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ABSTRACT. Environmental performance has been an important indicator of economic sustainable devel-
opment. Monitoring environmental performance and health outcomes can provide a better understanding
of the relationship between the environment and human health, helping to shape a more sustainable and
healthier future. This study aims to assess the environmental efficiency of European Union (EU) countries
through the ecological footprint and climate change performance indices. A window slack-based mea-
surement approach, using the net capital stock, labor, and energy consumption as inputs, climate change
performance index and Gross Domestic Product (GDP) as the desirable output, and ecological footprint
as undesirable output within the framework of data envelopment analysis, is employed to evaluate the
dynamic environmental performance of EU countries from 2007 to 2019. To further explore the improve-
ment of environmental performance in EU countries, the Global Malmquist-Luenberger index method is
applied over the observation periods. Our results offer key insights into the environmental performance
of EU countries and their advancements toward sustainable economic development.
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1. INTRODUCTION

Environmental efficiency is essential for achieving sustainable economic growth. While nations
work to enhance their economic performance, the environmental impact of their activities has to be
taken into account. Assessing environmental efficiency can help pinpoint areas for improvement and
evaluate the effectiveness of policies designed to mitigate harmful environmental externalizes. Nu-
merous peer-reviewed studies connect the ecological and social consequences of human activities to
premature mortality. For example, air pollution and exposure to toxic chemicals have been proven to
raise the risk of respiratory and cardiovascular diseases, resulting in premature death [12]. In the same
way, environmental degradation and the loss of biodiversity can contribute to the spread of infectious
diseases and other health hazards [6]. Considering the substantial impact of environmental factors on
human health, there is an increasing demand for empirical studies that track environmental perfor-
mance. These studies offer essential insights into the effectiveness of environmental policies and help
guide future decisions aimed at improving environmental quality and health outcomes.

The ecological footprint (EF) is a crucial tool for evaluating the impact of human activities on the
environment [18]. Erb [5] explains that the EF of a region represents the amount of land and resources
needed to support its population, encompassing the production of food, energy, and other goods. This
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demand has significant environmental consequences, such as the destruction of natural habitats, a de-
cline in bio-diversity, and increased greenhouse gas emissions. As a result, these factors contribute to
climate change, which threatens both human and non-human species. Since 2005, the Climate Change
Performance Index (CCPI) has provided analysis of countries’ climate protection performance con-
tributing to a clearer understanding of national and international climate policies. The CCPI employs
a standardized framework to assess the climate performance of 63 countries and the European Union
(EU), which collectively contribute to more than 90% of global greenhouse gas emissions. Climate mit-
igation performance is evaluated across four categories: greenhouse gas emissions, renewable energy,
energy use, and climate policy, playing a key role in guiding the implementation of the Paris Agreement
[4].

This study aims to evaluate the environmental efficiency of EU countries using EF and CCPI in-
dices. Data Envelopment Analysis (DEA), which serves as a powerful tool for assessing the relative
efficiency of decision-making units (DMUs), has been used to evaluate the environmental efficiency of
production systems with multiple inputs and outputs since its introduction by Charnes et al. [3]. In real-
world production, desirable outputs, like the real gross domestic product (GDP), are always associated
with various undesirable outputs, such as greenhouse gas emissions. To address undesirable outputs
in the study of efficiency measurement, conventional DEA models have been adapted by introducing
directorial distance functions/data transformation functions [19] or directly treating undesirable out-
puts as inputs [7]. The DEA models mentioned above are based on radial measures, which primarily
focus on the proportional reduction or expansion of inputs/outputs, while neglecting the slacks in un-
desirable outputs. This may result in an overestimation in the efficiency measurement. To overcome
this limitation, Tone [16] proposed the non-radial slacks-based measure (SBM) DEA, which provides
more differentiation than radial DEA models by allowing non-proportional adjustments of undesirable
outputs. Since then, the SBM-DEA approach has been widely used for measuring environmental effi-
ciency [1, 20, 8]. However, the conventional SBM-DEA model is limited to static analysis and is unable
to assess efficiency changes over time. Window analysis, combining cross-sectional and time-series
data to evaluate dynamic effects, has been a widely used method for evaluating the dynamic efficiency
of DMUs over time.

