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ABsTRACT. This research presents an economic order quantity (EOQ) inventory model for deteriorating
products with price-sensitive demand and a Weibull deterioration rate, considering complete backlogged
shortages. The model is examined in both crisp and fuzzy environments to address uncertainties in in-
ventory parameters. In the crisp setting, deterministic values are used to determine optimal inventory
decisions, whereas the fuzzy approach incorporates triangular fuzzy numbers, with defuzzification per-
formed using the graded mean integration representation (GMIR) method. The framework integrates
a backlogging mechanism where the proportion of backlogged demand varies over time, aligning with
real-world inventory scenarios. A mathematical optimization technique is applied to establish the opti-
mal replenishment policy that minimizes total inventory costs. Numerical examples validate the model
through Mathematica 13.0.1 software, and a sensitivity analysis explores the influence of key parameters
on optimal solutions. The managerial insights derived from this study provide valuable strategies for
retailers managing perishable goods and operating in price-sensitive markets.
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1. INTRODUCTION

Efficient inventory management is crucial for businesses handling perishable goods, especially when
demand is influenced by price and product deterioration is inevitable. In such cases, inventory models
must consider key factors such as product decay, demand responsiveness, and shortages to develop
cost-effective replenishment strategies. The Economic Order Quantity (EOQ) model is a widely used
framework for optimizing order quantities to minimize total inventory costs. However, conventional
EOQ models typically assume a constant demand rate and neglect product deterioration, limiting their
applicability to real-world scenarios where demand fluctuates with price and products degrade over
time.

In recent times, various approaches have been employed to address real-world challenges, partic-
ularly in inventory control. A key concern for management is determining when and how much to
order or produce to minimize the total cost associated with the inventory system. This issue becomes
especially critical when inventory is subject to decay or deterioration, which includes changes, dam-
age, spoilage, obsolescence, and a reduction in usefulness from its original value. It is well known that
items such as vegetables, medicine, gasoline, blood, and radioactive chemicals deteriorate over time

*Corresponding author.
E-mail address: priyabratdas114@gmail.com (P. Das), deepakmca52@gmail.com (D. K. Nayak),
skpaikray_math@vssut.ac.in (S. K. Paikray)
Accepted: April 06, 2025.
136


https://tulipa-os.com/jdmh/volumes_articles.php
https://doi.org/10.69829/jdmh-025-0202-ta04
https://tulipa-os.com/

OPTIMAL EOQ INVENTORY MODEL HAVING PRICE SENSITIVE DEMAND 137

when stored. Therefore, when formulating an optimal inventory policy for such products, potential
losses due to deterioration must be carefully considered.

In most cases, precise data from real-world scenarios are insufficient to fully support a mathematical
model. Human judgments, including preferences, are often imprecise and cannot always be quantified
with exact numerical values. Fuzzy sets offer a versatile approach for representing gradual transitions
between membership and non-membership functions, providing a more detailed and accurate depiction
of uncertainty. This approach effectively captures vague concepts frequently encountered in decision-
making while offering a crucial approximation of instabilities. The fundamental concept of a fuzzy set,
which extends the classical or crisp set, is both simple and elegant. L. A. Zadeh [44] introduced the
notion of fuzzy sets as an extension of traditional set theory. Conventional inventory models typically
incorporate factors such as holding costs, deterioration, demand, and other constraints based on avail-
able historical data. However, due to ambiguity and incomplete information, these decisions may not
always be precise when applied to real-world scenarios. To address these uncertainties in inventory
constraints, many researchers have incorporated fuzziness into their models.

Classical inventory models typically assume a constant demand rate. However, in real-world sce-
narios, the demand for physical goods is influenced by various factors such as time, stock availability,
and price. Researchers have explored diverse demand patterns, including those driven by time, adver-
tising costs, selling price, and trade credit financing. Burwell et al. [4] examined an inventory system
where demand depends on price, allowing for fluctuations either increasing, decreasing, or remaining
constant throughout the cycle. The selling price plays a critical role in such systems. Several studies
have further investigated price-dependent demand in inventory models. For instance, Mondal et al.
[21], Routray et al. [34], You et al. [43], and Barik et al. [1] analyzed inventory systems for ameliorating
items with price-sensitive demand. Additional contributions on this topic include studies by Barik et
al. [2, 3], and Indrajitsingha et al. [6, 7, 8]. Beyond price-dependent demand, researchers have also
investigated inventory models with time-dependent demand variations. Jalan et al. [10] and Sarkar et
al. [38] studied inventory systems where demand increases over time. This line of research was further
explored by Sarkar et al. [39], who provided additional insights into time-dependent demand patterns.
Additionally, for further studies on several inventory restraints, one may look into the works of Jani et
al. [11], Mishra et al. [18, 19, 20], Padhy et al. [27], Paikray et al. [28, 29, 30], Patra et al. [31, 32, 33].

