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Abstract. We introduce a scalable algorithm for clustering lines and affine subspaces of fixed dimensions
via data reduction using a coreset approximating scheme. A key characteristic of the proposed algorithm
is exploiting a scatter-then-aggregate scheme for data partitioning, which allows to maintain a constant
coreset approximation size. This key feature enables a novel algorithm which streams as well as distributes
workload. We study how the proposed algorithm scales in a practical setting and compare it with other
clustering methods. Results of experiments executed on the PARAM supercomputer confirm that the time
complexity of algorithm is log-linear in problem size and decreases linearly as the number of processors
increase. Source code for the algorithm, the experiments, and other potential applications is provided.
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1. Introduction

1.1. Background. Clustering is a semi-century-old problem [7] for partitioning observations into
clusters. One of the industry-wide used algorithms for clustering is k-means, where each of the n
observations belongs to one of the k clusters with the nearest mean. k-medians clustering is a vari-
ation of the k-means algorithm, where instead of calculating the mean for each cluster to determine
its centroid, one calculates the median. This results in reducing total error over all the clusters. It is
widely used in statistics and data mining. A natural extension to this problem, called k-median for
lines, is replacing points with lines (or higher-dimensional structures such as vector spaces or sets). A
key characteristic of clustering algorithms for higher dimensional spaces is their time and space com-
plexity. Hence, existing clustering techniques that provide exact solutions are rendered moot when the
size of the problem is large.

With a trade-off between clustering accuracy and tractability, data reduction or summarization can
advocate a beneficial approach. By reducing a large dataset in a problem-dependent sense, we can use
existing algorithms so that they take up significantly less time and space in memory.

1.2. Literature review. There have been some developments in finding k-means and k-medians for
lines and other higher dimensional spaces in the past decade. Gao et al. [13] found a collection of
Euclidean balls that cover a set of lines and coin the usage of such class of clustering to incomplete
data. Perets [27] proved that the k-median problem for lines is NP-complete for a non-constant k. In
the ensuing years, heuristics were developed such as approximating the solution on the original data.
More prominently, Feldman et al. [11] provided a data reduction algorithm allowing one to use exact
algorithms on a reduced dataset. Recently, Marom et al. [20] discussed a streaming solution for k-means
clustering of lines. Statman et al. [30] shared a projective clustering algorithm for fixed dimensional
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affine subspaces using r-Lipschitz function as a distance measure. Jubran et al. [16] solved the problem
of k-means clustering of sets using coresets.

Line clustering algorithms have several important applications, especially in the field of computer
vision. Ommer et al. [23] provided a multi-scale object detection method using line clustering. Bazin
et al. [6] reported clustering parallel lines to find vanishing points, which is an important vision task.
Many researchers have developed Hausdorff distance based k-means variants. Zhou et al. [36] proposed
a clustering algorithm for spacial data mining using extended Hausdorff distance. Poggenhans et al.
[28] used line clustering to improve road feature detection. Recently, Li et al. [17] used clustering of
3D lines to classify fracture lines.

1.3. Motivation and work done. Although there have been numerous developments in clustering
or classifying multi-dimensional data (such as vectors, geometric lines, etc.), hardly any of them work
on scale, i.e., they fail to be directly deployed on multiple machines, possibly in a distributed setting.
The primary causes of this inability to scale are the volume of communication overheads—both the size
and frequency of data shared—and the inability to separate computationally intensive workloads into
smaller tasks. With the explosion of data, there has been a recent trend of developing k-means clus-
tering of such multi-dimensional data. For instance, Marom et al. [20] provided a streaming algorithm
for clustering big data lines. There are additional benefits of providing a polynomial time solution to
the k-lines clustering problem. Since most big data algorithms necessitate a space complexity linear
in problem size, the proposed solution can be used to cluster vast amounts of line data. Also, with
the advent of cloud computing, it is now possible to cluster and classify data on devices with limited
computational resources in real time.

Another benefit of research in this direction is the ability to work with incomplete data. Each data
point with incomplete or missing information can be modeled as a line or fixed dimensional affine
subspace. Such incomplete data points are encountered on a daily basis in various machine learning,
computer vision, and digital communication tasks and are mostly discarded, which may introduce bias
and affect the veracity of the results. As the size of data increases, even well-known statistical imputa-
tion measures fail to provide a real-time approximation. In fact, replacing missing data with substituted
values fails miserably when the degree of incompleteness improves [35]. However, assuming that such
data points belong to a common subspace, data reduction techniques coupled with subspace clustering
turn out to be an effective solution [29].

