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ABSTRACT. Parkinson’s disease (PD) is a progressive disorder that affects body movement, with postu-
ral instability contributing to fall risk. This study applies machine learning to assess whether postural
sway features derived from center-of-pressure (COP) data can differentiate PD stages classified by the
Hoehn and Yahr (H&Y) system. COP data from 32 PD patients (mean age 65.5 years, mean disease du-
ration 7.4 years) were collected during bipedal balancing on stable and unstable surfaces with eyes open
and closed. Thirteen time-domain features were extracted, and an extreme learning machine (ELM) was
trained to predict PD stages based on four metrics: accuracy, recall, precision, and F1-score. The features
were evaluated across nine cases with selective removal of specific COP variables. Results showed high
classification accuracy across all cases (over 80%), with Instance 3 achieving the highest accuracy (91.7%)
by excluding “mean velocity” in both sway directions under stable and unstable conditions. These find-
ings suggest that COP-based postural sway measurements can effectively indicate PD progression, with
specific variables reflecting distinct physiological mechanisms in postural control.

Keywords. Balance, Postural control, Posturography, Parkinsonism, Hoehn and Yahr, Extreme Learn-
ing Machine.
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1. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that significantly increases
disability and mortality rates with advancing age. This condition primarily results from the degen-
eration of dopamine-producing neurons in the substantia nigra pars compacta (SNpc) [7], leading to
dopamine deficiency in the nigrostriatal pathway. This deficiency manifests in motor symptoms such
as tremors, rigidity, bradykinesia, postural instability, hypomimia, micrographia, festination, shuffling
gait, dysarthria, and dystonia [7, 26]. The “TRAP” mnemonic-tremor, rigidity, akinesia, and postural
instability-serves as an early assessment tool in the differential diagnosis of PD [12]. Classifying PD’s
clinical stages, such as with the Hoehn and Yahr (H&Y) scale, helps evaluate the extent of a patient’s
disability, grading PD severity on a 1-5 scale [16]. Stages 1-3 indicate mild disability, allowing inde-
pendent living, while stages 4 and 5 reflect severe disability and reduced quality of life [16, 33].

Postural instability, a primary motor symptom of PD, leads to falls and loss of independence, be-
coming especially critical in later stages [26, 19]. Early postural instability, within three years of PD
diagnosis or before age 60, is a significant diagnostic marker [2]. Identifying and monitoring postural
instability early is essential to reduce the economic and emotional burden on patients and healthcare
systems [26]. However, subtle early-stage postural sway in PD (e.g., H&Y stage 1) is challenging to de-
tect visually, and PD diagnoses are often missed due to nonspecific symptoms [23]. A practical approach
to assessing postural control involves measuring postural instability through center-of-pressure (COP)
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data obtained from force platforms. These platforms provide posturographic data on ground reaction
forces and moments, represented as COP motions [10], which reflect neuromuscular control over the
body’s center of mass [10] and the myoelectric activities involved in maintaining balance [13, 29, 34, 20].

Accurate measuring instruments, such as force platforms, can detect postural control issues in PD
patients with mild symptoms, making COP-based postural sway variables a valuable biomarker of PD
progression [23, 3, 4]. While postural impairment is often analyzed through posturography, postural
sway features-such as time-domain, frequency-domain, and time-frequency measures-are used to eval-
uate postural control [10, 30, 31]. Previous studies indicate that time-domain features are particularly
effective in distinguishing PD patients from healthy older adults [11]. In this study, we focus on time-
domain features that estimate COP displacement or velocity from stabilograms, as these parameters
are thought to correlate with different physiological control mechanisms [9].

However, comparing outcomes across studies can be challenging due to the distinct physiological
mechanisms reflected in various sway measures. For example, COP velocity measures the average speed
of COP trajectory, playing a role in modulating myoelectric activity with feedback control [2, 24]. Sam-
ple entropy (SamEn), which measures the regularity of COP trajectory, reflects the complexity of quiet
standing postural control and irregular neuromuscular control strategies [1, 14]. Identifying effective
COP measures to differentiate PD clinical stages can be enhanced through machine learning techniques,
such as support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN), and neural
networks, which have been used in medical research [36, 18]. In this study, we utilize an “extreme
learning machine” (ELM), a feedforward neural network introduced by Huang et al. [17], chosen for its
fast learning speed, efficient convergence, robust generalization, and ease of implementation [5].

