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Abstract. In the paper, we present a new approximate inversion of Volterra integral equation of first
kind by using the Taylor expansión of the unknown function about lower limit of the Volterra integral. In
this method, this Volterra integral equation is approximately transformed to a system of linear equations
for the unknown function together with its derivatives. A desired solution can be determined by solving
the resulting system according to the Cramer’s rule. This method gives a simple and closed form of
approximate Volterra integral equation of first kind, which may be able to use in computation work.
Finally, we derive approximate solutions of this Volterra integral equation for special kernels about lower
limit of Volterra integral.
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1. Introduction

The classical Taylor series [1] is an important tool to approximate the series and integrals, found in
the literature, which is defined for a single valued function of x, f(x), such that

• all the derivatives of f(x) up to nth are continuous in the closed interval a ≤ x ≤ a+h, h > 0;
• f (n+1)(x) exists in the open interval a < x < a+ h.

Then, following series expansion is followed

f(a+ h) = f(a) + hf (′)(a) +
h2

2!
f (′′)(a) + · · ·+ hn

n!
f (n)(a) +Rn+1,

where,

f (n)(a) =
dn

dxn
f(x)x=a∀n ∈ N ∪ {0}, Rn+1 =

hn+1

(n+ 1)!
f (n+1)(a+ θh), 0 < θ < 1,

as n → ∞, Rn+1 → 0. (1.1)

For all x ∈ [a, b] such that b > a ≥ 0, the first kind Volterra integral equation is studied [2, 3] as

F (x) = λ

∫ x

a
K(x, t)u(t)dt, where λ ̸= 0, u(a) ̸= 0. (1.2)
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Here in (1.2), K(x, t) and F (x) are known functions and u(x) is an unknown function ∀x ∈ [a, b].
To determine an approximate solution of this first kind Volterra integral equation (1.2), we set it as

F (x) = λ

∫ x

a
K(x, t)u(a+ (t− a))dt, (1.3)

then, on application of Taylor expansion (1.1), the equation (1.3) is transformed into the series form as

F (x) =u(a)λ

∫ x

a
K(x, t)dt+ u(′)(a)λ

∫ x

a
K(x, t)(t− a)dt+

u(′′)(a)

2!
λ

∫ x

a
K(x, t)(t− a)2dt+ · · ·

+
u(n)(a)

n!
λ

∫ x

a
K(x, t)(t− a)ndt+Rn+1, as n large, Rn+1 → 0. (1.4)

Then, an approximate formula of (1.4) is found as

F (x) ≈ u(a)λ

∫ x

a
K(x, t)dt+

u(′)(a)

1!
λ

∫ x

a
K(x, t)(t−a)dt+

u(′′)(a)

2!
λ

∫ x

a
K(x, t)(t−a)2dt+ · · ·

+
u(n)(a)

n!
λ

∫ x

a
K(x, t)(t− a)ndt. (1.5)

For example, if K(x, t) = 1, by (1.5), we get

F (x) ≈ λ(x− a)u(a) + λ
(x− a)2

2!
u(′)(a) + λ

(x− a)3

3!
u(′′)(a) + · · ·+ λ

(x− a)n+1

(n+ 1)!
u(n)(a). (1.6)

In this work, the formula (1.5) is approximately transformed into a nth order linear differential equa-
tion for the unknown function u(.) about lower limit of Volterra integral. Then for our computing
process, we use iterated kernels theory of Volterra integral equations [2, 3] and therefore convert it
into a system of linear differential equations by which, we determine a matrix equation that become a
useful tool to compute the given Volterra integral equation of first kind.

2. Methods to Derive Approximate Solution of First Kind Volterra Integral Eqation

In this section, on application of approximate formula (1.5) we obtain the ingenious solution of first
kind Volterra integral equation (1.2) on applying following theory and methods of iterated kernels for
this Volterra integral equations about lower limit of the integral existing in this equation. Also it is
remarked that in equations (1.3) - (1.6), following equality holds

F (a) = 0. (2.1)

Again, by the theory of Volterra integral equations the first iterated kernel has the relation

K1(x, t) = K(x, t).

Also in our methods, we have to denote

µ0,j(x, a, λ) =
λ

j!

∫ x

a
(t−a)jK(x, t)dt =

λ

j!

