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Abstract. In this paper, we introduce a new algorithm for approximating a common solution of Split
Equality Generalised Mixed Equilibrium Problem (SEGMEP) and Split Equality Fixed Point Problem (SEFPP)
for two infinite families of closed uniformly Li-Lipschitz continuous and Ki-Lipschitz continuous and
uniformly quasi-ϕ-asymptotically nonexpansive mappings (i ∈ N and ϕ is the Lyapunov functional de-
fined in (2.1)) in Banach spaces. Under standard and mild assumption of monotonicity and lower semicon-
tinuity of the SEGMEP associated mappings, we establish the strong convergence of the scheme without
imposing any compactness-type conditions on either the operators or the spaces considered. We apply
our result to approximate the solution of Split Equality Convex Minimization Problem (SECMP) and Split
Equality Variational Inclusion Problem (SEVIP). A numerical example is presented to illustrate the per-
formance and implementability of our method. Our results extend, generalize and complement several
related works in the literature.
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1. Introduction

Let C be a closed convex subset of a real Banach space E with the dual space E∗, and T : E → E be a
mapping. A point x ∈ E is called a fixed point of T if Tx = x. We shall denote the set of fixed points
of T by F (T ). Let f : E×E → R be a nonlinear bifunction, P : E → E∗ be a nonlinear mapping, and
φ : E → R ∪ {+∞} be a proper lower semicontinuous and convex function. The Generalised Mixed
Equilibrium Problem (GMEP) (see [27, 33, 38]) is to find a point x̂ ∈ C such that

f(x̂, y) + ⟨Px̂, y − x̂⟩+ φ(y)− φ(x̂) ≥ 0, for all y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (f, P, φ). If P = 0, then the GMEP (1.1) reduces to
the following Mixed Equilibrium Problem (MEP) (see [7, 24, 45]): Find x̂ ∈ C such that

f(x̂, y) + φ(y)− φ(x̂) ≥ 0, for all y ∈ C. (1.2)

If φ = 0, then the GMEP (1.1) reduces to the following Generalised Equilibrium Problem (GEP): Find
x̂ ∈ C such that

f(x̂, y) + ⟨Px̂, y − x̂⟩ ≥ 0, for all y ∈ C. (1.3)
In particular, if P = φ = 0, then the GMEP (1.1) reduces to the classical Equilibrium Problem (EP)
introduced by Blum and Oettli [12], which is defined as finding x̂ ∈ C such that

f(x̂, y) ≥ 0, for all y ∈ C. (1.4)
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EPs are known to have wide area of applications in a large variety of problems arising in the fields of lin-
ear and nonlinear programming, variational inequalities, complementary problems, optimisation prob-
lems, fixed-point problems and have been widely applied to physics, structural analysis, management
sciences and economics, etc. (see, for example [12, 39]). Several algorithms have been developed for
solving EP and related optimization problems in Hilbert and Banach spaces, see [8, 22, 34, 37, 40, 42, 43],
and the references therein.

In order to model inverse problems in phase retrievals and medical image reconstruction [14], Censor
and Elfving [15] introduced the following Split Feasibility Problem (shortly, SFP) in 1994:

Find x̂ such that x̂ ∈ C and A(x̂) ∈ Q, (1.5)

where C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively, and
A : H1 → H2 is a bounded linear operator.

It has been found that many problems arising in image restoration, computer tomograph and radi-
ation therapy treatment planning can be formulated as the SFP [16, 23]. Several methods have been
proposed to solve the SFP and related optimization problems, see for instance, [5, 2, 1, 3, 14, 17].
Moudafi [31] further work on SFP and introduced the following Split Equality Problem (SEP): Let C,Q
be two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively, H3 be a real
Hilbert space, A : H1 → H3 and B : H2 → H3 be two bounded linear operators. The SEP is formulated
as:

Find x̂ ∈ C and ŷ ∈ Q such that A(x̂) = B(ŷ). (1.6)
It is observed that the SEP reduces to the SFP when H2 = H3 and B is taken to be the identity mapping
I on H2. If C and Q in (1.6) are the sets of nonempty fixed points of the mappings T and S on H1 and
H2, respectively, then the resulting SEP is called the Split Equality Fixed Point Problem (shortly, SEFPP
[32]). The solution set of SEFPP on T and S is denoted as follows:

SEFPP (T, S) = {(x̂, ŷ) ∈ C ×Q : x̂ ∈ F (T ), ŷ ∈ F (S), A(x̂) = B(ŷ)}. (1.7)

Chidume et al.[18] proposed an iterative algorithm to approximate solution of the SEFPP for quasi-
ϕ-nonexpansive maps. The authors established strong convergence of the sequence generated by the
algorithm in the framework of Banach spaces.

