
 

JOURNAL OF DECISION MAKING AND HEALTHCARE
Volume 2 (2025), No. 2, 114–135
https://doi.org/10.69829/jdmh-025-0202-ta03 Tulipa Opera Scholarum

OPTIMIZING A SUPPLY-CHAIN INVENTORY MODEL HAVING PRICE AND
STOCK-DEPENDENT DEMAND UNDER SUPPLIER CREDITS AND CASH DISCOUNT

POLICY

SOURAV KUMAR PATRA∗

Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

Dedicated to Professor Hari Mohan Srivastava on the Occasion of His 85th Birthday

Abstract. Traditional Economic Order Quantity (EOQ) models assume that payment for goods is made
immediately upon delivery. However, suppliers often offer two key incentives simultaneously: (1) a pay-
ment delay to captivate new customers and increase sales, and (2) a cash discount to encourage prompt
disbursement and diminish credit costs. This paper develops an optimal supply-chain inventory model
for deteriorating goods with price and stock-dependent demand, incorporating a constant deterioration
rate, under both trade credit and cash discount policies. The model assumes no shortages and considers
the salvage value of deteriorated units. Our objective is to minimize costs in a scenario where the supplier
provides both a financial discount and a permissible payment delay. We formulate a mathematical model
and propose a solution approach in both crisp and fuzzy contexts. Numerical examples, analyzed using
Mathematica 13.0.1 software, validate our findings and demonstrate the convexity of the overall cost func-
tion. Additionally, a sensitivity analysis of key parameters is conducted to provide valuable managerial
insights for inventory managers.

Keywords. Price-stock dependent demand, Salvage value, Cash discount, Delay in payments, Graded
mean integration representation method, Pentagonal fuzzy numbers.
© Journal of Decision Making and Healthcare

1. Introduction

Current corporate policies are based on competitive marketing techniques. Every businessman or
vendor has significant challenges to remain competitive. In today’s competitive business world, a strong
vendor-buyer relationship is critical to the success of any corporate organization. Although both buyer
and vendor can support the business by establishing a relationship, the business climate requires an
inventive attitude of collaboration between buyer and vendor. To attract clients and convert poten-
tial customers into repeat purchasers, business owners employ a variety of discount techniques, such
as price discounts, quantity discounts, trade discounts, seasonal discounts, discounts for advance pay-
ment, and so on. Traditionally, while developing models for various inventory systems, most academics
assume that the retailer’s finances are sufficient and must be paid to the supplier as soon as the goods
arrive. However, this assumption is not valid in the real world of business. In general, the supplier will
often grant the store a trade credit period to settle their debt. During the permitted trade credit period,
no interest is imposed; thereafter, interest will be charged on the unpaid amount. So, disbursing later is
favorable because it lowers the stock’s holding cost in the long run. This policy serves as an incentive
for retailers because it allows them to sell things, accrue income, and earn interest on their capital dur-
ing this time. On the other hand, this credit policy helps the provider attract more clients and improve
sales. Thus, trade credit is critical to inventory management for both suppliers and retailers.
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In inventory management theory, consumer demand is a crucial element of every inventory model.
The nature of demand is influenced by various factors, including selling price, stock availability, time,
product quality, environmental considerations, and inherent uncertainties. As a result, researchers and
decision-makers often view demand rates as a function of price, inventory levels, or a combination of
factors such as selling price, stock levels, time, or environmental attributes. Deterioration is common in
inventory systems dealing with perishable products like fruits, vegetables, and pharmaceuticals, leading
to significant losses in both quality and quantity. To boost market demand, businesses employ various
policies, including trade credit, quantity discounts, and cash discounts, each designed to enhance de-
mand in different ways. Many inventory control studies assume a constant demand rate throughout the
inventory cycle, but in reality, demand rates are influenced by factors such as selling price and product
availability.

Supply chain modeling involves various processes that businesses have used for decades to establish
well-organized supply chains. Different businesses have distinct supply chain requirements, with some
needing to remain agile to respond to unpredictable demands. Inventory is a crucial and visible aspect
of business operations, where goods are stored as spare parts, raw materials, and both partially and
fully finished products. Research on inventory modeling focuses on providing decision-making tools
to enhance the efficiency of inventory systems. However, designing an effective inventory control
mechanism is challenging. Numerous supply chain inventory models have been developed to address
the complexities faced by supply chain participants, incorporating innovative strategies for managing
different aspects of the supply chain. Despite focusing on these challenges, much of the research fails
to account for the uncertainties that are a fundamental part of the modern business world. Addressing
both complexities and uncertainties is vital for the future of supply chain management. The supply
chain management process is shown in FIGURE 1, sourced from the internet.

