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Abstract. Precise detection of cancer types and normal tissues is crucial for cancer diagnosis. Specifi-
cally, cancer classification using gene expression data is key to identify genes whose expression patterns
are tumor-specific. Here we aim to search for a minimal set of genes that may reduce the expression
complexity and retain a qualified classification accuracy accordingly. We applied neural network models
with layer-wise relevance propagation (LRP) to find genes that significantly contribute to classification.
Two algorithms for the LRP-candidate gene selection and the cycle of gene reduction were proposed. By
implementing the two algorithms for gene reduction, our model retained 95.32% validation accuracy to
make classification of six cancer types and normal with a minimal set of seven genes. Furthermore, a
cross-evaluation process was performed on the minimal set of seven genes, indicating that the selected
marker genes in five out of six cancer types are biologically relevant to cancer annotated by the COSMIC
Cancer Gene Census.
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1. Introduction

Gene expression data increase massively and become available publicly. That raises lots of efforts
to unravel the secrets within, especially the mutated genes implicated in oncogenesis [9, 26]. Indeed,
researchers have demonstrated that cancer is caused primarily bymutations in specific genes [5, 20, 23].
Those mutations may disable or overact gene expression that transforms normal cells into cancer. So
the measure of gene expression can generate big digital data learned to distinguish different disease
phenotypes. Identifying those changes in gene expression may yield potentially valuable biomarkers,
providing significant insights into the diagnosis and treatment of cancer [10].

The Cancer Genome Atlas (TCGA) catalogs the genomic changes involved in cancer. It is the most
comprehensive resource for exploring the impact of genes. Computational modeling techniques are re-
quired to analyze TCGA data, improving cancer care from data-driving insights [3, 8, 14, 19]. A central
issue of interest to us is cancer detection. That aims at the classification of cancer types and identifi-
cation of biomarkers for multiclass cancer [15, 20]. Artificial neural network models have been used
recently for gene expression-based classification of cancer [1, 6, 16, 18]. Those artificial neural network
models outperform the support vector machines (SVM) or the genetic algorithm/k-nearest neighbors
algorithm (GA/KNN) in pan-cancer and normal classification. Indeed, Ramaswamy et al. attained 78%
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Table 1. FPKM Data for Six Tumor Types and Normal Tissues

Tumor Types Cancer samples Normal samples
BRCA 1097 113
KIRC 538 72
LUAD 524 59
PRAD 498 52
THCA 502 58
UCEC 551 35

classification accuracy of 14 cancer types based on SVM [20]. Li et al. used GA/KNN to identify many
sets of 20 genes that attained on average 87.6% classification accuracy of 31 cancer types and nor-
mal tissues [13]. By contrast, concerning the artificial neural network models, Mostavi et al. achieved
93.9–95% prediction accuracy among classes of 33 cancers and normal [18], far exceeding the accuracy
performance of SVM and GA/KNN methods. A remarkable feature of artificial neural network models
is the interpretability developed for understanding how the networks work. The interpretable tools,
such as the saliency (SA) visualization method [25], the gradient-weighted class activation mapping
(Grad-CAM) [24], and the layer-wise relevance propagation (LRP)[2, 17], highlight the input features
the networks use to support their prediction. They successfully unravel hot zones in data of 2D or 3D
geometric structures, e.g., images in ImageNet [7, 12], that fit well with human intuition. However, for
data of 1D structure, it is hard to have an intuitive, geometric explanation of the extracted hot zones.
Recently, for data of non-geometric 1D structure, e.g., gene expression profiles, studies have shown that
the interpretable tools can potentially extract meaningful patterns from them. Indeed, Lyu and Haque
validated that the top 400 genes with high intensities in Grad-CAM of a convolutional neural network
are related to tumor-specific pathways [16]. Mostavi et al. identified 2090marker genes with SA scores
greater than 0.5, showing some of them are well-known oncogenes in breast cancer [18].

We will show in this study that LRP serving as a backward propagation technique in networks can
be employed to identify marker genes of non-geometric structures. Further, we concern about the
question: can the marker genes derived from one LRP be used as a reduced training pool to construct
a refined neural network model and then apply LRP again to get marker genes of smaller sizes? The
answer to this question in data of non-geometric gene expression profiles is positive. Indeed, we develop
two algorithms, namely the LRP-candidate gene selection and the cycle of gene reduction, to minimize
the number of marker genes to probe the entwined interactions related to cancer. We propose two
hypotheses to explore such relations. The first hypothesis is to identify marker genes in the minimal
gene set that can be replaced by other genes in cancer classification, whereas the second hypothesis is
to identify marker genes in the minimal gene set that are stably involved in cancer classification. On
this basis, we can deduce two or three marker genes that may be tumor-specific for a cancer type. We
show that the inferences are concordant with well-known marker genes implicated in cancer.

