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Abstract. In this paper, we first introduce a viscosity iteration method for finding a common solution
of a countable family of quasi-variational inclusion problems, an equilibrium problem (for short, EP)
and a fixed-point problem of a nonexpansive mapping on Hadamard manifolds. Then, under some mild
conditions, we prove that the iterative sequence generated by the suggested algorithm converges to a
common solution. As applications, we utilize our main result to deal with the minimization problem
with EP constraint and the variational inequality problem with EP constraint on Hadamard manifolds,
respectively.
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1. Introduction

In the early 1960s, Hartman and Stampacchia [25] first introduced and considered variational in-
equalities, which have been extended and generalized in several directions for studying a wide class
of equilibrium problems arising in financial, economics, transportation, elasticity, optimization, pure
and applied sciences. This field is dynamic and is experiencing an explosive growth in both theory and
applications: as a consequence, within the period of past 20 years, a large number of results have been
established for the existence and algorithm study of variational inequalities, related optimization prob-
lems and related fixed-point problems; see, e.g., [4]–[20],[23, 26, 31, 32, 34, 40, 41] and the references
therein.

Suppose that C is a nonempty subset of a Hadamard manifold M. Consider the following equilib-
rium problem (EP) of finding x∗ ∈ C such that

Φ(x∗, y) ≥ 0 ∀y ∈ C, (1.1)
where Φ : C × C → R (:= (−∞,∞)) is an equilibrium bifunction. Calao et al. [22] first studied the
existence of an equilibrium point for the bifunction Φ, and applied their results to solve mixed varia-
tional inequalities, fixed point problems and Nash equilibrium problems on M. Via Picard’s iteration
approach they designed an iterative algorithm for finding a solution of EP (1.1). Later, Wang et al. [37]
found out some gaps in the existence proof for mixed variational inequalities and the domain of the
resolvent involving EP (1.1) in [22].

Recently, Ansari et al. [2] and Al-Homidan et al. [1] investigated the problem of finding an element
x∗ ∈ Fix(S) ∩ (A + B)−10, where S is a nonexpansive mapping, B is a maximal monotone vector
field and A is a continuous and monotone vector field on a Hadamard manifold M. They invented
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some Halpern-type and Mann-type iteration methods. Under some suitable conditions, they proved
the convergence of the sequences generated by the suggested algorithms to a common solution of the
fixed-point problem (FPP) of S and the variational inclusion problem (VIP) for A and B.

On the other hand, suppose that C is a nonempty closed and bounded geodesic convex subset of a
Hadamard manifold M, TΦ

r : M → C is the resolvent of equilibrium bifunction Φ for r > 0, and the
exp−1

x is the inverse of the exponential map expx : TxM → M at x ∈ M. Very recently, Chang et al.
[21] studied the problem of finding an element

x∗ ∈ Ω := Fix(S) ∩ EP(Φ) ∩ (
N⋂
i=1

(Ai +B)−10),

where Fix(S) is the fixed-point set of a quasi-nonexpansive mapping S : C → C , EP(Φ) is the set
of equilibrium points of Φ, B : C → 2TM is a maximal monotone vector field, Ai : C → TM is a
continuous and monotone vector field for i = 1, ..., N , and

⋂N
i=1(Ai + B)−10 is the set of common

singularities of a system of quasi-variational inclusion problems. They suggested the following splitting
iterative algorithm, that is, for any given x0 ∈ C , {xn} is the sequence constructed by

uin = JB
λ expxn

(−λAixn), i = 1, 2, ..., N,

yn = Suinn with in ∈ {1, 2, ..., N} s.t. d(uinn , xn) = max
1≤i≤N

d(uin, xn),

xn+1 = expxn
αnexp

−1
xn

(TΦ
r yn) ∀n ≥ 0,

(1.2)

where {αn} ⊂ (0, 1), αn → 1,
∑∞

n=0(1 − αn) = ∞, and JB
λ expI(−λAi) : C → M is the mapping

defined by B, Ai and λ > 0 for i = 1, 2, ..., N . Under some appropriate conditions they proved the
convergence of the sequence {xn} generated by (1.2) to an element x∗ ∈ Ω.

Let C be a nonempty closed and geodesic convex subset of a Hadamard manifold M, S : C → C be
a nonexpansive mapping, Φ : C × C → R be an equilibrium bifunction, B : C → 2TM be a maximal
monotone vector field, and Ai : C → TM be a continuous and monotone vector field for each i ≥ 0.
Inspired and motivated by the above research works, we are devoted to studying the problem of finding
an element

x∗ ∈ Ω := Fix(S) ∩ EP(Φ) ∩ (

∞⋂
i=0

(Ai +B)−10), (1.3)

where Fix(S) is the fixed-point set of S, EP(Φ) is the set of equilibrium points of Φ, and
⋂∞

i=0(Ai +
B)−10 is the set of common singularities of a countable family of quasi-variational inclusion problems.

The purpose of this paper is to study the iterative algorithms for finding a solution of problem (1.3)
without the boundedness assumption of C . We suggest a viscosity iteration method and prove the
convergence of the sequence generalized by the designed algorithm to a solution of problem (1.3). As
applications, we utilize our main result to deal with the minimization problem with EP constraint and
the variational inequality problem with EP constraint on Hadamard manifolds, respectively. Our main
result improves, extends and develops Chang et al. [21, Theorem 3.1] in some aspects.

2. Preliminaries

First of all, we recall some notations, definitions and basic properties on the geometry of manifolds,
which can be found in many introductory books on Riemannian and differential geometry (see, e.g.
[35]).

Let M be a finite dimensional differentiable manifold. Suppose that for x ∈ M, TxM is the tan-
gent space of M at x, which is a vector space of the same dimension as M. We denote by TM =⋃

x∈M TxM the tangent bundle of M, which is naturally a manifold. An inner product Rx(·, ·) on
TxM is called a Riemannian metric on TxM. A tensor field R(·, ·) is said to be a Riemannian metric
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on M if for every x ∈ M, the tensor Rx(·, ·) is a Riemannian metric on TxM. The corresponding
norm to the inner product Rx(·, ·) on TxM is denoted by ∥ · ∥x. We omit the subscript x if there is
no confusion. A differentiable manifold M endowed with a Riemannian metric R(·, ·) is called a Rie-
mannian manifold. Let γ : [0, 1] → M be a piecewise smooth curve joining x to y (i.e., γ(0) = x and
γ(1) = y). Then the length of γ is defined as

l(γ) =

∫ 1

0
∥γ′(t)∥dt.

The Riemannian distance d(x, y), which induces the original topology on M, is defined by the minimal
length over the set of all such curves joining x to y. A Riemannian manifold M is complete if, for any
x ∈ M, all geodesics emanating from x are defined for all t ∈ R := (−∞,∞). A geodesic joining x to
y inM is known as a minimal geodesic if its length equals d(x, y). A Riemannian manifoldM endowed
with Riemannian distance d is a metric space (M, d). By Hopf-Rinow Theorem [35], we know that, in
case M is complete, any pair of points in M can be joined by a minimal geodesic. Moreover, (M, d) is
a complete metric space and any bounded closed subsets are compact. Given a complete Riemannian
manifold M, we define the exponential map expx : TxM → M at x by

expxv = γv(1, x) ∀v ∈ TxM,

where γ(·) = γv(·, x) is the geodesic starting from xwith velocity v, i.e., γv(0, x) = x and γ′v(0, x) = v.
Then, expxtv = γv(t, x) for each real number t. It is clear that expx0 = γv(0, x) = x, where 0 is the
zero tangent vector. It is worth mentioning that the exponential map expx is differentiable on TxM
for each x ∈ M.

