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1. Introduction

Real-life problems involve the optimization of function ratios, which often measure the efficiency of
a system. Such questions should be solved in various scientific fields (such as physics, economics and
statistics, etc.). Meanwhile, duality for the problems which modeled by “minimax programming (see
e.g., [2, 8, 10, 12, 14, 20])” and “fractional programming (see e.g., [1, 3, 19])” involving locally Lipschitz
functions has received extensive attention from researchers. It is worth noting that a large number
of ground-breaking results and applications in fractional programming were contributed by Dinkel-
bach [9] and Schaible and his coauthor [17, 18] (see also [7, 11]) and the references therein.

In this paper, along with optimality conditions proposed in [15], we further introduce nonsmooth
minimax fractional dual problems, and investigate weak, strong and converse-like duality relations
under the assumption of generalized convexity.

To proceed, let X be the Asplund space (i.e., a Banach space whose separable subspaces have sep-
arable duals), and Ω be a non-empty locally closed subset (say around x̄ ∈ Ω) of X , by locally closed,
we mean there is r > 0 such that the set Ω ∩ Br(x̄) is closed, where Br(x̄) stands for the closed ball
centered at x̄ with radius r > 0. In this paper, we study the following minimax fractional optimization
problem with an infinite number of constraints,

min
x∈C

max
k∈K

fk(x) :=
pk(x)

qk(x)
, (P)

where the feasible set C is defined by

x ∈ C := {x ∈ Ω | gt(x) ≤ 0, t ∈ T}, (1.1)
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and pk, qk, k ∈ K := {1, . . . ,m} and gt, t ∈ T are locally Lipschitz on X and T is an (possibly infinite)
index set. For the sake of convenience, we always assume that qk(x) > 0, k ∈ K for all x ∈ Ω, and
that pk(x̄) ≤ 0 at some reference point x̄. In what follows, we use the notation gT := (gt)t∈T .

The following linear space is used for semi-infinite optimization.

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt ̸= 0}.

With λ ∈ R(T ), its supporting set, T (λ) := {t ∈ T | λt ̸= 0}, is a finite subset of T. The nonnegative
cone of R(T ) is denoted by

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) | λt ≥ 0, t ∈ T}.

Definition 1.1. Let φ(x) := maxk∈K fk(x), x ∈ X. A point x̄ ∈ C is a local optimal solution to the
problem (P) iff there is a neighborhood U of x̄ such that

φ(x̄) ≤ φ(x), ∀x ∈ U ∩ C. (1.2)

If the inequality in (1.2) holds for every x ∈ C, then x̄ is said to be a global optimal solution to the
problem (P).

In what follows, we state the constraint qualification (CQ) and the limiting constraint qualification
(LCQ), which were needed to establish Karush–Kuhn–Tucker (KKT) type optimality conditions.

Definition 1.2. (see [12, 15]) We say that the constraint qualification (CQ) is satisfied at x̄ ∈ C if
λ ∈ R(T )

+ such that

0 ∈
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω),

then λt = 0 for all t ∈ T (λ).

It is worth mentioning here that when considering x̄ ∈ C defined in (1.1) with Ω = X and T (x̄) :=
{t ∈ T | gt(x̄) = 0}, T is finite in the smooth setting, the above defined (CQ) is guaranteed by the
Mangasarian–Fromovitz constraint qualification (see e.g., [16] for more details).

Definition 1.3. (see [4, 5, 13]) Let x̄ ∈ C. We say that the limiting constraint qualification (LCQ) is
satisfied at x̄ iff

N(x̄;C) ⊂
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+N(x̄; Ω), (1.3)

where A(x̄) := {λ ∈ R(T )
+ | λtgt(x̄) = 0 for all t ∈ T}.

The rest of the paper is organized as follows. Section 2 provides some notations and preliminaries.
Our main findings on duality are proposed in Section 3. and applications to multiobjective optimization
problems are provided in Section 4. Finally, conclusions are given in brief.

