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Abstract. We consider a linear fractional optimization problem (FP) involving integral function defined
on Cn[0, 1], and then characterize solution sets for the problem (FP) in terms of sequential Lagrange
multipliers of a known solution of (FP). Moreover, we give an example illustrating our characterization of
solution set.
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1. Introduction and Preliminaries

Optimization problems often have multiple solutions. Mangasarian [11] presented simple and ele-
gant characterizations of the solution set for a convex optimization problem over a convex set when
one solution is known. These characterizations have been extended to various classes of optimization
problems [1, 2, 4, 7, 8, 9, 10]. In particular, Jeyakumar et al. [8] characterized the solution set of a
cone-constrained convex optimization problem when the Lagrange multipliers of its one solution were
known.

On the other hand, Jeyakumar et al. [6] proved the sequential optimality conditions for convex
optimization problem, which held without any constraint qualification and which were expressed by
sequences. Such optimality conditions have been studied for many kinds of convex optimization prob-
lems [3, 5]. In particular, Kim et al. [5] also obtained sequential Lagrange multiplier optimality con-
ditions for a linear fractional optimization problem involving integral functions defined on Cn[0, 1],
which held without any constraint qualification.

In this paper, we characterize the solution set of a linear fractional optimization problem involving
integral function defined on Cn[0, 1] in terms of Lagrange multipliers of a known solution.

2. Optimality Theorems

Consider the following linear fractional optimization problem:

(FP) Minimize
∫ 1
0 c(t)Tx(t)dt+ α∫ 1
0 d(t)Tx(t)dt+ β

subject to x(·) ∈ K,

ai(t)
Tx(t) = bi(t), i = 1, · · · ,m, for any t ∈ [0, 1],
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where c, d, ai, i = 1, · · · ,m, are given in Cn[0, 1], bi, i = 1, · · · ,m are given in C[0, 1] and K is
a closed convex cone in Cn[0, 1]. Here we denote Cn[0, 1] = {x | x : [0, 1] → Rn : continuous}
and C[0, 1] = {z | z : [0, 1] → R : continuous}. We will use the norm on Cn[0, 1] defined by
||x|| = maxt∈[0,1]||x(t)||.

Let△ = {x ∈ K | ai(t)Tx(t)−bi(t) = 0 for any t ∈ [0, 1], i = 1, · · · ,m}. We assume that△ ≠ ∅.
We define the nonnegative dual cone of K as K∗ = {v ∈ Cn[0, 1]∗ | v(x) ≧ 0 for any x ∈ K},

where Cn[0, 1]∗ = {x∗ | x∗ : Cn[0, 1] → R : continuous and linear}.
Let NBV[0, 1] = {µ | µ : [0, 1] → R : a function of bounded variation, left continuous on [0, 1) and
µ(1) = 0}.

The following optimality theorem for the problem (FP), which holds without any constraint qualifi-
cation, is in [5]:

Theorem 2.1. [5] Let x̄ ∈ △ and suppose that for any x ∈ △,
∫ 1
0 d(t)Tx(t)dt+ β > 0. Then the

following are equivalent:
(i) x̄ is an optimal solution of the problem (FP);
(ii) (0, 0) ∈

(∫ 1
0 [c(t)− q(x̄)d(t)]T (·)dt, −α+ q(x̄)β

)
+ {0} × R+

+cl
( ⋃
µi∈NBV[0,1]

{(−
∑m

i=1

∫ 1
0 µi(t)ai(t)

T (·)dt, −
∑m

i=1

∫ 1
0 µi(t)bi(t)dt)}+ (−K∗)× R+

)
,

where q(x̄) =
∫ 1
0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

;

(iii) there exist µn
i ∈ NBV[0, 1], i = 1, · · · ,m, k∗n ∈ K∗ such that∫ 1

0 [c(t)− q(x̄)d(t)]T (·)dt+ lim
n→∞

[−
∑m

i=1

∫ 1
0 µn

i (t)ai(t)
T (·)dt− k∗n(·)] = 0 and lim

n→∞
k∗n(x̄) = 0.

The closedness of the set
⋃

λi∈R

∑m
i=1 λ

l
i(ai, bi)+(−K)×R+ can be used as a constraint qualification

for the optimal solution of (FP) as in the following theorem [5]: From Theorem 2.1, we can obtain the
following theorem:

Theorem 2.2. [5] Let x̄ ∈ △ and suppose that the set⋃
µi∈NBV[0,1]

{(
−

m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)dt, −
m∑
i=1

∫ 1

0
µi(t)bi(t)dt

)}
+ (−K∗)× R+

is closed in Cn[0, 1]∗ × R. Then x̄ is an optimal solution of the problem (FP) if and only if there exist
µi ∈ NBV[0, 1], i = 1, · · · ,m and k∗ ∈ K∗ such that∫ 1

0

[
c(t)− q(x̄)d(t)−

m∑
i=1

µi(t)ai(t)
]T

(·)dt− k∗(·) = 0 and k∗(x̄) = 0.

