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Abstract. In this paper, we introduce a relaxed proximal point algorithm for solving the generalized
inclusion problem involving a maximally comonotone operator in the framework of real Hilbert spaces.
While the classical theory for the proximal point algorithm relies heavily on monotonicity assumptions,
we demonstrate how comonotonicity (a weaker yet structurally rich property) provides sufficient condi-
tions for convergence. By exploiting the fundamental connection between comonotonicity and averaged
resolvents, we establish weak convergence of our proposed method under standard assumptions.
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1. Introduction

Let H denote the Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥. An important problem
in applied mathematics and optimization is the inclusion problem defined as: Find x ∈ H such that

0 ∈ Bx, (1.1)
where B : H ⇒ H is a maximal monotone operator. We denote the solution set of (1.1) by Zer(B) :=
B−1(0) and assume it to be nonempty. The inclusion problem covers several important applications in
scientific fields such as image processing, signal processing, economics, game theory, computer vision,
statistics (see [2, 4, 5, 9, 19, 20, 23, 26, 29, 30] and other references therein).

An important algorithm for approximating (1.1) is the proximal point algorithm (PPA) first suggested
by Martinet [24] for solving variational problems and further generalized by Rockafellar [26]. The PPA
is defined as:

xn+1 := JB
λ xn, (1.2)

where JB
λ is the resolvent of a maximal monotone operator B and λ > 0. Rockafellar [26] proved that

the sequence {xn} generated by (1.2) converges weakly to a zero of B when Zer(B) ̸= ∅. Recall that
the resolvent operator of a set-valued operator is defined by

JB
λ = (I + λB)−1.

Note that the resolvent JB
λ of a monotone operator is always single-valued. An important relation

between B and JB
λ is that B−1(0) coincides with the fixed point set of JB

λ which is not dependent on
the choice of λ > 0. If B is monotone, then JB

λ is firmly nonexpansive. The PPA plays a significant
theoretical and algorithmic role in several areas of scientific computing, such as optimization, image
processing, among others (see [2, 4, 9, 30] and other references therein). Many well-known algorithms
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can be considered as PPA for solving maximally monotone operators. These include the augmented
Lagrangian method, the proximal method of multipliers [27], the Douglas-Rachford splitting method
[14, 22], the alternating direction method of multipliers [16, 17], and the primal-dual hybrid gradient
method [7, 8].

Although PPA’s convergence is well-established for monotone operators, many applications involve
nonmonotone mappings. To solve functions that are not necessarily convex, one needs to weaken the
monotonicity of the operator B. To address this, Combettes and Pennanen [10], Iusem et al. [18] and
Pennanen [25] relaxed the monotonicity assumption to hypomonotonicity. However, hypomonotonic-
ity may still be restrictive for certain problems. To relax the hypomonotonicity condition, Bauschke
et al. [1] studied the ρ-comonotonicity assumption on B and related it to the resolvent JB

λ proper-
ties. One of the major results is that the resolvent is an averaged mapping whenever the operator is
ρ-comonotone with ρ > −1

2 . Their method heavily relies on the conically nonexpansive operators and
the notions of ρ-monotonicity (ρ-comonotonicity).

Motivated by the works mentioned above, we propose and study a proximal point algorithm for
finding the zero of a maximally ρ-comonotone operator in the framework of the real Hilbert space.
Although the proximal point algorithm has been studied for ρ-comonotone operators, our work lever-
ages the critical connection between the ρ-comonotonicity of an operator B and the averagedness
of its resolvent JB

λ as established in [1]. This connection allows us to systematically adapt classical
proximal point algorithm convergence proofs (originally developed for monotone operators) to the ρ-
comonotone case. Moreover, while Bauschke et al. [1] characterized resolvent properties, we exploit
these to propose a novel proximal point algorithm variant with relaxed parameters, achieving weak
convergence under broader conditions.