Traditionally, the standard Economic Order Quantity (EOQ) model assumes immediate payment for
goods upon receipt. However, in practice, suppliers often provide a fixed credit period, allowing re-
tailers to clear their accounts and thereby promoting demand. During this credit period, retailers can
sell the products, accumulate revenue, and earn interest. Goyal [6] first introduced an EOQ inventory
model incorporating a payment delay. Subsequently, Aggarwal and Jaggi [1] expanded this framework
to account for decaying items. Later, Jamal et al. [8] further extended the framework to include short-
ages. Liao et al. [16] devised an inventory framework with stock-dependent consumption rates that
also accommodates payment delays. Ouyang et al. [26] introduced an EOQ model incorporating both
cash discounts and payment delay policies. This was followed by Ouyang et al. [27], who proposed an
EOQ model for deteriorating items under trade credit finance. Shah and Mishra [39] then developed an
EOQ model for deteriorating commodities with stock-dependent demand under supplier credits. Build-
ing on this, Rastogi et al. [38] suggested an EOQ framework considering variable holding costs with
trade credit and cash discount policies. Chung et al. [4] created an inventory model for deteriorating
items with conditional cash discount facilities. Lastly, Shah and Naik [40] developed a model for de-
teriorating inventory with quadratic demand under trade credit and cash discount policies. There are
some other works on inventories under cash discount policy by [7, 14, 17, 30, 36, 44].

Typically, demand rates are assumed to be either constant or time-dependent, without considering
the impact of stock levels or selling prices. However, research indicates that increasing shelf space for
an item can boost its sales due to enhanced visibility and attractiveness, which attracts more customers.
Conversely, low stock levels might suggest that items are not fresh or desirable, thereby affecting their
demand rates. Datta and Paul [5] developed a finite-horizon inventory model in which demand rates
depend on both supply and pricing. Teng and Chang [43] proposed an Economic Production Quantity
(EPQ) inventory model for deteriorating products, incorporating demand based on selling price and
stock levels. Later, Soni [42] introduced an inventory model for non-instantaneously deteriorating
items, considering price and stock-sensitive demand under acceptable payment delays. Pal et al. [29]



116 S. K. PATRA

Figure 1. Supply Chain Management Process

formulated a model addressing price and stock-dependent demand rates in the context of inflation.
Following this, Chowdhury et al. [3] developed an inventory model for degrading items with price-
sensitive demand. Mishra [18] established a waiting-time deterministic inventory model for decaying
products with time-dependent demand. Mishra et al. [20] further devised a model for controllable
degradation rates with shortages, accounting for price and stock-dependent demand. Additional works
on inventory models incorporating stock and price-dependent demand include those by [19, 21, 31, 32,
37, 41].

In most real-world scenarios, accurate data is insufficient for a mathematical model. Usually, human
choices, including inclinations, are vague and cannot be evaluated in terms of inclinations with specific
numerical information. Fuzzy set theory is an incredible tool for illustrating the type of instability asso-
ciated with vagueness, imprecision, and a lack of data regarding a certain topic at hand. L. A. Zadeh [45]
introduced fuzzy set theory as an extension of traditional sets (crisp sets or classical sets). Eventually,
Lee and Yao [15] addressed the impreciseness in production quantity and demand in their inventory
model by utilizing fuzzy ideas. In this context, Kumar and Paikray [12] developed a cost optimization
inventory framework for degrading items with a trapezoidal type demand rate in both fuzzy and crisp
circumstances. Kumar et al. [13] suggested a retailer’s inventory framework for degrading items in
both crisp and fuzzy scenarios. Similarly, Nayak et al. [23] developed an EOQ framework for decay-
ing items with time-sensitive demand under partially backlogged shortages in fuzzy contexts. Padhy
et al. [28] also introduced an EOQ framework that addresses both improvements and degradation in
fuzzy contexts. Additionally, one may refer to the works of [9, 10, 11, 22, 24, 25, 33, 34, 35] for several
constraints in both crisp and fuzzy contexts.
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Based on the aforementioned discussions, it is evident that none of the existing inventory models
have addressed price and stock-dependent demand with a cash discount policy under cost imprecision.
However, inventory models incorporating all these constraints are highly relevant to many businesses
in real-market scenarios. Consequently, this gap in the literature has led us to develop an optimal
inventory framework that includes price and stock-sensitive demand, permissible payment delays, and
cash discount policies, all while considering cost imprecision. Our objective is to minimize the total
cost. To achieve this, we have constructed a computational algorithm and provided numerical examples
to illustrate the theoretical results under various conditions. Additionally, we offer managerial insights
and conduct a sensitivity analysis to benefit inventory managers.

The framework of our current investigation is as follows: Section 1 presents the introduction and
outlines the motivation for our proposed study. Section 2 provides the notations and assumptions to
frame the problem. Section 3 details the framework formulation in crisp contexts. Section 4 explains
the computational solution algorithm for the problem. Section 5 discusses the framework formulation
under fuzzy scenarios. Section 6 provides numerical illustrations to demonstrate the applicability of
the study. Section 7 presents the sensitivity analysis and managerial insights derived from the model.
Section 8 summarizes the findings and conclusions of our study.