∫ x

a
(t−a)jK1(x, t)dt, where, j ∈ {0.1, 2, . . . , n}. (2.2)

Therefore, on making an appeal to the Eqns. (1.5) and (2.2), there exists a non-homogeneous differ-
ential equation given by

µ0,n(x, a, λ)u
(n)(a) + µ0,n−1(x, a, λ)u

(n−1)(a) + · · ·+ µ0,0(x, a, λ)u(a) = F (x). (2.3)

The Eqn. (2.3) is a typical nth-order, linear, ordinary differential equation with variable coefficients
µ0,j(x, a, λ), j ∈ {0.1, 2, . . . , n}, for u(a). Instead of solving analytically the resulting ordinary dif-
ferential equation, we may determine u(a), . . . , u(n)(a), by another approach, for solving a system of
linear equations. Therefore, other n independent linear equations for u(a), . . . , u(n)(a) are needed.
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This can be achieved by after multiplying by K(x, t) and then integrating both sides of Eqn. (1.2) with
respect to x from 0 to t for n-times successively.

We perform following procedures as due to the relation K1(x, t) = K(x, t), the Eqn. (1.2) is written
as

F (x) = λ

∫ x

a
K(x, t)u(t)dt = λ

∫ x

a
K1(x, t)u(t)dt. (2.4)

So that in both sides of (2.4), replacing x by t1 and again in those sides multiplying by K (x, t1) and
then integrating those sides with respect to t1 from t1 = a to t1 = x, we get

λ

∫ x

a
K (x, t1)F (t1) dt1 = λ2

∫ x

a
K (x, t1)

∫ t1

a
K1 (t1, t)u(t)dtdt1. (2.5)

Now, in right hand side of (2.5), on changing an order of integration to get it as

λ

∫ x

a
K (x, t1)F (t1) dt1 = λ2

∫ x

a
u(t)

{∫ x

t
K (x, t1)K (t1, t) dt1

}
dt. (2.6)

In (2.6), the iterated kernel is defined by [3]

Km+1(x, t) =

∫ x

t
K (x, t1)Km (t1, t) dt1∀m = 1, 2, 3, . . . . (2.7)

Then by (2.6) and (2.7), we write

λ

∫ x

a
K(x, t)F (t)dt = λ2

∫ x

a
u(t)K2(x, t)dt = λ2

∫ x

a
K2(x, t)u(a+ (t− a))dt. (2.8)

Therefore, in the last of the equation of (2.8) on making an appeal to the result (2.3), we find that

µ1,n(x, a, λ)u
(n)(a) + µ1,n−1(x, a, λ)u

(n−1)(a) + · · ·+ µ1,0(x, a, λ)u(a) = λ

∫ x

a
K1(x, t)F (t)dt,

where,

µ1,j(x, a, λ) =
λ2

j!

∫ x

a
(t− a)jK2(x, t)dt∀j ∈ {0.1, 2, . . . , n}. (2.9)

For finding further results, by first two equations of (2.8), we write

λ2

∫ x

a
K (x, t1)

∫ t1

a
K1 (t1, t)F (t)dtdt1 =

∫ x

a
K (x, t1)λ

3

∫ t1

a
u(t)K2 (t1, t) dtdt1 (2.10)

Therefore, on changing the order of integration both side of equation (2.10) to get as

λ2

∫ x

a
F (t)

{∫ x

t1

K1 (t1, t)K (x, t1) dt1

}
dt = λ3

∫ x

a
u(t)

{∫ x

t1

K (x, t1)K2 (t1, t) dt1

}
dt,

and in view of (2.7), we find that

λ2

∫ x

a
F (t)K2(x, t)dt = λ3

∫ x

a
u(t)K3(x, t)dt.

Now here, on applying same techniques of the Eqn. (2.9), we get

µ2,n(x, a, λ)u
(n)(a) + µ2,n−1(x, a, λ)u

(n−1)(a) + · · ·+ µ2,0(x, a, λ)u(a) = λ2

∫ x

a
K2(x, t)F (t)dt,

where,

µ2,j(x, a, λ) =
λ3

j!

∫ x

a
(t− a)jK3(x, t)dt∀j ∈ {0.1, 2, . . . , n}. (2.11)

...