2. Data Acqisition and Augmentation

Thecancer-driving geneswere selected from theCOSMICCancer GeneCensus (https://cancer.
sanger.ac.uk/census) [9, 26]. A list of 723 cancer-driving genes (version 92, August 2020) was
available for download. It allowed us to concentrate on a group of cancer-related genes, ruling out
many possibly cancer-irrelevant attributes in cancer classification. Of those 723 genes, 576 in Tier 1
possessed a documented activity and evidence of mutations relevant to cancer, whereas 147 in Tier 2
showed supportive indications but less available evidence in cancer. We downloaded RNA-seq FPKM
data from The Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga) database for
six tumor types and normal tissues, namely, breast invasive carcinoma (BRCA), kidney renal clear cell
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Table 2. Classes for Model Training

Class Data type Training samples Validation samples
I Cancer (BRCA) 400 150
II Cancer (KIRC) 400 138
III Cancer (LUAD) 400 124
IV Cancer (PRAD) 400 98
V Cancer (THCA) 400 102
VI Cancer (UCEC) 400 151
VII Normal (BRCA) 67 → 67 46

Normal (KIRC) 42 → 67 30
Normal (LUAD) 35→ 67 24
Normal (PRAD) 30→ 67 22
Normal (THCA) 34→ 67 24
Normal (UCEC) 21→ 67 14

→: borderline-SMOTE

carcinoma (KIRC), lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), thyroid carcinoma
(THCA), and uterine corpus endometrial carcinoma (UCEC). The selection of those six cancer types
relied on the numbers of samples in both cancer and normal tissues sufficient for model training. The
gene expression data of 716 out of 723 cancer-driving genes were used for model training and vali-
dation, excluding genes IGH, IGK, IGL, TRA, TRB, and TRD that lacked Ensembl stable IDs and gene
DUX4L1 that had no expression data. The detailed composition of the data set is provided in Table 1.

For model training, samples of six cancer types were defined as six classes, respectively, and normal
samples were all merged as one class. To improve the class imbalance, we used the borderline synthetic
minority over-sampling technique (borderline-SMOTE) [4, 11] to increase the number of normal sam-
ples. For each class, about 400 samples were selected randomly as the training set and the remaining
100–150 samples were put as the validation set.

3. Methods

We developed two algorithms, namely the LRP-candidate gene selection and the cycle of gene re-
duction, to tackle the cancer-and-normal classification. These two algorithms reduced the number of
critical genes and evaluated their classification accuracy based on the architecture of multi-layer fully
connected networks (FCNs) [21, 22] and LRP [2]. We introduced the average relevance score in the first
algorithm to extract LRP-candidate genes and the reduction cycle in the second algorithm to check the
significance of extracted genes in classification.

Specifically, we used a simple four-layer FCN to classify input samples into seven classes (six cancer
types and normal). The input layer of the FCN contained neurons receiving the expression profiles
of selected cancer-driving genes and passing to the neurons in the next layer. The second and third
layers contained 300 and 100 neurons, respectively, for processing signals from the previous layer
and forwards to the next layer. The output layer of the FCN contained 7 neurons, equipped with the
softmax function for classification of samples into seven classes. The training of the FCN was stopped
after 1000 epochs and LRPwas utilized to determine which genes canmake the FCN effective in cancer-
and-normal classification. When a sample was fed into the FCN which returned a correct output, LRP
redistributed this correct output back to its predecessors and, layer by layer, to the input layer according
to the rule:

Ri =
∑

j∈Lk,yj ̸=0

wijyi
yj

Rj (3.1)
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Algorithm 1. LRP-candidate gene selection

Input: Samples of gene expression data are divided into different classes according to cancer types
and normal; Train a multi-layer FCN by one portion of those samples with n genes and test by the
other portion;

Output: LRP-candidate genes selected from n genes;
1: for all samples in the validation portion do
2: Input a sample s to the FCN that yields a network output y indicating the correct class;
3: Initialize the R-score of neuron j in the final layer of the FCN by the output y if j corresponds

to the correct class, otherwise 0;
4: for consequent layers Lk−1 and Lk of the FCN do
5: Calculate the R-score of neuron i in the prior layer Lk−1 by