Different from previous works on the study of sustainability performance measurement, this work
first considers the dynamic environmental efficiency measurement of EU countries through CCPI and
the EF indices. We employ the window Slack-based Measurement (SBM) method, using the net cap-
ital stock, labor, and energy consumption as inputs, GDP and CCPI as the desirable output, and the
EF indices as undesirable output within the framework of DEA, which allows for more accurate effi-
ciency evaluations and tracks changes in environmental efficiency throughout the entire time period.
Additionally, we combine the Global Malmquist-Luenberger Index (GMLI) with the window SBM-DEA
method to assess the annual improvements in efficiency from 2007 to 2019. The remainder of this paper
is structured as follows. In Section 2, the research methodologies including the SBM-DEA, window
SBM-DEA and GMLI are presented. An empirical study on assessing the sustainability efficiency of EU
countries through both of the EF and CCPI is investigated in Section 3. Section 4 presents a summary
of the findings.

2. RESEARCH METHODOLOGY

In this section, the research methodologies including the SBM-DEA, window SBM-DEA and GMLI
employed in this study are presented [10].

2.1. Slack-based measurement DEA model. DEA is a commonly applied approach for assessing
the relative efficiency of decision-making units (DMUs) with multiple inputs and outputs. It measures
efficiency by computing the ratio of a DMU’s total outputs to its total inputs. To aggregate multiple
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inputs and outputs, an endogenous weighting scheme is used in which the inputs/outputs weights are
defined for each DMU to maximize its efficiency compared to its peers. The basic DEA framework
known as the CCR model was developed by Charnes et al. [3]. Later, Banker extended CCR model and
proposed the BCC model which assumes variable returns to scale and measures the technical efficiency
of the DMUs. In the DEA literature, these two models are referred to as radial models. However, radial
DEA models, which serve as the foundation of the DEA framework, have several limitations. First,
they assume that all inputs and outputs can be proportionally adjusted to attain efficiency, which may
not always be applicable in real-world situations [14]. Second, radial DEA models tend to neglect the
slack in undesirable outputs. To overcome these limitations, Tone et al. [16, 17] introduced a non-radial
SBM-DEA model that directly addresses slacks and relaxes the need for proportional changes in inputs
and outputs.

Assume there are n DMUs, each with m inputs, s; desirable outputs and sy undesirable outputs.
Denote X;; as the ith inputs, 7 = 1,2,--- ,m, Yrgj as the rth desirable outputs, r = 1,2,--- , 51, and
Y(fj as dth undesirable outputs, d = 1,2,--- , s9, of the jth DMU, 57 = 1,2,--- n. The production
possibility set, assuming constant returns to scale, is defined in (2.1).
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where (A1, A, - -, \,) represents the weighting vector. Let s;, sf and sg denote the slack vari-

ables associated with the input, desirable output, and undesirable output constraints of (2.1), respec-
tively. The SBM model with undesirable factors under the assumption of constant returns to scale and
weak disposability can be described as follows [16]:
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The objective function of (2.2) is strictly decreasing with respect to s; ,i = 1,2, ,m, sy, r =

1,2,---,s1,and 53, d=1,2,--- 2. The objective value satisfies 0 < p* < 1, and DMUj is efficient
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in the presence of undesirable outputs if and only if p* = 1.

Model (2.2) is a linear fractional program that can be converted into a linear program using the
transformation method suggested by Charnes and Cooper [2] as described in (2.3).
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where §; = ts;,i = 1,2,--- ,m, 8] = tsl,r = 1,2,--+ 51,8} = tsh,d = 1,2,--- 59, and 5\j =
tAj, 7 =1,2,--- ,n.

The SBM-DEA model (2.3) provides a static analysis and do not take into account changes in effi-
ciency over time. To address these limitations, window analysis has been a widely used technique for
evaluating the dynamic performance of DMUSs’ efficiency over time. The window SBM-DEA analysis
is presented in Section 2.2.

2.2. Window SBM-DEA analysis. Assume there are a total of T" periods, wheret = 1,2,--- , T, and
the window begins at time ¢ with a window width w (where 1 < w < T — t) representing the number
of periods included in a window. Therefore, 7' — w + 1 windows can be generated, with each window
containing n x w DMUs. The input and output matrices for DM U; in the window tw are represented
in (2.4).