A complete simply connected Riemannian manifold of nonpositive sectional curvature is called a
Hadamard Manifold. In the rest of this paper, unless otherwise specified, we always assume that M is
a finite dimensional Hadamard Manifold.

We recall the following fact. For any two points x, y ∈ M, we know from [35] that there exists a
unique normalized geodesic γ : [0, 1] → M joining x = γ(0) to y = γ(1), which is actually a minimal
geodesic denoted by

γ(t) = expxtexp
−1
x y ∀t ∈ [0, 1].

Moreover, for any sequence {xn} ⊂ M satisfying xn → x0 ∈ M, there hold the relationships:

exp−1
xn

y → exp−1
x0

y and exp−1
y xn → exp−1

y x0 ∀y ∈ M.

Lemma 2.1. (see [33]). If ∆(u, v, w) is a geodesic triangle in a Hadamard manifold M, then there exist
u′, v′, w′ ∈ R2 such that

d(u, v) = ∥u′ − v′∥, d(v, w) = ∥v′ − w′∥ and d(w, u) = ∥w′ − u′∥.

The triangle ∆(u′, v′, w′) is called the comparison triangle of the geodesic triangle ∆(u, v, w), which
is unique up to isometry of M.

Lemma 2.2. (see [28]). Suppose that ∆(u, v, w) is a geodesic triangle in a Hadamard manifold M and
∆(u′, v′, w′) is its comparison triangle.

(a) If α, β, γ (resp., α′, β′, γ′) are the angles of ∆(u, v, w) (resp., ∆(u′, v′, w′)) at the vertices u, v, w
(resp., u′, v′, w′), then the inequalities hold: α′ ≥ α, β′ ≥ β and γ′ ≥ γ.

(b) Let x be a point on the geodesic joining u to v and x′ be its comparison point in the interval [u′, v′].
If d(x, u) = ∥x′ − u′∥ and d(x, v) = ∥x′ − v′∥. Then, d(x,w) ≤ ∥x′ − w′∥.

We present comparison theorem for triangles in the setting of Hadamard manifolds.

Proposition 2.3. (Comparison theorem for triangle [35, Proposition 4.5]). Suppose that ∆(p1, p2, p3)
is a geodesic triangle on a Hadamard manifold M. For each i = 1, 2, 3 (mod 3), γi : [0, li] → M is
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the geodesic joining pi to pi+1 and set li = ℓi(γi) and αi := ∠(γ′i(0),−γ′i−1(li−1)) (the angle between
γ′i(0) and −γ′i−1(li−1)). Then, (i) α1 + α2 + α3 ≤ π, (ii) l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1, and (iii)
li+1 cosαi+2 + li cosαi ≥ li+2.

The conclusion (ii) in the above Proposition 2.3 can be written according to Riemannian distance and
exponential map since

d2(pi, pi+1) + d2(pi+1, pi+2)− 2R(exp−1
pi+1

pi, exp
−1
pi+1

pi+2) ≤ d2(pi−1, pi),

where
R(exp−1

pi+1
pi, exp

−1
pi+1

pi+2) = d(pi, pi+1)d(pi+1, pi+2) cosαi+1.

It is easy to check that the following lemma is valid.

Lemma 2.4. (i) If γ : [0, 1] → M is a geodesic joining x to y, then we have

d(γ(t1), γ(t2)) = |t1 − t2|d(x, y) ∀t1, t2 ∈ [0, 1].

(From now on d(x, y) indicates the Riemannian distance).
(ii) For any x, y, z, u, w ∈ M and t ∈ [0, 1], the following inequalities hold:

d(expxtexp
−1
x y, z) ≤ (1− t)d(x, z) + td(y, z);

d2(expxtexp
−1
x y, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y);

d(expxtexp
−1
x y, exputexp

−1
u w) ≤ (1− t)d(x, u) + td(y, w). (2.1)

A subset C ⊂ M is said to be geodesic convex if for every x, y ∈ C , the geodesic joining x to y
lies in C . The geodesic convex hull of a subset D ⊂ M is the smallest geodesic convex subset of M
containing D, and denoted by co(D).

In what follows, unless otherwise specified, we always assume that C is a nonempty, closed and
geodesic convex set in a Hadamard manifold M and Fix(S) is the fixed point set of a mapping S. The
metric projection onto C , denoted by PC , is defined by

PC(x) = {z ∈ C : d(x, z) ≤ d(x, y) ∀y ∈ C} ∀x ∈ M.

It is known from [38] that for any x ∈ M, PC(x) is a singleton set, and the following characterization
inequality of the projection PC holds:

R(exp−1
PC(x)x, exp

−1
PC(x)y) ≤ 0 ∀y ∈ C.

A function f : C → R ∪ {+∞} = (−∞,∞] is said to be geodesic convex if, for any geodesic
γ(t) (0 ≤ t ≤ 1) joining x, y ∈ C , the function f ◦ γ is convex, i.e.,

f(γ(t)) ≤ tf(γ(0)) + (1− t)f(γ(1)) = tf(x) + (1− t)f(y).

A mapping S : C → C is said to be
(i) contractive if there exists a constant k ∈ (0, 1) such that

d(Sx, Sy) ≤ kd(x, y) ∀x, y ∈ C

(in particular, if k = 1, then S is said to be nonexpansive);
(ii) quasi-nonexpansive if Fix(S) ̸= ∅ and

d(Sx, p) ≤ d(x, p) ∀x ∈ C, p ∈ Fix(S);

(iii) firmly nonexpansive (see [29]) if for all x, y ∈ C , the function ϕ : [0, 1] → [0,∞] defined by

ϕ(t) := d(expxtexp
−1
x Sx, expytexp

−1
y Sy) ∀t ∈ [0, 1]

is nonincreasing.
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Proposition 2.5. (see [29]). Let S : C → C be a mapping. Then the following statements are equivalent:
(i) S is firmly nonexpansive;
(ii) for all x, y ∈ C and t ∈ [0, 1]

d(Sx, Sy) ≤ d(expxtexp
−1
x Sx, expytexp

−1
y Sy); (2.2)

(iii) for all x, y ∈ C

R(exp−1
SxSy, exp

−1
Sxx) +R(exp−1

SySx, exp
−1
Syy) ≤ 0.

Lemma 2.6. (see [21]). If S : C → C is a firmly nonexpansive mapping and Fix(S) ̸= ∅, then for any
x ∈ C and p ∈ Fix(S), the following inequality holds:

d2(Sx, p) ≤ d2(x, p)− d2(Sx, x).

From (2.1) and (2.2), it is easy to check that if Fix(S) ̸= ∅, then the following implications hold:

S is firmly nonexpansive ⇒ S is nonexpansive ⇒ S is quasinonexpansive.

However, the converse is not true.

Definition 2.7. A mapping S : C → C is said to be demiclosed at zero if for any sequence {xn} ⊂ C
with xn → x∗ ∈ C and d(xn, Sxn) → 0, then x∗ ∈ Fix(S).