2. Notations and Assumptions

The following notations and assumptions provide the basis for the mathematical formulation of the
proposed inventory problem.

2.1. Notations.
TABLE 1 summarizes the terminology used in this paper’s mathematical model development.
Note that the functions prefixed with the notation ‘̃ ’ represent fuzzy-valued functions with imprecise

parameters.

2.2. Assumptions.

(i) The inventory system manages a single item.
(ii) In crisp context, the associated costs are predictable, whereas in fuzzy context, they are charac-

terized by imprecision.
(iii) The replenishment process occurs instantly.
(iv) The demand rate pursues the price and stock-dependent as D(t) = A+ ζI(t)−P;A > 0, 0 <

ζ ≪ 1.
(v) The time horizon is infinite, and there is no lead time.

(vi) Shortages are prohibited.
(vii) The revenue from sales is deposited into an interest-bearing account while it remains unpaid.

At the end of the term, the customer retains all profits, settles the payment for all sold units,
and begins paying interest on the inventory that remains in stock.

(viii) Pentagonal fuzzy numbers are used to quantify imprecise costs in fuzzy scenarios.

3. Model Formulation

The goal of the model is to identify the optimal order quantity that minimizes the total cost. During
the interval [0, T ], the inventory level decreases primarily to meet demand and secondarily due to
deterioration. Consequently, the inventory level at any time t is illustrated in FIGURE 2 and described
mathematically as follows.
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Table 1. Notations

Parameters
OC unit ordering cost
HC unit holding cost
PC unit purchase cost
Q order quantities per cycle
P selling price
ν deterioration rate (constant; 0 ≤ ν < 1)
IE interest earned rate
IC interest paid rate
R discount rate; 0 < R < 1
N discount time frame
M allowable delay duration; M > N
η salvage value; 0 ≤ η < 1
A a positive constant
ζ stock-dependent consumption rate
ΠD number of deteriorating items

Decision variables
T cycle length

Functions
D(t) demand rate
I(t) in-stock inventory in [0, T ]

TC(T ) per unit overall cost
T̃C(T ) per unit overall cost fuzzy environment
GTC(T ) defuzzified total cost function

0 T

Q

T i m e

I n v e n t o r y L e v e l

Figure 2. Stock level at time t

Let I(t) denote the in-stock inventory at time t ≥ 0 within the interval [0, T ]. Thus, the differential
equation under the boundary condition I(T ) = 0 is given by

dI(t)

dt
+ νI(t) = − (A+ ζI(t)− P) , 0 < t ≤ T. (3.1)
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Solving equation (3.1) using the boundary condition, we obtain

I(t) =
A−P
ζ + ν

{
e(ζ+ν)(T−t) − 1

}
. (3.2)

The order quantity for each replenishment cycle is defined as

Q = I(t = 0) =
A−P
ζ + ν

{
e(ζ+ν)T − 1

}
.

The total demand over one cycle is expressed as∏
(Q(T ))T = (A+ ζI(T )− P)T = (A−P)T.

During a replenishment cycle, the quantity of decaying products is given by

ΠD = Q−
∏

(Q(T ))T =
A−P
ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
.

Next, in view of calculating the overall cost, the various associated factors are obtained as follows.

Ordering Cost.

OC = OC . (3.3)

Holding Cost.

HC = HC ×
T∫
0

I(t)dt =
HC (A−P)

(ζ + ν)2

{
e(ζ+ν)T − 1− T (ζ + ν)

}
. (3.4)

Deterioration Cost.

DC = PC ×ΠD =
PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
. (3.5)

Salvage Value.

SV = η ×DC =
ηPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
. (3.6)

Purchase Cost.

PC = PC ×Q =
PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
. (3.7)

Considering the cash discount, interest charges, and interest earned, we have four scenarios based
on the retailer’s two payment options: paying at N or at M.

• Scenario 1: N ≤ T .
• Scenario 2: N > T .
• Scenario 3: M ≤ T .
• Scenario 4: M > T .

Now, we show all four scenarios graphically in FIGURE 3. Additionally, the specifics of each scenarios
are provided below.
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(a) Scenario 1: N ≤ T
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(b) Scenario 2: N > T
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Figure 3. Stock level at time T

Scenario 1. N ≤ T
Since the payment is made on time (N ), the customer benefits from a price discount, resulting in a

savings of (RPCQ) per cycle. Hence, the cash discount is given by

CD = RPCQ =
RPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
. (3.8)

Next, the items in stocks have to be financed after time (N ). So the interest payable is given by

IP 1 = PCIC ×
T∫

N

I(t)dt =
PCIC (A−P)

(ζ + ν)2

{
e(ζ+ν)(T−N ) − 1− (T −N ) (ζ + ν)

}
. (3.9)