2. Notations and Preliminary results

Throughout the paper we use the standard notation of variational analysis; see e.g., [16]. Unless
otherwise specified, all spaces under consideration are assumed to be Asplund. The canonical pairing
between space X and its topological dual X∗ is denoted by ⟨· , ·⟩, while the symbol ∥ · ∥ stands for the
norm in the considered space. As usual, the polar cone of a set Ω ⊂ X is defined by

Ω◦ := {x∗ ∈ X∗ | ⟨x∗, x⟩ ≦ 0, ∀x ∈ Ω}. (2.1)
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Let F : X ⇒ X∗ be a multifunction. The Painlevé–Kuratowski upper/outer limit of F as at x → x̄,
which is defined by

Limsup
x→x̄

F (x) :=

{
x∗ ∈ X∗

∣∣∣∣ ∃ xn → x̄, x∗n
ω∗
−→ x∗ with x∗n ∈ F (xn) for all n ∈ N := {1, 2, . . .}

}
,

where the notation ω∗
−→ indicates the convergence in the weak∗ topology of X∗.

Given x̄ ∈ Ω, define the collection of Fréchet/regular normal cone to Ω at x̄ by

N̂(x̄; Ω) = N̂Ω(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≦ 0

}
,

where x
Ω−→ x̄ means that x → x̄ with x ∈ Ω. If x /∈ Ω, we put N̂(x; Ω) := ∅.

The Mordukhovich/limiting normal cone N(x̄; Ω) to F at x̄ ∈ Ω ⊂ X is obtained from regular
normal cones by taking the sequential Painlevé–Kurotowski upper limits as

N(x̄; Ω) := Limsup

x
Ω−→x̄

N̂(x; Ω).

If x̄ /∈ Ω, we put N(x̄; Ω) := ∅.
For an extended real-valued function ϕ : X → R := [−∞,∞], its domain is defined by

domϕ := {x ∈ X | ϕ(x) < ∞},

and its epigraph is defined by

epiϕ := {(x, µ) ∈ X × R | µ ≧ ϕ(x)}.

The limiting/Mordukhovich subdifferential of ϕ at x̄ ∈ X with |ϕ(x̄)| < ∞ is defined by

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}.

If |ϕ(x̄)| = ∞, then one puts ∂ϕ(x̄) := ∅.
The following concepts of (strictly) generalized convexity at a given point for locally Lipschitz func-

tions is inspired by [7, Definition 3.7], [6, Definition 3.11], [3, Definition 3.7] and [8, Definition 3.5]; see
also [11, Definition 3.2].

Definition 2.1. (i) We say that (f, gT ) is generalized convex on Ω at x̄ ∈ Ω if for any x ∈ Ω, ξk ∈
∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K and any ηt ∈ ∂gt(x̄), t ∈ T, there exists ν ∈ N(x̄; Ω)◦ such that

pk(x)− pk(x̄) ≥ ⟨ξk, ν⟩, k ∈ K,

qk(x)− qk(x̄) ≥ ⟨ζk, ν⟩, k ∈ K,

gt(x)− gt(x̄) ≥ ⟨ηt, ν⟩, t ∈ T.

(ii) We say that (f, gT ) is strictly generalized convex on Ω at x̄ ∈ Ω\{x̄} if for any x ∈ Ω, ξk ∈ ∂pk(x̄),
ζk ∈ ∂qk(x̄), k ∈ K and any ηt ∈ ∂gt(x̄), t ∈ T, there exists ν ∈ N(x̄; Ω)◦ such that

pk(x)− pk(x̄) > ⟨ξk, ν⟩, k ∈ K,

qk(x)− qk(x̄) ≥ ⟨ζk, ν⟩, k ∈ K,

gt(x)− gt(x̄) ≥ ⟨ηt, ν⟩, t ∈ T.
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2.1. Previous Results on Optimality Conditions. In this part, we recall some results on optimality
conditions for problem (P); see [15] for the proof in detail. We recall the necessary optimality condi-
tions for local optimal solutions to problem (P) under the constraint qualification (CQ) and the limiting
constraint qualification (LCQ).