In mathematical inventory models, costs such as holding, ordering, and deterioration are typically
assumed to be fixed. However, in reality, these costs fluctuate due to factors such as changes in petro-
chemical prices and taxes. As a result, most inventory costs are not precisely defined. Recent research
has explored inventory problems under various demand conditions and constraints. For example, Jaggi
et al. [9] examined inventory models with exponentially decreasing demand, while Kumar et al. [13]
investigated models with fuzzy demand. Traditionally, researchers have relied on historical data to
model inventory constraints using fixed parameters. However, this approach is often inadequate, as
business environments and technological advancements are constantly evolving. Consequently, inven-
tory parameters fluctuate over time, making conventional inventory models less effective in addressing
modern challenges. To overcome these limitations, researchers have increasingly turned to fuzzy set
theory and its applications in inventory management. Over the past decade, numerous studies have ex-
plored inventory models within a fuzzy framework, including those by Kumar and Rajput [17], Routray
et al. [35], Saha [36], Sangal et al. [37], Sen et al. [40], and Sharmila and Uthayakumar [42]. Readers
interested in further insights may refer to the works of Kumar et al. [12, 14, 15, 16], Nayak et al.
[22, 23, 24, 25, 26], and Shaikh et al. [41].

Many existing inventory models assume constant demand, often overlooking the dynamic nature of
demand, particularly its sensitivity to price fluctuations. In real-world scenarios, demand is influenced
by various factors, including market conditions, customer behavior, and competitive dynamics. Previ-
ous studies typically simplify demand models by assuming fixed or linear demand patterns, which fail
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to capture the complexity of real-world inventory systems. Additionally, most traditional inventory
models treat key parameters, such as deterioration rates, holding costs, and order costs, as determinis-
tic values. However, in practice, these parameters fluctuate due to market uncertainties, environmental
factors, and operational risks. The lack of consideration for such uncertainties significantly limits the
applicability of these models in real-world settings. Although some studies have attempted to incor-
porate uncertainty, many rely on oversimplified or limited methods, such as assuming single-point
estimates for imprecise parameters, which fail to fully represent the variability inherent in inventory
systems. Furthermore, while backlogging is a crucial aspect of inventory management, many studies
do not adequately account for the time-varying nature of backlogged demand. Often, the assumption of
a constant backlogging rate or complete backlogging is made, which does not reflect the reality of most
inventory systems. In practice, the rate of demand backlogging is influenced by factors such as cus-
tomer satisfaction and external conditions, which can change over time. This limitation diminishes the
relevance of previous models, particularly for industries dealing with perishable goods or high-demand
fluctuations.

To address these challenges, this study proposes an EOQ inventory model for deteriorating products
with price-sensitive demand and a Weibull deterioration rate, while accounting for complete back-
logged shortages. The Weibull deterioration function is chosen for its adaptability in modeling various
decay patterns observed in perishable goods. Furthermore, the model integrates a backlogging mech-
anism where the proportion of backlogged demand changes over time, providing a more realistic de-
piction of inventory shortages. Key inventory parameters, including deterioration cost, purchase cost,
ordering cost, and holding costs, are subject to uncertainty due to market fluctuations and environ-
mental influences. To accommodate these uncertainties, this research analyzes the model in both crisp
and fuzzy environments. In the crisp framework, parameters are considered deterministic, allowing
for precise cost optimization. In contrast, the fuzzy approach incorporates triangular fuzzy numbers
to represent imprecise parameters, with defuzzification carried out using the graded mean integration
representation method. This approach enables decision-makers to develop optimal strategies under
uncertain conditions. A mathematical optimization technique is employed to determine the optimal
replenishment policy that minimizes total inventory costs. The model is validated through numerical
illustrations, and a sensitivity analysis is conducted to examine the influence of key parameters on the
optimal solutions.