In summary, the current study aims to identify postural sway measures, based on COP variables, that
differentiate PD motor symptom stages using the H&Y system. By focusing on standard COP-based
time-domain variables and analyzing them with an ELM model, we aim to enhance the evaluation of
postural instability across PD stages.

2. MATERIALS AND METHODS

2.1. Secondary data analysis. The dataset used in this study consists of center-of-pressure (COP)
displacement data from 32 idiopathic PD patients (mean age 65.5 + 10.4 years; mean disease duration
7.4 = 4.6 years) [8]. The participants, comprising 8 females and 24 males, were recruited from local
communities and were on a stable dose of levodopa (L-dopa) for at least one month before data collec-
tion. They self-reported having no vestibular, visual, or somatosensory impairments, nor any additional
neurological or physical dysfunctions beyond Parkinson’s disease. Table 1 summarizes the participant
characteristics: age ranged from 44 to 81 years, height from 151.5 to 184.0 cm, body mass from 53.3
to 95.6 kg, BMI from 17.5 to 31.5 kg/m?, disease duration from 1 to 19 years, daily L-dopa equivalent
dose from 100 to 2,100 mg, and Hoehn and Yahr (H&Y) scale scores from 1 to 4. Data were gathered at
the Biomechanics and Motor Control Laboratory of the Federal University of ABC, Brazil. The study
protocol was approved by the local ethics committee, and all participants provided written informed
consent before data collection [8].

The measurement procedures are detailed in de Oliveira et al. [8]. Before testing, all participants
refrained from taking Parkinson’s medication for at least 12 hours. Each participant completed four
balancing conditions: standing on a rigid surface with open eyes, on a rigid surface with closed eyes,
on an unstable surface with open eyes, and an unstable surface with closed eyes. Each condition lasted
30 seconds and was repeated three times, with the order randomized across participants. For the rigid
surface trials, participants stood directly on a 40 x 60 cm force platform (OPT400600-1000; AMTI, Water-
town, MA, USA). Participants stood on a 6-cm-high foam pad (Balance Pad Elite, Airex AG, Switzerland)
for the unstable surface trials atop the force platform.
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TaBLE 1. The characteristics of the participants

Subject | Gender | Age | Height | Weight | BMI Disease L-dopa equivalent units
ID (years) | (cm) (kg) | (kg/m?) | duration (years) | (mg/day) | H&Y scale
1 Male 46 171 61.5 21.0 8 600 2
2 Female 53 170 62.6 21.6 4 275 1
3 Female 44 157 53.3 21.6 14 665 2
4 Male 50 176 73.6 23.8 5 2100 2
5 Male 53 167 77.2 27.7 14 950 2
6 Male 53 178 55.3 17.5 8 500 2
7 Male 57 173.5 57.7 19.2 4 1000 2
8 Male 60 179 92.5 28.9 5 750 3
9 Male 61 180 68.7 21.2 10 800 2
10 Male 62 166.5 57.4 20.7 7 610 2
11 Male 62 177 95.6 30.5 5 1100 2
12 Male 69 165 76.5 28.1 1 770 2
13 Male 69 182 71.2 21.5 4 550 2
14 Male 70 162 71.8 27.4 4 500 2
15 Male 71 179 72.8 22.7 2 400 2
16 Male 73 168 79.0 28.0 3 400 2
17 Male 74 165 62.2 22.9 12 750 2
18 Male 76 167 65.4 23.4 11 500 2
19 Female 77 151.5 60.2 26.2 15 100 2
20 Male 77 184 83.0 245 13 366 2
21 Female 78 165 70.8 26.0 6 700 2
22 Female 53 155 57.6 24.0 5 664 3
23 Male 60 175 77.1 25.2 7 900 3
24 Male 65 168 89.0 31.5 15 766 3
25 Male 66 168 60.0 21.3 8 1000 3
26 Male 68 169 68.9 24.1 19 1664 3
27 Male 68 161 63.9 24.7 4 300 3
28 Male 74 179 94.6 29.5 3 250 3
29 Female 78 158 64.8 25.9 3 500 3
30 Male 81 154.5 65.7 27.5 4 866 3
31 Female 82 160 72.1 28.1 5 300 3
32 Female 66 168 87.0 30.8 10 600 4
Mean 65.5 168.7 70.9 249 7.4 693.6
SD 10.4 8.6 11.7 3.6 4.6 399.6