In this work, based on the idea of the SEP, we consider the following so-called Split Equality Gener-
alised Mixed Equilibrium Problem (SEGMEP) in the framework of Banach spaces:

Definition 1.1. Let H1, H2 and H3 be three Hilbert spaces and C,Q be nonempty closed convex
subsets of H1, H2, respectively. Let f1 : C × C → R, f2 : Q×Q → R be two bifunctions, P1 : C →
C, P2 : Q → Q, be nonlinear mappings, and φ1 : C → R ∪ {+∞}, φ2 : Q → R ∪ {+∞} be proper
lower semicontinuous and convex functions. Let A : H1 → H3, B : H2 → H3 be two bounded linear
operators. The SEGMEP [36] is to find a point x̂ ∈ C and ŷ ∈ Q such that

f1(x̂, x) + ⟨P1x̂, x− x̂⟩+ φ1(x)− φ1(x̂) ≥ 0, for all x ∈ C,

f2(ŷ, y) + ⟨P2ŷ, y − ŷ⟩+ φ2(y)− φ2(ŷ) ≥ 0, for all y ∈ Q,

A(x̂) = B(ŷ).

(1.8)

The solution set of the SEGMEP is denoted by SEGMEP (f1, f2, P1, P2, φ1, φ1), that is,

SEGMEP (f1,f2, P1, P2, φ1, φ1)

= {(x̂, ŷ) ∈ C ×Q : f1(x̂, x) + ⟨P1x̂, x− x̂⟩+ φ1(x)− φ1(x̂) ≥ 0, x ∈ C, (1.9)
f2(ŷ, y) + ⟨P2ŷ, y − ŷ⟩+ φ2(y)− φ2(ŷ) ≥ 0, y ∈ Q, A(x̂) = B(ŷ)}. (1.10)

This problem is a generalisation of the following problems:
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1. If P1 = P2 = 0 in (1.8), then the SEGMEP reduces to the Split Equality Mixed Equilibrium
Problem (SEMEP) introduced by Ma et al. [29]: Find x̂ ∈ C and ŷ ∈ Q such that

f1(x̂, x) + φ1(x)− φ1(x̂) ≥ 0, for all x ∈ C,

f2(ŷ, y) + φ2(y)− φ2(ŷ) ≥ 0, for all y ∈ Q,

A(x̂) = B(ŷ).

(1.11)

2. If φ1 = φ2 = 0, then problem (1.8) is reduced to the Split Equality Generalised Equilibrium
Problem (SEGEP) (e.g. see [30]): Find x̂ ∈ C and ŷ ∈ Q such that

f1(x̂, x) + ⟨P1x̂, x− x̂⟩ ≥ 0, for all x ∈ C,

f2(ŷ, y) + ⟨P2ŷ, y − ŷ⟩ ≥ 0, for all y ∈ Q,

A(x̂) = B(ŷ).

(1.12)

3. If P1 = P2 = 0, φ1 = φ2 = 0, B = I and H2 = H3, then the SEGMEP is reduced to the Split
Equilibrium Problem (SEqP) introduced by He [25]: Find x̂ ∈ C such that{

f1(x̂, x) ≥ 0, for all x ∈ C, and
A(x̂) = ŷ ∈ Q solves f2(ŷ, y) ≥ 0, for all y ∈ Q.

(1.13)

4. If P1 = P2 = 0 and φ1 = φ2 = 0 in (1.8), then the SEGMEP reduces to the Split Equality
Equilibrium Problem (SEEP): Find x̂ ∈ C and ŷ ∈ Q such that

f1(x̂, x) ≥ 0, for all x ∈ C,

f2(ŷ, y) ≥ 0, for all y ∈ Q,

A(x̂) = B(ŷ).