In the period [0,N ], the customer sells goods and deposits the revenue into an account. Conse-
quently, the interest earned is expressed as

IE1 = PIE ×
N∫
0

tD(t)dt

= PIE

{
(A−P) νN 2

2 (ζ + ν)
+

ζ (A−P) e(ζ+ν)T

(ζ + ν)3

{
1−N (ζ + ν) e−N (ζ+ν) − e−N (ζ+ν)

}}
. (3.10)
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The overall cost per unit of time is defined as

TC1(T ) =
W1

T
, (3.11)

where
W1 = OC +HC +DC + PC + IP1 − CD − SV − IE1

= OC +
HC (A−P)

(ζ + ν)2

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
+

PCIC (A−P)

(ζ + ν)2

{
e(ζ+ν)(T−N ) − 1− (T −N ) (ζ + ν)

}
− RPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
− ηPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
− PIE

{
(A−P) νN 2

2 (ζ + ν)
+

ζ (A−P) e(ζ+ν)T

(ζ + ν)3

{
1−N (ζ + ν) e−N (ζ+ν) − e−N (ζ+ν)

}}
.

Scenario 2. N > T
In this scenario, the consumer sells all units at time T and makes the full payment to the provider at

time N . As a result, no interest is incurred, and the cash discount remains the same as in Scenario 1.
Thus, the interest earned is expressed as

IE2 = PIE ×
{ T∫

0

tD(t)dt+ (A−P)T (N − T )

}

= PIE

{
(A−P) νT 2

2 (ζ + ν)
+

ζ (A−P)

(ζ + ν)3

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+ (A−P)T (N − T )

}
.

(3.12)
The overall cost per unit of time is calculated as

TC2(T ) =
W2

T
, (3.13)

where
W2 = OC +HC +DC + PC + IP2 − CD − SV − IE2

= OC +
HC (A−P)

(ζ + ν)2

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
− RPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
− ηPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
− PIE

{
(A−P) νT 2

2 (ζ + ν)

+
ζ (A−P)

(ζ + ν)3

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+ (A−P)T (N − T )

}}
.

Scenario 3. M ≤ T
The payment is completed at timeM, so no cash discount applies. The interest to be paid is calculated

as

IP 3 = PCIC ×
T∫

M

I(t)dt =
PCIC (A−P)

(ζ + ν)2

{
e(ζ+ν)(T−M) − 1− (T −M) (ζ + ν)

}
. (3.14)
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The interest earned can be expressed as

IE3 = PIE ×
M∫
0

tD(t)dt

=
PIE (A−P)

ζ + ν

{
νM2

2
+

ζ

(ζ + ν)2

{
e(ζ+ν)T −M (ζ + ν) e(ζ+ν)(T−M) − e(ζ+ν)(T−M)

}}
.

(3.15)

The overall cost per unit of time is expressed as

TC3(T ) =
W3

T
, (3.16)

where

W3 = OC +HC +DC + PC + IP3 − CD − SV − IE3

= OC +
HC (A−P)

(ζ + ν)2

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
+

PCIC (A−P)

(ζ + ν)2

{
e(ζ+ν)(T−M) − 1− (T −M) (ζ + ν)

}
− ηPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
− PIE (A−P)

ζ + ν

{
νM2

2

+
ζ

(ζ + ν)2

{
e(ζ+ν)T −M (ζ + ν) e(ζ+ν)(T−M) − e(ζ+ν)(T−M)

}}}
.

Scenario 4. M > T
In this scenario, no interest is imposed. The earned interest is expressed as

IE4 = PIE ×
{ T∫

0

tD(t)dt+ (A−P)T (M− T )

}

= PIE

{
(A−P) νT 2

2 (ζ + ν)
+

ζ (A−P)

(ζ + ν)3

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+ (A−P)T (M− T )

}
.

(3.17)

The unit overall cost is expressed by

TC4(T ) =
W4

T
, (3.18)

where

W4 = OC +HC +DC + PC + IP4 − CD − SV − IE4

= OC +
HC (A−P)

(ζ + ν)2

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+

PC (A−P)

ζ + ν

{
e(ζ+ν)T − 1

}
− ηPC (A−P)

ζ + ν

{
e(ζ+ν)T − 1− T (ζ + ν)

}
− PIE

{
(A−P) νT 2

2 (ζ + ν)
+

ζ (A−P)

(ζ + ν)3

{
e(ζ+ν)T − 1− T (ζ + ν)

}
+ (A−P)T (M− T )

}}
.
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Hence, in the four scenarios mentioned above, the overall cost is obtained as

TCi(T ) =


TC1(T ), (N ≤ T )

TC2(T ), (N > T )

TC3(T ), (M ≤ T )

TC4(T ), (M > T )

(3.19)

for i = 1, 2, 3, 4.