Participants stood barefoot, keeping as still as possible with arms at their sides, focusing on a 5-

cm black target positioned on a wall 3 meters away at eye level. For closed-eye trials, participants
initially looked at the target with their eyes open to find a stable posture, then closed their eyes for the
prosecution. For all trials, they stood with feet positioned at a 20-degree angle and heels spaced 10 cm
apart, as illustrated in Duarte et al. [10]. After each trial, participants were assisted in stepping off the
platform and given a one-minute rest before the subsequent trial.

The center-of-pressure (COP) signals for both anteroposterior (ap) and mediolateral (ml) directions
were calculated using a standard formula [32] and smoothed with a 10 Hz, fourth-order, zero-lag low-
pass Butterworth filter [8]. Figure 1 displays example stabilograms from a female PD patient at H&Y
stage 1, illustrating the postural sway displacements observed while maintaining balance.
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FIGURE 1. Stabilogram examples of bipedal balancing on (A) a rigid surface and (B) an
unstable surface, with both open and closed eyes. Note: The COP data shown were
obtained from a female PD patient at H&Y stage 1.

3. COP-BasED VARIABLE COMPUTATION

Two time-domain COP-based variables were calculated to assess postural control ability using a
custom MATLAB™ program (MathWorks, Inc., Natick, MA). First, five variables were computed indi-
vidually for the anteroposterior (COP,,) and mediolateral (COPy,;) directions: amplitude displacement
(AmpDis) as a measure of COP displacement distance [10], mean velocity (MV) for average COP tra-
jectory speed [10], sample entropy (SamEn) as a measure of COP trajectory regularity [1], standard
deviation (SD) for COP displacement variability [10], and root mean square (RMS) to quantify COP tra-
jectory amplitude [10]. Second, three variables were derived from combined COP,, and COP,, signals:
total sway displacement (TSD) indicating COP displacement frequency, total mean velocity (TMV) for
overall COP trajectory velocity [10], and 95% ellipse area (95%EllipseArea) representing COP trajectory
dispersion within 95% of the sway area [9]. A total of thirteen COP-based variables were computed per
balancing trial for each participant. Each variable was calculated three times, and the average values
were used in subsequent classification analyses.
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3.1. Classification models. For H&Y classification, the inertial Mann forward-backward splitting al-
gorithm developed by Peeyada et al. [27], based on the extreme learning machine (ELM) framework
[17], was employed to train the model and determine the optimal output weight-the hidden layer, con-
sisting of 250 nodes, processed input features using sigmoid activation functions. The training dataset
included 32 cases, each labeled according to four stages of the Hoehn and Yahr (H&Y) scale [16]: stage
1 representing unilateral involvement with minimal or no functional disability; stage 2 indicating bilat-
eral or midline involvement without balance impairment; stage 3 signifying bilateral disease with mild
to moderate disability and impaired postural reflexes, though still physically independent; and stage 4
indicating bilateral disease with severe disability and impaired postural reflexes while remaining phys-
ically independent. The dataset was split into training and testing sets in a 70:30 ratio for machine
learning implementation. Each case in the dataset included a sample identifier, 13 variables, and four
conditions, as detailed in Table 2.

TABLE 2. Overview of the 13 variables with four balancing conditions for each case.