[yt t t t ] [yt t t t
Xt X, Xp o X! O N SR
t+1 t+1 t+1 t+1 t+1 t+1 t+1 t+1
XX X o Xy Yy LERRR £ R 65
th = 5 Y;fw —
t+w t+w t+w t+w t+w t+w t+w t+w
L X1 Xy X3 e X R Y, Yy e Y

(2.4)

By using the input and output matrices in model (2.3), the results of the window SBM-DEA anal-
ysis are generated. The efficiency scores of DMUs in the first window (¢ = 1) are evaluated relative
to one another by inputting the inputs and outputs of DM U jt into model (2.3). The window is then
shifted forward by one year, removing the previous year and incorporating the new one. This process
is repeated until the final window, with each DMU attaining w efficiency levels within each window.
The average of these values is taken as the efficiency score of a DMU within each window, allowing the
DMU’s performance to be monitored throughout the study period. Earlier studies confirm that using
window widths of three or four yields reliable results and helps minimize the effects of model deficien-
cies [21]. In this paper, we choose a window with a width of 3(w = 3). Consequently, we obtain 11
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windows from 2007-2009 to 2017-2019, each comprises 81(n x w = 27 x 3) DMUs to be compared
against each other.

2.3. Global Malmquist-Luenberger index (GMLI). While the window SBM-DEA approach offers
greater flexibility in measuring efficiency variations over multiple periods, the ability to compare the
performance of DMUs in consecutive periods can be highly beneficial. The Malmquist Index is com-
monly used in DEA models to assess efficiency improvements between two consecutive time points
[11]. The limitation of the classical Malmquist index in addressing undesirable outputs led to the de-
velopment of the Malmquist-Luenberger Index, which utilizes directional distance functions to handle
both desirable and undesirable outputs simultaneously [10]. Let ¢ and ¢ + 1 represent two-time points.
According to [13], the Malmquist-Luenberger Index between these two periods, M, can be calcu-
lated as )

2
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where 9?1 represents the optimal objective value derived from the SBM-DEA model (2.3) for a DMU
in period t, using the inputs and outputs from period t + 1.

MLIT =

While the Malmquist-Luenberger Index is widely used to measure dynamic environmental ef-
ficiency, the presence of mixed-period data may result in the absence of a feasible solution during
the optimization process [9]. Oh [15] considered this infeasibility issue and introduced the Global
Malmquist-Luenberger Index (GMLI) as a solution:

1+ 67,
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where 0] is derived from the solution of model (2.3) when all input and output data sets for all periods
(T') are considered, indicating the distance of a DMU in period ¢ with respect to the global frontier.
GMLI™ > 1 indicates an improvement in efficiency, whereas GM LI}™!
decline in a DMU'’s efficiency between periods ¢ and ¢ + 1.

GMLIM = (2.6)

< 1 corresponds to a

3. A ReaLr CASE STtuDY

This work considers evaluating the dynamic environmental performance of EU countries from
2007 to 2019. We collected data from EU 27 countries during the 13 year observation period. The
data includes energy consumption, net capital stock, labor force, GDP, CCPI and EF for each of these
countries. The EF data is sourced from the Global Footprint Network (www.footprintnetwork.org).
The data of CCPI can be found in the website of CCPI 2025 (https://ccpi.org/). The remaining variable
information was gathered from the waste statistics of EU countries and the world bank data. The
descriptive statistics and indices of the data set are shown in Tables 1-6, respectively.

TaBLE 1. Total energy consumption (million tons of oil equivalent)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean 42.03929 42.325 39.95714 41.7 39.89643 39.94286 39.90714 38.18214 38.95714 39.67143 40.09643 40.25 40.01786
Max 213 221.7 208.3 223 211.7 215.8 221 210 212.8 216.9 218.6 215.2 214.7
Min 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7
SD 55.49  56.51 53.25 55.85 53.05 54.02 54.73 51.75 52.6 53.37 53.54 53.21 52.89
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TaBLE 2. Labor (person)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Mean 8593593 8670135 8693070 8710654 8703512 8762019 8790602 8824922 8845973 8901602 8949251 8983859 9023371
Max 1861246 41917490 41978630 41949335 41729225 41853628 42212988 42458390 42660629 43567225 43819028 43935038 44433744
Min 167568 169526 171732 175583 180203 187135 196571 205532 212910 222635 233766 250448 265572
SD 11114680 11215354 11261077 11286291 11293426 11380387 11448290 11504606 11545033 11681668 11727040 11771075 11834362