3. Characterizations of Solution Sets

Let S be the set of solutions of the linear fractional optimization problem (FP). Let x̄ ∈ S. Then by
Theorem 2.1, there exist a sequence {µn

i } in NBV [0, 1], i = 1, · · · ,m and a sequence {k∗n} in K∗

such that ∫ 1

0
[c(t)− q(x̄)d(t)]T (·)dt+ lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n(·)
]
= 0 (3.1)

and lim
n→∞

k∗n(x̄) = 0, (3.2)

where q(x̄) =
∫ 1
0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

.
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By using the above sequences {µn
i }, i = 1, · · · ,m and {k∗n}, we can characterize the solution set S

as follows:

Theorem 3.1. The set S of optimal solutions of the problem (FP) is as follows:

S =

{
x̃ ∈ △ |

∫ 1

0
[c(t)− q(x̃)d(t)]T (·)dt+ lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n(·)
]
= 0,

lim
n→∞

k∗n(x̃) = 0
}
.

Proof. Let x̃ ∈ S be any fixed. Then q(x̄) = q(x̃) and hence∫ 1

0
c(t)T x̄(t)dt− q(x̄)

∫ 1

0
d(t)T x̄(t)dt =

∫ 1

0
c(t)T x̃(t)dt− q(x̃)

∫ 1

0
d(t)T x̃(t)dt.

From (3.1), we have∫ 1

0
[c(t)− q(x̄)d(t)]T x̄(t)dt + lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̄(t)dt− k∗n(x̄)
]
= 0

and ∫ 1

0
[c(t)− q(x̃)d(t)]T x̃(t)dt+ lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̃(t)dt− k∗n(x̃)
]
= 0.

From (3.2) and (3.3),

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̄(t)dt
]
= lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̃(t)dt− k∗n(x̃)
]
.

Since x̄ ∈ △ and x̃ ∈ △, we have

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)bi(t)dt

]
= lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)bi(t)dt− k∗n(x̃)

]
.

Hence lim
n→∞

k∗n(x̃) = 0. Thus we have

S̄ ⊂

{
x̃ ∈ △ |

∫ 1

0
[c(t)− q(x̃)d(t)]T (·)dt+ lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n

]
= 0,

lim
n→∞

k∗n(x̃) = 0
}
.

The converse is true by Theorem 2.1. Consequently, the result holds. □

Suppose that the set⋃
µi∈NBV [0,1]

{
(−

m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)dt,−
m∑
i=1

∫ 1

0
µi(t)bi(t)dt)

}
+ (−K∗)× R+

is closed in Cn[0, 1]∗ ×R. Let x̄ ∈ S. Then by Theorem 2.2, there exist µi ∈ NBV [0, 1], i = 1, · · · ,m
and k∗ ∈ K∗ such that∫ 1

0
[c(t)− q(x̄)−

m∑
i=1

µi(t)ai(t)]
T (·)dt− k∗(·) = 0 and k∗(x̄) = 0.

By using the above µi, i = 1, · · · ,m and k∗, we can characterize the solution set S as follows:
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Theorem 3.2. Suppose that the set

⋃
µi∈NBV [0,1]

{
(−

m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)dt,−
m∑
i=1

∫ 1

0
µi(t)bi(t)dt)

}
+ (−K∗)× R+

is closed in Cn[0, 1]∗ × R. Then the solution set S is as follows:

S =

{
x̃ ∈ △|

∫ 1

0
[c(t)− q(x̃)d(t)−

m∑
i=1

µi(t)ai(t)]
T (·)dt− k∗ = 0, k∗(x̃) = 0

}
.

Let α = 0, d(t) = 0 and β = 1. Then the problem (FP) becomes the following linear conic optimiza-
tion problem (LCP):

(LCP) minimize
∫ 1

0
c(t)Tx(t)dt

subject to x ∈ K

ai(t)
Tx(t) = bi(t), t ∈ [0, 1], i = 1, · · · ,m.

Let S̄ be the set of solutions of (LCP) and let x̄ ∈ S̄. Then by Theorem 2.1, there exist a sequence
{µn

i } in NBV [0, 1], i = 1, · · · ,m and a sequence {k∗n} inK∗ such that∫ 1

0
c(t)T (·)dt+ lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n

]
= 0 (3.3)

and lim
n→∞

k∗n(x̄) = 0. (3.4)

FromTheorem 3.1, we can get the following theorem for (LCP):

Theorem 3.3. The set S̄ of optimal solutions of the problem (LCP) is as follows:

S̄ =
{
x̃ ∈ △ | lim

n→∞
k∗n(x̃) = 0

}
.

4. Example

Now we give an example illustrating Theorem 3.3 by using Example in [5].