Since such clustering is essential to so many fields, there are algorithms that solve k-mean and k-
median problems for lines problem for a fixed dimension [27, 17] or for fixed centers (say k = 1, 2)
[13, 27]. Since the problem stems from k-means for points, the EM algorithm, RANSAC, and Lloyd’s
algorithm [4, 24] were used primarily. Recently there has been a shift to several heuristics—block
diagonalization, convolutional neural networks, deep learning—to solve variants of the problem such
as clustering subspaces [15, 19, 26], matrix completion [34, 22] and classification of incomplete data
[18, 31].

2. Preliminaries

The following list provides symbols being used throughout the article:
• L is the set of lines: {l : l ⊂ Rd}.
• n is the number of lines: |L| = n.
• d denotes the line dimensionality, i.e., l ∈ Rd.
• m is the reduced set (or coreset) size.
• k ∈ Z+ denotes the desired number of centers/means.
• P is the set of k-mean points.
• ϵ is the maximum permissible error.
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• w : Rd → R+ is the map of lines to a weight.
• p represents the number of parallel processors.
• Ts is the time taken for the serial algorithm.
• Tp is the time taken for the parallel algorithm.
• S denotes the speed-up metric for the parallel algorithm.
• E is the efficiency metric for the parallel algorithm.

Unless otherwise mentioned, all the sets are assumed to be a subset of Rd—the d-dimensional Eu-
clidean space. As with any other clustering algorithm, we begin by defining the distance metric used
in our algorithm.

Definition 2.1. (Manhattan distance). The Manhattan distance or l1 norm between two vectors p and
q in a d-dimensional vector space with a fixed Cartesian coordinate system is the sum of the lengths of
the projections of the line segment between the points onto the coordinate axes. Formally,

l1(p, q) = ∥p− q∥1 =
d∑

i=1

|pi − qi|.

Definition 2.2. (Cost). The cost/distance between a point x ∈ Rd and set of points P ⊂ Rd is defined
as

D2(x, P ) = infp∈P ∥x− p∥2,
where ∥ · ∥2 denotes the l2 norm. This notion of cost can be extend to a line l ⊂ Rd by

D2(l, P ) = infx∈lD2(x, P ).

Definition 2.3. (Manhattan cost). The Manhattan cost between a point x ∈ Rd and set of points
P ⊂ Rd is defined by

D1(x, P ) = infp∈P ∥x− p∥1,
where ∥ · ∥1 denotes the l1 norm. This cost, too can be extend to a line l ⊂ Rd by

D1(l, P ) = infx∈lD1(x, P ).

It is worth pointing out that the Manhattan cost is useful in computing the k-median.

Definition 2.4. (Weighted set). A weighted set of lines is a pair L′ = (L,w) where L is a set of lines
in Rd and w : L→ (0,∞) is a function that maps every l ∈ L to w(l) ≥ 0, called the weight of l.

Definition 2.5. (Coreset [3]). Let P ⊂ Rn be a set of points. A set of points Q ⊂ P is called coreset of
the original set P if Q approximates the shape of P in the sense that a smaller set size makes a complex
problem tractable using a computationally inefficient, polynomial-time algorithm. The solution for Q
is then translated to an approximate solution to the original point set P .

Coresets are widely used in computational geometry. Many natural geometric optimization problems
have coresets that approximate an optimal solution to within a factor of 1+ϵ, that can be found quickly
(in linear time or near-linear time), and that have size bounded by a function of 1/ϵ independent of
the input size, where ϵ is an arbitrary positive number or usually an error bound. The independence
between data cardinality and coreset size allows PCA [10], k-means clustering, or training an SVM [33]
on big data. Barger et al. [5] propose methods to find coresets for big sparse data. Feldman provides
a comprehensive survey [9] of designing coresets such that there is a provable tradeoff between their
size and approximation error.

Remark 2.6. Note that coresets are usually weighted sets.
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2.1. Problem formulation. The exact form of k-means and k-medians problems are given below.