TaBLE 3. EF (global hectares)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean  6.29579 6.230794 5.502944 5.736339 5.640753 5.355204 5.300253 5.306268 5.266538 5.254748 5.444407 5.403307 5.305561
Max 14.11 1494671 13.53007 15.49098 15.12413 13.84257 13.29181 12.45989 13.42772 12.78337 12.56056 13.41014 12.26467
Min  3.023024 3.391529 2.754523 2.842647 3.052674 2.670051 2.70689 2.791031 2.732348 2.899391 3.311992 3.466027 3.329297
SD 2.062027 2.077426 1.926496 2.278733  2.21169 2.0892  2.02212 1.894154 2.045798 1.882172 1.863554 1.940141 1.827637

TABLE 4. CCPI (score)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean 51.98347 52.99286 53.1 53.66429 56.94643 57.01071 60.96893 60.11714 60.14964 59.4925 58.7675 54.36036 55.23179

Max 63.8 65.6 66.7 67.4 69.9 68.1 72.61 75.23 77.76 71.19 66.17 74.32 76.28
Min 37.5 39.2 40.4 42.8 46.3 45.1 50.28 45.52 51.58 47.24 46.04 38.74 40.84
SD 4.8547 5.9310 6.5125 5.7476 5.7899 6.1282 5.6826 6.1916 5.7676  5.4524  4.3416 8.2402 8.6720

TaBLE 5. GDP (current million euro)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean 464524.7 467291.6 440274.2 458714.4 472755.4 482438 486389.2 503672.1 530613 535025.6 551593.2 570011.1 591222.3
Max 2503000 2543133 2443805 2558935 2689838 2746773 2816098 2932023 3023553 3129374 3271307 3370332 3480297
Min 5790.4 6206.1 6259.6 6815.8 6924.6 7364.5 7944.4 8751.1 9996.6 10541 11936.4  13043.9  14294.2
SD 718703.2 704866.9 666725.5 695063.2 719288.1 741221.4 749120.8 783138.4 827511.9 825722.3 842226.7 864709.1 892749.3

To investigate the dynamic changes in environmental efficiency of EU countries, the window SBM-
DEA analysis and the GMLI techniques are employed in this study. Table 7 summarizes the results of
SBM-DEA analysis for evaluating the environmental performance of EU countries from 2007 to 2019,
which can be used to further explore the improvement of environmental performance in EU countries
by applying the GMLI technique over the observation periods. The environmental performance values
obtained from the SBM-DEA analysis fall within the range of [0,1]. A lower performance value indi-
cates relatively poorer efficiency. For instance, France had a value of 1, while Estonia had a value of
0.09 in 2007. It shows that France had better environmental performance than Estonia in 2007. France
had an average annual environmental performance value of 1, indicating consistently excellent perfor-
mance from 2007 to 2019. In contrast, Estonia had an average value of 0.298 over the periods, making it
the poorest performer among EU countries, indicating generally unsatisfactory performance from 2007
to 2019.

Tables 8 and 9 summarizes the results of the window SBM-DEA analysis and the GMLI techniques,
respectively. As mentioned in section 2.2, a window with a width of 3(w = 3) is chosen in this study.
Consequently, we obtain 11 windows from 2007-2009 to 2017-2019, each comprises 81(n x w = 27 x 3)
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TaBLE 6. Capital (million units of national currency)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean —61323.9 —55951.8 19705.5 31676.8 44119.9 62458.7 107545 84837.8 119572.3 90132.5 70164.1 63558.6 51215.9
Max 266417 260313 257194.1 578320.8 841372 1190506 2191786 1591404 2408181 1633968 1105470 1066190 518806.7
Min  —1686558 —1615705 —37927 —104180 —72089 —26301 —10736 —21728 —9113  —15703  —24397 —34932 —106083
SD 333269.4  324804.7  70330.6 127476.9 173701.5 232840.6 420329.6 306880.9 461658.2 315362.2 217019.1 210652.8 125865.7