Theorem 2.2. (c.f. [15, Theorem 3.5]) Let the (CQ) be satisfied at x̄ ∈ C. If x̄ ∈ C is a local optimal
solution to problem (P), then there exist multipliers α ∈ Rm

+\{0} and λ ∈ R(T )
+ such that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω) (2.2)

holds.

Theorem 2.3. (c.f. [15, Theorem 3.4]) Let the (LCQ) be satisfied at x̄ ∈ C . If x̄ ∈ C is a local optimal
solution to problem (P), then there exist multipliers α ∈ Rm

+\{0} and λ ∈ A(x̄) such that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω) (2.3)

holds.

We also recall the sufficient condition for a feasible point of problem (P) to be a global optimal
solution.

Theorem 2.4. (c.f. [15, Theorem 3.9]) Let x̄ ∈ C. Assume that x̄ satisfies condition (2.3). If (f, gT ) is
generalized convex at x̄, then x̄ is a global optimal solution of problem (P).

3. Main Results: Duality Relations

In this section, we formulate dual problems to the primal one in the sense of Mond-Weir, and their
weak, strong, converse-like duality relations between them are established, respectively.

Let z ∈ X , α ∈ Rm
+\{0} and λ ∈ R(T )

+ . In connection with problem (P), we consider the following
dual problem:

max
(z,α,λ)∈CMW

{φ̄(z, α, λ) := φ(z)} , (D)

Here, we denote φ(z) := max
k∈K

fk(z), and CD is defined by

CD :=

{
(z, α, λ) ∈ Ω× (Rm

+\{0})×R(T )
+ | 0 ∈

∑
k∈K

αk

(
∂pk(z)−

pk(z)

qk(z)
∂qk(z)

)
+
∑
t∈T

λt∂gt(z) +N(z; Ω),
∑
t∈T

λtgt(z) ≥ 0

}
.

(3.1)

The following theorem describes a weak duality relation between problem (P) and problem (D).

Theorem 3.1. (Weak Duality) Let x ∈ C and let (z, α, λ) ∈ CD. If (f, gT ) is generalized convex at z,
then

φ(x) ≥ φ̄(z, α, λ),

where φ(x) := max
k∈K

fk(x).
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Proof. Since (z, α, λ) ∈ CD, there exist multipliers α ∈ Rm
+\{0}, λ ∈ R(T )

+ , ξk ∈ ∂pk(z), ζk ∈ ∂qk(z),
k ∈ K and ηt ∈ ∂gt(z), t ∈ T such that

−

[∑
k∈K

αk

(
ξk −

pk(z)

qk(z)
ζk

)
+
∑
t∈T

λtηt

]
∈ N(z; Ω), (3.2)

∑
t∈T

λtgt(z) ≥ 0. (3.3)

By the generalized convexity of (f, gT ) at z, there exists ν ∈ N(z; Ω)◦ such that∑
k∈K

αk

(
⟨ξk, ν⟩ −

pk(z)

qk(z)
⟨ζk, ν⟩

)
+
∑
t∈T

λt⟨ηt, ν⟩

≤
∑
k∈K

αk

[
pk(x)− pk(z)−

pk(z)

qk(z)
(qk(x)− qk(z))

]
+
∑
t∈T

λt(gt(x)− gt(z))

=
∑
k∈K

αk

(
pk(x)−

pk(z)

qk(z)
qk(x)

)
+
∑
t∈T

λt(gt(x)− gt(z)).

Due to the definition of polar cone (2.1), it follows from (3.2) and the relation ν ∈ N(z; Ω)◦ that

0 ≤
∑
k∈K

αk

(
⟨ξk, ν⟩ −

pk(z)

qk(z)
⟨ζk, ν⟩

)
+
∑
t∈T

λt⟨ηt, ν⟩.