Next, we use Ω(M) to indicate the set of all single-valued vector fields A : M → TM such that
Ax ∈ TxM for all x ∈ D(A), where D(A) denotes the domain of A defined by

D(A) = {x ∈ M : Ax ∈ TxM}.

Denote by X (M) the set of all set-valued vector fields B : M → 2TM such that Bx ⊂ TxM for all
x ∈ D(B), where D(B) denotes the domain of B defined by D(B) = {x ∈ M : Bx ̸= ∅}.

Definition 2.8. (see [24]). (i) A single-valued vector field A ∈ Ω(M) is said to be monotone if

R(Ax, exp−1
x y) ≤ R(Ay,−exp−1

y x) ∀x, y ∈ M.

(ii) A set-valued vector field B ∈ X (M) is said to be
(a) monotone if for any x, y ∈ D(B)

R(u, exp−1
x y) ≤ R(v,−exp−1

y x) ∀u ∈ Bx, v ∈ By;

(b) maximal monotone if it is monotone and for given x ∈ D(B) and u ∈ TxM, the condition

R(u, exp−1
x y) ≤ R(v,−exp−1

y x) ∀y ∈ D(B), v ∈ By

implies u ∈ Bx.
(iii) For given λ > 0, the resolvent of B for λ > 0 is a set-valued mapping JB

λ : M → 2TM defined
by

JB
λ (x) := {z ∈ M : x ∈ expzλBz} ∀x ∈ M.

The following result states that the resolvent JB
λ of B is single-valued if B is monotone.

Proposition 2.9. (see [29]). A set-valued vector field B ∈ X (M) is monotone if and only if JB
λ is

single-valued and firmly nonexpansive for all λ > 0.

Lemma 2.10. (see [1]). LetB : C → 2TM be a maximal monotone set-valued vector field on a nonempty
closed subset C of M. Let {λn} ⊂ (0,∞) be a positive sequence with limn→∞ λn = λ > 0 and a
sequence {xn} ⊂ C with limn→∞ xn = x ∈ C such that limn→∞ JB

λn
(xn) = y. Then, y = JB

λ (x).
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Lemma 2.11. (see [2]). Let A ∈ Ω(M) be a single-valued monotone vector field, B ∈ X (M) be a
set-valued maximal monotone vector field. For any x ∈ M, the following assertions are equivalent:

(i) x ∈ (A+B)−10;
(ii) x = JB

λ (expx(−λAx)) ∀λ > 0.

Calao et al. [22] introduced the concept of the resolvent of a bifunction on a Hadamard manifold M.
Suppose that C is a nonempty closed geodesic convex set of M and Φ : C × C → R (:= (−∞,∞))
is a bifunction. The resolvent of a bifunction Φ is a multivalued operator TΦ

r : M → 2C such that

TΦ
r (x) = {z ∈ C : Φ(z, y)− 1

r
R(exp−1

z x, exp−1
z y) ≥ 0 ∀y ∈ C} ∀x ∈ M.

Lemma 2.12. (see [22, 37]). Assume that Φ : C × C → R is a bifunction satisfying the following
conditions:

(A1) Φ(x, x) = 0 ∀x ∈ C ;
(A2) Φ(x, y) + Φ(y, x) ≤ 0 ∀x, y ∈ C , i.e., Φ is monotone;
(A3) x 7→ Φ(x, y) is upper semicontinuous for each y ∈ C ;
(A4) y 7→ Φ(x, y) is geodesic convex and lower semicontinuous for each x ∈ C ;
(A5) there exists a compact set D ⊂ M such that

x ∈ C \D ⇒ ∃y ∈ C ∩D such that Φ(x, y) < 0.

Then for any r > 0, the following conclusions hold:
(i) the resolvent TΦ

r is nonempty and single-valued;
(ii) the resolvent TΦ

r is firmly nonexpansive;
(iii) Fix(TΦ

r ) = EP(Φ), i.e., the fixed point set of TΦ
r is the equilibrium point set of Φ;

(iv) the equilibrium point set EP(Φ) is closed and geodesic convex.

We now present an important result, which will be used in the sequel. Via adopting the inference
technique in Aoyama et al. [3], we demonstrate it.

Lemma 2.13. Let An : C → TM be a single-valued, continuous and monotone vector field for each
n ≥ 0. Suppose that

∑∞
n=1 sup{d(Anx,An−1x) : x ∈ C} < ∞. Then for each x ∈ C, {Anx} con-

verges to some point of C . Moreover, let A be a mapping of C into M defined by Ax = limn→∞Anx
for all x ∈ C . Then A : C → TM is a single-valued, continuous and monotone vector field and
limn→∞ sup{d(Ax,Anx) : x ∈ C} = 0.

Proof. First of all, we show that for each x ∈ C , {Anx} converges to some point of C . In fact, since∑∞
n=1 sup{d(Anx,An−1x) : x ∈ C} < ∞, we know that for any given ε > 0, there exists a positive

integer N ≥ 1 such that the following inequality holds:
m−1∑
i=n

sup{d(Ai+1x,Aix) : x ∈ C} < ε ∀m > n ≥ N.

This immediately implies that for each x ∈ C

d(Amx,Anx) ≤
m−1∑
i=n

d(Ai+1x,Aix)

≤
m−1∑
i=n

sup{d(Ai+1x,Aix) : x ∈ C} < ε ∀m > n ≥ N.

(2.3)

So it follows that for each x ∈ C , the sequence {Anx} is a Cauchy sequence in M. Because Hadamard
manifold M is a complete metric space, we deduce that {Anx} converges to some point of C .
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Next we show that if A is the single-valued vector field of C into TM defined by

Ax = lim
n→∞

Anx ∀x ∈ C,

then lim
n→∞

sup{d(Ax,Anx) : x ∈ C} = 0.

Indeed, taking the limit in (2.3) as m → ∞, we obtain that for each x ∈ C

d(Ax,Anx) = lim
m→∞

d(Amx,Anx)

≤ lim
m→∞

m−1∑
i=n

d(Ai+1x,Aix)

≤ lim
m→∞

m−1∑
i=n

sup{d(Ai+1x,Aix) : x ∈ C} ≤ ε ∀n ≥ N,

which hence yields
sup{d(Ax,Anx) : x ∈ C} ≤ ε ∀n ≥ N. (2.4)

Taking into account that the positive number ε > 0 is independent on each x ∈ C , we conclude from
(2.4) that

lim
n→∞

sup{d(Ax,Anx) : x ∈ C} = 0.

Since An : C → TM is a single-valued, continuous and monotone vector field for each n ≥ 0, we
infer that A : C → TM is also a single-valued, continuous and monotone vector field. □

It is easy to check that the following lemma is true.

Lemma 2.14. IfS : C → C is a nonexpansive mapping, thenS is demiclosed at zero, i.e., for any sequence
{xn} ⊂ C with xn → x∗ ∈ C and d(xn, Sxn) → 0, one has x∗ ∈ Fix(S).

Remark 2.15. It was proven in [1, Page 631] that the fixed point set Fix(S) of each nonexpansive
mapping S : C → C is closed and geodesic convex.