This paper is organized as follows. In Section 2, we present some basic definitions, concepts, lemmas,
and results required in the convergence analysis of our proposed algorithm. In Section 3, we present
our algorithm and the convergence result. In Section 4, we present a summary of our results.

2. Preliminaries

Throughout this paper, we denote the real Hilbert space by H and the identity operator by I. We
denote the weak convergence of a sequence {xn} to a point x by xn ⇀ x. Let B : H ⇒ H be a
set-valued operator. The domain, range and graph of B is defined as

D(B) := {x ∈ H : B(x) ̸= ∅},

ran(B) :=
⋃

{B(z) : z ∈ D(B)},
and

gra(B) := {(x, y) ∈ H × H : x ∈ D(B), y ∈ B(x)},
respectively. The inverse of B, denoted by B−1 is defined such that

x ∈ B−1(y) ⇐⇒ y ∈ B(x).

An operator is called monotone if for all x, y ∈ D(B),

⟨x− y, u− v⟩ ≥ 0, ∀u ∈ B(x), v ∈ B(y).

A monotone operator B is called maximally monotone if it has no proper monotone extension, or
equivalently, if

ran(I + λB) = H , ∀ λ > 0.

Definition 2.1. Let B : H ⇒ H and let ρ ∈ R.
(i) B is ρ-monotone if (∀ (x, u) ∈ gra(B)) (∀ (y, v) ∈ gra(B)), we have

⟨x− y, u− v⟩ ≥ ρ∥x− y∥2.
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(ii) B is maximally ρ-monotone if B is ρ-monotone and there is no ρ-monotone operator A such
that gra(A) properly contains gra(B), i.e, for every (x, u) ∈ H × H ,

(x, u) ∈ gra(B) ⇐⇒ (∀ (y, v) ∈ gra(B)), ⟨x− y, u− v⟩ ≥ ρ∥x− y∥2.
(iii) B is ρ-comonotone if (∀ (x, u) ∈ gra(B)) (∀ (y, v) ∈ gra(B)), we have

⟨x− y, u− v⟩ ≥ ρ∥u− v∥2.
(iv) B is maximally ρ-comonotone if B is ρ-comonotone and there is no ρ-comonotone operator A

such that gra(A) properly contains gra(B), i.e for every (x, u) ∈ H × H ,

(x, u) ∈ gra(B) ⇐⇒ (∀ (y, v) ∈ gra(B)), ⟨x− y, u− v⟩ ≥ ρ∥u− v∥2.

Remark 2.2.
(i) If ρ = 0, then ρ-monotonicity and ρ-comonotonicity of B reduce to the monotonicity of B.

(ii) When ρ < 0, ρ-monotonicity is known as |ρ|-hypomonotonicity which has been studied in
[6, 28]. In this case, the ρ-monotonicity is also known as |ρ|-cohypomonotonicity (see [10]).

(iii) When ρ > 0, ρ-monotonicity of B reduces to ρ-strong monotonicity of B, while ρ
-comonotonicity of B reduces to ρ-cocoercivity of B.

Unlike classical monotonicity, ρ-comonotonicity of B is not equivalent to ρ- comonotonicity of B−1.

Lemma 2.3. [1] Let B : H ⇒ H and let ρ ∈ R. Then the following are equivalent:
(i) B is ρ-comonotone.

(ii) B−1 − ρ Id is monotone.
(iii) B−1 is ρ-monotone.

Example 2.4. Let H = R, and consider the operator B : R ⇒ R defined by B(x) = βx, where
β > 0. We verify the equivalence for ρ ∈ R:

(i) B is ρ-comonotone: For u, u′ ∈ R, let v = βu and v′ = βu′. Then:
⟨v − v′, u− u′⟩ = β(u− u′)2 and ρ∥v − v′∥2 = ρβ2(u− u′)2.