µn,n(x, a, λ)u
(n)(a) + µn,n−1(x, a, λ)u

(n−1)(a) + · · ·+ µn,0(x, a, λ)u(a) = λn

∫ x

a
F (t)Kn(x, t)dt,
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where,

µn,j(x, a, λ) =
λn+1

j!

∫ x

a
(t− a)jKn+1(x, t)dt∀j ∈ {0.1, 2, . . . , n}. (2.12)

fj(x) =

{
λj

∫ x
a F (t)Kj(x, t)dt when j = 1, 2, ..., n;

F (x), when j = 0
(2.13)

In general, we write (2.12) in the form

µm,j(x, a, λ) =
λm+1

j!

∫ x

a
(t− a)jKm+1(x, t)dt∀j,m ∈ {0.1, 2, . . . , n}. (2.14)

Now, let us suppose that following matrices are denoted by

Mn,n = [µmj(x, a, λ)](n+1)×(n+1) ∀m = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n;

Un =
[
u(i)(a)

]
(n+1)×1

∀i = 0, 1, 2, . . . , n;Xn = [fj(x)](n+1)×1 ∀j = 0, 1, 2, . . . , n. (2.15)

Then, making an appeal to the Eqns. (2.3), (2.9), (2.11) and up to (2.12), we form a system of n + 1
linear equations for n+ 1 unknowns u(a), . . . , u(n)(a), in the form

Mn,nUn = Xn. (2.16)

Moreover using (2.12) - (2.14) in (2.15), we write (2.16) in following form

Mn,n =


µ0,0(x, a, λ) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
µ1,0(x, a, λ) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
µn,0(x, a, λ) µn,1(x, a, λ) · · · µn,n(x, a, λ)

 ,Un =


u(a)

u(′)(a)
...

u(n)(a)

 and

Xn =


f0(x)
f1(x)

...
fn(x)

 and thus system of equations is converted into following matrix equation


µ0,0(x, a, λ) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
µ1,0(x, a, λ) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
µn,0(x, a, λ) µn,1(x, a, λ) · · · µn,n(x, a, λ)




u(a)

u(1)(a)
...

u(n)(a)

 =


f0(x)
f1(x)

...
fn(x)

 . (2.17)

Theorem 2.1. If a system of differential equations are non-homogeneous equations given by (2.3), (2.9),
(2.11) and up to (2.12), and the determinant of their coefficient matrix is found by

D = |Mn,n| =

∣∣∣∣∣∣∣∣∣
µ0,0(x, a, λ) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
µ1,0(x, a, λ) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
µn,0(x, a, λ) µn,1(x, a, λ) · · · µn,n(x, a, λ)

∣∣∣∣∣∣∣∣∣ , (2.18)

then ∀(x− a) > 0, the approximate formula of ū(a) is evaluated by the determinant

ū(a) =
1

D

∣∣∣∣∣∣∣∣∣
f0(x) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
f1(x) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
fn(x) µn,1(x, a, λ) · · · µn,n(x, a, λ)

∣∣∣∣∣∣∣∣∣ . (2.19)
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Proof. Consider the linear Eqns. (2.3), (2.9), (2.11), and up to (2.12) and then eliminating the unknowns
u(a), u(′)(a), . . . , u(n)(a), we get a system of equations (2.17) by which we obtain the formula

u(a)

u(′)(a)
...

u(n)(a)

 =


µ0,0(x, a, λ) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
µ1,0(x, a, λ) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
µn,0(x, a, λ) µn,1(x, a, λ) · · · µn,n(x, a, λ)


−1 

f0(x)
f1(x)

...
fn(x)

 . (2.20)

In (2.20) ∀(x− a) > 0, we get

D =

∣∣∣∣∣∣∣∣∣
µ0,0(x, a, λ) µ0,1(x, a, λ) · · · µ0,n(x, a, λ)
µ1,0(x, a, λ) µ1,1(x, a, λ) · · · µ1,n(x, a, λ)

...
... · · ·

...
µn,0(x, a, λ) µn,1(x, a, λ) · · · µn,n(x, a, λ)

∣∣∣∣∣∣∣∣∣ ̸= 0, (2.21)

therefore on using Cramer’s rule in (2.20), we derive the required result (2.19). □

3. Volterra Integral Eqation of First Kind for Special Kernels and Their Approximate
Solutions About Lower Limit of the Volterra Integral

On applying techniques and the methods given in the section 2, we introduce some special kernels
to obtain their solutions of different Volterra integral equations of first order in matrix form about the
lower limit of integral consisting of this first order Volterra integral equation. A recurrence relation of
gamma function [6] Γ(n+1) = nΓ(n) is very applicable to compute following approximate solutions.

