincidence in X . Moreover, if α1 > 1 + 2β
s , then the point of coincidence is

unique. If f and g are weakly compatible and α1 > 1 + 2β
s , then f and g have a unique common fixed

point in X .

Proof. Step 1: Sequence construction and coincidence point detection
Choose x0 ∈ X . Since g(X) ⊆ f(X), construct {xn} where fxn = gxn−1 for n ≥ 1. If fxk−1 = gxk
for some k, then xk is a coincidence point. Otherwise, assume fxn ̸= fxn−1 for all n.

Step 2: Establish metric contraction
Apply (3.1) to xn and xn+1:

d(fxn, fxn+1) +
β

s
[d(gxn, fxn+1) + d(gxn+1, fxn)]

≥ α1d(gxn, gxn+1) + α2d(fxn, gxn) + α3d(fxn+1, gxn+1).

Substituting fxn+1 = gxn and fxn = gxn−1:

d(gxn−1, gxn) +
β

s
d(gxn+1, gxn−1) ≥ (α1 + α3)d(gxn, gxn+1) + α2d(gxn−1, gxn).

Using the b-metric property d(gxn+1, gxn−1) ≤ s[d(gxn+1, gxn) + d(gxn, gxn−1)]:

(1 + β − α2)d(gxn−1, gxn) ≥ (α1 + α3 − β)d(gxn, gxn+1).

Thus:
d(gxn, gxn+1) ≤ λd(gxn−1, gxn), λ :=

1 + β − α2

α1 + α3 − β
∈ (0, s−1) (3.2)

Step 3: Prove Cauchy sequence
By induction and (3.2):

d(gxn, gxn+1) ≤ λnd(gx0, gx1). (3.3)
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For m > n, iteratively apply the b-metric property:

d(gxn, gxm) ≤ sλn
m−n−1∑
k=0

(sλ)kd(gx0, gx1)

≤ sλn

1− sλ
d(gx0, gx1) → 0 as n → ∞.

Thus {gxn} is Cauchy in g(X).
Step 4: Show point of coincidence exists

By completeness of g(X) or f(X), there exists y ∈ X such that gxn → y and fxn → y. Choose u ∈ X
with fu = y. Apply (3.1) to xn and u:

d(fxn, fu) +
β

s
[d(gxn, fu) + d(gu, fxn)]

≥ α1d(gxn, gu) + α2d(fxn, gxn) + α3d(fu, gu).

Taking limits and using Theorem 2.11:

d(y, gu) ≤ s

α1
(β − α3)d(gu, y).

Since β < α1s
−1 + α3, we get d(y, gu) = 0, thus gu = y = fu.

Step 5: Prove uniqueness
If v is another point of coincidence, apply (3.1) to x and u:

d(v, y) +
2β

s
d(v, y) ≥ α1d(v, y).

Thus (α1 − 1− 2βs−1)d(v, y) ≤ 0, implying v = y when α1 > 1 + 2βs−1.
Step 6: Common fixed point

By weak compatibility and Proposition 2.18, y is the unique common fixed point. □

Remark 3.2. (i) If we take β = 0 in Theorem 3.1, we get Theorem 1.1 as a corollary to Theorem 3.1.
(ii) If we take β = α2 = α3 = 0 in Theorem 3.1, we get the following as a corollary.

Corollary 3.3. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings f, g :
X → X satisfy the condition

d(fx, fy) ≥ α1d(gx, gy),

for all x, y ∈ X , where α1 > s is a constant. If g(X) ⊆ f(X) and f(X) or g(X) is complete, then f and
g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible, then f and g have
a unique common fixed point in X .

The following Corollary is the b-metric version of Banach’s contraction principle.

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose the mapping
g : X → X satisfies the contractive condition

d(gx, gy) ≤ λd(x, y),

for all x, y ∈ X , where λ ∈ (0, 1s ) is a constant. Then g has a unique fixed point in X . Furthermore, the
iterative sequence {gnx} converges to the fixed point.