The remainder of this paper is structured as follows: Section 2 presents fundamental definitions
related to fuzzy set theory. Following this, Section 3 outlines the assumptions and nomenclature neces-
sary for framing the problem. Section 4 focuses on the mathematical framework of the model within a
crisp environment. The computational solution algorithm for the problem is detailed in Section 5. Sec-
tion 6 extends the discussion to the model’s formulation in fuzzy environments. Section 7 demonstrates
the practical applicability of the study through numerical examples. Section 8 provides sensitivity anal-
ysis and valuable managerial insights. Finally, Section 9 concludes the study and highlights potential
directions for future research.

2. DEFINITIONS AND PRELIMINARIES

In this section, we recall the following definitions that are necessary to study the proposed model.

Definition 2.1. [45]

Let X be a space of points and p : X — [0, 1] be such that for every =z € X, p(z) is a real number
in the interval [0, 1]. We define a fuzzy set A in X as the ordered pair A = {(z,p5(x)) : z € X},
where 1 is called a generic element and 1 ;(2) a membership function.

Definition 2.2. [45]
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A given fuzzy set A= {x, ug(x)} C X is termed a convex fuzzy set if all the o — cut sets are

convex for every z € X. That is, for every pair of elements 1, x2 € X,
pg Az + (1= X)) = min{pz(21), pz(22)}, VA € [0,1].

Definition 2.3. [45]

Let a,b € R such that a < b. Then, the fuzzy set [aq, by] is called a fuzzy interval for 0 < o < 1 if
its membership function is

a, a<zxr<b
:u[aa,ba] =

0, otherwise

Definition 2.4. [45] B
Let a,b,c € R such that a < b < ¢. Then a fuzzy number A = (a, b, ¢) is called a triangular fuzzy
number if its membership function is

8
|

2 g<x<b

, b<zx<ec.

, otherwise

o o
8

pz(x) =

f=p

Q

o

In particular, when a = b = ¢, (¢, ¢, ¢) = ¢, this is called a fuzzy point. The family of all triangular
fuzzy numbers on R is usually denoted as

Fy = {(a,b,c):a<b<c,Va,b,c€R}.

The a— cut of A = (a,b,c) € Fy,0 < o < 1, usually denoted by A(w), is defined as A(a) =
[AL(), Ag()], where A (a) = a + (b — a)a and Ag(e) = ¢ — (¢ — b)a are the left and right
endpoints of A(«a) respectively.

Definition 2.5. [45] N N
The graded mean integration representation (GMIR) of A, given a triangular fuzzy number A =
(a,b,c), is defined as
- foWA h <L—1(h)42rR—1(h)) dh
P(1) =

¥4 hdh

withO<h<Wgand0 < Wy < 1.
That is,

P(K) = é(a+4b+c).

3. ASSUMPTIONS AND NOMENCLATURE

The proposed inventory problem is mathematically formulated based on the following set of assump-
tions and defined nomenclature.

3.1. Assumptions.

(i) The inventory system involves the exchange of uniform items.
(ii) For the crisp model, the related costs are deterministic, whereas for the fuzzy model, they are
imprecise.
(iii) The demand rate is price dependent and is of the form D(p) = ap~?, a,b > 0.
(iv) The lead-time is zero and the time horizon is infinite.
(v) The replenishment rate is instantaneous.
(vi) Shortages are allowed to occur which are complete backordered.
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(vii) The rate of deterioration at any time ¢ > 0 follows the two parameter Weibull distribution as
0 = afBtP~!, where a(0 < a < 1) is the scale parameter and 3 > 0 is the shape parameter.
(viii) In the fuzzy environment, imprecise costs are represented using triangular fuzzy numbers.

3.2. Nomenclature.

(i) D : demand rate.
(ii) p : selling price.
(iii) « : scale parameter.
(iv) (8 : shape parameter.
1 : maximum inventory per cycle.

: maximum shortage level.

: order quantities.
C' : total ordering cost per cycle.