Ri ←
∑

j∈Lk,yj ̸=0

wijyi
yj

Rj ,

whereRj is the R-score of neuron j in the posterior layer Lk, wij is the coupling weight from
neuron i to neuron j, and yi and yj are the outputs of neurons i and j, respectively, when
processing the sample s with the coupling weights wij of the FCN;

6: end for
7: Denote by Rs

1, R
s
2, . . . , R

s
n the R-scores calculated in the input layer L0 for the sample s;

8: Average the R-scores Rs
1, R

s
2, . . . , R

s
n and get

R̄s ←

(
n∑

m=1

Rs
m

)
/n;

9: Let Bs
m = 1 if the R-score of the mth gene is greater than the average R-score for the sample s,

i.e., Rs
m > R̄s, otherwise Bs

m = 0;
10: end for
11: Calculate the rate of samples taken from a classC such thatBs

m = 1 for each givenm = 1, 2, . . . , n,
i.e.,

PC
m ←

(∑
s∈C

Bs
m

)
/♯C,

where ♯C denotes the number of samples in the class C and PC
m denotes the SR-sample rate of the

mth gene for the class C ;
12: Set the threshold ρ for the SR-sample rates by

ρ← min
C

max
m

PC
m ;

13: return all of the LRP-candidate genes m ∈ {1, 2, . . . , n} satisfying PC
m ≥ ρ for at least one class

C ;

for each neuron i in the prior layer Lk−1, where Rj is the relevance score (namely, R-score) of neuron
j in the posterior layer Lk, wij is the coupling weight from neuron i to neuron j, and yi and yj are the
outputs of neurons i and j, respectively, when processing the sample by the coupling weights wij of
the FCN. As a result, each neuron in the input layer of the FCN was assigned an R-score indicating the
effect of the corresponding gene’s expression on cancer-and-normal classification (see Fig. 1(a) and (b)
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Figure 1. Selection of LRP-candidate genes. (a) A simple four-layer FCN implements
a feedforward process (layer L0 to L3) to make classification of six cancer types and
normal based on gene expression. Each neuron in the posterior layer (e.g., green node)
generates an output yj by rectifying incoming signals yi from all neurons in the prior
layer (e.g., yellow node) with the coupling weights wij . (b) LRP implements a back-
propagation process (L3 to L0) to redistribute layer-wise relevance from the output of
the FCN to the input. A more effective contribution in the feedforward process (e.g.,
arrow from yellow node to green node in (a)) earns more feedback on the R-score Ri

in the backpropagation process (e.g., arrow from green node to yellow node in (b)). An
R-score calculated in the input layer of the FCN (R-score output) stands for the effect
of a gene’s expression on cancer-and-normal classification. (c) A schematic illustra-
tion shows the R-scores of genes for each sample (blocks in the left panel; red: high
R-scores; green: low R-scores). The R-scores are averaged sample-wise in order to fil-
ter out genes (gray blocks in the middle panel) that are significant in a sample. For a
specific gene, we count the rate of samples taken from a class, in which the signifi-
cance of the specific gene is identified (transform gray blocks in the middle panel into
color blocks in the right; long color blocks: high SR-sample rates; short color blocks:
low SR-sample rates). The maximal SR-sample rate is taken over all genes in a class
(down arrows in the right panel). The minimum of the maximal SR-sample rates is
taken across all classes (gray block in the lower right corner) and used as a threshold
to extract candidate genes (right arrows in the right panel) whose SR-sample rates in
at least one class are higher than the threshold. SR: significant relevance.

for an illustration). An R-score greater than 0 (resp., less than 0) means positive (resp., negative) effect,
and 0 indicates no effect.
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Figure 2. The flow chart for the gene reduction cycle. We start a cycle of gene re-
duction by initiating the candidate genes as all cancer-driving genes. It needs to pass
two examinations to support that cycle. The first examination is the training of FCNs
by the gene profiles of the candidate genes, which should attain a qualified validation
accuracy in cancer-and-normal classification (right diamond). The second examina-
tion is the exact reduction of the number of candidate genes implemented by the LRP-
candidate gene selection on the trained FCNs (left diamond). The cycle will terminate
and return a critical gene set of size less than σ. Here τ , κ, and σ denote the allowable
validation accuracy, the allowable number of repeats, and the number of critical genes,
respectively.