The ρ-comonotonicity inequality ⟨v − v′, u− u′⟩ ≥ ρ∥v − v′∥2 becomes

β(u− u′)2 ≥ ρβ2(u− u′)2 =⇒ ρ ≤ 1

β
.

(ii) B−1 − ρId is monotone: The inverse operator is B−1(y) = y
β . Then B−1 − ρId maps y to

y

β
− ρy = y

(
1

β
− ρ

)
.

This is monotone if and only if 1
β − ρ ≥ 0, i.e., ρ ≤ 1

β .
(iii) B−1 is ρ-monotone: For y, y′ ∈ R, B−1(y) = y

β . The ρ-monotonicity condition requires:〈
y

β
− y′

β
, y − y′

〉
≥ ρ∥y − y′∥2.

Simplifying, we get:
1

β
∥y − y′∥2 ≥ ρ∥y − y′∥2 =⇒ ρ ≤ 1

β
.

All three are equivalent if ρ ≤ 1
β . For instance, if β = 2, then ρ = 1

2 satisfies all conditions.

Lemma 2.5. [1] Let B : H ⇒ H and let ρ ∈ R. Then the following are equivalent:
(i) B is maximally ρ-comonotone.

(ii) B−1 − ρ Id is maximally monotone.
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(iii) B−1 is maximally ρ-monotone.

Remark 2.6. It is well known that when ρ < 0, the (maximal) monotonicity of B−1− ρ Id is equivalent
to the (maximal) monotonicity of the Yosida approximation (B−1 − ρId)−1. See [6, Proposition 6.9.3]

For a ρ-comonotone operator, the resolvent plays an important role in approximating zero points.

Lemma 2.7. [1] Let B : H ⇒ H be maximally ρ-comonotone with ρ ∈ R and let λ > 0. If ρ > −λ,
then λB is maximally ρ

λ−comonotone with ρ
λ > −1, also JB

λ is single-valued and D(JB
λ ) = ran(I +

λB) = H .

Proposition 2.8. For ρ-comonotone B with ρ > −λ :

(i) JB
λ is (λ/(2(ρ+ λ))-conically nonexpansive.

(ii) I − JB
λ is (ρ+λ)

(2λ) -cocoercive.

Let T : H → H be an operator. A point x ∈ H is called the fixed point of T if Tx = x. We denote
the set of fixed points of T by F (T ).

Definition 2.9. The operator T : H → H is called L-Lipschitz continuous if L > 0 and

∥Tx− Ty∥ ≤ L∥x− y∥, ∀ x, y ∈ H .

If L = 1 T is called a nonexpansive mapping.

Definition 2.10. A mapping T : H → H is said to be demi-closed at 0 if, for any sequence {xn} in
H , the conditions xn ⇀ z and T (xn) → 0, imply Tz = 0.

Definition 2.11. [1] Let C be a nonempty subset of H , let T : C → H , and let α ∈ (0,∞). Then,
T is α-conically nonexpansive on C if there exists a nonexpansive operator G : C → H such that
T = (1 − α)I + αG. An α-conically nonexpansive operator is α-averaged when α ∈ (0, 1) and
nonexpansive when α = 1.

Lemma 2.12. Let α ∈ (0,∞) and let T : H → H be α-conically nonexpansive. Then the following
holds:

(i) The operator I − T is demiclosed at 0.
(ii) The set of fixed points, F (T ), is closed and convex.

(iii) The operator T is Lipschitz continuous.
(iv) For any x̄ ∈ F (T ) and x ∈ H , the following holds

⟨x− x̄, x− Tx⟩ ≥ 1

2α
∥x− Tx∥2

Lemma 2.13. [1] Let T : H → H be an operator.

(i) T is nonexpansive if and only if it is the resolvent of a maximally (−1
2)-comonotone operator

B : H ⇒ H .
(ii) Let α ∈ (0,∞). Then T is α-conically nonexpansive if and only if it is the resolvent of a maximally

ρ-comonotone operator B : H ⇒ H , where ρ = 1
2α − 1 > −1

2 , i.e α = 1
2(ρ+1) .