Thus,

0 ≤
∑
k∈K

αk

(
pk(x)−

pk(z)

qk(z)
qk(x)

)
+
∑
t∈T

λt(gt(x)− gt(z)). (3.4)

In addition, λtgt(x) ≤ 0 and taking (3.3) into account, we conclude by (3.4) that

0 ≤
∑
k∈K

αk

(
pk(x)−

pk(z)

qk(z)
qk(x)

)
. (3.5)

By (3.5), we obtain ∑
k∈K

αk
pk(z)

qk(z)
≤

∑
k∈K

αk
pk(x)

qk(x)
. (3.6)

According to the fact that α ∈ Rm
+\{0}, (3.6) entails that

φ(x) ≥ φ(z). (3.7)

Since φ̄(z, α, λ) := φ(z) for any (z, α, λ) ∈ CD, thus, we have

φ(x) ≥ φ̄(z, α, λ) = φ(z).

Hence, we complete the proof. □

The following example shows the importance of the generalized convex property of (f, gT ) imposed
in Theorem 4.1.

Example 3.2. Let f : R → R2 be defined by f(x) :=
(
p1(x)
q1(x)

, p2(x)q2(x)

)
, where p1(x) := p2(x) := x3,

q1(x) := q2(x) := 2x2 − 1, x ∈ R, and let gt : R → R be given by

gt(x) = −t|x|, x ∈ R, t ∈ T := [0,+∞).
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We consider problem (P) with m := 2 and Ω := (−∞, 0] ⊂ R. Then C = Ω and let us select x̄ :=
−1 ∈ C . Now, we consider the problem (D). By choosing z̄ := 0 ∈ Ω, ᾱ := (12 ,

1
2), λ̄ := 0, we have

(z̄, ᾱ, λ̄) ∈ CD and
φ(x̄) = −1 < 0 = φ̄(z̄, ᾱ, λ̄),

which shows that the conclusion of Theorem 4.1 fails. The reason is that (f, gT ) is not generalized
convex on Ω at z̄.

The strong duality relations between problem (P) and problem (D) show as follows.

Theorem 3.3. (Strong Duality) Let x̄ ∈ C be a local optimal solution of problem (P) such that the (CQ)
is satisfied at this point. Then there exists (ᾱ, λ̄) ∈ (Rm

+\{0})× R(T )
+ such that (x̄, ᾱ, λ̄) ∈ CD and

φ(x̄) = φ̄(x̄, ᾱ, λ̄).

Furthermore, if (f, gT ) is generalized convex at any z ∈ Ω, then (x̄, ᾱ, λ̄) is a global optimal solution
of problem (D).

Proof. According to Theorem 3.1, we find ᾱ ∈ Rm
+\{0} and λ̄ ∈ R(T )

+ such that

0 ∈
∑
k∈K

ᾱk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λ̄t∂gt(x̄) +N(x̄; Ω).

Since x̄ ∈ C and λ̄t = 0 for all t ∈ T (λ̄),
∑

t∈T λ̄tgt(x̄) = 0. Consequently, (x̄, ᾱ, λ̄) ∈ CD. It is clear
that φ(x̄) = φ̄(x̄, ᾱ, λ̄).

Thus, if (f, gT ) is generalized convex at any z ∈ Ω, we apply the weak duality results in Theorem
4.1 to conclude that

φ̄(x̄, ᾱ, λ̄) = φ(x̄) ≥ φ̄(z, α, λ)

holds for any (z, α, λ) ∈ CMW . This means that (x̄, ᾱ, λ̄) is a global optimal solution of problem (D).
□

Theorem 3.4. (Strong Duality) Let x̄ ∈ C be a local optimal solution of problem (P) such that the
(LCQ) is satisfied at this point. Then there exists (ᾱ, λ̄) ∈ (Rm

+\{0})× R(T )
+ such that (x̄, ᾱ, λ̄) ∈ CD

and
φ(x̄) = φ̄(x̄, ᾱ, λ̄).