Definition 2.7. (k-means for lines). A set of k centersP ∗ is called k-means for the setL ifP ∗ minimizes
the sum of squared distances over every line in L and its nearest center. Formally, P ∗ is a solution to

minimize Σl∈LD2(l, P )
subject to P ∈ Rd, w : Rd → R+.

Definition 2.8. (k-medians for lines). A set of k centers P is called k-medians for the set L if it min-
imizes the sum of Manhattan distance over every line in L and its nearest center. Formally, P is a
solution to

minimize Σl∈LD1(l, P )
subject to P ∈ Rd, w : Rd → R+.

The above two problems are readily solvable on commer2009multicial solvers, assuming the set of
lines L is small enough to be stored in memory. If L is exceedingly large (possibly an infinite stream
of lines), the idea is to use data reduction, essentially constructing a coreset and then applying the
approximate k-means approach.

Definition 2.9. (Approximate k-means for lines). Let L′ be a weighted coreset of L. A set of k centers
P̃ is called approximate k-means for the set L if P̃ minimizes the sum of squared distances over every
line in L′ and its nearest center. Formally, P̃ is the solution to

minimize Σl∈L′w(l)D2(l, P )
subject to P ∈ Rd, w : Rd → R+.

We note that there is a cost-to-running time trade-off in the exact algorithms. With a slight compro-
mise in cost, we can find an approximation of the set P ∗ given in Definition 2.7. Moreover, Marom et
al. [20] proved that a weighted subset of L, which is O(log n) in size, can effectively approximate the
set P ∗ up to a relative cost inaccuracy of ϵ.

3. The Algorithm

This section illustrates the distributed algorithm, which has a quasilinear1 time complexity in terms
of n and which scales well in a high-performance computing environment. If the set of lines L is very
large in size, input data partitioning turns out to be a suitable decomposition technique. Depending
upon the number of processors, set L is split into smaller subsets Li. Coresets Ci are generated from
lines Li using the streaming algorithm mentioned below. Finally, all the coresets are aggregated into a
single coreset.

The psuedo-code for finding approximate k-means for lines is given in Algorithm 1. In the pseudo-
code, CORESET(Li, k, m) denotes the streaming algorithm to generate a corset, provided by Marom et
al. [20], that gives an approximate solution to the k-means problem. The algorithm can be integrated
into architecture supporting a message-passing interface [12]. Also, SEND and RECEIVE are schedules
used for inter-process communication by the distributed computing architecture. The task dependency
graph of the algorithm is demonstrated in Figure 22.

Given that the running time of CORESET(Li, k, m) algorithm does not depend upon the distribution
of lines chosen, a static partitioning of data is suitable for the problem—constant batch sizes and batch-
processor mapping is computed a priori. Although communications, while merging the results, have an
m log n time complexity, merging coresets have anO(m2) time complexity. Hence, a dynamic mapping
scheme can cause unnecessary communication overheads pronounced as m increases.

1An algorithm is said to run in quasilinear or log-linear time if the time complexity of the algorithm, denoted by T (n), is
T (n) = O(n logk n) for some positive constant k.



SCALABLE CLUSTERING OF LINES 49

Algorithm 1: KLINES(L, k,m)

Input:
Set L of lines in Rd of size n
k ≥ 1, number of centers
m ≥ 1, coreset size
p ≥ 1, number of processors

Output: A weighted coreset P ∗, solution to the problem in Definition 2.9

1 Split the set L into p subsets Li such that
p⋃

i=1

Li = L

2 Distribute the sets Li among p processors
3 Do parallel: Rank i
4 Ci ← CORESET(Li, k,m)
5 for d← 1 to log2 p by 1 do
6 k← 1
7 while k ≤ p do
8 R← k // receiver processor
9 S ← k + 2d // sender processor

10 if i is R then
11 C ′ ← RECEIVE(S)
12 Ci ← Ci

⋃
C ′ // doubles the set size

13 Ci ← CORESET(Ci, k,m) // halves the set size
14 end
15 if i is S then
16 SEND(Ci, R)
17 end
18 k ← k + 2d

19 end
20 end
21 end
22 return C1 // Rank 1 process has final result

4. Theoretical Results

In this section, we share the analytical expressions of distributed algorithm time complexity, commu-
nication overhead, and scalability metrics. Firstly, we note that the serial solution provided by Marom
et al. [20] is

Ts = O(nm3d2k log n log k logm) + n log nm3dkO(k). (4.1)

The derivation of the expression of Ts is as follows. The CORESET(L,m,k) algorithm discussed in
Marom et al. [20] provides a weighted coreset (compressed set) by using three inner algorithms, viz.,

(i) CENTROID-SET (L): It provides the closest points between a set of lines that runs in O(n2d3)
time.