(iii) Let α ∈ (0, 1). Then T is α−averaged if and only if it is the resolvent of a maximally ρ− comono-
tone operator B : H ⇒ H , where ρ = 1

2α − 1 > −1
2 , i.e α = 1

2(ρ+1) .

Lemma 2.14. [15] Let B : H ⇒ H be ρ-comonotone with ρ ∈ R and let λ, µ > 0. If ρ > −λ,−µ,
then there exists a constant L > 0, such that

∥x− JB
µ x∥ ≤

(
L+ 1 +

Lµ

λ

)
∥x− JB

µ x∥, ∀ x ∈ ran(I + λB) ∩ ran(I + µB)
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Lemma 2.15. [1] Let B : H ⇒ H be a maximally ρ-comonotone with ρ > −1
2 . Then, B−1(0) is closed

and convex.

Lemma 2.16. [15] Let B : H ⇒ H be a ρ-comonotone with ρ > −1. Then, the set B−1(0) = F (JB
1 ),

and consequently, B−1(0) is closed and convex.

Proposition 2.17. [1] Let B : H ⇒ H be such that D(B) ̸= ∅. Let ρ ∈ (−1,∞), set C = ran(I +
B), T = JB

λ , i.e B = T−1 − I, and set α = 1
2(ρ+1) . Then the following are equivalent

(i) B is ρ-comonotone if and only if T is 1
2(ρ+1) -conically nonexpansive.

(ii) B is maximally ρ-comonotone if and only if T is α-conically nonexpansive and C = H .
(iii) B is (−1

2)-comonotone if and only if T is nonexpansive.
(iv) B is maximally (−1

2)-comonotone if and only if T is nonexpansive and C = H .

(v) B is ρ-comonotone and ρ > −1
2 if and only if T is α-averaged.

(vi) B is maximally ρ-comonotone and ρ > −1
2 if and only if T is α-averaged and C = H .

Lemma 2.18. Let H be a real Hilbert space. Then, the following results hold for all x, y ∈ H and β ∈ R
(i) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(ii) ∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2;
(iii) ∥βx+ (1− β)y∥2 = β∥x∥2 + (1− β)∥y∥2 − β(1− β)∥x− y∥2.

Lemma 2.19. [13, Lemma 3.2] Let {an} and {bn} be sequences of positive numbers. Assume that the
sequence {an} is nonsummable, the sequence {bn} is decreasing and

∞∑
i=0

aibi < ∞.

Then,

bn = o
(
1/

n∑
i=0

bi

)
where the o notation means that tn = o(1/sn) if and only if lim

n→∞
tnsn = 0.

Remark 2.20. To analyze the proximal point algorithm, Dong [13] used Lemma 2.19.

Lemma 2.21. (Opial) Let C be a nonempty subset of H , and {xn} is a sequence in H such that the
following conditions holds:

(i) for every x ∈ C , lim
n→∞

∥xn − x∥ exists;

(ii) every weak sequential limit point of {xn}, as n → ∞ belongs to C .

Then {xn} converges weakly as n → ∞ to a point C .

3. Main Results

In this section, we present our main result.

Theorem 3.1. Let B : H ⇒ H be a maximally ρ-comonotone operator. Choose λ > 0 such that
ρ ∈ (−λ, 0]. Given x0 ∈ H , generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.1)

where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2(ρ+λ)
λ . Then, {xn} converges weakly to an element of Zer(B).
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Proof. Let x∗ ∈ Zer(B). Then x∗ = JB
λ x∗. Since ρ > −λ, the resolvent JB

λ is single-valued (see
Lemma 2.7). Now, let T = JB

λ . Then, Txn = JB
λ xn is α-conically nonexpansive ∀n ∈ N, where where

α = λ
2(ρ+λ) (please, see Proposition 2.17 (i)). By Lemma 2.18 and Lemma 2.12 (iv), we have