Condition | Variable | Description Mean SD [CV (%) | Min | Max
RC1 COPap_AmpDis 22.1 8.9 40.0 8.6 45.2
RC2 COPml_AmpDis 6.8 4.0 58.9 3.0 19.5
RC3 COPap_-MV 11.6 7.9 67.6 4.6 44.4
RC4 COPmlI_MV 5.5 5.8 105.2 1.3 28.0
RC5 COPap_SamEn 2.1 0.6 29.5 1.2 3.6
RC6 COPml_SamEn 1.2 0.5 46.0 0.5 2.6
RC RC7 COPap_SD 4.0 1.6 39.0 1.5 9.2
RCS8 COPml_SD 1.2 0.6 52.9 0.5 2.9
RC9 COPap_RMS 4.0 1.6 39.0 1.5 9.2
RC10 COPml_RMS 1.2 0.6 52.9 0.5 2.9
RC11 COP_TSD 10430.9 | 4079.8 39.1 3842.3 | 23650.0
RC12 COP_TMV 13.9 10.0 71.5 5.7 51.1
RC13 COP_95%EllipseArea 91.8 79.5 86.6 12.3 321.4
RO1 COPap_AmpDis 18.2 6.2 33.8 9.3 33.3
RO2 COPml_AmpDis 6.3 3.1 48.8 2.7 17.7
RO3 COPap_-MV 8.9 5.7 63.7 4.2 35.1
RO4 COPml_MV 4.7 3.8 80.2 1.3 17.6
RO5 COPap_SamEn 1.8 0.4 23.1 1.3 2.8
RO6 COPml_SamEn 1.1 0.5 39.4 0.5 24
RO RO7 COPap_SD 3.6 1.3 36.5 1.7 6.8
RO8 COPml_SD 1.1 0.5 46.5 0.5 3.0
RO9 COPap_RMS 3.6 1.3 36.5 1.7 6.8
RO10 COPmI_RMS 1.1 0.5 46.5 0.5 3.0
RO11 COP_TSD 9473.6 | 3319.1 35.0 4669.9 | 1745.9
RO12 COP_TMV 11.0 6.8 62.1 4.9 39.7
RO13 COP_95%EllipseArea 75.6 54.3 71.9 18.6 226.7
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Condition | Variable | Description Mean | SD | CV (%) | Min Max
UC1 COPap_AmpDis 58.9 14.1 24.0 36.7 89.3
uc2 COPml_AmpDis 30.8 17.0 55.1 3.8 79.6
ucCs3 COPap_-MV 30.0 11.5 38.2 17.5 65.4
ucC4 COPml_ MV 12.5 8.0 63.5 1.3 35.0
ucCs COPap_SamFn 2.3 0.5 21.8 1.4 3.5
UCe6 COPml_SamEn 1.3 0.6 43.6 0.2 24
ucC ucC7 COPap_SD 10.9 2.4 21.9 6.5 15.4
ucCs COPml_SD 5.8 31 53.6 0.7 14.8
uc9 COPap_RMS 10.9 2.4 21.9 6.5 15.4
UC10 COPml RMS 5.8 31 53.6 0.7 14.8
UC11 COP_TSD 32053.1 | 8952.8 27.9 18621.6 | 55325.6
UC12 COP_TMV 35.0 14.1 40.4 18.2 80.6
UC13 COP_95%EllipseArea | 1249.1 | 911.6 73.0 66.9 4187.0
UOo1 COPap_AmpDis 40.0 10.6 26.5 23.3 67.4
uo2 COPml_AmpDis 221 12.5 56.4 2.2 57.0
UO3 COPap_-MV 18.4 8.0 43.2 7.6 46.6
UO4 COPml_ MV 9.0 6.4 71.5 1.0 28.7
UO5 COPap_SamFEn 1.8 0.5 25.9 1.0 3.2
[8[0)3 COPml_SamEn 1.1 0.5 48.1 0.2 2.1
uo Uo7 COPap_SD 7.5 2.0 26.3 4.5 12.4
Uos8 COPml_SD 4.3 2.4 55.1 0.5 10.7
U09 COPap_RMS 7.5 2.0 26.3 4.5 12.4
U010 COPml RMS 43 2.4 55.1 0.5 10.7
U011 COP_TSD 22463.5 | 7253.7 32.3 11710.0 | 38373.4
U012 COP_TMV 22.2 10.7 48.1 8.7 59.7
U013 COP_95%EllipseArea | 646.1 523.5 81.0 36.4 2063.9

Note: RC = balancing on a rigid surface with closed eyes; RO = balancing on a rigid
surface with open eyes; UC = balancing on an unstable surface with closed eyes; UO =
balancing on an unstable surface with open eyes; CV = coefficient of variation (%); and
SD = standard deviation.