Instead of selecting genes with prescribed high R-scores (e.g., R-score > 0.5) as marker genes, we
used an R-score averaged across all genes in a sample to determine candidate genes having high gene
effects (see Algorithm 1 for details). Significant genes with higher R-score (greater than the average
R-score) in a sample were selected. So, genes in a sample were divided into significant and insignificant
groups. We applied this bisection strategy to all validation samples that were predicted correctly by
FCNs. To investigate the criticality of a gene for a class, the rate of validation samples in the class, in
which the gene is significant w.r.t. the average R-score, was counted. The higher the rate of samples
with significant relevance (SR-sample rate) to a gene, the more likely the gene is critical for the cancer
classification. We took theminimumof thesemaximal SR-sample rates in different classes as a threshold
and extracted candidate genes whose SR-sample rates are higher than the threshold (see Fig. 1(c) and
(d) for an illustration). This completed the selection of LRP-candidate genes.

Further, to match the importance of LRP-candidate genes to their contribution to classification, we
started the cycle of gene reduction that continued to reconstruct an FCN from LRP-candidate genes and
reselect LRP-candidate genes from the FCN (see Fig. 2 for an illustration). The gene reduction cycle was
terminated under two conditions. The first condition is the validation accuracy of the FCN less than
a threshold τ . The second condition happens when applying LRP to the reduction of LRP-candidate
genes. Here the allowable number of repeats to try for the same set of candidate genes was set to five
(κ = 5). After five trials with the same candidate gene set, we assumed that it is hard to reduce the
number of candidate genes by LRP. In short, the gene reduction cycle continues when LRP can reduce
the number of genes and keep a high validation accuracy of the FCN; otherwise, it returns a reduced
set of critical genes in the final step (see Algorithm 2 for details).

Note that, in Algorithm 1, the bisection strategy utilizes the average R-score to select LRP-candidate
genes across all genes in a sample. So the number of selected genes may be reduced roughly by half
in each running cycle. Furthermore, in contrast to the manual choice of a high R-score as a prescribed
threshold, the use of the average R-score provides a dynamic way to select candidate genes when the
number of genes decreases. Hence, in Algorithm 2, the gene reduction cycle can take this advantage
to represent a consolidation process searching a solution of the optimization problem: minimize the
number of critical genes that attain qualified cancer-and-normal classification.
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Algorithm 2. The cycle of gene reduction

Input: Samples of gene expression data are divided into different classes according to cancer types and
normal; An allowable classification accuracy τ ; An allowable number κ of repeats; An allowable
number σ of critical genes;

Output: A critical gene set of size less than σ and the associated FCN’s validation accuracy higher
than τ ;

1: Initialize the candidate genes, denoted candGenes, to be all the cancer-driving genes; Initialize the
critical genes, denoted critGenes, to be Null; Initialize nRepeat← 0;

2: while candGenes is not empty do
3: Train an FCN to classify samples into cancer types

and normal based on the expression of candGenes;
4: if the FCN’s validation accuracy ≥ τ then
5: Assign the candidate genes to the critical genes, i.e.,

critGenes← candGenes;
6: Apply the LRP-candidate gene selection to the FCN and get a new set of candidate genes

candGenes;
7: if ♯candGenes < ♯critGenes then
8: nRepeat← 0;
9: else if nRepeat < κ then
10: nRepeat += 1;
11: else
12: candGenes← Null;
13: if ♯critGenes > σ then
14: critGenes← Null;
15: end if
16: end if
17: else
18: candGenes← Null;
19: if ♯critGenes > σ then
20: critGenes← Null;
21: end if
22: end if
23: end while
24: return critGenes;

4. Results

This study required FCNs’ classification accuracies higher than τ = 0.935 and the critical gene set of
size less than σ = 30 in the cycle of gene reduction. We completed 125 trials of reduction simulations.
The numbers of critical genes obtained in those trials were slightly different (24 genes on average). Fig.
3 shows the heat map of the occurrence of critical genes in those trials. Of 716 cancer-driving genes,
14 were involved in more than 90% trials of simulations (>112 trials). It raised an interesting question
concerning the performance of genes highly involved in those trials. For simplicity, we named the
genes arranged from the top (involved in all those trials) to the bottom (involved in only one of those
trials) in Fig. 3 by the notations G1, G2, …, G51, respectively. In this order, we sequentially added a
gene to the training pool, constructed and trained a new FCN, and evaluated its validation accuracy.
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Figure 3. The heat map of the occurrence of critical genes in 125 trials of reduction
simulations. A colorful block of row i and column j represents the occurrence of genes
i and j in critical gene sets obtained from different trials (red: high occurrence; green:
low occurrence). Total 51 out of 716 cancer-driving genes are involved in at least one
trial (arranged in order of the occurrence times presented on the diagonal) and 14 are
involved in more than 90% trials of simulations (>112 trials, blue rectangle in the
upper left corner).