3. Algorithms and Convergence Criteria

In this section, we always assume the following conditions:
M is a finite dimensional Hadamard manifold and C is a nonempty closed geodesic convex subset

of M, f : C → C is a contraction with coefficient δ ∈ (0, 1) and S is a nonexpansive self-mapping on
C ;

B : C → 2TM is a set-valued maximal monotone vector field, Ai : C → TM is a single-valued,
continuous and monotone vector field for each i ≥ 0, and JB

λ (expI(−λAi)) : C → M is the mapping
defined by B, Ai and λ > 0 for each i ≥ 0;∑∞

n=1 sup{d(Anx,An−1x) : x ∈ D} < ∞ for any bounded subset D of C , A is a mapping on C
defined by Ax := limn→∞Anx ∀x ∈ C such that (A+B)−10 =

⋂∞
n=0(An +B)−10;

Φ : C×C → R is a bifunction satisfying the conditions (A1)-(A5) in Lemma 2.12 and TΦ
r : M → C

is the resolvent of Φ for r ∈ (0,∞) such that Fix(TΦ
r ◦ S) = Fix(S) ∩ Fix(TΦ

r );
Ω := Fix(S) ∩ EP(Φ) ∩ (

⋂∞
i=0(Ai +B)−10) ̸= ∅, and there exist constants ρ ∈ [0, 1) and κ, ξ > 0

such that

d(expx(−λUx), expy(−µV y)) ≤ (1− ρ)d(x, y) + κ|λ− µ|+ ξd(Uy, V y) (3.1)

for all x, y ∈ C , U, V ∈ {Ai : i ≥ 0} and λ, µ ∈ [λ, λ] ⊂ (0,∞).
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Lemma 3.1. (see [1, Lemma 4.4]). Let B : C → 2TM be a set-valued monotone vector field on C . Then,
for µ > 0 and η > 0,

d(JB
µ (u), JB

η (u)) ≤ |µ− η|
µ

d(u, JB
µ (u)) ∀u ∈ C.

Lemma 3.2. The set Ω is nonempty, closed and geodesic convex in M, where Ω := Fix(S) ∩ EP(Φ) ∩
(
⋂∞

i=0(Ai +B)−10) ̸= ∅.

Proof. By Lemma 2.12 we know that TΦ
r is firmly nonexpansive with Fix(TΦ

r ) = EP(Φ) for r > 0.
Since JB

λ is firmly nonexpansive (due to Proposition 2.9), this together with assumption (3.1), ensures
that JB

λ (expI(−λAi)) is nonexpansive for each λ ∈ [λ, λ] and i ≥ 0. By Lemma 2.11 we get (Ai +

B)−10 = Fix(JB
λ (expI(−λAi))) for each i ≥ 0. So, it follows from Remark 2.15 that EP(Φ) and

(Ai + B)−10 are closed and geodesic convex in M for each i ≥ 0. Thus, Ω is nonempty, closed and
geodesic convex in M. This completes the proof. □

Lemma 3.3. (see [39]). Let {an} be a sequence of nonnegative real numbers such that an+1 ≤ (1 −
αn)an + αnβn ∀n ≥ 0 where {αn} ⊂ [0, 1] and {βn} ⊂ R such that (i)

∑∞
n=0 αn = ∞, and (ii)

lim supn→∞ βn ≤ 0 or
∑∞

n=0 αn|βn| < ∞. Then limn→∞ an = 0.

It is easy to see that for any x, y ∈ Rm and λ ∈ [0, 1],

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Theorem 3.4. Choose arbitrary x0 ∈ C and define the sequences {xn}, {un} and {yn} as follows:
un = JB

λn
expxn

(−λnAnxn),

yn = Sun,

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r yn) ∀n ≥ 0,

(3.2)

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

Proof. By Lemma 3.2, we know that Ω is a nonempty closed geodesic convex set in M where Ω :=
Fix(S) ∩ EP(Φ) ∩ (

⋂∞
i=0(Ai + B)−10) ̸= ∅. Since f : C → C is a contraction, the composite

mapping PΩ ◦f : C → C is also a contraction. By the Banach contraction mapping principle, we know
that there exists a unique fixed point x∗ of PΩf in C , that is, x∗ = PΩf(x

∗). This together with the
characterization inequality of the projection PΩ, implies that x∗ ∈ Ω satisfies

R(exp−1
x∗ f(x∗), exp−1

x∗ w) ≤ 0 ∀w ∈ Ω. (3.3)

By Lemma 2.12 we know that TΦ
r is firmly nonexpansive, and hence nonexpansive. Since JB

λn
is firmly

nonexpansive (due to Proposition 2.9), this together with assumption (3.1), implies that
JB
λn
(expI(−λnAi)) is nonexpansive for each i ≥ 0 and λn ∈ [λ, λ]. Noticing

∑∞
n=1

|λn−λn−1|
λn

< ∞
and {λn} ⊂ [λ, λ] ⊂ (0,∞), we may assume, without loss of generality, that limn→∞ λn = λ∗ ∈ [λ, λ].

In order to show that xn → x∗ ∈ Ω ⇔ d(xn, un) → 0, where x∗ = PΩf(x
∗), we shall prove

that the necessity and sufficiency hold, respectively. We first claim that the necessity is valid. Indeed,
suppose that xn → x∗ ∈ Ω = Fix(S) ∩ EP(Φ) ∩ (

⋂∞
i=0(Ai + B)−10). Then x∗ = Sx∗, x∗ = TΦ

r x∗

(due to Lemma 2.12) and x∗ = JB
λn
(expx∗(−λnAnx

∗)) ∀n ≥ 0 (due to Lemma 2.11). Hence, for each
n ≥ 0, using (3.2) and the nonexpansivity of JB

λn
(expI(−λnAn)), we obtain

d(un, x
∗) = d(JB

λn
(expxn

(−λnAnxn)), J
B
λn
(expx∗(−λnAnx

∗))) ≤ d(xn, x
∗). (3.4)
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So, from (3.4) and xn → x∗, it follows that

d(un, xn) ≤ d(un, x
∗) + d(x∗, xn) ≤ 2d(x∗, xn) → 0 (n → ∞).

Next we show that the sufficiency is also valid. To the aim, we assume limn→∞ d(xn, yn) = 0 and
divide the rest of the proof into several steps.

Step 1. We claim that the sequences {xn}, {yn}, {expxn
(−λnAnxn)}∞n=0, {Sun} and {TΦ

r yn} all
are bounded in C .

Indeed, take a fixed p ∈ Ω = Fix(S)∩EP(Φ)∩ (
⋂∞

i=0(Ai +B)−10) arbitrarily. Then p = Sp, p =
TΦ
r p and p = JB

λn
(expp(−λnAnp)) ∀n ≥ 0 (due to Lemma 2.11. Using (3.2), the nonexpansivity of S

and the nonexpansivity of JB
λn
(expI(−λnAn)), we obtain

d(un, p) = d(JB
λn
(expxn

(−λnAnxn)), J
B
λn
(expp(−λnAnp))) ≤ d(xn, p) ∀n ≥ 0,

and hence
d(yn, p) = d(Sun, p) ≤ d(un, p) ≤ d(xn, p). (3.5)

Using (3.2) and Lemma 2.4(ii), we deduce from the nonexpansivity of TΦ
r that

d(xn+1, p) = d(expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r yn), p)

≤ αnd(f(xn), p) + (1− αn)d(T
Φ
r yn, p)

≤ αn[d(f(xn), f(p)) + d(f(p), p)] + (1− αn)d(yn, p)

≤ αn[δd(xn, p) + d(f(p), p)] + (1− αn)d(xn, p)

= [1− αn(1− δ)]d(xn, p) + αn(1− δ)
d(f(p), p)

1− δ

≤ max{d(xn, p),
d(f(p), p)

1− δ
}.