Proof. It follows by taking β = α2 = α3 = 0 and f = I , the identity mapping on X , in Theorem
3.1. □



226 MULATU WOLDEGIORGIS, MEAZA F. BOGALE, ALEMAYEHU G. NEGASH, AND SEMIRA HUSSEIN

Corollary 3.5. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose the mapping
f : X → X is onto and satisfies

d(fx, fy) ≥ α1d(x, y),

for all x, y ∈ X , where α1 > s is a constant. Then f has a unique fixed point in X .

Proof. Taking g = I and β = α2 = α3 = 0 in Theorem 3.1, we obtain the desired result. □

Corollary 3.6. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose the mapping
f : X → X is onto and satisfies the condition

d(fx, fy) ≥ α1d(x, y) + α2βd(fx, x) + α3γd(fy, y),

for all x, y ∈ X , where αi is nonnegative real numbers for each i = 1, 2, 3 with α1 ̸= 0, α2 < 1,
α1+α2+α3 > s. Then f has a fixed point in X . Moreover, if α1 > 1, then the fixed point of f is unique.

Proof. It follows by taking β = 0 and g = I in Theorem 3.1 □

Now we give an example in support of our main result.

Example 3.7. Let X = [0, 1)∪(1, 4] with b-metric d(x, y) = |x−y|2 (s = 2) [5]. Define f, g : X → X
by

f(x) =

{
4x, x ∈

[
0, 14

)
4, x ∈

[
1
4 , 1

)
∪ (1, 4]

, g(x) =

{
x, x ∈

[
0, 14

]
0, x ∈

(
1
4 , 1

)
∪ (1, 4]

.

Then f(X) = [0, 1) ∪ {4}, g(X) =
[
0, 14

]
, so g(X) ⊆ f(X) and g(X) is complete. For α1 = 6,

α2 = α3 =
1
9 , and β = 0.8:

• α1 + α2 + α3 =
56
9 > (1 + 2β)s = 6

• β = 0.8 < 1
1+α3

= 0.9

Condition (3.1) holds for all x ̸= y as verified below. The pair (f, g) is weakly compatible at x = 0 [15],
which is the unique common fixed point.
Case 1: x, y ∈

[
0, 14

)
, x > y

LHS = 16(x− y)2 + 0.8
2

[
(4x− y)2 + (4y − x)2

]
= 16(x− y)2 + 0.4(17x2 + 17y2 − 16xy)

RHS = 6(x− y)2 + 1
9(9x

2) + 1
9(9y

2)

LHS - RHS = 33.3x2 + 33.3y2 − 54.4xy > 0 (since discriminant < 0)

Case 2: x ∈
[
0, 14

]
, y ∈

(
1
4 , 1

)
∪ (1, 4]

LHS = 16(x− 1)2 + 0.4
[
16x2 + (4− x)2

]
RHS = 6x2 + 1

9(9x
2) + 1

9(16)

LHS - RHS = 16(x− 1)2 + 6.4x2 + 0.4(16− 8x+ x2)− 7x2 − 16
9

= 17.5x2 − 36x+ 200
9︸ ︷︷ ︸

Minimum 11
9 >0

Case 3: x, y ∈ (1, 4], x ̸= y

LHS = 0 + 0.4(16 + 16) = 12.8 > RHS = 16
9 + 16

9 ≈ 3.55

Case 4: x ∈
(
1
4 , 1

)
∪ (1, 4], y = 1

4

LHS = 0 + 0.4
(
225
16 + 16

)
≈ 12.025 > RHS = 6

(
1
16

)
+ 1

9

(
225
16

)
+ 1

9(16) ≈ 3.715
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Remark: Condition (1.1) from Theorem 1.1 fails for x ∈
(
1
4 , 1

)
∪ (1, 4], y = 1

4 since:

0 ≥ 1
16α1 + 16α2 +

225
16 α3,

is impossible for αi ≥ 0 with
∑

αi > 2.

4. Conclusion

In 2016, [19] established sufficient conditions for the existence of points of coincidence and common
fixed points for pairs of self-maps satisfying the expansive type condition (1.1).

In this paper, we have established sufficient conditions for the existence of points of coincidence and
common fixed points, specifically in Theorem 3.1, for pairs of self-maps satisfying the expansive type
condition (1.1) in b-metric spaces [5, 12].

Additionally, we have supported our main research result with Example 3.7, which demonstrates
that our work generalizes the main result of [19].
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