∥JB
λ xn − x∗∥2 = ∥xn − x∗ − (xn − JB

λ xn)∥2

= ∥xn − x∗∥2 − 2⟨xn − x∗, xn − JB
λ xn⟩+ ∥xn − JB

λ xn∥2

≤ ∥xn − x∗∥2 − 1

α
∥xn − JB

λ xn∥2 + ∥xn − JB
λ xn∥2

= ∥xn − x∗∥2 −
( 1

α
− 1

)
∥xn − JB

λ xn∥2

= ∥xn − x∗∥2 − (2ρ+ λ)

λ
∥xn − JB

λ xn∥2. (3.2)

Consequently, from (3.8) and (3.2), we have

∥xn+1 − x∗∥2 = ∥(1− βn)(xn − x∗) + βn(J
B
λ xn − x∗)∥2

= (1− βn)∥xn − x∗∥2 + βn∥JB
λ xn − x∗∥2 − βn(1− βn)∥xn − JB

λ xn∥2

≤ (1− βn)∥xn − x∗∥2 + βn∥xn − x∗∥2 − βn

(2ρ+ λ

λ

)
∥xn − JB

λ xn∥2

−βn(1− βn)∥xn − JB
λ xn∥2

= ∥xn − x∗∥2 − βn

(2ρ+ λ

λ
+ 1− βn

)
∥xn − JB

λ xn∥2. (3.3)

Since 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2(ρ+λ)
λ , we obtain from (3.3) that

∥xn+1 − x∗∥ ≤ ∥xn − x∗∥, ∀ x∗ ∈ Zer(B),

and lim
n→∞

∥xn − x∗∥ exists. Therefore, {xn} is bounded. Also

lim
n→∞

∥xn − JB
λ xn∥ = 0.

Since {xn} is bounded, there exists {xnk
} ⊂ {xn} such that xnk

⇀ p ∈ H . By the fact that

lim
n→∞

∥xn − Txn∥ = lim
k→∞

∥xnk
− Txnk

∥ = 0

and demiclosedness property of I − T at zero, we have that p = Tp, T = JB
λ . Hence, p ∈ Zer(B). By

Lemma 2.21, we have that {xn} converges weakly to a point in Zer(B). □

In the case when ρ = 0, we have the following result for the relaxed proximal point algorithm for a
maximally monotone operator.

Corollary 3.2. Suppose B : H ⇒ H is a maximally monotone operator. Choose λ > 0, x0 ∈ H , and
generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.4)

where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2. Then, {xn} converges weakly to an element of Zer(B).

In the case when ρ < 0, we have the following result for the relaxed proximal point algorithm for a
maximally comonotone operator.

Corollary 3.3. Suppose B : H ⇒ H is a maximally ρ-comonotone operator. Choose λ > 0 such that
ρ ∈ (−λ, 0). Choose λ > 0 such that ρ+ λ > 0. Given x0 ∈ H , generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.5)
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where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2(ρ+λ)
λ . Then, {xn} converges weakly to an element of Zer(B).

We are now in the position to present the convergence rate of the proposed method.

Theorem 3.4. Let B : H ⇒ H be a maximally ρ-comonotone operator. Choose λ > 0 such that
ρ ∈ (−λ, 0]. Given x0 ∈ H , generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.6)

where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2(ρ+λ)
λ such that γn :=

n∑
j=0

βj

(
2ρ+λ
λ + 1 − βj

)
for n ∈ N and

lim
n→∞

γn = ∞. Then, the convergence rate estimate

∥xn − JB
λ xn∥ = o

(
1/
√
γn

)
holds, that is lim

n→∞
√
γn∥xn − JB

λ xn∥ = 0.