(1.14)

5. If f1 = f2 = 0 and P1 = P2 = 0, then problem (1.8) is reduced to the Split Equality Convex
Minimisation Problem (SECMP) (e.g. see [36]): Find x̂ ∈ C and ŷ ∈ Q such that

φ1(x) ≥ φ1(x̂), for all x ∈ C,

φ2(y) ≥ φ2(ŷ), for all y ∈ Q

A(x̂) = B(ŷ).

(1.15)

6. If f1 = f2 = 0, P1 = P2 = 0, B = I and H2 = H3, then Problem (1.8) is reduced to the Split
Convex Minimisation Problem (SCMP) (e.g. see [36]): Find x̂ ∈ C such that

φ1(x) ≥ φ1(x̂), for all x ∈ C,

φ2(y) ≥ φ2(ŷ), for all y ∈ Q,

A(x̂) = ŷ ∈ Q.

(1.16)

7. If f1 = f2 = 0, P1 = P2 = 0 and φ1 = φ2 = 0 in (1.8), then the SEGMEP reduces to the Split
Equality Problem (SEP): Find x̂ ∈ C and ŷ ∈ Q such that

A(x̂) = B(ŷ). (1.17)

8. If f1 = f2 = 0, P1 = P2 = 0, φ1 = φ2 = 0, B = I, and H2 = H3 in (1.8), then the SEGMEP is
reduced to the SFP [15].

Ma et al. [29] introduced an algorithm for approximating a common solution of SEMEP and SEFPP for
nonexpansive mappings in the framework of Hilbert spaces and obtained a weak convergence result.
Moreover, in order to obtain a strong convergence result the authors further assumed that the two
nonexpansive mappings are semi-compact.
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Recently Karahan [26] proposed an iterative scheme for finding a common solution of SEGMEP
and SEFPP for nonexpansive mappings in Hilbert space setting. The author obtained a weak conver-
gence result for the proposed iterative scheme and in order to obtain a strong convergence result,
semi-compactness conditions were imposed on the nonexpansive mappings.

Ma et al. [30] extended the work in [29] to Banach spaces. Precisely, the authors introduced an it-
erative scheme for finding a common element of the SEEP and SEFPP for nonexpansive mappings and
obtained a weak convergence result. To obtain strong convergence result, the authors further imposed
semi-compactness conditions on the two nonexpansive mappings.
Based on the above results the following questions arise naturally:

Questions: 1. Can one obtain a strong convergence theorem for finding a common solution of SEEP
and SEFPP without imposing any compactness-type conditions on the operators involved?
2. Can such result be established beyond Hilbert spaces, such as in Banach spaces?

In this work, we provide affirmative answer to the above questions. Inspired by the work of Chidume
et al. [18], Ma et al. [29], and Ma et al. [30] and the current research interest in this direction, we
propose an iterative scheme in the framework of Banach spaces to approximate a common solution
of SEGMEP and SEFPP for two infinite families of closed uniformly Li-Lipschitz continuous and Ki-
Lipschitz continuous and uniformly quasi-ϕ- asymptotically nonexpansive mappings. Moreover, we
prove strong convergence theorem for the problem considered without imposing any compactness-type
conditions on the operators involved. We obtain some consequent results and also apply our theorem
to solve split equality convex minimization problem, and split equality variational inclusion problem.
Finally, we present a numerical example to demonstrate the implementability of our algorithm. Our
results extend, generalize and complement the result of Chidume et al. [18], Ma et al. [29], Karahan
[26], Ma et al. [30] and several other related works in the literature.

2. Preliminaries

In this paper, we denote the strong convergence and weak convergence of a sequence {xn} to a point
x in a Banach space E by xn → x and xn ⇀ x, respectively.
Let E be a real Banach space with the dual space E∗. Denote by ⟨·, ·⟩ the duality pairing between E
and E∗. The normalized duality map J : E → 2E

∗ is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x|2 = ||x∗||2} for all x ∈ E.

Note that, by the Hahn-Banach theorem, J(x) is nonempty and if E = H is a Hilbert space, then J is
the identity map on E. For details on geometric properties on Banach spaces.
The following properties of Banach spaces and the normalized duality map can be found in Cioranescu
[21].