Approximate solution 3.1. If in the Volterra integral equation (1.2) the kernel K(x, t) = 1, then for all
m, j ∈ {0, 1, 2, . . . , n} and ∀(x− a) > 0, there exist following results

µm,j(x, a, λ) =λm+1 (x− a)j+m+1

Γ(j +m+ 2)
, (3.1)

fj(x) =

{
λj

(j−1)!

∫ x
a F (t)(x− t)j−1dt ∀j = 1, 2, 3, . . . , n;

F (x), when j = 0
(3.2)

and the approximate solution is

ū(a) =
1

D

∣∣∣∣∣∣∣∣∣∣∣

F (x) λ (x−a)2

Γ(3) · · · λ (x−a)n+1

Γ(n+2)

λ
∫ x
a F (t)dt λ2 (x−a)3

Γ(4) · · · λ2 (x−a)n+2

Γ(n+3)
...

... · · ·
...

λn

(n−1)!

∫ x
a F (t)(x− t)n−1dt λn+1 (x−a)n+2

Γ(n+3) · · · λn+1 (x−a)2n+1

Γ(2n+2)

∣∣∣∣∣∣∣∣∣∣∣
. (3.3)

Proof. Here in this Volterra integral equation, the kernel K(x, t) = 1, therefore due to formula (2.7),
the iterated kernels

K1(x, t) = K(x, t) = 1 and K2(x, t) = x−t, . . . ,Kj(x, t) =
(x− t)j−1

(j − 1)!
, . . . ,Km+1(x, t) =

(x− t)m

m!
.

(3.4)
Again then, making an appeal to an iterated kernel in (3.4) and the formula (2.12) and the formula

due to [2], [6, p. 86, first part of Problem 1], ∀m, j ∈ {0.1, 2, . . . , n}, we find

µm,j(x, a, λ) =
λm+1

j!m!

∫ x

a
(t− a)j(x− t)mdt = λm+1 (x− a)j+m+1

Γ(j +m+ 2)
(3.5)
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and by (2.13), we find

fj(x) =
λj

(j − 1)!

∫ x

a
F (t)(x− t)j−1dt∀j = 1, 2, 3, . . . , n; f0(x) = F (x). (3.6)

Then by (2.18), ∀x > a > 0 the determinant is found as

D =

∣∣∣∣∣∣∣∣∣∣∣

λ(x− a) λ (x−a)2

Γ(3) · · · λ (x−a)n+1

Γ(n+2)

λ2 (x−a)2

Γ(3) λ2 (x−a)3

Γ(4) · · · λ2 (x−a)n+2

Γ(n+3)
...

... · · ·
...

λn+1 (x−a)n+1

Γ(n+2) λn+1 (x−a)n+2

Γ(n+3) · · · λn+1 (x−a)2n+1

Γ(2n+2)

∣∣∣∣∣∣∣∣∣∣∣
̸= 0. (3.7)

Therefore, by (2.19), the approximate solution ū(x) is obtained by following determinant

ū(a) =
1

D

∣∣∣∣∣∣∣∣∣∣∣

F (x) λ (x−a)2

Γ(3) · · · λ (x−a)n+1

Γ(n+2)

λ
∫ x
a F (t)dt λ2 (x−a)3

Γ(4) · · · λ2 (x−a)n+2

Γ(n+3)
...

... · · ·
...

λn

(n−1)!

∫ x
a F (t)(x− t)n−1dt λn+1 (x−a)n+2

Γ(n+3) · · · λn+1 (x−a)2n+1

Γ(2n+2)

∣∣∣∣∣∣∣∣∣∣∣
. (3.8)

□

Approximate solution 3.2. If in the Volterra integral equation (1.2) the kernel K(x, t) = α+cos t
α+cosx∀α ∈ R,

then for all m, j ∈ {0, 1, 2, . . . , n} and ∀(x− a) > 0, following formulae are followed

µm,j(x, a, λ) =
λm+1

j!m!