TaBLE 7. The results of SBM-DEA analysis

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Austria 1 0.507657 0.468291 0.55 0.53 0.546 0.555 0.539 0.582808 0.470443 0.484332 1 0.444164
Belgium 0.356315 1 1 1 1 1 1 1 0.704029 1 0.518047 0.723947 0.565068
Bulgaria 1 1 1 1 1 1 0.2 0.201 0.188589 0.166931 0.167116 0.1684 0.2085
Croatia 1 1 1 1 1 0408 0.63 0.316 0.3023 0.2714 1 1 1
Cyprus 1 1 1 1 1 1 1 1 1 1 1 1 1
Czechia 0.2018 0.5899 1 0.81 0.788 0.749 0.495 0.467 0.3651 0.187965 0.196889 0.1916 0.2335
Denmark 1 1 1 1 1 1 1 1 1 1 1 1 1
Estonia 0.0903 0.5150 0.2316 0.235 0.386 0.247 0.299 0.304 0.3656 0.2111 0.2004 0.2284 0.5567
Finland 0.4761 0.4398 0.3876 0.455 0.769 0.757 1 0.731 1 0.6536 0.6463 0.8480 1
France 1 1 1 1 1 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1 1 1 1 1 1
Greece 1 0.7773 1 1 1 0.9 0.421 0.581 0.3541 0.6032 0.7403 0.6271 0.6540
Hungary 1 1 1 1 1 1 1 0477 0.2209 0.1952 0.2460 0.1877 0.2708
Ireland 1 1 1 1 1 1 1 1 1 1 1 1 1
Italy 1 1 1 1 1 1 1 1 1 1 1 1 1
Latvia 0.4088 1 1 1 0.552 0.538 0.587 0.247 0.2987 0.1917 0.1863 0.3081 1
Lithuania 1 1 1 0.578 0.572 1 0.285 0.239 0.3016 0.1962 0.1944 1 1
Luxembourg 1 1 1 1 1 1 1 1 1 1 1 0.4858 1
Malta 1 1 1 1 1 1 1 1 1 1 1 1 1
Netherlands 1 1 1 1 0.61 0.552 0.558 0.579 0.5158 0.8039 0.5416 0.5253 0.6366
Poland 0.1179 0.5146 1 0.571 1 1 1 1 0.3682 0.4955 0.5009 0.5614 0.7334
Portugal 0.7576 1 1 1 1 1 0.768 1 1 0.3823 0.3783 4534 0.6569
Romania 1 1 1 1 1 1 0.778 1 1 1 1 1 0.9999
Slovakia 0.3937 0.7354 0.825 0.85 0.691 1 0.304 0.279 0.3172 0.5050 0.5587 0.5483 0.559
Slovenia 0.2145 0.6166 0.5839 0.618 0.618 0.369 0.37 0.335 0.407 0.2625 0.2557 0.5209 0.4626
Spain 1 0.75 1 1 1 0.582 0.525 0.708 0.4932 0.4574 0.5369 0.7386 0.6412
Sweden 1 1 1 1 1 1 1 1 1 0.5712 1 1 1

DMUs to be compared against each other. Table 8 shows that the average efficiency score for EU coun-
tries is 0.78, suggesting a potential for improvement of up to 22%. Additionally, efficiency scores vary
significantly, ranging from 0.5871 to 0.9604, reflecting a broad spectrum of environmental performance
across the EU countries. The France ranks highest in efficiency with a score of 0.9604, while Hun-
gary records the lowest at 0.5871. Following the France, the next top-performing countries are Ireland
(0.9534), and Cyprus (0.9185). Over half of the countries (17 out of 27) have efficiency scores ranging be-
tween 0.7 and 0.9, reflecting a moderate level of environmental performance. In contrast, the remaining
six countries, Bulgaria, Czechia, Denmark, Estonia, Luxembourg, and Poland, exhibit lower efficiency,
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with average scores below 0.7. Figure 1 shows the average efficiencies of EU countries obtained from
the results of window SBM-DEA.
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Fig. 1. The average efficiencies of EU countries obtained from the results of window SBM-DEA