: ordering cost per unit time.
C' : total deterioration cost per cycle.

%ii

SASEERS

)

)

)

)

)

ii)

iii)

)

)

i) Dp : deteriorating cost per unit time.

ii) HC' : total holding cost per cycle.

i) Hp : holding cost per unit time.

iv) PC : total purchase cost per cycle.
(xv) Cp : purchase cost per unit time.

i)

)

)

)

)

)

)

)

)

)

i)

ii)

EE

(xvi) SC' : total Shortage cost per cycle.
(xvii) Sp : shortage cost per unit time.
(xviii) ¢; : time at which the inventory level reaches zero.
(xix) T : total cycle length.
T'C(t1) : total inventory cost in crisp environments.
(xxi A: ordering cost per unit time in fuzzy environments.
(xxii I? : holding cost per unit time in fuzzy environments.
(xxiii) p : selling price in fuzzy environments.

(xxiv : purchase cost per unit time in fuzzy environments.

1) : total inventory cost in in fuzzy environments.

(t
TC(t1) : defuzzified total cost.

p:
Cp
§, shortage cost per unit time in fuzzy environments.
TC
G

4. FORMULATION OF MATHEMATICAL MODEL

The objective of the framework is to identify the optimal order quantity that results in the lowest total
cost. The inventory begins at £ = 0 with W items, out of which M items are used for the inventory
cycle [0, ¢1], and the remaining M items will be used to meet the cycle’s backorder in the [t1, T'] interval.
The stock diminishes over time owing to the incorporated effects of deterioration and demand in [0, ¢;],
and the inventory will reach zero at time ¢;. So, the stock deficiency occurs in the interval [t1, T]. The
subsequent replenishment only replaces the backlogged items. Hence, the inventory level at any time
t is illustrated in FIGURE 1 and is expressed in the following mathematical expression.

Let Q1(t) be the accessible inventory in the interval [0, ¢1]. The inventory reduces owing to deterio-
ration and demand in the interval [0, ¢;]. Therefore, the inventory level at any time ¢ within the interval
[0, 1] is characterized by the following differential equation

dQl( ) + 5t'8 1Q (t) = —apfb, 0<t<ty (4.1)
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Time

!
' 0 t1\lM¢Backlog

FiGure 1. Inventory level at any time ¢

with the boundary condition Q1 (¢1) = 0.

The preceding differential equation’s solution is provided by,

O1(t) = ap_b{(tl —4) (1 - atﬁ> + % (tf“ - t5+1) } (4.2)

Let QQ2(t) be the on-hand inventory in the interval [¢1, T']. In the interval [¢1, T, shortages occur and
are completely backlogged. Therefore, inventory has a negative stock balance at this time. Thus, the
inventory level at any instance ¢ within the interval [t1, T'] is represented by the differential equation

dQ2(t)
dt
with the boundary constrain Q2(¢1) = 0.

=—ap 1 <t<T (4.3)

The solution to the foregoing differential equation is presented by,

Qa(t) =ap™(t1 —t). (4.4)

The maximum inventory level during [0, ¢1] is

o
My =Qi(t=0)=ap ™ty + ——t7 b 45
=at=0=a {0 5)
The maximum backlogged level per cycle is
M=-Q(t=T)=ap™" (T —t1). (4.6)
Thus, the order quantity over the replenishment cycle is W = M; + M, that is,
o
W=ap (T+-2e51). 47
ap ( + Br1t (47)
Total number of deteriorating units during the cycle (0,¢;) is given by
t1
Dy= [ 0Qi(t)dt =ap™—— /" 4.8
0 ) Q1(1) ap 11t (4.8)

The overall cost for each replenishment cycle is calculated using the cost components shown below.
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Ordering Cost.

oC = A. (4.9)
Deterioration Cost.
DC = Dp x Dy = Dp (apbﬁil tff“) . (4.10)
Holding Cost.
Ho =ty [ Qi(t)dt = H ( b{t% of t5+2}> (4.11)
= = a — . :
Pl SR CRRCES RN
Purchase Cost.
PC=CpxW=Cp <ap_b{T 5 i 1#‘“}) . (4.12)
Shortage Cost.
T T2 t2
SC =—Sp Q2(t)dt = Sp (apb{2 —Tt+ — 5 }) (4.13)
t1