4. Computational Algorithm

The traditional optimum strategy is utilized to solve the problem. The primary objective is to mini-
mize the overall cost function TCi(T ). Here, the steps to the solution are as follows to verify that the
decision parameter is optimal.
Step 1 Initialize the inventory parameters; OC , HC , PC ,P, ν, IE , IC ,R,N ,M, η,A, and ζ .
Step 2 Determine TC1(T ) from equation (3.11).
Step 3 Find ∂TC1(T )

∂T .
Step 4 Resolve the equation ∂TC1(T )

∂T = 0 for T .
Step 5 Select the solution from Step 4.
Step 6 Find ∂2TC1(T )

∂T 2 .
Step 7 Check if ∂2TC1(T )

∂T 2 > 0, then this solution is optimal (minimum).
Step 8 Otherwise proceed to Step 5.

Note that, similar results can be established for the other objective functions under the consideration
of equations (3.13), (3.16) and (3.18).

5. Fuzzy Model

The inventory parameters can be impractical in real-life scenarios for various reasons. For instance,
fuzziness makes it challenging to define each parameter precisely. To address this imprecision, we
propose a suitable framework under fuzzy conditions. Specifically, to handle the fuzzy paradigm, we
consider the fuzzy parameters ÕC , Ã, ν̃, and P̃C , which correspond to the ordering cost (OC ), demand
parameter (A), deterioration rate (ν), and purchase cost (PC ) of our crisp framework.

The overall fuzzy cost is given by

T̃Ci(T ) =


T̃C1(T ), (N ≤ T )

T̃C2(T ), (N > T )

T̃C3(T ), (M ≤ T )

T̃C4(T ), (M > T )

(5.1)

for i = 1, 2, 3, 4.
That is,

T̃C1(T ) =
1

T

{
ÕC +

HC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+

P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}

+
P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}
+

P̃CIC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)(T−N ) − 1− (T −N ) (ζ + ν̃)

}

−
RP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}
−

ηP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
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− PIE

{(
Ã − P

)
ν̃N 2

2 (ζ + ν̃)
+

ζ
(
Ã − P

)
e(ζ+ν̃)T

(ζ + ν̃)
3

{
1−N (ζ + ν̃) e−N (ζ+ν̃) − e−N (ζ+ν̃)

}}}
;

T̃C2(T ) =
1

T

{
ÕC +

HC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+

P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}

+
P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}
−

RP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}

−
ηP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
− PIE

{(
Ã − P

)
ν̃T 2

2 (ζ + ν̃)

+
ζ
(
Ã − P

)
(ζ + ν̃)

3

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+
(
Ã − P

)
T (N − T )

}}}
;

T̃C3(T ) =
1

T

{
ÕC +

HC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+

P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}

+
P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}
+

P̃CIC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)(T−M) − 1− (T −M) (ζ + ν̃)

}

−
ηP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
−

PIE

(
Ã − P

)
ζ + ν̃

{
ν̃M2

2

+
ζ

(ζ + ν̃)
2

{
e(ζ+ν̃)T −M (ζ + ν̃) e(ζ+ν̃)(T−M) − e(ζ+ν̃)(T−M)

}}}}
;

and

T̃C4(T ) =
1

T

{
ÕC +

HC

(
Ã − P

)
(ζ + ν̃)

2

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+

P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}

+
P̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1

}
−

ηP̃C

(
Ã − P

)
ζ + ν̃

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}

− PIE

{(
Ã − P

)
ν̃T 2

2 (ζ + ν̃)
+

ζ
(
Ã − P

)
(ζ + ν̃)

3

{
e(ζ+ν̃)T − 1− T (ζ + ν̃)

}
+

(
Ã − P

)
T (M− T )

}}}
.

5.1. Defuzzification.
The fuzzy parameters are represented using pentagonal fuzzy numbers as ÕC = (OC1, OC2, OC3, OC4,

OC5), P̃C = (PC1, PC2, PC3, PC4, PC5), Ã = (A1,A2,A3,A4,A5), and ν̃ = (ν1, ν2, ν3, ν4, ν5). Thus, fol-
lowing Chen and Hsieh [2], the overall fuzzy cost functions are defuzzified using the Graded Mean Integration
Representation (GMIR) method, yielding the total defuzzified cost as

GTCi(T ) =
1

12

{
T̃Ci1 + 3× T̃Ci2 + 4× T̃Ci3 + 3× T̃Ci4 + T̃Ci5

}
(5.2)

for i = 1, 2, 3, 4. Here, T̃Cij is obtained from the above equation (5.1) just by replacing the imprecise parameters
in T̃Ci (i = 1, 2, 3, 4) with the corresponding jth pentagonal fuzzy numbers for j = 1, 2, 3, 4, 5.

We can find an optimal solution for the fuzzy model by following a process similar to that of the crisp model
solution process.
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6. Numerical Illustrations

We numerically investigated the model in both crisp and fuzzy contexts under our proposed method of solu-
tion. We utilize Mathematica 13.0.1 software to determine the optimal solution and to demonstrate the convexity
of the overall cost functions, as illustrated in FIGURES (4 - 7). The data utilized in the numerical examples are
hypothetical in nature.