In this study, the effectiveness of machine learning techniques is evaluated using four metrics: Ac-
curacy, Recall, Precision, and F1-score. Accuracy measures the algorithm’s ability to classify cases into
their respective categories. Recall (or sensitivity) indicates the proportion of instances from a particular
class that are correctly identified. Precision assesses the reliability of optimistic predictions made by
the algorithm. Finally, the F1-score, the harmonic mean of precision and recall, provides an overall
performance rating. The definitions and formulations of these four metrics are as follows [17]:

TP+TN
A = 1 1
ccuracy (%) TPTFPLTN LT FN x 100, (1)
Precision (%) = TPLFP x 100, 2)
Recall (%) — Zﬁipm X 100, (3)
2 X (Precisi Recall
Fl-score (%) — 2> (Precision x Recall) - @)

Precision + Recall
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Additionally, a confusion matrix is presented to show the relationship between actual and predicted
classes: T'P (True Positive) for correctly classified cases, TN (True Negative) for correctly identified
negatives, F'P (False Positive) for incorrect classifications marked as positive, and F' N (False Negative)
for incorrect classifications marked as negative. The multi-class cross-entropy loss is used in multi-
class classification as follows: where 37 is 0 or 1, indicating whether the class label j is the correct
classification, and 7’ is a probability of a class 3/, and N is the number of scalar values in the model
output.

N
1 , .
Loss = — 5> 1; ¥ log(§) (5)
‘]:

The training dataset was divided into nine scenarios based on two types of time-domain COP-based
variables, with a maximum training limit of 1,000 iterations. In Instance 2-6, individual variables were
calculated for both COPap and COPml directions. Furthermore, variable removal was performed for
both COPap (related to ankle muscle control) and COPml (related to hip and trunk muscle control) [15],
considering both stable and unstable surfaces to assess postural control [6].

Instance | Variables Removed

1 All data
RCI1, RC2, RO1, RO2, UC1, UC2, UO1, UO2 were removed
RC3, RC4, RO3, RO4, UC3, UC4, UO3, UO4 were removed
RC5, RC6, RO5, RO6, UC5, UC6, UOS5, UO6 were removed
RC7, RC8, RO7, ROS, UC7, UCS8, UO7, UO8 were removed
RC9, RC10, RO9, RO10, UC9, UC10, UQ9, U010 were removed
RCI11, RO11, UC11, UO11 were removed
RCI12,RO12, UCI12, UOI12 were removed
RCI13, RO13, UC13, UO13 were removed

oo | | =W

3.2. Results. Table 3 presents the results obtained for the classifiers, detailing Training Time, Preci-
sion, Recall, F1-score, and Accuracy for individual Parkinson’s cases when specific COP-based variables
are selectively excluded. Overall, all cases achieved high accuracy levels, exceeding 80%. Notably, In-
stance 3 reached the highest accuracy of 91.7% when the variable “mean velocity” (MV) was excluded
from the COP,;, and COP,, directions. Additionally, training and validation loss and training accuracy
indicate no overfitting in the data, as illustrated for Instance 1-3 in Figure 2, Instance 4-6 in Figure 3,
and Instance 7-9 in Figure 4.

TaBLE 3. The performance in training Parkinson’s data of all cases.

Instance | Training Time (s) | Precision | Recall | F1-score | Accuracy
1 0.514 85.0 85.4 85.2 87.5
2 0.615 85.0 85.4 85.2 87.5
3 0.595 91.7 91.7 91.7 91.7
4 0.588 85.0 85.4 85.2 87.5
5 0.604 85.0 85.4 85.2 87.5
6 0.587 85.0 85.4 85.2 87.5
7 0.646 85.0 85.4 85.2 87.5
8 0.581 85.0 85.4 85.2 87.5
9 0.620 85.0 85.4 85.2 87.5
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FIGURE 2. Graphs of training and validation loss alongside training accuracy of In-
stance 1, Instance 2, and Instance 3.
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FIGURE 4. Graphs of training and validation loss alongside training accuracy of In-

stance 7, Instance 8, and Instance 9.