Proof. From (3.3), we have

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 − βn

(2ρ+ λ

λ
+ 1− βn

)
∥xn − JB

λ xn∥2

which implies that

βn

(2ρ+ λ

λ
+ 1− βn

)
∥xn − JB

λ xn∥2 ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2.

Summing from j = 0 to l we have
l∑

j=0

βj

(2ρ+ λ

λ
+ 1− βj

)
∥xj − JB

λ xj∥2 ≤ ∥xj − x∗∥2 − ∥xj+1 − x∗∥2

≤ ∥x0 − x∗∥.

Letting l → ∞, we have
∞∑
j=0

βj

(2ρ+ λ

λ
+ 1− βj

)
∥xj − JB

λ xj∥2 < ∞,

which implies that

∥xj − JB
λ xj∥2 = o

(
1/

∞∑
j=0

βj

(2ρ+ λ

λ
+ 1− βj

))
.

Since lim
n→∞

γn = ∞, we obtain from Lemma 2.19 that

∥xj − JB
λ xj∥2 = o(1/γn).

Hence, we have that
∥xj − JB

λ xj∥ = o(1/
√
γn).

□

Remark 3.5.

(i) Theorem 3.4 improves the known big O in [11, Proposition 11] to little o without any other
restrictions.

(ii) Let δ > 0. The condition
{
βn

(
2ρ+λ
λ + 1− βn

)}
⊂ (δ,∞) implies that lim

n→∞
γn = ∞ but the

reverse does not hold.
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(iii) Under the assumptions that δ > 0 and{
βn

(2ρ+ λ

λ
+ 1− βn

)}
⊂ (δ,∞),

√
δ(n+ 1)∥∥xn − JB

λ xn∥∥ ≤ √
γn∥xn − JB

λ xn∥.
Hence, the o(1/

√
n+ 1) rate in [12, Theorem 1] follows from Theorem 3.4.

In the case when ρ = 0, we have the following result for the relaxed proximal point algorithm for a
maximally monotone operator.

Corollary 3.6. Let B : H ⇒ H be a maximally monotone operator. Choose λ > 0, x0 ∈ H , and
generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.7)

where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2 such that γn :=
n∑

j=0
βj

(
2 − βj

)
for n ∈ N and lim

n→∞
γn = ∞.

Then, the convergence rate estimate

∥xn − JB
λ xn∥ = o

(
1/
√
γn

)
holds, that is lim

n→∞
√
γn∥xn − JB

λ xn∥ = 0.

In the case when ρ < 0, we have the following result for the relaxed proximal point algorithm for a
maximally comonotone operator.

Corollary 3.7. Let B : H ⇒ H be a maximally ρ-comonotone operator. Choose λ > 0 such that
ρ ∈ (−λ, 0). Choose λ > 0 such that ρ+ λ > 0. Given x0 ∈ H , generate

xn+1 = (1− βn)xn + βnJ
B
λ (xn), (3.8)

where 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 2(ρ+λ)
λ such that γn :=

n∑
j=0

βj

(
2ρ+λ
λ + 1 − βj

)
for n ∈ N and

lim
n→∞

γn = ∞. Then, the convergence rate estimate

∥xn − JB
λ xn∥ = o

(
1/
√
γn

)
holds, that is lim

n→∞
√
γn∥xn − JB

λ xn∥ = 0.

4. Conclusion

In this paper, we studied the generalized inclusion problem in the framework of real Hilbert spaces.
We investigated the convergence of the proximal point algorithm for solving inclusion problems in-
volving maximally comonotone operators. Using the relationship between comonotonicity and the
averaged nature of resolvent operators, we obtained the weak convergence of our method. By relaxing
monotonicity to comonotonicity, we expand the reach of the proximal point algorithm to problems in
nonconvex optimization, game theory, and variational inequalities, where traditional approaches might
stall. In the future, we may explore adaptive stepsize, accelerated variants, or applications to structured
nonmonotone problems in machine learning and imaging sciences.
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