(1) If E is a smooth, strictly convex and reflexive Banach space, then the normalized duality map
is single-valued, one-to-one and onto, and J−1 : E∗ → E is the inverse of J.

(2) If E is reflexive and strictly convex, then J−1 is norm-weak∗-continuous.
(3) If E is a uniformly smooth Banach space, then J is uniformly continuous on each bounded

subset of E.
(4) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.
(5) Each uniformly convex Banach space E has the Kadec-Klee property, that is for any sequence

{un} in E, if un ⇀ u and ||un|| → ||u||, then un → u.

Define the Lyapunov functional ϕ : E × E → R by

ϕ(x, y) = ||x||2 − 2⟨x, Jy⟩+ ||y||2 ∀ x, y ∈ E. (2.1)



SPLIT EQUALITY EQUILIBRIUM AND FIXED POINT PROBLEMS 21

Clearly ϕ(x, x) = 0 for every x ∈ E and if E is strictly convex, then ϕ(x, y) = 0 ⇐⇒ x = y. If E is a
Hilbert space, it is easy to see that ϕ(x, y) = ||x− y||2 for all x, y ∈ E. Moreover, for every x, y, z ∈ E
and α ∈ (0, 1), the Lyapunov functional ϕ satisfies the following properties:

(P1) 0 ≤ (||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2;
(P2) ϕ(x, J−1(αJz + (1− α)Jy)) ≤ αϕ(x, z) + (1− α)ϕ(x, y);
(P3) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨z − x, Jy − Jz⟩;
(P4) ϕ(x, y) ≤ 2⟨y − x, Jy − Jx⟩.

Also, we define the functional V : E × E∗ → [0,+∞) by

V (x, x∗) = ||x||2 − 2⟨x, x∗⟩+ ||x∗||2 ∀ x ∈ E, x∗ ∈ E∗. (2.2)

It can be deduced from (2.2) that V is non-negative and

V (x, x∗) = ϕ(x, J−1(x∗)). (2.3)

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space
E. Then, for each x ∈ E, there exists a unique element x0 ∈ C (denoted by ΠC(x)) such that [10]

ϕ(x0, x) = min
y∈C

ϕ(y, x).

The mapping ΠC : E → C, defined by ΠC(x) = x0, is called the generalized projection from E onto C.
Furthermore, x0 is called the generalized projection of x. If E is a real Hilbert space, then ΠC coincides
with the metric projection operator PC , see [6, 9].
Let C be a nonempty closed and convex subset of a Banach space E and T a map from C into itself. A
point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn} which converges
weakly to p such that

lim
n→∞

||xn − Txn|| = 0.

The set of asymptotic fixed points of T will be denoted by F̂ (T ).

Definition 2.1. A map T : C → C is said to be
(1) closed if for any sequence {xn} ⊂ C with xn → x and Txn → y, then Tx = y;
(2) semi-compact if for any bounded sequence {xn} in C with xn − Txn → 0, there exists a

subsequence {xnk
} of {xn} such that {xnk

} converges strongly to some x ∈ C;

(3) relatively nonexpansive [13] if F̂ (T ) = F (T ) ̸= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x) ∀ x ∈ C, p ∈ F (T );

(4) strongly relatively nonexpansive (see [28]) if the following conditions are satisfied:
i. T is relatively nonexpansive;

ii. if {xn} is a bounded sequence in C such that

lim
n→∞

(ϕ(p, xn)− ϕ(p, Txn)) = 0

for some p ∈ F (T ), then limn→∞ ϕ(Txn, xn) = 0;

(5) relatively asymptotically nonexpansive [4] if F̂ (T ) = F (T ) ̸= ∅ and there exists a sequence
{kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

ϕ(p, Tnx) ≤ knϕ(p, x) ∀ x ∈ C, p ∈ F (T ), n ≥ 1.