Table 8 also presents the results based on three-year time windows, showing that Hungary expe-
rienced a significant decline in efficiency - dropping by 53% from 0.84 in the first window to 0.39 in the
eleventh window. Czechia followed a similar trend, with its efficiency score falling sharply from 0.86 to
0.41 between 2007 and 2019, dropping by 51.7%. In contrast to these two countries, which showed the
greatest efficiency deterioration, Luxembourg’s average efficiency rose rapidly, increasing from 0.44 in
window 1 to 0.64 in window 11, a substantial increase of 46.9%. In addition to countries with significant
improvements or deteriorations in environmental performance, Bulgaria also experienced a change in
efficiency trend greater than 20% over the observed time period. The efficiency of the remaining coun-
tries remained relatively stable over time.

While window analysis helps track efficiency variations over the observation period, the GMLI
technique offers a more detailed assessment of country performance, highlighting efficiency improve-
ments or declines between consecutive years. To compare the environmental performance of EU coun-
tries in adjacent years from 2007-2008 to 2018-2019, the results obtained from SBM-DEA analysis and
equation (2.6) are employed to compute the GMLI. Table 9 presents a summary of the GMLI results. The
findings indicate that most countries experienced changes in environmental efficiency across each con-
secutive two-year period, and exhibited both periods of progress and decline between 2007 and 2019.
A value less than 1 means that the country’s environmental performance declined during that period,
suggesting it was undergoing a phase of deterioration. For example, Spain’s value for 2007-2008 was
0.875, while Austria’s value for the same period was 0.754. This indicates that Austria’s environmental
performance deteriorated more than Spain’s between 2007 and 2008. Conversely, a value greater than
1 indicates that a country’s environmental performance improved in the period. For instance, Slovakia
had a value of 1.246 for 2007-2008, while Belgium’s value for the same period was 1.475. Compared to
Slovakia’s 1.246, this means that Belgium’s improvement in environmental performance from 2007 to
2008 was greater than Slovakia’s. Notably, some countries have GMLI values equal to 1, such as Cyprus,
Denmark, France, Germany, Ireland, Italy, Malta, and Sweden. This indicates that the environmental
performance of these countries did not change during these periods and remained relatively stable. As
shown in the window analysis, Czechia’s efficiency scores steadily decreased from 0.8578 to 0.4143 over
the analyzed period. This is consistent with the GMLI results, where Czechia recorded the number of
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periods with a GMLI value below one - 8 out of 12 periods. On a broader scale, the average GMLI across
all countries were less than one in 6 out of the 12 evaluated periods. Consequently, the overall average
GMLI value of 0.99 suggests that the environmental efficiency of EU countries slightly declined from
2007 to 2019.