Furthermore, if (f, gT ) is generalized convex at any z ∈ Ω, then (x̄, ᾱ, λ̄) is a global optimal solution
of problem (D).

Proof. Thanks to Theorem 3.2, we find ᾱ ∈ Rm
+\{0} and λ̄ ∈ A(x̄), where A(x̄) is defined in (1.3), such

that

0 ∈
∑
k∈K

ᾱk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λ̄t∂gt(x̄) +N(x̄; Ω).

Due to λ̄ ∈ A(x̄) defined in (1.3), and thus,
∑

t∈T λ̄tgt(x̄) = 0. So, (x̄, ᾱ, λ̄) ∈ CD. Clearly, φ(x̄) =

φ̄(x̄, ᾱ, λ̄).
Similar to the proof of Theorem 4.3, if (f, gT ) is generalized convex at any z ∈ Ω, by applying the

weak duality results in Theorem 4.1, we conclude that
φ̄(x̄, ᾱ, λ̄) = φ(x̄) ≥ φ̄(z, α, λ)

for any (z, α, λ) ∈ CD . This means that (x̄, ᾱ, λ̄) is a global optimal solution of problem (D). □

In the following theorem, we provide a converse-like duality relation between problem (P) and prob-
lem (D).
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Theorem 3.5. (Converse-like Duality) Let (x̄, ᾱ, λ̄) ∈ CD. If x̄ ∈ C and (f, gT ) is generalized convex
at x̄, then x̄ is a global optimal solution of problem (P).

Proof. Since (x̄, ᾱ, λ̄) ∈ CD, then there exist ᾱ ∈ Rm
+\{0}, λ̄ ∈ R(T )

+ , ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄),
k ∈ K and ηt ∈ ∂gt(x̄), t ∈ T such that

−

[∑
k∈K

ᾱk

(
ξk −

pk(x̄)

qk(x̄)
ζk

)
+
∑
t∈T

λ̄tηt

]
∈ N(x̄; Ω), (3.8)

∑
t∈T

λ̄tgt(x̄) ≥ 0. (3.9)

Let x̄ ∈ C. Since λ̄ ∈ R(T )
+ , we conclude that λ̄tgt(x̄) ≤ 0 for all t ∈ T. Then,

∑
t∈T λ̄tgt(x̄) ≤ 0,

which together with (3.9) says that λ̄tgt(x̄) = 0 for all t ∈ T. This fact together with (3.8) yields that x̄
satisfies condition (2.3). To finish the proof, it remains to apply Theorem 3.3. □

4. Applications to multiobjective optimization problem

This section is devoted to applying some results of the minimax programming problem to a multiobjec-
tive optimization problem. More precisely, we employ the duality relations obtained for the minimax
programming problem in the previous sections to derive the corresponding ones for a multiobjective
optimization problem.

Let Ω be a nonempty locally closed subset of Asplund space X. We consider a constrained multiob-
jective optimization problem of the form:

minRm
+

{
f(x) :=

(
p1(x)

q1(x)
, · · · , pm(x)

qm(x)

) ∣∣∣∣x ∈ C

}
, (MP)

where the constraint set C is defined by (1.1). The functions pk, qk, k ∈ K := {1, . . . ,m}, and gt, t ∈ T
are locally Lipschitz on X. Note that ”minRm

+
” in the above problem is understood with respect to the

ordering cone Rm
+ .

Let f̃ := (f̃1, . . . , f̃m). For z ∈ X, α ∈ Rm
+\{0} and λ ∈ R(T )

+ . In connection with the problem (MP),
we consider a dual fractional multiobjective problem of Mond–Weir type as follows:

maxRm
+

{
f̃(z, α, λ) := f(z)

∣∣∣∣ (z, α, λ) ∈ CD

}
, (MD)

where CD is defined by

CD :=

{
(z, α, λ) ∈ Ω× (Rm

+\{0})×R(T )
+ | 0 ∈

∑
k∈K

αk

(
∂pk(z)−

pk(z)

qk(z)
∂qk(z)

)
+
∑
t∈T

λt∂gt(z) +N(z; Ω),
∑
t∈T

λtgt(z) ≥ 0

}
.