1

(α+ cosx)

∫ x

a
(t− a)j(x− t)m(α+ cos t)dt, (3.9)

fj(x) =

{
λj

(j−1)!
1

(α+cosx)

∫ x
a F (t)(x− t)j−1(α+ cos t)dt∀j = 1, 2, 3, . . . , n;

F (x), when j = 0
(3.10)

Proof. Since in the Volterra integral equation (1.2), the kernel K(x, t) = α+cos t
α+cosx∀α ∈ R, therefore, due

to formula (2.7), the iterated kernels K1(x, t) = K(x, t) = α+cos t
α+cosx and K2(x, t) =

{
α+cos t
α+cosx

}
(x− t),

. . . ,Kj(x, t) =

{
α+ cos t

α+ cosx

}
(x− t)j−1

(j − 1)!
, . . . ,Kj+1(x, t) =

{
α+ cos t

α+ cosx

}
(x− t)j

j!
. (3.11)

Again then making an appeal to the formulae (2.12) and (3.11), ∀j ∈ {0.1, 2, . . . , n}, we find

µn,j(x, a, λ) =
λn+1

j!n!

1

(α+ cosx)

∫ x

a
(t− a)j(x− t)n(α+ cos t)dt (3.12)

and by (2.13) and (3.11), we find

fj(x) =
λj

(j − 1)!

1

(α+ cosx)

∫ x

a
F (t)(x− t)j−1(α+ cos t)dt∀j = 1, 2, 3, . . . , n; f0(x) = F (x).

(3.13)
□
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Approximate solution 3.3. If in the Volterra integral equation (1.2) the kernel K(x, t) = (x − t), then
for all m, j ∈ {0, 1, 2, . . . , n} and ∀(x− a) > 0, there exists following formulae

µm,j(x, a, λ) =
λm+1

j!

∫ x

a
(t− a)j

(x− t)2m+1

(2m+ 1)!
dt, (3.14)

fj(x) =

{
λj

(2j−1)!

∫ x
a F (t)(x− t)2j−1dt∀j = 1, 2, 3, . . . , n;

F (x), when j = 0
(3.15)

Proof. Since in the Volterra integral equation (1.2), the kernel K(x, t) = (x − t), therefore, due to
formula (2.7), the iterated kernels K1(x, t) = K(x, t) = (x− t) and K2(x, t) =

(x−t)3

3! , . . . ,Kj(x, t) =
(x−t)2j−1

(2j−1)! , . . .,

Kj+1(x, t) =
(x− t)2j+1

(2j + 1)!
. (3.16)

Again then making an appeal to the formulae (2.12) and (3.16), ∀j ∈ {0.1, 2, . . . , n}, we find

µn,j(x, a, λ) =
λn+1

Γ(2n+ j + 3)
(x− a)2n+j+2. (3.17)

and by (2.13) and (3.16), we find

fj(x) =
λj

(2j − 1)!

∫ x

a
F (t)(x− t)2j−1dt∀j = 1, 2, 3, . . . , n; f0(x) = F (x). (3.18)

Then by (2.18) and (3.17) ∀x > a > 0, the determinant is found as

D =

∣∣∣∣∣∣∣∣∣∣∣

λ (x−a)2

Γ(3) λ (x−a)3

Γ(4) · · · λ (x−a)n+2

Γ(n+3)
λ2

Γ(5)(x− a)4 λ2

Γ(6)(x− a)5 · · · λ2

Γ(n+5)(x− a)n+4

...
... · · ·

...
λn+1

Γ(2n+3)(x− a)2n+2 λn+1

Γ(2n+4)(x− a)2n+3 · · · λn+1

Γ(3n+3)(x− a)3n+2

∣∣∣∣∣∣∣∣∣∣∣
̸= 0. (3.19)

Therefore, by (3.19) the approximate solution ū(x) is obtained as

ū(a) =
1

D

∣∣∣∣∣∣∣∣∣∣∣

F (x) λ (x−a)3

Γ(4) · · · λ (x−a)n+2

Γ(n+3)

λ
∫ x
a F (t)(x− t)dt λ2 (x−a)5

Γ(6) · · · λ2 (x−a)n+4

Γ(n+5)
...

... · · ·
...

λn

(2n−1)!