Now, the total cost per unit time becomes,

1
TC’(tl):T{OC+DC+HC+PC+SC}
1 « t2 af
— 1A D —b t6+1> H < —b{l tﬂ+2}>
T{ " p(‘“’ CEST R G RS
2
2

2
+Cp <a {T + ﬁ(lﬂtﬁ’*l}) + Sp (apb{T Tt + t2 }) } (4.14)

5. COMPUTATIONAL ALGORITHM

The conventional optimal approach has been adopted to solve the problem. The basic objective is to
minimize the overall cost function T'C'. The steps to verify the optimal decision parameters leading to
the overall minimum cost are as follows:

Step 1 Initialize the inventory parameters; a, b, A, o, 3, p, T, Hp, Sp, Cp, and Dp.

Step 2 Find T'C(t1).

Step 3 Determine 8T§;Et1)

Step 4 Resolve the equation %tgtl) = 0 for ¢;.

Step 5 Select the solution from Step 4.

Step 6 Determine LCW

Step 7 Check if
Step 8 Otherwise proceed to Step 5.

> 0, then the solution is optimal (minimum).
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6. Fuzzy MoDEL

In practical situations, inventory parameters are frequently uncertain because of various influenc-
ing factors. For instance, it is difficult to define every parameter accurately because of fuzziness. To
account for the imprecision in various parameters, we suggest a model that operates W within fuzzy con-
texts. Specifically, for the fuzzy model, we introduce fuzzy parameters A, Hy D, D, Cp, and Sp, which
correspond to the ordering cost A, holding cost Hp, Selling price p, Purchase cost C'p, and shortage
cost Sp in our crisp framework.

The fuzzy total cost is given by

70 = L A4 Dpapo- O 5 L Fpape T 0 s
T B+1 1 2 (B+1)(B+2)1
cGpai (T4 ) 4 Spapt (L — g+
D ap +5+1t1 + Sp ap 5 th+ = 5 (6.1)

6.1. Defuzzification. N

By using triangular fuzzy numbers, the fuzzy parameters are outlined as A= (A1, Ag, A3), Hp =
(Hp1, Hpa, Hps3), p = (p1,p2,p3), Cp = (Cp1, Cp2,Cps) and Sp = (Sp1, Sp2, Sps). Thus, following
Chen and Hsieh [5] the total fuzzy cost function is defuzzified under the graded mean integration
representation method, leading to the total defuzzified cost as

1( — S
GTC(tl) = 4{T01 +4 x TCy + TC3}. (6.2)

Here, T'C; is obtained from the above equation (6.1) just by replacing the imprecise parameters in 7'C’
with the corresponding i*" triangular fuzzy number for i = 1,2, 3.

[hat is,
11/~ ~ o 1 —b t% Oéﬁ B+2
GTC(t)) = -4 =4 Ay + Dpap "—— "' + Hp, a {+t
(t2) 4{T{ L Epap et PLapL Ty 5 BrDB+2) !
2 2
—_— ~_b o B+1 —— T t
T+ —— T
+ Cp1 apy < +5+1t )—I—Splapl (2 t1~|—2>}
1 ([~ ~ o 1 b t2 af B+2
+4x <= Ag+ Dpapy ' —— "+ Hpy a {1+t
{T{ 2 EPapz T P2ap2 4 5 B+1)(B+2)"
2 2
—— O i1 — (T t2
T+ —— T
+ Cp2 ap2™ ( teh >+5p2ap2 <2 t1+2>}}
1(—~ _ L, a5 o~y t% af 542
+ =< A3+ Dpaps"——1t{" + Hpza —t
T{ 3T EPAPs aT Psaps A9 T By B2
Gt (T4 =) s St (5 a4 (6.3)
b3 ap3 ﬁ+11 P3 aps 5 1 5 . .

We can find the optimal solution for the fuzzy model by following a process similar to that of the
solution process of crisp model.

7. NUMERICAL ILLUSTRATIONS

We numerically investigated the model in both crisp and fuzzy contexts under our proposed method
of solution. We utilize Mathematica 13.0.1 software to get the optimal solution and subsequently
demonstrate the convexities of the total cost functions with respect to positive inventory time and
order quantity as depicted in FIGURES (2 - 9). The data used in this model are from some peer-review
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journals and are of hypothetical in nature.