(4.1)

In what follows, a feasible point (z̄, ᾱ, λ̄) ∈ CD is said to be a local (weak) Pareto solution of prob-
lem (MP) iff there exists a neighborhood U of (z̄, ᾱ, λ̄) such that

f̃(z, α, λ)− f̃(z̄, ᾱ, λ̄) /∈ −intRm
+ (−Rm

+\{0}) ∀z ∈ U ∩ CD, (4.2)

where intRm
+ stands for the topological interior ofRm

+ . If the inequality in (4.2) holds for every (z, α, λ) ∈
CD , then (z̄, ᾱ, λ̄) is said to be a (weak) Pareto solution of problem (MP).

The first theorem in this section describes duality relation between problem (MP) and problem (MD).



8 L. JIAO AND D. S. KIM

Theorem 4.1. Let x̄ ∈ C be a local weak Pareto solution of problem (MP) and (CQ) be satisfied at this
point. Then there exists (ᾱ, λ̄) ∈ (Rm

+\{0})× R(T )
+ such that (x̄, ᾱ, λ̄) ∈ CD and

f(x̄) = f̃(x̄, ᾱ, λ̄).

Furthermore, if (f, gT ) is generalized convex at any z ∈ Ω, then (x̄, ᾱ, λ̄) is a local weak Pareto solution
of problem (MD).

Proof. Thanks to Theorem 3.1 and the fulfillment of the (CQ) condition, it is clear that x̄ satisfies KKT
conditions. Hence, we find ᾱ ∈ Rm

+\{0} and λ̄ ∈ R(T )
+ , such that

0 ∈
∑
k∈K

ᾱk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λ̄t∂gt(x̄) +N(x̄; Ω).

Since x̄ ∈ C and λ̄t = 0 for all t ∈ T (λ̄),
∑

t∈T λ̄tgt(x̄) = 0. We conclude that (x̄, ᾱ, λ̄) ∈ CD and so
f(x̄) = f̃(x̄, ᾱ, λ̄).

We assume to the contrary that (x̄, ᾱ, λ̄) is not a local weak Pareto solution of problem (MD), then
there exists (z, α, λ) ∈ CD such that

f̃k(z, α, λ) > f̃k(x̄, ᾱ, λ̄), ∀k ∈ K,

where f̃k are components of f̃ . Hence, it can be formulated as
pk(z)

qk(z)
>

pk(x̄)

qk(x̄)
, ∀k ∈ K. (4.3)

Since (z, α, λ) ∈ CD, there exist multipliers α ∈ Rm
+\{0}, λ ∈ R(T )

+ , ξk ∈ ∂pk(z), ζk ∈ ∂qk(z),
k ∈ K and ηt ∈ ∂gt(z), t ∈ T such that

−

[∑
k∈K

αk

(
ξk −

pk(z)

qk(z)
ζk

)
+
∑
t∈T

λtηt

]
∈ N(z; Ω), (4.4)

∑
t∈T

λtgt(z) ≥ 0. (4.5)

By the definition of polar cone (2.1) and the generalized convexity of (f, gT ) on Ω at x̄, we deduce
from (4.4) that for such z there is ν ∈ N(z; Ω)◦ such that

0 ≤
∑
k∈K

αk

(
⟨ξk, ν⟩ −

pk(z)

qk(z)
⟨ζk, ν⟩

)
+
∑
t∈T

λt⟨ηt, ν⟩

≤
∑
k∈K

αk

[
pk(x̄)− pk(z)−

pk(z)

qk(z)
(qk(x̄)− qk(z))

]
+
∑
t∈T

λt(gt(x̄)− gt(z))

=
∑
k∈K

αk

(
pk(x̄)−

pk(z)

qk(z)
qk(x̄)

)
+
∑
t∈T

λt(gt(x̄)− gt(z)).