We followed those validation accuracies and found a gap within them (see Fig. 4 for an illustration).
We observed that FCNs’ validation accuracies were lower than 75% until we added G12 to the training
pool. Since then, the validation accuracies of FCNs were at the level of 93% no matter how we added
other genes to the training pool. Accordingly, we referred to genes G1, G2, …, G11 as the primary set
and genes G12, G13, …, G19 (for clarity, we chose only the first eight genes) as the complementary set.
Combinations of all genes in the primary set and at least one gene in the complementary set revealed
an alternative solution for qualified cancer-and-normal classification.

By dividing genes into two groups, we investigated which genes in the primary set can be further
removed or replaced by genes in the complementary set. The validation accuracies of FCNs trained
by all genes in the primary set P and one gene g in the complementary set were referred to as the
baseline performance. Then we removed a gene in the primary set (denoted the removed primary set as
P ′) and evaluated the validation accuracies of FCNs trained by P ′ plus g. By comparing the validation
accuracies of FCNs induced by P ′ plus g to the baseline performance induced by P plus g for all g taken
from the complementary set, we recognized that the removal of one gene from P to P ′ can increase,
slightly decrease, or seriously decrease the baseline performance of FCNs. These changes guided us to
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Figure 4. When sequentially adding a gene (from G1 to G19) to the training pool of
FCNs according to the order of its occurrence times listed in Fig. 3, we find the gap
(dashed line) following the validation accuracies of FCNs, which enforces us to separate
genes into the primary set and the complementary set.

a removal principle: a gene in the primary set can be removed if it causes an increase or only a slight
decrease in the baseline performance. To test this principle, we show in Table 3 that the removal of G3
increases the baseline performance by 15.67% on average. That guided us to set a refined primary set
by removing G3. Table 4 shows that the removal of G1 from the refined primary set slightly decreases
the baseline performance by 0.15% on average. Again, it guided us to remove G1 from that primary set.
We continued removing genes G5, G4, and G11, one by one, which caused a less than 0.3% decrease
in the baseline performance. Consequently, we got the final primary set containing only genes G2, G6,
G7, G8, G9, and G10. And the removal of any genes from that primary set caused a more than 1.6%
decrease in the baseline performance (see Table 5). In general, the removal of a gene q from the primary
set P can be formulated by P ′ = P \ {q}, where q is a minimizer of

φ(x) =
1

♯C
∑
g∈C

(Acc((P \ {x}) ∪ {g})− Acc(P ∪ {g})) (4.1)

such that minx∈P φ(x) > ε, where ε equals to −0.003 in this study, C is the complementary set, ♯C
denotes the number of genes in C, and Acc(·) is the validation accuracy of FCNs trained by the specified
genes.

So far, we removed genes from the primary set subject to an increase or a slight decrease in the
baseline performance of FCNs. We got the minimal primary set that can stably interact with a gene
in the complementary set for cancer-and-normal classification, resulting in the validation accuracy
of 93.91% on average. In particular, when interacting with the gene G13, we obtained the optimal
validation accuracy of 95.32%.

5. Discussion

Algorithms 1 and 2 allowed us to search groups of critical genes that had qualified performances in
cancer-and-normal classification. Those groups varied in size (24 genes on average) and the components
within. We ranked the appearance frequency of genes in those groups and constructed a series of FCNs
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Table 3. Removal of G3 from the Primary Set P11 = {G1, . . . ,G11}

Baseline Remove
Genes performance G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