(ii) BI-CRITERIA-APPROXIMATION (L, m): It provides a bi-criterion (α, β) approximation of the
k-mean of L in O(nd2k log(k) +m2 log n) time.

(iii) LINES-SENSITIVITIES (L, b, k): It creates a sensitivity (and weight) function for the set of lines
which runs in O(nd2k log(k) log n) + ndkO(k) time.
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Figure 1. The figure shows the task dependency graph of Algorithm 1. Initially, the set
of lines L are sampled and distributed randomly to avoid bias in clustering. Since the
subset sizes are known a priori, we use a group communication, not a P2P communica-
tion, to distribute them using SCATTER command of MPI. Note that the

⊕
reduction

operator preserves the size of the coresets, which is in O(m3).

Assuming d << n, the cost of CENTROID-SET(L) is almost constant time since it is executed on
subsets of L, which are progressively smaller in size. Finally, from Algorithm 4, CORESET(L,m,k),
given in [20] its clear that the total time complexity is O(nd2k log(k) log n) + ndkO(k).

Moreover, each iteration of CORESET(Li, k, m) requires space complexity O(m3) during streaming.
Since coresets are merged and then halved, the total memory required for coresets is O(m3) during
aggregation.

Next, before providing any theoretical guarantee of the distributed algorithm, we need to find an
analytical expression of running time, Tp, of the distributed solution in terms of problem size n and
number of processors, p.

Theorem 4.1. The running time Tp of the distributed algorithm has an asymptotic time complexity of
O(np log

n
p ).

Proof. From the equation (4.1), we know the time complexity of the serial algorithm CORESET(Li, k,
m). We can get the expression of the distributed Algorithm 1 as

Tp =O
(
n
pm

3d2k log n
p log k logm

)
n
p log

n
pm

3dkO(k) + tm,

where tm denotes the time to merge the coresets. Note that each
⊕

operation (Steps 12 and 13 in
Algorithm 1) takes time

t⊕ = m+O
(
m2 n

p log
n
p

)
,

which is the sum of its inner atomic operations, i.e., union and compression, respectively. Since m,
coreset size, is kept fixed while merging and the aggregation operator forms a tree with a max depth
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around log p, the total time of merging is

tm = log p
(
m+O

(
m2 n

p log
n
p

))
.

Hence,

Tp =O
(
n
pm

3d2k log n
p log k logm

)
+ n

p log
n
pm

3dkO(k) +O
(
m2 n

p log p log
n
p

)
.

□

Since we are equipped with expressions of Ts and Tp, we first prove that the proposed algorithm is
cost-optimal.

Definition 4.2. (Cost optimality.) A parallel system is called cost-optimal if it solves a problem with a
cost proportional to the execution time of the fastest known sequential algorithm on a single processor.

Theorem 4.3. The solution discussed in Algorithm 1 is cost-optimal.

Proof. We note that the best serial solution (so far) for the k-means for lines problem is given by Marom
et al. [20], which has a time complexity of

Ts = O(n log n).

Also, the total time taken by the parallel solution is

Ttot = pTp = p O
(
n
p log n

)
= O(n log n).

Since both the time complexities are asymptotically equivalent, the parallel solution discussed in Algo-
rithm 1 is cost-optimal. □

Another important factor that decides the effectiveness of a distributed algorithm is the total over-
head.

Definition 4.4. (Total overhead To). The total overhead of a parallel system is the total time collectively
spent by all the processing elements over and above that required by the fastest known sequential
algorithm for solving the same problem on a single processing element.

Now we provide the expression of To for Algorithm 1.

Theorem 4.5. The total overhead To of the distributed algorithm has a time complexity of O(n log n
p ).

Proof. From Definition 4.1, we deduce that the time collectively spent by all the processing elements is

pTp =O
(
nm3d2k log n

p log k logm
)
+O

(
n log n

pm
3dkO(k)

)
+O

(
m2n log p log n

p

)
.

Hence,

To = pTp − Ts = O(nm3d2k log p log k logm) +O(n log pm3dkO(k)) +O(m2n log p log n
p ).