Example 1

(a) Crisp Model
We consider the succeeding inventory constraints:
OC = 450, HC = 2, PC = 20, P = 30, ν = 0.02, IE = 0.07, IC = 0.15, R = 0.12, N = 1.2, M = 1.7,
η = 0.03, A = 100, and ζ = 0.01.

Solution
The aforementioned data gives the following ideal solutions:

T ∗ = 1.46428, Q∗ = 105.561, TC∗
1 = 1652.97.

(b) Fuzzy Model
We consider the following inventory constraints:
HC = 2, P = 30, IE = 0.07, IC = 0.15, R = 0.12, N = 1.2, M = 1.7, η = 0.03, ζ = 0.01, and the
corresponding fuzzy parameters are ÕC = (OC1, OC2, OC3, OC4, OC5) = (360, 405, 450, 495, 540), P̃C =

(PC1, PC2, PC3, PC4, PC5) = (16, 18, 20, 22, 24), ν̃ = (ν1, ν2, ν3, ν4, ν5) =

(0.016, 0.018, 0.02, 0.022, 0.024), Ã = (A1,A2,A3,A4,A5) = (80, 90, 100, 110, 120) respectively.

Solution
Taking into account the above information, we acquire the following optimal solutions:

T ∗ = 1.4572, Q∗ = 105.062, GTC∗
1 = 1676.01.

(a) TC1 vs T (b) GTC1 vs T

Figure 4. Convexities of total cost by employing Example 1

Example 2

(a) Crisp Model
We consider the succeeding inventory constraints:
OC = 550, HC = 4, PC = 25, P = 50, ν = 0.04, IE = 0.09, IC = 0.25, R = 0.22, N = 1.5, M = 2, η = 0.05,
A = 200, and ζ = 0.03.

Solution
The aforementioned data gives the following ideal solutions:

T ∗ = 0.775916, Q∗ = 120.076, TC∗
2 = 3323.71.
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(b) Fuzzy Model
We consider the following inventory constraints:
HC = 4, P = 50, IE = 0.09, IC = 0.25, R = 0.22, N = 1.5, M = 2, η = 0.05, ζ = 0.03, and the
corresponding fuzzy parameters are ÕC = (OC1, OC2, OC3, OC4, OC5) = (440, 495, 550, 605, 660), P̃C =

(PC1, PC2, PC3, PC4, PC5) = (20, 22.5, 25, 27.5, 30), ν̃ = (ν1, ν2, ν3, ν4, ν5) =

(0.032, 0.036, 0.04, 0.044, 0.048), Ã = (A1,A2,A3,A4,A5) = (160, 180, 200, 220, 240) respectively.

Solution
Taking into account the above information, we acquire the following optimal solutions:

T ∗ = 0.772498, Q∗ = 119.559, GTC∗
2 = 3375.30.

(a) TC2 vs T (b) GTC2 vs T

Figure 5. Convexities of total cost by employing Example 2

Example 3

(a) Crisp Model
We consider the following inventory constraints:
OC = 500, HC = 3, PC = 27, P = 40, ν = 0.05, IE = 0.15, IC = 0.35, R = 0.43, N = 0.2, M = 0.6,
η = 0.07, A = 150, and ζ = 0.06.

Solution
The aforementioned data gives the following ideal solutions:

T ∗ = 0.745266, Q∗ = 85.433, TC∗
3 = 3860.82.

(b) Fuzzy Model
We consider the following inventory constraints:
HC = 3, P = 40, IE = 0.15, IC = 0.35, R = 0.43, N = 0.2, M = 0.6, η = 0.07, ζ = 0.06, and the
corresponding fuzzy parameters are ÕC = (OC1, OC2, OC3, OC4, OC5) = (400, 450, 500, 550, 600), P̃C =

(PC1, PC2, PC3, PC4, PC5) = (21.6, 24.3, 27, 29.7, 32.4), ν̃ = (ν1, ν2, ν3, ν4, ν5) =

(0.04, 0.045, 0.05, 0.055, 0.06), Ã = (A1,A2,A3,A4,A5) = (120, 135, 150, 165, 180) respectively.

Solution
Taking into account the above information, we acquire the following optimal solutions:

T ∗ = 0.740795, Q∗ = 84.925, GTC∗
3 = 3915.28.

Example 4

(a) Crisp Model
We consider the following inventory constraints:
OC = 600, HC = 5, PC = 30, P = 35, ν = 0.07, IE = 0.25, IC = 0.45, R = 0.62, N = 1.1, M = 1.5,
η = 0.09, A = 120, and ζ = 0.08.
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(a) TC3 vs T (b) GTC3 vs T

Figure 6. Convexities of total cost by employing Example 3

Solution
The aforementioned data gives the following ideal solutions:

T ∗ = 0.740795, Q∗ = 70.543, TC∗
4 = 2956.23.