3.3. Comparison of machine learning methods. Table 4 presents a comparison of the highest accu-
racy achieved by various machine learning methods, including logistic regression kernel, boosted trees,
support vector machines (SVM), k-nearest neighbors (KNN), and the method developed by Peeyada et

al. [27].

3.4. Discussion. In this study, extreme learning machine (ELM) methods were used to identify which
time-domain COP-based variables most effectively classify Parkinson’s disease (PD) stages of motor
symptoms according to the Hoehn and Yahr (H&Y) scale. Thirteen COP-based variables were tested
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TaBLE 4. Comparison of highest accuracy achieved by various machine learning meth-
ods on the Parkinson’s Disease dataset.

Instance | Logistic Regression Kernel | Boosted Trees | SVM | KNN | Peeyada et al. [27]
1 78.1 59.4 81.2 | 75.0 87.5
2 81.2 59.4 81.2 | 75.0 87.5
3 75.0 59.4 84.4 | 75.0 91.7
4 75.0 59.4 81.2 | 71.9 87.5
5 78.1 59.4 81.2 | 75.0 87.5
6 78.1 59.4 81.2 | 75.0 87.5
7 78.1 59.4 81.2 | 75.0 87.5
8 78.1 59.4 81.2 | 75.0 87.5
9 78.1 59.4 84.4 | 75.0 87.5

across six cases, each with a subset of time-domain COP variables removed. Results indicate that ap-
plying machine learning to COP-based postural sway measures can accurately distinguish PD stages
(¢ 80%) in all cases, highlighting posturography’s sensitivity to balance control differences across H&Y
stages in PD patients.

Although all time-domain COP features contribute to detecting balance impairment and differen-
tiating H&Y stages, Instance 3, where“mean velocity” was excluded from individual COP directions,
achieved the highest classification accuracy. This suggests that sway amplitude measures (e.g., sway
range, path length, and area) are more robust predictors for PD stage differentiation than directional
sway velocity measures. Typically, mean sway velocity is calculated by summing the distance between
consecutive COP points over time for both anteroposterior and mediolateral components, indicating
postural control efficiency, where lower velocities suggest better control [11]. However, in this study,
Instance 3’s “mean velocity” exclusion led to the highest predictive accuracy for PD stages, implying
that sway velocity may be less sensitive to progressive postural instability in PD. Previous research
supports this observation; for example, a 12-month study [21] showed that treatment for PD had min-
imal impact on sway velocity. Additionally, a survey of levodopa’s effects on postural sway reported
no significant difference between off- and on-levodopa conditions [3].

These findings suggest that time-domain COP features are valuable for assessing PD stages, as they
reflect postural sway through metrics easily interpreted by displacement or velocity relative to the sta-
bilogram’s center [28]. For instance, COP path length quantifies two-dimensional displacement magni-
tude and indicates that shorter paths correlate with better stability [11]. The 95% ellipse area, covering
the central sway area in both directions, further assesses postural stability, with smaller regions indi-
cating better postural performance [11].

This study has limitations, including a small sample size that may affect generalizability. Also, pos-
tural sway abnormalities may appear in PD before clinical symptoms and levodopa treatment initiation
[22, 35, 25]. Since these findings reflect postural assessment at a single time point in an off-levodopa
condition, further research could identify which posturographic metrics are most responsive to reha-
bilitation.

4. CONCLUSIONS

These findings highlight the value of time-domain features derived from posturographic (COP) data
in distinguishing motor dysfunction stages in individuals with PD. The study examined two categories
of COP-based variables: those calculated independently for each sway direction (such as amplitude
displacement, mean velocity, sample entropy, standard deviation, and root mean square) and those
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derived from combined sway directions (including total sway displacement, total mean velocity, and
95% ellipse area). Overall, when combined with a machine learning approach, the proposed postural
sway features show strong potential for clinical use in accurately predicting PD stages, achieving over
80% accuracy. Notably, excluding mean velocity parameters yielded the highest classification accuracy
(91.7%) for distinguishing between PD stages.
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