□

Lastly, we share results regarding the most common performance metrics for evaluating parallel
algorithms—speed-up and efficiency.

Definition 4.6. (Speed-up S). Speed-up is defined as the ratio of the time taken to solve a problem on
a single processing element to the time required to solve the same problem on a parallel computer with
p identical processing elements.

Definition 4.7. (EfficiencyE). Efficiency is defined as the ratio of speedup to the number of processing
elements p and is a measure of the fraction of time for which a processing element is usefully employed.
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Table 1. Running time for the serial algorithm Ts and the parallel algorithm Tp for
different number of processors. Note that there is almost a linear reduction on Tp as p
increases.

n Ts p = 2 p = 4 p = 8 p = 16 p = 32
Tp Tp Tp Tp Tp

512 2.398 1.99 1.287 1.24 1.267 1.497
2048 9.023 6.177 3.892 2.617 2.27 2.36
8192 36.007 21.965 11.76 6.917 4.812 3.735
32768 136.087 90.331 43.147 23.53 13.865 9.235
131072 605.8 336.9 170.3 90.1 50.57 31.43
262144 − − − − − 59.53

The analytical expressions for S and E of Algorithm 1 are found as follows. The speed-up S of
Algorithm 1 is calculated by

S =
Ts

Tp

= O(nm3d2k logn log k logm)+n lognm3dkO(k){
O(

n
pm

3d2k log
n
p log k logm)+O(

n
p log

n
pm

3dkO(k))+O(m2 n
p log p log

n
p )

}
= O(n lognkO(k)){

O(
n
p log

n
p )+O(

n
p log

n
p k

O(k))+O(
n
p log p log

n
p )

}
and if k is small enough, above expression can be approximated as

S ≈ O(n logn){
O(

n
p log

n
p )+O(n logn)+O(

n
p log p log

n
p )

} .
The efficiency E of Algorithm 1 is calculated by

E =
S

p
= O(n logn){

O(n log
n
p )+O(np logn)+O(n log p log

n
p )

} .
In the next section, the results confirm that S → p and E → 1 for Algorithm 1 as p increases.

5. Experimental Studies and Applications

In this section, we share experiments that verify the theoretical results mentioned in the previous
section. Also, we include two potential applications of k-means for line problems in machine learning
and matrix approximation. The accompanying source code is open and available at [2]. For ease of
use, we have created a Python package klines. The results are readily reproducible. The experiments
were carried out on the PARAM Shivay Supercomputer at the Indian Institute of Technology (BHU),
Varanasi, running a Linux – CentOS 7.6 – operating system with 40 parallel processing cores and a
total of 384 GB of DDR4 memory.

5.1. Scalabilitymetrics. This section illustrates computing k-means for OpenStreetMap (OSM) China
road dataset [1]. The results illustrate a log-linear decrease in time as the number of processors increases
and a linear increase in parallel computation time as the problem size increases. As an effect, the speed-
up is less pronounced as p increases—attributable to communication overhead. Table 1 lists the average
(mean of 5 readings) running time of the serial and parallel algorithm for different problem sizes and
processor count, where coreset size is m = 5, number of centers required is k = 3, among other
parameter settings (d = 2 and τ = 0.001). Table 2 lists the performance metrics, S and E over the
same configuration.
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Table 2. Comparing two fundamental metrics, speed-up S and efficiency E, for dif-
ferent number of processors. Note that S → p and E → 1 as n increases.

n Ts p = 2 p = 4 p = 8 p = 16 p = 32
S E S E S E S E S E

512 2.398 1.21 0.60 1.863 0.47 1.934 0.24 1.892 0.12 1.6 0.02
2048 9.023 1.46 0.73 2.318 0.58 3.447 0.43 3.975 0.25 3.823 0.12
8192 36.01 1.511 0.77 3.061 0.76 5.204 0.65 7.481 0.47 9.638 0.30
32768 136.09 1.639 0.82 3.152 0.79 5.779 0.72 9.809 0.61 14.726 0.46
131072 605.8 1.798 0.90 3.557 0.89 6.72 0.84 12.0 0.75 19.27 0.60

Table 3. Comparison of matrix completion algorithms with k-lines approach for dif-
ferent matrix sizes. Metrics used here are rank of the completion matrix and relative
norm difference. Matrix dimensions are n× d, where d = 10 fixed throughout.