(b) Fuzzy Model
We consider the following inventory constraints:
HC = 5, P = 35, IE = 0.25, IC = 0.45, R = 0.62, N = 1.1, M = 1.5, η = 0.09, ζ = 0.08, and the
corresponding fuzzy parameters are ÕC = (OC1, OC2, OC3, OC4, OC5) = (480, 540, 600, 660, 720), P̃C =

(PC1, PC2, PC3, PC4, PC5) = (24, 27, 30, 33, 36), ν̃ = (ν1, ν2, ν3, ν4, ν5) =

(0.056, 0.063, 0.07, 0.077, 0.084), Ã = (A1,A2,A3,A4,A5) = (96, 108, 120, 132, 144) respectively.

Solution
Taking into account the above information, we acquire the following optimal solutions:

T ∗ = 0.777396, Q∗ = 70.118, GTC∗
4 = 3007.23.

(a) TC4 vs T (b) GTC4 vs T

Figure 7. Convexities of total cost by employing Example 4

7. Sensitivity Analysis

It is crucial to determine the factors influencing the optimal inventory management strategy and create a
response plan to mitigate their effects. To this end, we use Example 1 to conduct a sensitivity analysis on the
relevant constraints. The constraints will be altered (increased and decreased) within a range of -50% to +50%.
One parameter is altered at a time to observe the effects, while the others remain unchanged. The findings are
presented in TABLE 2 and FIGURES (8 - 14). Sensitivity analysis helps determine how key variables affect the
overall cost functions. Additionally, managerial insights are provided to address various scenarios that could
arise during the financial cycle.
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Table 2. Effects of Varying Constraint Values on Optimal Outcomes

Parameter Changes (%) Crisp Model Fuzzy Model
T ∗ Q∗ TC∗

1 T ∗ Q∗ GTC∗
1

η

-50 1.46224 105.36 1653.91 1.45515 104.90 1676.97
-25 1.46292 105.41 1653.60 1.45583 104.969 1676.65
+25 1.46496 105.611 1652.66 1.45789 105.113 1675.69
+50 1.46546 105.662 1652.34 1.45858 105.164 1675.36

R

-50 1.45887 105.159 1739.47 1.45174 104.656 1763.98
-25 1.46157 105.36 1696.22 1.45446 104.858 1719.99
+25 1.46701 105.763 1609.71 1.45996 105.266 1632.02
+50 1.46975 105.967 1566.46 1.46273 105.472 1588.03

IC

-50 1.53228 110.615 1649.88 1.5237 110.005 1673.01
-25 1.49436 107.795 1651.58 1.4866 107.246 1674.67
+25 1.43982 103.746 1654.12 1.43331 103.289 1677.12
+50 1.41953 102.242 1655.09 1.41351 101.821 1678.06

IE

-50 1.53786 111.03 1688.73 1.53007 110.479 1711.94
-25 1.50155 108.329 1671.06 1.49411 107.803 1694.19
+25 1.42597 102.72 1634.42 1.41928 102.248 1657.37
+50 1.38654 99.799 1615.37 1.38025 99.358 1638.24

P

-50 1.42396 124.55 1985.49 1.41828 124.064 2008.53
-25 1.4386 114.762 1817.31 1.43233 114.272 1840.34
+25 1.50432 96.906 1492.21 1.49609 96.388 1515.29
+50 1.56334 88.729 1334.60 1.55344 88.181 1357.76

HC

-50 1.5928 115.124 1598.46 1.58299 114.424 1621.80
-25 1.52446 110.033 1626.30 1.51617 109.445 1649.47
+25 1.41074 101.591 1678.61 1.40466 101.165 1701.53
+50 1.36271 98.038 1703.32 1.35744 97.677 1726.15

ζ

-50 1.51087 108.195 1632.99 1.50365 107.396 1655.79
-25 1.48708 106.852 1643.04 1.47992 106.351 1665.96
+25 1.44242 104.318 1662.79 1.43542 103.821 1685.94
+50 1.42143 103.121 1672.50 1.4145 102.625 1695.77

Managerial insights.
The resulting managerial insights were obtained by performing a sensitivity analysis on some crucial key

parameters. From TABLE 2, it is noticed that, the change in the value of

(i) salvage value (α) influences the optimal strategy of inventory significantly (see FIGURE 8). In particular, a
raise in the salvage value (α) implies the raise of total cycle length (T ) and order quantities (Q). However,
the overall cost functions (TC1 and GTC1) decrease. Moreover, a decrease in the salvage value (α) leads
to a decrease in total cycle length (T ) and order quantities (Q), whereas the overall cost functions (TC1

and GTC1) increase. Thus, the inventory managers can make a small increase in the salvage value to
minimize the overall cost.
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Figure 8. Impact of η on optimal results
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Figure 9. Impact of R on optimal results

(ii) cash discount rate (R) influences the optimal strategy of inventory significantly (see FIGURE 9). In
particular, an increase in the cash discount rate (R) implies the increase of total cycle length (T ) and order
quantities (Q). However, the overall cost functions (TC1 and GTC1) decrease. Moreover, a decrease in
the cash discount rate (R) leads to a decrease in total cycle length (T ) and order quantities (Q), whereas
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Figure 10. Impact of IC on optimal results
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Figure 11. Impact of IE on optimal results

the overall cost functions (TC1 and GTC1) increase. Thus, the inventory managers can make a small
increase in the cash discount rate to minimize the overall cost.