Example 4.1. Let K = {(x1, x2, x3) ∈ C3[0, 1] | x1(t) ≧
√
x2(t)2 + x3(t)2 ∀t ∈ [0, 1]}. Then K is

a closed convex cone in C3[0, 1]. Let a1(t) = (1, 0,−1) ∀t ∈ [0, 1] and b1(t) = 0 ∀t ∈ [0, 1]. Let Λ =⋃
u1∈NBV [0,1]

{(−
∫ 1
0 u1(t)a1(t)

T (·)dt,−
∫ 1
0 u1(t)b1(t)dt)}+ (−K∗)× R+, where

NBV [0, 1] = {u | u : [0, 1] → R is of bounded variation and left continuous on [0, 1) and u(1) = 0}.
Then Λ ⊂ C3[0, 1]∗ × R, where C3[0, 1]∗ is the topological dual space of C3[0, 1].

In [5], we showed that Λ is not closed.
Let k∗n(·) =

∫ 1
0

(√
n2(1− t)2 + (1 + 1

n(1+t))
2, 1 + 1

n(1+t) ,−n(1 − t)
)T

(·)dt. Notice that ∀t ∈

[0, 1],
(√

n2(1− t)2 + (1 + 1
n(1+t))

2, 1 + 1
n(1+t) ,−n(1 − t)

)
∈ K̃ , where K̃ = {(x, y, z) ∈ R3 :

x ≥
√
y2 + z2}. So, ∀(x1, x2, x3) ∈ K, ∀t ∈ [0, 1],

√
n2(1− t)2 + (1 + 1

n(1+t))
2x1(t) + (1 +

1
n(1+t))x2(t) − n(1 − t)x3(t) ≧ 0. Hence ∀(x1, x2, x3) ∈ K , k∗n(x1, x2, x3) ≧ 0 and so k∗n ∈ K∗. Let
un1 (t) = −n(1− t) ∀t ∈ [0, 1] and let a∗n(·) =

∫ 1
0 (−un1 (t))a1(t)

T (·)dt− k∗n(·). Then un1 ∈ NBV [0, 1]
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and

a∗n(·) =

∫ 1

0
n(1− t)(1, 0,−1)T (·)dt− k∗n(·)

=

∫ 1

0

(
n(1− t)−

√
n2(1− t)2 + (1 +

1

n(1 + t)
)2,−1− 1

n(1 + t)
, 0
)T

(·)dt.

Now we consider the following linear optimization problem:

(LCP) Minimize(x1,x2,x3)∈C3[0,1]

∫ 1

0
x2(t)dt

subject to x1(t)− x3(t) = 0

x1(t) ≧
√

x2(t)2 + x3(t)2 ∀t ∈ [0, 1].

Let c(t) = (0, 1, 0). Then the problem (LCP) becomes:

Minimize(x1,x2,x3)∈C3[0,1]

∫ 1

0
c(t)Tx(t)dt

subject to a1(t)
Tx(t) = b1(t)

x ∈ K.

Let △ = {(x1, x2, x3) ∈ C3[0, 1] | x1(t) − x3(t) = 0, x1(t) ≧
√

x2(t)2 + x3(t)2 ∀t ∈ [0, 1]}. Then
△ = {(x1, x2, x3) ∈ C3[0, 1] | x1(t) = x3(t), x1(t) ≧ 0, x2(t) = 0 ∀t ∈ [0, 1]}. Let S be the set of
solutions of the problem (P). Then clearly S = △.

Now by using Theorem 3.1, we will show that S = △. It is clear that (0, 0, 0) ∈ △. We can check
that the following two equalities hold (see [5]).

∫ 1

0
c(t)T (·)dt+ lim

n→∞

[
−
∫ 1

0
un1 (t)a1(t)(·)dt− k∗n(·)

]
=

∫ 1

0
(0, 1, 0)T (·)dt+ lim

n→∞

[∫ 1

0
n(1− t)(1, 0,−1)T (·)dt

−
∫ 1

0

(√
n2(1− t)2 + (1 +

1

n(1 + t)
)2, 1 +

1

n(1 + t)
,−n(1− t)

)T
(·)dt

]
= 0.

It is clear that
lim
n→∞

k∗n(0, 0, 0) = 0.

Thus by Theorem 2.1, (0, 0, 0) ∈ S and the above un1 and k∗n are Lagrangian multipliers for (LCP) at
(0, 0, 0). We can check that for any (x̃1, x̃2, x̃3) ∈ △, k∗n(x̃1, x̃2, x̃3) = 0 (see [5]). Thus we have{

x̃ ∈ △ | lim
n→∞

k∗n(x̃) = 0
}
= △.

Hence, by Theorem 3.3, S = △.

5. Conclusion

In this paper, we characterized the solution set for the linear fractional optimization problem in-
volving integral functions defined on Cn[0, 1] in terms of sequential Lagrange multipliers of a known
solution. We can get characterizations of solution sets for more general fractional optimization prob-
lems.
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