Method n = 100 n = 1000 n = 10000
RMSE RMSE RMSE

kNN 0.094 0.110 0.109
Nuclear Norm [8] 0.081 − −
SoftImpute [21] 0.821 0.091 0.098
k-lines (ours) 0.133 0.192 0.214

5.2. Matrix completion. Matrix completion is the task of filling in the missing entries of a partially
observed matrix. It is an optimization problem where the objective is to fit a given matrix (the data)
and an approximating matrix (the optimization variable):

minimize rank(X)
subject to Xij = Mij ∀i, j ∈ E,

where X is a low-rank matrix, M is the matrix we wish to recover, and E represents the set of exact
values or observations. There are often constraints on the approximating matrix such as non-negativity
constraint, minimizing ∥Y −X∥F , or enforcing Hankel structure, where ∥ · ∥F is the Frobenius norm2.
Matrix completion has a lot of applications in machine learning, recommendation systems, natural

language processing, and digital signal processing.
Assuming that missing entries in an n × d partially observed matrix Y take real and continuous

values, completion of Y , with a fixed number of missing values (say j) per row vector is effectively a
k-means problem for j-dimensional affine spaces. Geometrically, each of the n incomplete row vectors
represent either a line (one missing entry), plane (two missing entries) or some higher dimensional
structure in Rd.

There are variety of matrix completion (or imputation) algorithms such as kNN (nearest neighbor
search), matrix factorization methods, SoftImpute [21], SVDImpute [32], Nuclear norm minimization
[8] and the recently developed BiScaler method [14]. Table 3 compares k-lines approach with other
algorithms for matrices of different dimensions. Note that nuclear norm minimization [8] results are
omitted since it is very slow—impractical to compute—on a single RAM, explaining the obvious trade-
off in accuracy vs time. Note that if ∥Y ∥2 is the norm of the complete matrix, then the relative mean
squared error, RMSE, is defined as

RMSE =
∥Y −X∥2
∥Y ∥2

.

2Frobenius norm for an m× n matrix A = (Aij)m×n is defined as ∥A∥F =
√∑m

i=1

∑n
j=1 |Aij |2.
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Table 4. Comparing clustering metrics, Homogeneity score H , Completeness score C ,
and V-measure (harmonic mean of H and C) for clustering of the two datasets. Metrics
range from [0, 1], and a value close to 1 desirable.

Metric Iris Synthetic
Scikit Ours Scikit Ours

H 0.588 0.421 0.815 0.338
C 0.579 0.453 0.815 0.335
V -measure 0.583 0.434 0.815 0.337

5.3. Clustering with missing values. Clustering is the task of dividing data points into groups so
that points in the same groups are more similar to each other than those in other groups. Over the years,
many algorithms have been developed to perform clustering tasks on incomplete and noisy datasets.
Minibatch variants of the k-means algorithm (often with a k-means++ [4] initialization step) have been
developed.

The k-means for lines can also categorize large noisy or incomplete data by computing k-centers
of the points in the data if there is at most a single missing entry in every data point. Table 4 com-
pares results of k-means clustering between k-lines approach and the popular Scikit-learn [25] machine
learning repository in Python. Apart from the well-known Iris dataset (metrics computed average of 20
iterations), a large synthetic dataset (N = 10, 000) was created using Scikit-learn (metrics computed
average of 5 iterations).

6. Conclusion and Future Work

We have provided a scalable algorithm for clustering of lines via coreset data reduction. The results
of the experiments confirm that the time complexity of the algorithm is log-linear in problem size and
decreases linearly as the number of processors increases. Despite the linear scalability, the algorithm
does not take into account the distribution of lines while making the input partitions. It would be
interesting to explore applications of coresets in fields that require processing big datasets (machine
learning) or necessitate time/space-intensive processes (deep learning). Coresets might also be suitable
for signal processing since the field lacks linear-time algorithms for applications such as computations
of FFT or wavelets.

An important future development can be k-means for fixed dimensional affine subspaces, which can
help in capturing multiple missing values in its applications. Also, the knowledge of the distribution
of lines can be leveraged to partition lines unequally (say based on density) and produce proportion-
ally sized coreset. Further, it would be interesting to explore task-based or hybrid partitioning, thus
assigning specific tasks to special processors (GPUs, CPUs, TPUs, etc).
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