(iii) interest paid rate (IC ) influences the optimal strategy of inventory significantly (see FIGURE 10). In
particular, an increase in the interest paid rate (IC ) implies the decrease of total cycle length (T ) and order
quantities (Q). However, the overall cost functions (TC1 and GTC1) increase. Moreover, a decrease in
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Figure 12. Impact of P on optimal results
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Figure 13. Impact of HC on optimal results

the interest paid rate (IC ) leads to an increase in total cycle length (T ) and order quantities (Q), whereas
the overall cost functions (TC1 and GTC1) decrease. Thus, the inventory managers may try to reduce
the interest paid rate to minimize the overall cost.

(iv) interest earned rate (IE) influences the optimal strategy of inventory significantly (see FIGURE 11). In
particular, an increase in the interest earned rate (IE) implies the decrease of total cycle length (T ), order
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Figure 14. Impact of ζ on optimal results

quantities (Q), and overall cost functions (TC1 and GTC1). Moreover, a decrease in the interest earned
rate (IE) leads to the increase of total cycle length (T ), order quantities (Q), and overall cost functions
(TC1 and GTC1). Thus, the inventory managers can make a small increase in the interest earned rate
to minimize the overall cost.

(v) selling price (P) influences the optimal strategy of inventory significantly (see FIGURE 12). In particular,
an increase in the selling price (P) implies the decrease of order quantities (Q) and overall cost functions
(TC1 and GTC1). However, the total cycle length (T ) increases. Moreover, a decrease in the selling price
(P) leads to an increase in order quantities (Q) and overall cost functions (TC1 and GTC1), whereas the
total cycle length (T ) decreases. Thus, the inventory managers can make a small increase in the selling
price to minimize the overall cost.

(vi) holding cost (HC ) influences the optimal strategy of inventory significantly (see FIGURE 13). In par-
ticular, an increase in the holding cost (HC ) implies the decrease of total cycle length (T ) and order
quantities (Q). However, the overall cost functions (TC1 and GTC1) increase. Furthermore, a decrease
in the holding cost (HC ) leads to a raise in total cycle length (T ) and order quantities (Q), whereas the
overall cost functions (TC1 and GTC1) decrease. Thus, the inventory managers may try to reduce the
holding cost to minimize the overall cost.

(vii) stock-dependent consumption rate (ζ) influences the optimal strategy of inventory significantly (see
FIGURE 14). In particular, an increase in the stock-dependent consumption rate (ζ) implies the decrease
of total cycle length (T ) and order quantities (Q). However, the overall cost functions (TC1 and GTC1)
increase. Moreover, a decrease in the stock-dependent consumption rate (ζ) leads to an increase in total
cycle length (T ) and order quantities (Q), whereas the overall cost functions (TC1 and GTC1) decrease.
Thus, the inventory managers may try to reduce the stock-dependent consumption rate to minimize the
overall cost.

8. Conclusion

This study presents an optimized supply-chain inventory framework for deteriorating items, addressing the
interplay between stock levels, pricing strategies, and supplier incentives such as price discounts and payment
delays. By formulating both deterministic and fuzzy models, we provide a comprehensive approach to managing
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inventory under varying levels of uncertainty. The deterministic model is ideal for predictable cost environ-
ments, ensuring efficient inventory control and cost minimization. Meanwhile, the fuzzy model, incorporating
pentagonal fuzzy numbers and GMIR-based defuzzification, offers a robust strategy for handling uncertainties
in ordering costs, purchase costs, demand rates, and deterioration rates. Through numerical validation and sen-
sitivity analyses, we demonstrate the practical applicability of our model and provide actionable insights for
inventory managers. The findings highlight the benefits of dynamic pricing and credit policies in mitigating
stock depletion risks and enhancing profitability. Ultimately, this study equips decision-makers with effective
strategies to optimize inventory management, reduce costs, and ensure sustainable operations in a competitive
market.

This study highlights several promising avenues for further exploration in the field of inventory models. One
potential extension is the development of a two-warehouse inventory model that incorporates two-level trade
credit financing, inflation, and various demand patterns, such as those influenced by advertising, power patterns,
or selling price. Another valuable direction for future research is the inclusion of factors like shortages, quantity
discounts, and other business-related scenarios.
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