Example 1

(a) Crisp Model

The values of different parameters involved in inventory are a = 10, b = 1,A = 200, o = 0.005,
8=04,p=6T=10,Hp=0.5,Sp=0.2,Cp =2, Dp=2.

Solution
The above-mentioned data yields the following feasible solutions:
t1 =3.9250 W =16.7070 TC = 24.3505.

(b) Fuzzy Model

The values of different parameters involved in inventory are a = 10, b = 1, a = 0.005, § = 0.4,
Dp =2T =10 A1 = 160, Ay = 200, A3 = 240, p1 = 4.8, ps = 6,p3 = 7.2, Hp1 = 0.4, Hpy, = b,
Hp3 = 0.6,0}?1 = 1.6, Cp2 =2, Cpg = 2.4, Spl = 0.16, Sp2 =2, Spg = 0.24.

Solution
The above-mentioned data yields the following feasible solutions:

11 = 3.9248 W =16.7633 GTC = 24.3618.

TC GTC

25.0\ 250 \

29" gl
248 248
247 2.7
26° \ 246
245~

2451

%4- 24l

FIGURE 2. Convexity of T'C' with FIGURe 3. Convexity of GTC
respect to ¢ with respect to 1
Example 2

(a) Crisp Model
The values of different parameters involved in inventory are ¢ = 15, b = 5,4 = 200, a = 0.02,
6=01Lp=2T=5Dp=4,Hp=02,Cp=1.5,5p=2.

Solution
The above-mentioned data yields the following feasible solutions:

t1 =4.06723 W = 2.38363 TC = 21.1601.

(b) Fuzzy Model
The values of different parameters involved in inventory are ¢ = 15, b = 5, = 0.02, § = 0.1,
Dp=4T =5, A1 =90, Ay = 100, A3 = 110, p1 = 1.8, ps = 2, p3 = 2.2, Hp; = 0.18, Hpy = 0.2,
Hpg = 0.22, Cpl = 135, Cp2 = 1.5, Cpg = 165, Sp1 = 1.8, Spg = 2, Spg =2.2.
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Solution
The above-mentioned data yields the following feasible solutions:

t1 =4.09034 W = 2.50881 GTC = 21.2020.
TC GTC

230
r 201

25 r
L 2251

220~
L 220

21.5? 215l

L L P h
1 2 3 4 5

FiGURE 4. Convexity of T'C' with Ficure 5. Convexity of GTC
respect to ¢1 with respect to ¢;
Example 3

(a) Crisp Model
The values of different parameters involved in inventory are a = 8,6 =3, A = 120, « = 0.2, 5 = 0.1,
p=8T=12,Dp=7 Hp=5Cp=1.5 5p=4.

Solution
The above-mentioned data yields the following feasible solutions:

t1 = 0.14099 W = 0.18782 TC = 10.4176.

(b) Fuzzy Model
The values of different parameters involved in inventory are a = 8, b = 3, « = 0.2, § = 0.1,
Dp = 7T = 12, A; = 108, Ay = 120, A3 = 132, p1 = 7.2, po = 8, p3 = 8.8, Hp; = 4.5,
Hp2 =5, Hpg = 5.5, Cp1 = 2.7, sz =3, Cp3 = 3.3, Spl = 3.6, Spg =4, Spg =4.4.

Solution
The above-mentioned data yields the following feasible solutions:

t1 =0.14235 W = 0.19168 GTC =10.4223.

TC GTC

/ /

10.7- 14
10.6 -

105~

| Ll . I I t L T I I . Lot
104 - 0.2 0.4 0.6 0.8 10 12 14 ! b 1 2 3 4 5

FIGURE 6. Convexity of T'C' with FIGURE 7. Convexity of GTC
respect to 1 with respect to t;
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Example 4

(a) Crisp Model
The values of different parameters involved in inventory are a = 15,b = 4, A = 60, a = 0.02, § = 0.2,

p=1,T=15,Dp=4,Hp=3,Cp=7,5p=3.

Solution
The above-mentioned data yields the following feasible solutions:

11 =13.9411 W = 230.903 TC = 134.546.