By induction, we get

d(xn, p) ≤ max{d(x0, p),
d(f(p), p)

1− δ
} =: K ∀n ≥ 0.

This implies that {xn} is bounded. Also from (3.5), we have d(yn, p) ≤ d(xn, p) ≤ K , which hence
implies that {yn} is bounded. Further, we have

d(TΦ
r yn, p) ≤ d(yn, p) ≤ K,

which implies that {TΦ
r yn} is bounded. Let us show that {expxn

(−λnAnxn)} is bounded. In fact, from
(3.1) we obtain that for all m,n ≥ 0

d(expx(−λAnx), expy(−µAmy)) ≤ (1− ρ)d(x, y) + κ|λ− µ|+ ξd(Any,Amy) ∀x, y ∈ C.

Taking the limit as m → ∞, we have

d(expx(−λAnx), expy(−µAy)) ≤ (1− ρ)d(x, y) + κ|λ− µ|+ ξd(Any,Ay) ∀x, y ∈ C. (3.6)

So it follows from Lemma 2.13 that

d(expxn
(−λnAnxn), expxn

(−λ∗Axn))

≤ (1− ρ)d(xn, xn) + κ|λn − λ∗|+ ξd(Anxn, Axn)

= κ|λn − λ∗|+ ξd(Anxn, Axn) → 0 (n → ∞).

Also, taking the limit as n → ∞, we obtain from (3.6) that

d(expx(−λAx), expy(−µAy)) ≤ (1− ρ)d(x, y) + κ|λ− µ| ∀x, y ∈ C. (3.7)
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This implies that expI(−λ∗A) is nonexpansive. Hence, from the boundedness of {xn}, we know that
{expxn

(−λ∗Axn)} is bounded. Consequently, {expxn
(−λnAxn)} is bounded.

Step 2. We claim that limn→∞ d(xn+1, xn) = 0. Indeed, from the nonexpansivity of each JB
λn

and
Lemma 3.1, we obtain that for each n ≥ 1,

d(un, un−1) = d(JB
λn
(vn), J

B
λn−1

(vn−1))

≤ d(JB
λn
(vn), J

B
λn−1

(vn)) + d(JB
λn−1

(vn), J
B
λn−1

(vn−1))

≤ |λn − λn−1|
λn

d(vn, J
B
λn
(vn)) + d(vn, vn−1),

where vn := expxn
(−λnAnxn) ∀n ≥ 0. This together with assumption (3.1), implies that for each

n ≥ 1,
d(vn, vn−1) = d(expxn

(−λnAnxn), expxn−1
(−λn−1An−1xn−1))

≤ (1− ρ)d(xn, xn−1) + κ|λn − λn−1|+ ξd(Anxn−1, An−1xn−1),

and hence
d(yn, yn−1) = d(Sun, Sun−1) ≤ d(un, un−1)

≤ |λn − λn−1|
λn

d(vn, J
B
λn
(vn)) + d(vn, vn−1)

≤ |λn − λn−1|
λn

d(vn, J
B
λn
(vn)) + (1− ρ)d(xn, xn−1)

+κ|λn − λn−1|+ ξd(Anxn−1, An−1xn−1)

with constants ρ ∈ [0, 1) and κ, ξ > 0. From Step 1, we know that {un} and {vn} are bounded. Thus,
there exists a constant K1 > 0 such that

d(vn, J
B
λn
(vn)) = d(vn, un) ≤ K1.

From the last two inequalities, we get

d(yn, yn−1) ≤ d(xn, xn−1) + κ|λn − λn−1|+
|λn − λn−1|

λn
d(vn, J

B
λn
(vn))

+ ξd(Anxn−1, An−1xn−1)

≤ d(xn, xn−1) + κ|λn − λn−1|+
|λn − λn−1|

λn
K1

+ ξd(Anxn−1, An−1xn−1).

(3.8)

Since {xn} is bounded, we have

d(xn, xn−1) ≤ d(xn, p) + d(xn−1, p) ≤ 2K,

and because {yn} is bounded, we have

d(f(xn), T
Φ
r yn) ≤ d(f(xn), p) + d(TΦ

r yn, p)

≤ d(f(xn), f(p)) + d(f(p), p) + d(yn, p)

≤ δd(xn, p) + d(f(p), p) + d(xn, p) ≤ 3K.

(3.9)
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Using (3.2) and Lemma 2.4 we infer from (3.8) and (3.9) that
d(xn+1, xn)

= d(expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r yn), expf(xn−1)(1− αn−1)exp

−1
f(xn−1)

(TΦ
r yn−1))

≤ d(expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r yn), expf(xn−1)(1− αn)exp

−1
f(xn−1)

(TΦ
r yn−1))

+ d(expf(xn−1)(1− αn)exp
−1
f(xn−1)

(TΦ
r yn−1), expf(xn−1)(1− αn−1)exp

−1
f(xn−1)

(TΦ
r yn−1))

≤ αnd(f(xn), f(xn−1)) + (1− αn)d(T
Φ
r yn, T

Φ
r yn−1)

+ d(expf(xn−1)(1− αn)exp
−1
f(xn−1)

(TΦ
r yn−1), expf(xn−1)(1− αn−1)exp

−1
f(xn−1)

(TΦ
r yn−1))

≤ αnδd(xn, xn−1) + (1− αn)d(yn, yn−1) + |αn − αn−1|d(f(xn−1), T
Φ
r yn−1)

≤ αnδd(xn, xn−1) + (1− αn)[d(xn, xn−1) + κ|λn − λn−1|+
|λn − λn−1|

λn
K1

+ ξd(Anxn−1, An−1xn−1)] + |αn − αn−1|3K

≤ [1− αn(1− δ)]d(xn, xn−1) + κ|λn − λn−1|+
|λn − λn−1|

λn
K1

+ ξd(Anxn−1, An−1xn−1) + |αn − αn−1|3K.

(3.10)

Since {λn} ⊂ [λ, λ] ⊂ (0,∞) and
∑∞

n=1
|λn−λn−1|

λn
< ∞, we obtain

∞∑
n=1

(κ|λn − λn−1|+
|λn − λn−1|

λn
K1) < ∞.

So, from
∑∞

n=1 |αn − αn−1| < ∞ and
∑∞

n=1 d(Anxn−1, An−1xn−1) < ∞ it follows that
∞∑
n=1

{κ|λn − λn−1|+
|λn − λn−1|

λn
K1 + ξd(Anxn−1, An−1xn−1) + |αn − αn−1|3K} < ∞.

Therefore, from {αn(1 − δ)} ⊂ [0, 1] and
∑∞

n=1 αn(1 − δ) = ∞, applying Lemma 3.3 to (3.10) we
conclude that

lim
n→∞

d(xn+1, xn) = 0.

Step 3. We claim that limn→∞ d(un, T
Φ
r ◦Sun) = 0 where Fix(TΦ

r ◦S) = Fix(S ◦TΦ
r ) = Fix(S)∩

EP(Φ). Indeed, from limn→∞ αn = 0, it follows that αn ∈ (0, 1− δ] ∀n ≥ n0 for some integer n0 ≥ 0.
Also, from (3.2) we get

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r ◦ Sun).