TaBLE 8. The results of the window SBM-DEA approach

Window W1 W2 W3 W4 W5 W6 W7 W38 W9 W10 W11 Average

DMU 07-09 08-10 09-11 10-12 11-13 12-14 13-15 14-16 15-17 16-18 17-19

Austria 0.8880 0.5620 0.5808 0.8173 0914 0.899  0.96 0.9278 0.8895 0.9068 0.9128 0.8417
Belgium 0.9189 0.7228 0.7617 0.831 0.842 0.927 0.8106 0.8593 0.9260 0.8002 0.9190 0.8472
Bulgaria 0.8155 0.8545 0.7299 0.7076 0.595 0.4883 0.7863 0.4566 0.6047 0.4641 0.6107 0.6467
Croatia 0.8367 0.9012 0.8633 0.7073 0.875 0.8656 0.9243 0.7280 0.8465 0.6774 0.8832 0.83281
Cyprus 0.8623 0.9640 0.9398 0.9183 0.9633 0.997 0.9903 0.9584 0.9361 0.8003 0.7732 0.9185
Czechia 0.8578 0.8310 0.8324 0.719 0.7656 0.7223 0.6203 0.3412 0.4768 0.3950 0.4143 0.6342
Denmark  0.7251 0.6027 0.6181 0.6836 0.7636 0.831 0.7223 0.4515 0.7493 0.6538 0.5876  0.6717
Estonia 0.6148 0.6544 0.6583 0.6476 0.6533 0.7946 0.7146 0.7921 0.3770 0.6607 0.6596  0.6570
Finland 0.7854 0.4693 0.5804 0.7926 0.8803 0.8716 0.9066 0.8252 0.8699 0.8972 0.9088 0.7989
France 0.9740 0.9229 0.8835 0.9813 0.9886 0.964 0.9743 0.9640 0.9722 0.9739 0.9658 0.9604
Germany  0.7896 0.9128 0.5791 0.5623 0.883 0.3926 0.637 0.6897 0.9027 0.7234 0.8399 0.7193
Greece 0.9935 0.8866 0.9748 0.956 0.9036 0.6993 0.902 0.8943 0.8016 0.8115 0.83569 0.8801
Hungary 0.8382 0.7275 0.5959 0.639 0.7723 0.6803 0.582 0.4703 0.3638 0.3948 0.3937 0.5871
Ireland 0.9209 0.9853 0.9889 0.973 0975 0.9876 0.9173 0.8647 0.8821 0.9971 0.9949 0.9534
Italy 0.7617 0.9165 0.9026 0.9056 0.8993 0.6503 0.7166 0.8118 0.7563 0.5850 0.6464 0.7775
Latvia 0.8049 0.9173 0.7035 0.8473 0.8443 0.922 0.9526 0.8156 0.4588 0.7010 0.6755 0.7857
Lithuania  0.8264 0.7649 0.7666 0.794 0.916 0.8153 1 0.7869 0.6672 0.8353 0.9019  0.8250
Luxembourg 0.4373 0.4383 0.5196 0.7083 0.712 0.762 0.7366 0.5292 0.8393 0.6211 0.6422 0.6315
Malta 0.8782 0.960 0.9654 0.885 0.8816 0.8403 0.8623 0.6935 0.3342 0.8729 0.9146 0.8262
Netherlands 0.6830 0.5698 0.6373 0.635 0.7556 0.7806 0.8643 0.7978 0.6502 0.7149 0.7335 0.7111
Poland 0.6760 0.5627 0.6883 0.7256 0.7196 0.7196 0.655 0.5930 0.6361 0.5694 0.5595 0.6459
Spain 0.8976 0.9686 0.9747 0.8606 0.8256 0.8676 0.8506 0.8687 0.8124 0.8572 0.8478 0.8756
Romania 0.8935 0.8541 0.9208 0.7693 0.715 0.7523  0.59 0.6906 0.4748 0.7426 0.7742 0.7434
Slovakia 0.7791 0.8314 0.9316 0.8436 0.8966 0.9363 1 0.6553 0.7761 0.7317 0.7153  0.8270
Slovenia 0.7544 0.8022 0.8790 0.8043 0.903 0.8876 0.916 0.8657 0.8742 0.7648 0.7690  0.8382
Portugal 0.9327 0.9118 0.9363 0.7646 0.7986 0.624 0.7886 0.6861 0.7224 0.7634 0.9017 0.8028

Sweden 0.6452 0.5813 0.6536 0.749 0947 0.9696 0.768 0.6976 0.6840 0.7798 0.7304  0.7460
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TAaBLE 9. The results of the GMLI technique

07-08  08-09 09-10 10-11 11-12  12-13  13-14  14-15 15-16 16-17 17-18 18-19

Austria 0754 0.9735 1.0558 0.9871 1.0105 1.0058 0.9897 1.0286 0.9286 1.0095 13478 0.722
Belgium 14749 1 1 1 1 1 1 0852 1.1737 0.759 1.1357 0.9078
Bulgaria 1 1 1 1 1 06 10008 099 09815 1  1.0008 1.0351
Croatia 1 1 1 1 0704 1.1577 0.8074 0.9894 0.9762 15736 1 1
Cyprus 1 1 1 1 1 1 1 1 1 1 1 1

Czechia 1.3145 1.2658 0.905 0.9878 0.9782 0.8548 0.9813 0.9305 0.8703 1.9976 0.9958 1.0352
Denmark 1 1 1 1 1 1 1 1 1 1 1 1
Estonia 1.3899 0.8132 1.0024 1.12227 0.8997 1.0417 1.0038 1.0475 0.8865 0.9909 1.0233 1.2679