P11∪{G12} 92.48% 92.24% 90.60% 92.17% 92.55% 92.67% 90.77% 90.87% 89.72% 90.92% 91.46% 92.48%
P11∪{G13} 73.69% 67.71% 74.65% 95.28% 70.67% 76.14% 71.87% 70.76% 77.39% 61.28% 76.69% 71.12%
P11∪{G14} 74.56% 66.77% 74.27% 94.97% 73.98% 78.19% 70.29% 73.30% 75.42% 62.84% 77.11% 69.93%
P11∪{G15} 70.35% 68.74% 69.02% 94.61% 71.07% 73.50% 66.76% 69.69% 69.97% 61.55% 70.92% 66.72%
P11∪{G16} 76.57% 68.39% 76.38% 94.73% 75.50% 78.60% 73.97% 75.29% 78.31% 69.95% 75.83% 75.25%
P11∪{G17} 90.44% 90.57% 89.47% 94.46% 89.90% 90.69% 87.80% 88.66% 87.87% 87.41% 88.83% 90.42%
P11∪{G18} 79.93% 74.33% 75.40% 95.28% 79.50% 83.45% 75.70% 75.30% 77.44% 70.81% 79.36% 76.39%
P11∪{G19} 73.13% 65.34% 73.87% 95.03% 73.24% 74.48% 68.52% 71.15% 73.65% 61.75% 73.00% 68.40%
Average removal effect: -4.63% -0.94% 15.67% -0.59% 2.07% -3.18% -2.02% -0.17% -8.08% 0.26% -2.56%

Table 4. Removal of G1 from the Primary Set P10 = P11 \ {G3}

Baseline Remove
Genes performance G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

P10∪{G12} 92.17% 91.28% 89.81% – 92.05% 92.25% 90.66% 91.03% 89.41% 90.34% 91.02% 92.30%
P10∪{G13} 95.28% 95.75% 91.70% – 94.69% 95.20% 93.64% 94.12% 93.49% 92.45% 94.17% 94.98%
P10∪{G14} 94.97% 94.65% 88.38% – 94.54% 94.59% 94.79% 94.65% 94.19% 93.01% 94.19% 94.49%
P10∪{G15} 94.61% 94.53% 85.56% – 93.97% 94.14% 93.00% 94.05% 93.30% 91.94% 92.90% 94.82%
P10∪{G16} 94.73% 94.97% 84.63% – 94.52% 95.05% 93.49% 94.40% 92.95% 91.62% 93.32% 94.52%
P10∪{G17} 94.46% 94.39% 92.05% – 93.78% 94.61% 92.19% 93.49% 92.54% 92.43% 93.48% 94.22%
P10∪{G18} 95.28% 95.09% 92.22% – 94.39% 94.48% 92.98% 95.05% 93.14% 92.70% 94.40% 94.46%
P10∪{G19} 95.03% 95.19% 87.42% – 94.84% 94.62% 93.80% 94.99% 93.00% 92.09% 93.45% 94.74%
Average removal effect: -0.15% -5.66% – -0.53% -0.26% -1.56% -0.66% -1.88% -2.56% -1.27% -0.32%

Table 5. Non-Removal of Genes from the Primary Set P6 = P11 \
{G3,G1,G5,G4,G11}

Baseline Remove
Genes performance G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

P6∪{G12} 91.12% – 88.84% – – – 86.80% 88.74% 87.40% 86.12% 88.71% –
P6∪{G13} 95.32% – 91.29% – – – 92.50% 92.98% 90.27% 90.47% 92.13% –
P6∪{G14} 94.29% – 80.52% – – – 92.20% 93.50% 91.73% 90.68% 92.55% –
P6∪{G15} 93.69% – 81.63% – – – 90.92% 92.70% 89.77% 89.81% 90.76% –
P6∪{G16} 94.77% – 87.41% – – – 92.00% 92.89% 89.84% 90.20% 91.93% –
P6∪{G17} 93.47% – 90.77% – – – 90.67% 90.60% 88.58% 90.51% 89.93% –
P6∪{G18} 94.17% – 86.71% – – – 91.53% 93.52% 90.20% 90.88% 91.60% –
P6∪{G19} 94.47% – 87.19% – – – 91.79% 93.56% 90.36% 90.76% 92.18% –
Average removal effect: – -7.12% – – – -2.86% -1.60% -4.14% -3.98% -2.69% –

according to this rank. We showed that the construction of FCNs by only a few top genes (in this study,
six in the primary set and one in the complementary set) retained a high validation accuracy. Table 6
shows the comparison of the number of extracted marker genes and the contributed accuracy in other
interpretable models.