This together with Lemma 2.4(ii), implies that

d(TΦ
r ◦ Sun, un) ≤ d(TΦ

r ◦ Sun, xn+1) + d(xn+1, un)

= d(TΦ
r ◦ Sun, expf(xn)(1− αn)exp

−1
f(xn)

(TΦ
r ◦ Sun)) + d(xn+1, un)

≤ αnd(T
Φ
r ◦ Sun, f(xn)) + (1− αn)d(T

Φ
r ◦ Sun, TΦ

r ◦ Sun) + d(xn+1, un)

≤ αn[d(T
Φ
r ◦ Sun, un) + d(un, xn) + d(xn, f(xn))] + d(xn+1, un)

≤ αnd(T
Φ
r ◦ Sun, un) + d(un, xn) + αnd(xn, f(xn)) + d(xn+1, un),

Noticing {αn}n≥n0 ⊂ (0, 1− δ], we obtain that for all n ≥ n0

δd(TΦ
r ◦ Sun, un) = (1− (1− δ))d(TΦ

r ◦ Sun, un) ≤ (1− αn)d(T
Φ
r ◦ Sun, un)

≤ d(un, xn) + αnd(xn, f(xn)) + d(xn+1, un)

≤ 2d(xn, un) + αnd(xn, f(xn)) + d(xn+1, xn).
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Since δ ∈ (0, 1), d(xn, un) → 0, αnd(xn, f(xn)) → 0 and d(xn+1, xn) → 0, we have

lim
n→∞

d(TΦ
r ◦ Sun, un) = 0. (3.11)

Note that

d(TΦ
r ◦ Sxn, xn) ≤ d(TΦ

r ◦ Sxn, TΦ
r ◦ Sun) + d(TΦ

r ◦ Sun, un) + d(un, xn)

≤ d(xn, un) + d(TΦ
r ◦ Sun, un) + d(un, xn)

= 2d(xn, un) + d(TΦ
r ◦ Sun, un).

Thus, from d(xn, un) → 0 and (3.11) we get

lim
n→∞

d(TΦ
r ◦ Sxn, xn) = 0. (3.12)

Step 4. We claim that ∅ ̸= ω({xn}) ⊂ Ω = Fix(S) ∩ EP(Φ) ∩ (
⋂∞

i=0(Ai + B)−10), where
ω({xn}) = {w ∈ C : xnj → w for some {nj} ⊂ {n}}. Since {xn} is bounded and C is closed, we
obtain ω({xn}) ̸= ∅. Take an arbitrary w ∈ ω({xn}). Then there exists a subsequence {nj} of {n}
such that xnj → w as j → ∞. We now claim that w ∈ Ω = Fix(S) ∩ EP(Φ) ∩ (

⋂∞
i=0(Ai + B)−10).

We first show that w ∈
⋂∞

i=0(Ai + B)−10. Indeed, we define u∗ = JB
λ (expw(−λ∗Aw)) and u∗n =

JB
λn
(expxn

(−λ∗Axn)) for eachn ≥ 0. Since λn → λ∗ ∈ [λ, λ], d(un, xn) → 0 and d(Anxn, Axn) → 0
(due to Lemma 2.13, from (3.6) we obtain that for all n ≥ 0

d(u∗n, xn) = d(JB
λn
(expxn

(−λ∗Axn)), xn)

≤ d(JB
λn
(expxn

(−λ∗Axn)), J
B
λn
(expxn

(−λnAnxn))) + d(JB
λn
(expxn

(−λnAnxn)), xn)

≤ d(expxn
(−λ∗Axn), expxn

(−λnAnxn)) + d(un, xn)

≤ κ|λn − λ∗|+ ξd(Anxn, Axn) + d(un, xn) → 0 (n → ∞).

Let us show d(expxnj
(−λ∗Axnj ), expw(−λ∗Aw)) → 0 as j → ∞. In terms of (3.7), we deduce that

d(expxnj
(−λ∗Axnj ), expw(−λ∗Aw)) ≤ d(xnj , w) → 0 (j → ∞).

This together with Lemma 2.10, ensures that
0 = lim

j→∞
d(xnj , u

∗
nj
)

= lim
j→∞

lim
j→∞

d(xnj , J
B
λnj

(expxnj
(−λ∗Axnj )))

= d(w, JB
λ∗(expw(−λ∗Aw))).

Thus, w = JB
λ∗(expw(−λ∗Aw)). By Lemma 2.11 we have w ∈ (A + B)−10, and hence w ∈ (A +

B)−10 =
⋂∞

i=0(A+Bi)
−10. Also, by Lemma 2.12 we know that TΦ

r is firmly nonexpansive, and hence
nonexpansive. Thus, TΦ

r ◦ S : C → C is nonexpansive. Using Lemma 2.14, we know that TΦ
r ◦ S :

C → C is demiclosed at zero. Note that d(xn, TΦ
r ◦ Sxn) → 0 (due to (3.12)) and xnj → w (j → ∞).

So the demiclosedness of TΦ
r ◦ S at zero guarantees w ∈ Fix(TΦ

r ◦ S) = Fix(S) ∩ EP(Φ). Therefore,
w ∈ Ω = Fix(S)∩EP(Φ)∩ (

⋂∞
i=0(Ai+B)−10). Since w is an arbitrary element in ω({xn}), we have

ω({xn}) ⊂ Ω = Fix(S) ∩ EP(Φ) ∩ (

∞⋂
i=0

(Ai +B)−10).

Step 5. We claim that xn → x∗ ∈ Ω = Fix(S)∩EP(Φ)∩(
⋂∞

i=0(Ai+B)−10) where x∗ = PΩf(x
∗).

Indeed, by Step 1, {TΦ
r ◦ Sun} is bounded, and hence {R(exp−1

x∗ f(x∗), exp−1
x∗ TΦ

r ◦ Sun)} is bounded.
Thus, its superior limit exists. So, we can choose a subsequence {TΦ

r ◦ Sunj} of {TΦ
r ◦ Sun} such that

lim sup
n→∞

R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sun) = lim

j→∞
R(exp−1

x∗ f(x∗), exp−1
x∗ TΦ

r ◦ Sunj ). (3.13)
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As in Step 4, we may assume that xnj → w ∈ Ω as j → ∞. Hence, by using d(xn, un) → 0 and
d(TΦ

r ◦ Sun, un) → 0 (due to (3.11)), we deduce that TΦ
r ◦ Sunj → w as j → ∞. Therefore, from (3.3)

we obtain

lim
j→∞

R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sunj ) = R(exp−1

x∗ f(x∗), exp−1
x∗ w) ≤ 0,

which together with (3.13), yields

lim sup
n→∞

R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sun) ≤ 0. (3.14)

Now, we define wn := expf(x∗)(1 − αn)exp
−1
f(x∗)T

Φ
r ◦ Sun for each n ≥ 0. Then it follows from (3.4)

and Lemma 2.4(ii) that

d(wn, x
∗) = d(expf(x∗)(1− αn)exp

−1
f(x∗)T

Φ
r ◦ Sun, x∗)

≤ αnd(f(x
∗), x∗) + (1− αn)d(T

Φ
r ◦ Sun, x∗)

≤ αnd(f(x
∗), x∗) + (1− αn)d(un, x

∗)

≤ αnd(f(x
∗), x∗) + (1− αn)d(xn, x

∗).