Finland 0.9756 0.9639 1.0483 1.2158 0.9932 1.1383 0.8655 1.1554 0.827 0.9952 1.1227 1.0823

France 1 1 1 1 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1 1 1 1 1
Greece 0.8885 1.1255 1 1 0.95 0.7479 1.1126 0.8564 1.1839 1.0854 0.9351 1.0166
Hungary 1 1 1 1 1 1 0.7385 0.88267 0.9787 1.0427 0.9535 1.0699
Ireland 1 1 1 1 1 1 1 1 1 1 1 1
Italy 1 1 1 1 1 1 1 1 1 1 1 1
Latvia 1.4194 1 1 0.776 ~ 0.9910 1.0319 0.7857 1.0417 0.9176 0.9950 1.1029 1.5291
Lithuania 1 1 0.789  0.9962 1.2723 0.6425 0.9642 1.0508 0.9186 0.9983 1.675 1
Luxembourg 1 1 1 1 1 1 1 1 1 1 0.743  1.3459
Malta 1 1 1 1 1 1 1 1 1 1 1 1
Netherlands 1 1 1 0.805 0.9640 1.0039 1.0135 0.9601 1.1900 0.8548 0.9989 1.0734
Poland 1.35510 1.3201 0.7855 1.2731 1 1 1 0.684  1.0928 1.0033 1.0407 1.1102
Portugal 1.1377 1 1 1 1 0.884 1.1312 1 0.691 0.9971 1.0544 1.1404
Romania 1 1 1 1 1 0.889 1.1249 1 1 1 1 1

Slovakia 1.2455 1.0519 1.0137 0.9141 1.1873 0.652 0.9808 1.0297 1.1427 1.0358 0.9929 1.0078

Slovenia 1.33196 0.9796 1.0215 1 0.8461 1.0007 0.9745 1.0539 0.8977 0.9945 1.211 0.9619
Spain 0.875  1.1429 1 1 0.791  0.964 1.12 0.8741 09759 1.0549 1.1314 0.9436

Sweden 1 1 1 1 1 1 1 1 1 1 1 1

Average 1.0801 1.0236 0.9860 1.0028 0.9845 0.9487 0.985 0.9767 0.9785 1.0248 1.0539 1.0463

4. CONCLUSION

This study is the first to examine environmental performance dynamically using both of the EF
and CCPI as a comprehensive evaluation factors within the DEA framework. The window SBM-DEA
model generated average efficiency scores for EU countries across the 13-year period from 2007 to
2019. Our results show that France was the most environmentally efficient country, achieving a score
of 0.9604, while Hungary recorded the lowest efficiency score at 0.5871. Three countries achieved a
relative efficiency score above 0.9, while over half of the countries had scores ranging between 0.7 and
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0.9. Only six countries showed lower performance, with scores below 0.7. The average efficiency score
across all 27 EU countries was 0.78, indicating an improvement potential of at least 0.22.

Besides providing accurate efficiency scores, the window SBM-DEA model also enables the track-
ing and monitoring of performance trends over time. The highest progress in environmental perfor-
mance belongs to Luxembourg with the efficiency score increasing from 0.44 in 2007-2008 to 0.64 in
2016-2017. The worst fall in environmental efficiency belongs to Hungary, where the efficiency score
decreased from 0.84 in 2007-2008 to 0.39 in 2016-2017, followed by Czechia, where the efficiency score
decreased from 0.86 in 2007-2008 to 0.41 in 2016-2017. The efficiency of the remaining countries re-
mained relatively stable over time.

In addition to the window analysis, the GMLI technique was employed to examine performance
variations more deeply and to identify efficiency improvements or declines between consecutive years
from 2007 to 2019. The GMLI results indicate that most EU countries have experienced both phases of
improvement and decline from 2007 to 2019. The overall average GMLI value of 0.99 suggests that the
environmental efficiency of EU countries slightly declined from 2007 to 2019.

Our findings offer valuable insights for policymakers, enabling them to make informed decisions
that contribute to more effective and proactive environmental policies in achieving sustainable eco-
nomic development. Moreover, due to many indicators are imprecise or estimated in the empirical
applications, a fuzzy window SBM-DEA analysis for evaluating dynamic environmental performance
of EU countries is worth investigating for future research.
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