∫ x
a F (t)(x− t)2n−1dt λn+1 (x−a)2n+3

Γ(2n+4) · · · λn+1

Γ(3n+3)(x− a)3n+2

∣∣∣∣∣∣∣∣∣∣∣
. (3.20)

□

4. Special Cases

Case 4.1. If in the approximate solution 3.1 on putting n = 2, then for λ ̸= 0, and ∀(x− a) > 0, we get
the particular approximate solution as

ū(a) =
1

D

∣∣∣∣∣∣∣∣
F (x) λ (x−a)2

Γ(3) λ (x−a)3

Γ(4)

λ
∫ x
a F (t)dt λ2 (x−a)3

Γ(4) λ2 (x−a)4

Γ(5)

λ2
∫ x
a F (t)(x− t)dt λ3 (x−a)4

Γ(5) λ3 (x−a)5

Γ(6)

∣∣∣∣∣∣∣∣ . (4.1)
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Now making an appeal to (2.18) and (3.1) here in (4.1), we obtain

D =

∣∣∣∣∣∣∣∣
λ(x− a) λ (x−a)2

Γ(3) λ (x−a)3

Γ(4)

λ2 (x−a)2

Γ(3) λ2 (x−a)3

Γ(4) λ2 (x−a)4

Γ(5)

λ3 (x−a)3

Γ(4) λ3 (x−a)4

Γ(5) λ3 (x−a)5

Γ(6)

∣∣∣∣∣∣∣∣ = −λ6(x− a)9

8640
. (4.2)

Therefore on applying (4.2) in (4.1), we obtain the approximate solution

ū(a) =
3

λ(x− a)
F (x)− 24

λ(x− a)2

∫ x

a
F (t)dt+

60

λ(x− a)3

∫ x

a
(x− t)F (t)dt. (4.3)

By (4.3), we get a relation

λ(x− a)3ū(a) = 3F (x)(x− a)2 − 24(x− a)

∫ x

a
F (t)dt+ 60

∫ x

a
(x− t)F (t)dt. (4.4)

Similarly, we evaluate another problem as

Case 4.2. Particularly, if in the approximate solution 3.3 on putting n = 2, then for λ ̸= 0 and ∀(x−a) >
0 , we get the approximate solution as

ū(a) =
1

D

∣∣∣∣∣∣∣∣
F (x) λ (x−a)3

Γ(4) λ (x−a)4

Γ(5)

λ
∫ x
a (x− t)F (t)dt λ2 (x−a)5

Γ(6) λ2 (x−a)6

Γ(7)
λ2

3!

∫ x
a (x− t)3F (t)dt λ3 (x−a)7

Γ(8) λ3 (x−a)8

Γ(9)

∣∣∣∣∣∣∣∣ . (4.5)

On making an appeal to (2.18) here in (4.5), we obtain

D =

∣∣∣∣∣∣∣∣
λ (x−a)2

Γ(3) λ (x−a)3

Γ(4) λ (x−a)4

Γ(5)

λ2 (x−a)4

Γ(5) λ2 (x−a)5

Γ(6) λ2 (x−a)6

Γ(7)

λ3 (x−a)6

Γ(7) λ3 (x−a)7

Γ(8) λ3 (x−a)8

Γ(9)

∣∣∣∣∣∣∣∣ = −λ6(x− a)15

43545600
. (4.6)

Then on using (4.6) in (4.5), we get

λ(x− a)6ū(a) = 3(x− a)4F (x)− 180(x− a)2
∫ x

a
(x− t)F (t)dt+ 840

∫ x

a
(x− t)3F (t)dt. (4.7)

5. Concluding Remarks

The methods and theory explained in Section 3 help us to find the approximation value of unknown
function ū(x) at lower limit of the interval of the integral consisting of given integral equation. In the
Section 4 some examples Cases 4.1 and 4.2 are evaluated that show ū(a) is expressed in terms of the
points consisting of the interval of the integral consisting of that integral equation.

6. Conclusion

The Volterra integral equations are related with various biological and scientific problems of math-
ematical physics. These problems lead to differential equations with boundary conditions. This work
helps us to compute these problems through matrix inversion theory. For further directions of research
work done so far in the field of double and multidimensional Volterra integral equations, the theory
[4, 5] may be too useful to enlarge that field.
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