(3.15)

Next, we fix n ≥ 0 and set u = x∗, v = f(x∗) and q = TΦ
r ◦ Sun. Then we have wn = expv(1 −

αn)exp
−1
v q. Consider a geodesic triangle ∆(v, u, q) and its comparison triangle ∆(v′, u′, q′). Then,

from Lemma 2.1 we get

d(v, u) = ∥v′ − u′∥ and d(TΦ
r ◦ Sun, u) = d(q, u) = ∥q′ − u′∥.

Moreover, the comparison point of wn is w′
n = αnv

′ + (1− αn)q
′. Let β and β′ be the angles at q and

q′, respectively. Then, β ≤ β′ by Lemma 2.2(a), and so cosβ′ ≤ cosβ. Hence, by Lemma 2.2(b) we
obtain

d2(wn, x
∗) = d2(expf(x∗)(1− αn)exp

−1
f(x∗)T

Φ
r ◦ Sun, x∗)

= d2(expv(1− αn)exp
−1
v q, u) = ∥αn(v

′ − u′) + (1− αn)(q
′ − u′)∥2

= α2
n∥v′ − u′∥2 + (1− αn)

2∥q′ − u′∥2 + 2αn(1− αn)∥v′ − u′∥∥q′ − u′∥ cosβ′

≤ α2
nd

2(v, u) + (1− αn)
2d2(q, u) + 2αn(1− αn)d(v, u)d(q, u) cosβ

= α2
nd

2(v, u) + (1− αn)
2d2(q, u) + 2αn(1− αn)R(exp−1

u v, exp−1
u q)

= α2
nd

2(f(x∗), x∗) + (1− αn)
2d2(TΦ

r ◦ Sun, x∗)

+ 2αn(1− αn)R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sun).

(3.16)

Also, using (3.2) and Lemma 2.4(ii), we have

d2(xn+1, x
∗) ≤ [d(xn+1, wn) + d(wn, x

∗)]2

= {d(expf(xn)(1− αn)exp
−1
f(xn)

TΦ
r ◦ Sun, expf(x∗)(1− αn)exp

−1
f(x∗)T

Φ
r ◦ Sun) + d(wn, x

∗)}2

≤ {αnd(f(xn), f(x
∗)) + (1− αn)d(T

Φ
r ◦ Sun, TΦ

r ◦ Sun) + d(wn, x
∗)}2

= [αnd(f(xn), f(x
∗)) + d(wn, x

∗)]2

= α2
nd

2(f(xn), f(x
∗)) + d2(wn, x

∗) + 2αnd(f(xn), f(x
∗))d(wn, x

∗).

(3.17)



VISCOSITY ITERATION METHOD ON HADAMARD MANIFOLDS 77

Therefore, combining (3.15), (3.16) and (3.17) guarantees that

d2(xn+1, x
∗) ≤ α2

nd
2(f(xn), f(x

∗)) + d2(wn, x
∗) + 2αnd(f(xn), f(x

∗))d(wn, x
∗)

≤ α2
nd

2(f(xn), f(x
∗)) + α2

nd
2(f(x∗), x∗) + (1− αn)

2d2(TΦ
r ◦ Sun, x∗)

+ 2αn(1− αn)R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sun) + 2αnd(f(xn), f(x

∗))

× [αnd(f(x
∗), x∗) + (1− αn)d(xn, x

∗)]

≤ α2
nd

2(f(xn), f(x
∗)) + α2

nd
2(f(x∗), x∗) + (1− 2αn)d

2(xn, x
∗) + α2

nd
2(xn, x

∗)

+ 2αn(1− αn)R(exp−1
x∗ f(x∗), exp−1

x∗ TΦ
r ◦ Sun) + 2α2

nδd(xn, x
∗)d(f(x∗), x∗)

+ 2αnδd
2(xn, x

∗)

= [1− 2αn(1− δ)]d2(xn, x
∗) + α2

n[d
2(f(xn), f(x

∗)) + d2(f(x∗), x∗) + d2(xn, x
∗)

+ 2δd(xn, x
∗)d(f(x∗), x∗)] + 2αn(1− αn)R(exp−1

x∗ f(x∗), exp−1
x∗ TΦ

r ◦ Sun)

= [1− 2αn(1− δ)]d2(xn, x
∗) + 2αn(1− δ){ αn

2(1− δ)
[d2(f(xn), f(x

∗)) + d2(f(x∗), x∗)

+ d2(xn, x
∗) + 2δd(xn, x

∗)d(f(x∗), x∗)] +
1− αn

1− δ
R(exp−1

x∗ f(x∗), exp−1
x∗ TΦ

r ◦ Sun)}.

(3.18)

Since αn → 0 and δ ∈ (0, 1), there exists an integer n∗ ≥ 0 such that {2αn(1 − δ)}n≥n∗ ⊂ (0, 1].
Noticing

∑∞
n=0 αn = ∞, we know that

∑∞
n=0 2αn(1 − δ) = ∞. From (3.14), αn → 0 and the

boundedness of {xn}, {f(xn)}, it is easy to see that

lim sup
n→∞

{ αn

2(1− δ)
[d2(f(xn), f(x

∗)) + d2(f(x∗), x∗) + d2(xn, x
∗)

+2δd(xn, x
∗)d(f(x∗), x∗)] +

1− αn

1− δ
R(exp−1

x∗ f(x∗), exp−1
x∗ TΦ

r ◦ Sun)} ≤ 0.

Consequently, applying Lemma 3.3 to (3.18) we deduce that

lim
n→∞

d(xn, x
∗) = 0.

This completes the proof. □

Remark 3.5. Compared with Theorem 3.1 in Chang et al. [21], our Theorem 3.4 improves, extends and
develops it in the following aspects.

(i) The problem of finding an element of Fix(S)∩EP(Φ)∩(
⋂N

i=1(Ai+B)−10) in [21] is extended to
develop our problem of finding an element of Fix(S)∩EP(Φ)∩ (

⋂∞
i=0 Fix(Si)) where B : C → 2TM

is a set-valued maximal monotone vector field and Ai : C → TM is a single-valued, continuous and
monotone vector field for each i ≥ 0.

(ii) The boundedness assumption of the nonempty closed and geodesic convex subset C ⊂ M in
[21, Theorem 3.1], is dropped by our Theorem 3.4, and there is only the assumption of the nonempty
closed and geodesic convex subset C ⊂ M in our Theorem 3.4.

(iii) BecauseM is diffeomorphic to an Euclidean spaceRm,M has the same topology and differential
structure as Rm. Moreover, Hadamard manifolds and Euclidean spaces have some similar geometrical
properties. Therefore, the convergence statement of the sequence {xn} in our Theorem 3.4 is more
general.