Theminimization of the number of critical genes helped unlock their entwined interactions in cancer-
and-normal classification. A cross-evaluation process was performed on theminimal set of seven genes,
in whichwemay add or delete a gene from theminimal gene set to see its straight effects on other genes.
To see this, we first considered FCNs trained by the expression profiles of six genes G2 (GATA3), G6
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Table 6. Marker Genes and Their Contributed Accuracy
Interpretable Marker Contributed

model genes accuracy
[13] GA/KNN 20 87.6% (31C+1N)
[16] CNN/Grad-CAM 400 95.59% (33C)
[18] CNN/SA 2090 93.9–95% (33C+1N)

Our method FCN/LRP 7 95.32% (6C+1N)
C: cancer class; N: normal class

(NKX2-1), G7 (TPM3), G8 (MSN), G9 (PAX8), and G10 (NONO) in the minimal primary set. As illus-
trated in Fig. 5 (the first row), only two or three genes were highly related to one cancer type when
applying average R-scores to account for their significance (see Fig. 1 for the recall of the SR-sample
rates). After that, we constructed FCNs by adding one gene in the complementary set to the training
pool. Also, we computed their SR-sample rates and compared them to the results obtained previously
from the minimal primary set. Our focus was on how the addition of one gene to the training pool of
FCNs affects the SR-sample rates of other genes (all rows except the first row in Fig. 5). We hypothe-
sized that if the increase of the SR-sample rate caused by one additional gene α in the complementary
set (e.g., SR-sample rate > 50%) dramatically decreases the SR-sample rate of another gene β (e.g., a
more than 20% decrease) in the minimal primary set, then α may play a more dominant role than β
in classification. Or, in other words, the gene β may compensate for the knockout of α. Instead, we
hypothesized that if a gene β in the minimal primary set maintains high SR-sample rates regardless
of additional effects of any genes α in the complementary set (e.g., SR-sample rate > 50% and has no
more than 20% decreases), then the gene β has a true-positive influence on the classification of cancer.

We summarized the genes marked by the above two hypotheses. For BRCA, the genes G2 (GATA3)
and G7 (TPM3) attained more than 85% SR-sample rates and satisfied the second hypothesis. For KIRC,
the increases of SR-sample rates of additional genes G13 (NPM1), G14 (MET), and G16 (NACA) (resp.,
81.17%, 91.90%, and 89.55%) dramatically decreased SR-sample rates of G7 (TPM3) and G10 (NONO),
respectively, satisfying the first hypothesis. For LUAD, G6 (NKX2-1) and G7 (TPM3) maintained high
SR-sample rates (resp., 82.02% and 54.33% with no more than 5% decreases) regardless of additional
effects of any other genes, satisfying the second hypothesis. For PRAD, the increases of SR-sample rates
of G12 (KLK2) and G17 (SLC45A3) (resp., 69.54% and 78.73%) dramatically decreased SR-sample rates
of other genes, satisfying the first hypothesis. For THCA, G6 (NKX2-1), G8 (MSN), and G9 (PAX8) main-
tained high SR-sample rates (resp., 77.53%, 56.51%, and 57.95% with no more than 20% decreases)
regardless of additional effects of any other genes, satisfying the second hypothesis. For UCEC, G9
(PAX8) and G10 (NONO) maintained high SR-sample rates (resp., 81.43% and 69.47% with no more
than 18% decreases) regardless of additional effects of any other genes, satisfying the second hypoth-
esis. In comparison, Table 7 shows the genes marked by the above two hypotheses (denoted by H1
and H2, respectively), the ranks (in decreasing order) of average gene expression over all samples in a
cancer type, and the annotations in COSMIC related to those six cancer types. The genes marked by H1
and H2 had their ranking higher than 47 (G7) in BRCA, 55 (G14) in KIRC, 45 (G7) in LUAD, 2 (G17) in
PRAD, 25 (G6) in THCA, and 39 (G9) in UCEC, respectively. All of them were the top 10% genes in the
ranks, indicating their potential influence implicated in cancer. Notably, hypothesis H1 unraveled the
exchange of genes G13 (NPM1), G14 (MET), and G16 (NACA) by genes G7 (TPM3) and G10 (NONO) in
the classification of KIRC. It implied that some pairs of genes in the two exchangeable groups may have
similar effects on KIRC. Indeed, the annotations from COSMIC indicate the significant relations of G10
(NONO) and G14 (MET) to KIRC. Also, hypothesis H1 unraveled the exchange of G12 (KLK2) and G17
(SLC45A3) by other genes in the classification of PRAD. Here G12 (KLK2) and G17 (SLC45A3) were the
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Figure 5. Consider FCNs trained by the expression profiles of the six genes in themini-
mal primary set. We show in the first row the SR-sample rates of those six genes related
to six cancer types. Each cancer type has at most three genes of high SR-sample rates
(SR-sample rate > 50%). With the same six genes plus one additional gene selected
from the complementary set, we construct FCNs and count the related SR-sample rates
of those seven genes in six cancer types accordingly. We compare those SR-sample
rates and show the changes in the remaining rows. Here a jump from the bottom
(resp., the top) to the top (resp., the bottom) of a red bar (resp., a blue bar) indicates
an increase (resp., a decrease) in a gene’s SR-sample rate corresponding to the change
of FCNs trained by the expression profiles of six genes to seven genes. SR: significant
relevance.