(b) Fuzzy Model
The values of different parameters involved in inventory are ¢ = 15, b = 4, « = 0.02, 5 = 0.2,
Dp == 4,T = 15, A1 = 54, A2 = 60, A3 = 66, P1 = 09, P2 = 1, p3 = 1.1, Hp1 = 2.7, Hp2 = 3,
Hp3 = 3.3, Cpl = 6.3, Opz =71, Cpg =17.1, Sp1 = 2.7, Sp2 =3, Spg = 3.3.

Solution
The above-mentioned data yields the following feasible solutions:

11 =13.9571 W = 238.885 GTC = 138.355.

TC GTC
450 ¢

\ “\

400} w
380¢ 350
wop 30
20¢ 250
20¢ 200

150

Ficure 8. Convexity of T'C' with FiGure 9. Convexity of GTC
respect to ¢1 with respect to ¢;

8. SENSITIVITY ANALYSIS

It is highly desirable to pinpoint the variables that govern the ideal strategy for inventory man-
agement as well as the response strategy for their influences. In light of this, we will arbitrarily take
Example 4 into consideration when performing the sensitivity analysis on related parameters. The pa-
rameters are altered (increased and decreased) by —20% to +20% to do the analysis. One parameter at
a time is altered to get the desired outcomes, while the other parameters are left unchanged. We then
provide the findings in the TABLE 1 and FIGURES (10 - 14). However, the managerial insights required
to handle a variety of circumstances that could occur during the company cycle are also offered.
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TaBLE 1. Impact of Change in Parameter Values on the Optimal Results

Parameter | Changes(%) Crisp Model Fuzzy Model
t1 A% TC t W GTC
-20 13.7259 | 184.635 | 112.284 | 13.7457 | 191.019 | 115.341
-10 13.8446 | 207.769 | 123.432 | 13.8623 | 214.951 | 126.864
a +10 14.0211 | 254.038 | 145.636 | 14.0356 | 262.818 | 149.822
+20 14.0884 | 277.174 | 156.707 | 14.1018 | 286.753 | 161.270
-20 13.9496 | 230.908 | 134.231 | 13.9657 | 238.889 | 138.029
Dp -10 13.9454 | 230.905 | 134.389 | 13.9614 | 238.887 | 138.192
+10 13.9369 | 230.901 | 134.704 | 13.9528 | 238.882 | 138.518
+20 13.9327 | 230.899 | 134.861 | 13.9486 | 238.880 | 138.681
-20 13.9654 | 229.733 | 133.659 | 13.9817 | 237.672 | 137.437
o -10 13.9532 | 230.319 | 134.103 | 13.9694 | 238.279 | 137.897
+10 13.9290 | 231.487 | 134.989 | 13.9449 | 239.489 | 138.813
+20 13.9169 | 232.069 | 135.431 | 13.9324 | 240.092 | 139.271
-20 13.9540 | 230.502 | 134.223 | 13.9702 | 238.468 | 138.021
-10 13.9477 | 230.698 | 134.381 | 13.9638 | 238.672 | 138.672
b +10 13.9342 | 231.117 | 134.719 | 13.9501 | 239.106 | 138.533
+20 13.9268 | 231.340 | 134.899 | 13.9426 | 239.337 | 138.720
-20 11.1349 | 184.508 | 131.110 | 11.1474 | 190.885 | 134.906
T -10 12.5379 | 207.698 | 132.777 | 12.5522 | 214.877 | 136.580
+10 15.3445 | 254.123 | 136.390 | 15.3623 | 262.907 | 140.204
+20 16.7481 | 277.357 | 138.288 | 16.7676 | 286.944 | 142.108
Crisp Model Fuzzy Model
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Managerial insights.
The sensitivity analysis of some significant key parameters revealed the following managerial in-
sights. From TABLE 1, it is noticed that the change in the value of

(i) demand parameter (a) influences the optimal strategy of inventory significantly (see FIGURE
10). In particular, a decrease in the demand parameter (a) implies the decrease of positive in-
ventory time (f;), order quantities (W) and overall cost functions (I'C' and GT'C'). Moreover,
an increase in the demand parameter (a) leads to the increase of positive inventory time (t1),
order quantities (W) and overall cost functions (T'C' and GT'C). Thus, the inventory managers
can make a small decrease in the demand parameter in order to minimize the overall cost.