(iv) The splitting iterative algorithm in [21, Theorem 3.1] is extended to develop the viscosity iteration
method in our Theorem 3.4, that is, the iterative steps uin = JB

λ expxn
(−λAixn), i = 1, 2, ..., N , yn =

Suinn with in ∈ {1, 2, ..., N} s.t. d(uinn , xn) = max1≤i≤N d(uin, xn), andxn+1 = expxn
αnexp

−1
xn

(TΦ
r yn)

in [21, Theorem 3.1], are extended to develop the ones un = JB
λn
expxn

(−λnAnxn), yn = Sun, and
xn+1 = expf(xn)(1− αn)exp

−1
f(xn)

(TΦ
r yn) in our Theorem 3.4, respectively.
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Next we give some special cases of Theorem 3.4.
If in Theorem 3.4, we put An = A : C → TM a single-valued, continuous and monotone vector

field for each n ≥ 0, then by Theorem 3.4 we obtain the following convergence result for finding an
element x∗ ∈ Ω = Fix(S) ∩ EP(Φ) ∩ (A+B)−10 ̸= ∅.

Corollary 3.6. Choose arbitrary x0 ∈ C and define the sequences {xn}, {un} and {yn} as follows:
un = JB

λn
expxn

(−λnAxn),

yn = Sun,

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r yn) ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

If in Corollary 3.6, we put S = I the identity map onC , then by Corollary 3.6 we derive the following
convergence result for finding an element x∗ ∈ Ω = EP(Φ) ∩ (A+B)−10 ̸= ∅.

Corollary 3.7. Choose arbitrary x0 ∈ C and define the sequences {xn} and {un} as follows:{
un = JB

λn
expxn

(−λnAxn),

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r un) ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

If in Corollary 3.6, we put Φ(x, y) = 0 on C × C , then by Corollary 3.6 we obtain the following
convergence result for finding an element x∗ ∈ Ω = Fix(S) ∩ (A+B)−10 ̸= ∅.

Corollary 3.8. Choose arbitrary x0 ∈ C and define the sequences {xn} and {un} as follows:{
un = JB

λn
expxn

(−λnAxn),

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(Sun) ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

4. Applications

4.1. Minimization problems onHadamardmanifolds. Let g : M → R∪{+∞} be a proper lower
semicontinuous and geodesic convex function on a Hadamard manifold M. Consider the minimization
problem:

min
x∈M

g(x). (4.1)

We denote by S∗ the solution set of the minimization problem (4.1), that is,

S∗ = {x ∈ M : g(x) ≤ g(y) ∀y ∈ M}.
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The subdifferential ∂g(x) of g at x [36] is defined by

∂g(x) := {v ∈ TxM : R(v, exp−1
x y) ≤ g(y)− g(x) ∀y ∈ D(g)}. (4.2)

It is easy to check that ∂g(x) is closed and geodesic convex, see [36].

Lemma 4.1. (see [27]). Let g be a proper lower semicontinuous geodesic convex function on a Hadamard
manifold M and D(g) = M. Then, the subdifferential ∂g of g is a maximal monotone vector field.

It is easy to see that
x ∈ S∗ ⇔ 0 ∈ ∂g(x).

If in Corollary 3.7 we put C = M, A = 0 and B = ∂g, then by Corollary 3.7 we derive the following
convergence result for finding an element x∗ ∈ Ω = S∗ ∩ EP(Φ) ̸= ∅.

Theorem 4.2. Choose arbitrary x0 ∈ M and define the sequences {xn} and {un} as follows:{
un = J∂g

λn
xn,

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r un) ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

If in Theorem 4.2 we put Φ = 0, then by Theorem 4.2 we obtain the following convergence result for
finding an element x∗ ∈ S∗ ̸= ∅.

Corollary 4.3. Choose arbitrary x0 ∈ M and define the sequences {xn} and {un} as follows:{
un = J∂g

λn
xn,

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

un ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ S∗ ⇔ d(xn, un) → 0 where x∗ = PS∗f(x∗).

4.2. Variational inequalities on Hadamard manifolds. Németh [30] defined the variational in-
equality (VI) in the setting of Hadamard manifolds. For a single-valued vector field A ∈ Ω(M) on a
closed geodesic convex subset C of a Hadamard manifold M, the variational inequality (VI), is to find
x∗ ∈ C such that

R(Ax∗, exp−1
x∗ y) ≥ 0 ∀y ∈ C.

We denote by VI(C,A) the solution set of the VI.
Let C be a nonempty closed geodesic convex subset of M. The normal cone to C at u ∈ C is defined

as
NC(u) := {v ∈ TuM : R(v, exp−1

u y) ≤ 0 ∀y ∈ C}.
Let iC be the indicator function of C , that is,

iC(x) =

{
0 if x ∈ C,

+∞ if x ̸∈ C.
(4.3)

It is easy to see that iC is a proper lower semicontinuous geodesic convex function on M. Then by
Lemma 4.1, we know that ∂iC is a maximal monotone set-valued vector field.
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By (4.3), iC(x) = 0 ∀x ∈ C , and hence, from (4.2), we get

∂iC(x) = {v ∈ TxM : R(v, exp−1
x y) ≤ iC(y)− iC(x) ∀y ∈ C}

= {v ∈ TxM : R(v, exp−1
x y) ≤ 0 ∀y ∈ C}.

(4.4)

Thus, ∂iC(x) = NC(x). Hence, for all x ∈ C and A ∈ Ω(X ) from (4.4), we get

x ∈ (A+ ∂iC)
−10 ⇔ −Ax ∈ ∂iC(x)

⇔ R(−Ax, exp−1
x y) ≤ 0 ∀y ∈ C

⇔ x ∈ VI(C,A).

The resolvent operator J∂iC
λ of ∂iC for λ > 0 is defined as

J∂iC
λ (x) := {z ∈ M : x ∈ expzλ∂iC(z)} ∀x ∈ M.

For all x ∈ M, we get

u = J∂iC
λ (x) ⇔ x ∈ expuλ∂iC(u)

⇔ 1

λ
exp−1

u x ∈ ∂iC(u) = NC(u)

⇔ 1

λ
R(exp−1

u x, exp−1
u y) ≤ 0 ∀y ∈ C

⇔ PC(x) = u.

If in Corollary 3.7, we replace B and JB
λ by ∂iC and PC , respectively, then by Corollary 3.7 we get the

following convergence result for finding an element x∗ ∈ Ω = EP(Φ) ∩VI(C,A) ̸= ∅.

Theorem 4.4. Choose arbitrary x0 ∈ C and define the sequences {xn} and {un} as follows:{
un = PC(expxn

(−λnAxn)),

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

(TΦ
r un) ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).

If in Theorem 4.4, we put Φ(x, y) = 0 on C × C , then by Theorem 4.4 we derive the following
convergence result for finding an element x∗ ∈ Ω = VI(C,A) ̸= ∅.

Corollary 4.5. Choose arbitrary x0 ∈ C and define the sequences {xn} and {un} as follows:{
un = PC(expxn

(−λnAxn)),

xn+1 = expf(xn)(1− αn)exp
−1
f(xn)

un ∀n ≥ 0,

where {αn} ⊂ (0, 1) and {λn} ⊂ [λ, λ] ⊂ (0,∞) such that
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and

∑∞
n=1 |αn − αn−1| < ∞;

(ii)
∑∞

n=1
|λn−λn−1|

λn
< ∞.

Then xn → x∗ ∈ Ω ⇔ d(xn, un) → 0 where x∗ = PΩf(x
∗).
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[37] X. Wang, G. López, C. Li and J. C. Yao. Equilibrium problems on Riemannian manifolds with applications. Journal of
Mathematical Analysis and Applications, 473:866–891, 2019.
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