Since x̄ ∈ C, λtgt(x̄) ≤ 0 for t ∈ T and taking (4.5) into account, we conclude that

0 ≤
∑
k∈K

αk

(
pk(x̄)−

pk(z)

qk(z)
qk(x̄)

)
.

Since α ∈ Rm
+\{0}, there exists k0 ∈ {1, . . . ,m} such that by taking the k0th inequality, we obtain

0 ≤ pk0(x̄)−
pk0(z)

qk0(z)
qk0(x̄),
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which is equivalent to

pk0(z)

qk0(z)
≤ pk0(x̄)

qk0(x̄)
.

This together with (4.3) gives a contradiction. Therefore, the proof has been established. □

For establishing converse-like duality relation between problem (MP) and problem (MD), the fol-
lowing optimality conditions for the existence of a weak Pareto/or Pareto solution of problem (MP) are
needed.

Lemma 4.2. (see [15]) Let the (CQ) be satisfied at x̄ ∈ C. If x̄ is a local weak Pareto solution of (MP),
then there exist multipliers α ∈ Rm

+\{0} and λ ∈ R(T )
+ such that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω) (4.6)

holds.

Lemma 4.3. (see [15]) Let x̄ ∈ C. Assume that x̄ satisfies condition (4.6).
(i) If (f, gT ) is generalized convex at x̄, then x̄ is a weak Pareto solution of (MP).

(ii) If (f, gT ) is strictly generalized convex at x̄, then x̄ is a Pareto solution of (MP).

In the following theorem, we provide a converse-like duality relation for weak Pareto/or Pareto
solutions between problem (MP) and problem (MD).

Theorem 4.4. Let (x̄, ᾱ, λ̄) ∈ CD.

(i) If x̄ ∈ C and (f, gT ) is generalized convex on Ω at x̄, then x̄ is a weak Pareto solution to
problem (MP).

(ii) If x̄ ∈ C and (f, gT ) is strictly generalized convex on Ω at x̄, then x̄ is a Pareto solution to
problem (MP).

Proof. Since (x̄, ᾱ, λ̄) ∈ CD, then there exist ᾱ ∈ Rm
+\{0}, λ̄ ∈ R(T )

+ , ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄),
k ∈ K and ηt ∈ ∂gt(x̄), t ∈ T such that

−

[∑
k∈K

ᾱk

(
ξk −

pk(x̄)

qk(x̄)
ζk

)
+
∑
t∈T

λ̄tηt

]
∈ N(x̄; Ω), (4.7)

∑
t∈T

λ̄tgt(x̄) ≥ 0. (4.8)

Let x̄ ∈ C. Since λ̄ ∈ R(T )
+ , we conclude that λ̄tgt(x̄) ≤ 0 for all t ∈ T. Hence,

∑
t∈T λ̄tgt(x̄) ≤ 0,

which together with (4.8) yields that λ̄tgt(x̄) = 0 for all t ∈ T. So we assert by virtue of (4.7), x̄ satisfies
condition (4.6).

To finish the proof, we put

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ X.

Let f̂ := (f̂1, . . . , f̂m). Since (f, gT ) is generalized convex on Ω at x̄, it follows that (f̂ , gT ) is general-
ized convex at this point as well. The rest of the detailed proof of this theorem is similar to the proof
process of Lemma 5.3 (see e.g., [15] for more details). □
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5. Conclusion

In this paper, along with the results of optimality conditions proposed in [15], we provide duality
relationship between nonsmooth minimax fractional semi-infinite optimization problem and its dual
problem. More precisely, weak, strong and converse-like duality theorems are examined under as-
sumptions of (strictly) generalized convexity and suitable constraint qualifications. Some applications
to multiobjective optimization problem are also explored.
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