top 2 genes in the expression rank of PRAD, whose significant relations to PRAD had been annotated
by the COSMIC Cancer Gene Census. On the other hand, hypothesis H2 unraveled the reliability of
genes in the classification of cancer. At least one of the genes marked by H2 in BRCA was annotated
with related breast cancer by the COSMIC Cancer Gene Census. Similar results were found in LUAD
and THCA, respectively, except for UCEC. Notice that the Cancer Gene Census annotated only 4.97%
of 723 genes with breast cancer, 4.56% with renal carcinoma, 9.12% with lung cancer, 3.87% with
prostate cancer, and 4.14% with thyroid cancer. The successful inference of the hypotheses H1 and H2
in cancer BRCA, KIRC, LUAD, PRAD, and THCA primes us the importance of G7 (TPM3), G9 (PAX8),
and G10 (NONO) in UCEC in future work.



42 S.-Y. HSU, M.-H. SHIH, W.-H. WU, H.-R. YAO, AND F.-S. TSAI

Table 7. Genes Marked by the Hypotheses H1 and H2

IDs Ensembl IDs Gene symbol Tier BRCA KIRC LUAD PRAD THCA UCEC Annotations in COSMIC
G2 ENSG00000107485 GATA3 1 H2* – – – – – Breast*

(14) (499) (571) (457) (417) (559)

G6 ENSG00000136352 NKX2-1 1 – – H2* – H2 – NSCLC*
(689) (710) (44) (633) (25) (567)

G7 ENSG00000143549 TPM3 1 H2 – H2* – – – Thyroid, NSCLC*
(47) (74) (45) (111) (83) (62)

G8 ENSG00000147065 MSN 1 – – – – H2 – –
(49) (16) (26) (101) (14) (49)

G9 ENSG00000125618 PAX8 1 – – – – H2* H2 Thyroid*
(631) (120) (611) (628) (20) (39)

G10 ENSG00000147140 NONO 1 – – – – – H2 Renal
(41) (47) (35) (42) (47) (30)

G12 ENSG00000167751 KLK2 1 – – – H1* – – Prostate*
(686) (698) (703) (1) (627) (672)

G13 ENSG00000181163 NPM1 1 – H1 – – – – –
(18) (11) (21) (18) (18) (18)

G14 ENSG00000105976 MET 1 – H1* – – – – Renal*
(415) (55) (59) (481) (42) (213)

G15 ENSG00000163902 RPN1 1 – – – – – – –
(30) (31) (27) (24) (29) (19)

G16 ENSG00000196531 NACA 2 – H1 – – – – –
(45) (38) (46) (29) (41) (33)

G17 ENSG00000158715 SLC45A3 1 – – – H1* – – Prostate*
(537) (529) (457) (2) (605) (537)

G18 ENSG00000169714 CNBP 1 – – – – – – –
(15) (14) (18) (11) (13) (13)

G19 ENSG00000167460 TPM4 1 – – – – – – –
(31) (54) (40) (57) (105) (38)

H1: the first hypothesis; H2: the second hypothesis; *: match annotations in COSMIC; Brackets: the expression rank of genes in cancer

6. Conclusion

FCNs trained by gene expression profiles were used to make classification of six cancer types and
normal. The expression profiles of multiple genes were essential to achieve qualified cancer-and-normal
classification. We proposed the LRP-candidate gene selection and the cycle of gene reduction to extract
gene sets of size as small as possible. The minimal gene set simplified allowable interactions among
genes and enabled us to explore their impact directly on cancer classification. Accordingly, we marked
genes that can be exchanged by other genes or have a reliable influence on classification of cancer.
Interactions of those marked genes in different types of cancer were recognized by FCNs theoretically,
which may help chart a new course to probe their biological information implicated in cancer.
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