(ii) deterioration cost (D)) influences the optimal strategy of inventory significantly (see FIGURE
11). In particular, a decrease in the deterioration cost (D)) implies the increase of the posi-
tive inventory time (¢1) and order quantities (W). However, overall cost functions (I'C and
GTC) decrease. Moreover, an increase in the deterioration cost (D) leads to the decrease of
the positive inventory time (¢) and order quantities (W), whereas overall cost functions (T'C’
and GT'C) increase. Thus, the inventory managers may try to reduce the value of deterioration
cost to minimize the overall cost.

(iii) scale parameter () influences the optimal strategy of inventory significantly (see FIGURE 12).
In particular, a decrease in the scale parameter () implies the increase of the positive inventory
time (¢1). However, order quantities (W) and overall cost functions (I'C and GT'C) decrease.
Moreover, an increase in the scale parameter (o) leads to the decrease of the positive inventory
time (¢1), whereas order quantities (W) and overall cost functions (I'C' and G'I'C') increase.
Thus, the inventory managers may try to reduce the value of scale parameter to minimize the
overall cost.

(iv) shape parameter (0) influences the optimal strategy of inventory significantly (see FIGURE 13).
In particular, a decrease in the shape parameter () implies the increase of the positive inventory
time (¢1). However, order quantities (W) and overall cost functions (I'C' and GT'C') decrease.
Moreover, an increase in the shape parameter () leads to the decrease of the positive inventory
time (¢1), whereas order quantities (W) and overall cost functions (I'C' and G'T'C) increase.
Thus, the inventory managers may try to reduce the value of shape parameter to minimize the
overall cost.

(v) total cycle length (T) influences the optimal strategy of inventory significantly (see FIGURE 14).
In particular, a decrease in the total cycle length (T') implies the decrease of positive inventory
time (¢1), order quantities (W) and overall cost functions (1'C' and GT'C'). Moreover, an increase
in the total cycle length (T) leads to the increase of positive inventory time (£1), order quantities
(W) and overall cost functions (7'C and GT'C). Thus, the inventory managers can make a small
decrease in the total cycle length in order to minimize the overall cost.

9. CONCLUSION

Through this study, we have developed an optimal EOQ inventory model for deteriorating products
with price-sensitive demand and a Weibull deterioration rate, while considering complete backlogged
shortages. The model incorporates crucial factors such as demand elasticity, deterioration, and backlog-
ging to better mirror real-world inventory challenges. By examining the model in both crisp and fuzzy
environments, the study accounts for the uncertainties in inventory parameters commonly encoun-
tered in practice. In the crisp model, where parameters are treated as fixed values, precise optimization
of inventory costs is achieved, providing a reliable basis for decision-making in stable conditions. In
contrast, the fuzzy model utilizes triangular fuzzy numbers and defuzzification via the graded mean
integration representation method, offering a more adaptable and effective approach for handling im-
precise parameters, particularly in uncertain situations. The results demonstrate that the fuzzy model
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delivers greater flexibility and accuracy in environments where parameters are subject to variability.
The sensitivity analysis conducted in this study underscores the influence of key parameters on optimal
solutions, providing valuable insights for businesses managing deteriorating goods and price-sensitive
demand. The proposed model proves especially beneficial for industries dealing with perishable prod-
ucts, where deterioration and fluctuating demand play a significant role in inventory management.

Overall, this study makes a significant contribution to the field of inventory management by offering
a more comprehensive framework that addresses the complexities of deterioration, demand elasticity,
and backlogging, while also accounting for the uncertainties typically encountered in real-world opera-
tions. Future research could expand on this work by exploring additional types of uncertainty, refining
defuzzification techniques, and incorporating more sophisticated demand functions, such as pricing,
stock levels, displayed stock demand, advertisement-driven demand, ramp-type demand, and others.
This would further enhance the model’s applicability across various industries. Moving forward, poten-
tial areas for future research include dynamic pricing strategies, multi-echelon supply chain structures,
investments in appropriate preservation technologies, the use of interval methods or stochastic ele-
ments, diverse learning techniques, and the integration of machine learning algorithms.
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