(6) ϕ-nonexpansive if
ϕ(Tx, Ty) ≤ ϕ(x, y) ∀ x, y ∈ C;

(7) quasi-ϕ-nonexpansive [35] if F (T ) ̸= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x) ∀ x ∈ C, p ∈ F (T );
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(8) ϕ-asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞
such that

ϕ(Tnx, Tny) ≤ knϕ(x, y) ∀ x, y ∈ C;

(9) quasi-ϕ-asymptotically nonexpansive [19] if F (T ) ̸= ∅ and there exists a sequence {kn} ⊂
[1,∞) with kn → 1 as n → ∞ such that

ϕ(p, Tnx) ≤ knϕ(p, x) ∀ x ∈ C , p ∈ F (T ), n ≥ 1.;

Remark 2.2. Observe that the class of quasi-ϕ-asymptotically nonexpansive maps contains properly the
class of quasi-ϕ-nonexpansive maps as a subclass and the class of quasi-ϕ-nonexpansive maps contains
properly the class of relatively nonexpansive maps as a subclass, but the converse may be not true.
In the framework of Hilbert spaces, quasi-ϕ-(asymptotically) nonexpansive maps is reduced to quasi-
(asymptotically) nonexpansive maps.

Definition 2.3. (Chang et al. [20]). (1) Let {Ti}∞i=1 : C → C be a sequence of mappings. A family
{Ti}∞i=1 is said to be a family of uniformly quasi-ϕ-asymptotically nonexpansive mappings, if F :=
∩∞
i=1F (Tn) ̸= ∅, and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that for each i ≥ 1,

ϕ(p, Tn
i x) ≤ knϕ(p, x) ∀ p ∈ F , x ∈ C, ∀ n ≥ 1.

(2) A mapping T : C → C is said to be uniformly L-Lipschitz continuous, if there exists a constant
L > 0 such that

||Tnx− Tny|| ≤ L||x− y||, ∀ x, y ∈ C.

Definition 2.4. Let B : E → 2E
∗ be a multivalued mapping. The domain of B denoted by D(B) is

given as D(B) = {x ∈ E : Bx ̸= ∅}.

Let B : E → 2E
∗ be a multivalued operator on E. Then

(i) the graph G(B) is defined by
G(B) := {(x, u∗) ∈ E × E∗ : u∗ ∈ B(x)},

(ii) the operator B is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all (x, u∗), (y, v∗) ∈ G(B).
(iii) A monotone operator B on E is said to be maximal if its graph is not properly contained in the

graph of any other monotone operator on E.
For a maximal monotone mapping B, the relative resolvent of B of parameter r > 0, denoted
by LB

r , is defined as
LB
r := (J + rB)−1J : E → D(B).

From [28], we recall the following properties of LB
r :

(i) LB
r : E → D(B) is a single-valued mapping;

(ii) 0 ∈ B(x) if and only if LB
r x = x for each r;

(iii) LB
r is strongly relatively nonexpansive.

Now, we present the following results which will be needed in the sequel.

Lemma 2.5. (Alber [11]). Let E be a reflexive strictly convex and smooth Banach space with E∗ as its
dual. Then,

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗), (2.4)
for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma2.6. [18] LetE be a 2−uniformly convex and smooth real Banach space. Then, J−1 is 1
c2
−Lipschitzian

from E∗ into E, i.e. for all u, v ∈ E∗, we have that

||J−1u− J−1v|| ≤ 1

c2
||u− v||. (2.5)
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Lemma 2.7. (Chang et al. [20]) Let E be a uniformly convex Banach space, r > 0 be a positive number
andBr(0) be a closed ball ofE.Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any given sequence
{λi}∞i=1 of positive number with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing, and convex

function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any positive integer i, j with i < j,∣∣∣∣∣∣ ∞∑
n=1

λnxn

∣∣∣∣∣∣2 ≤ ∞∑
n=1

||xn||2 − λiλjg(||xi − xj ||). (2.6)

Lemma 2.8. [10] Let E be a real smooth and uniformly convex Banach space, and let {xn} be two
sequences of E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0 as n → ∞, then ||xn − yn|| → 0
as n → ∞.

Lemma 2.9. (See Alber [10]) LetD be a nonempty closed and convex subset of a reflexive strictly convex
and smooth Banach space E.Then,

ϕ(u,ΠDy) + ϕ(ΠDy, y) ≤ ϕ(u, y), ∀ u ∈ D, y ∈ E. (2.7)

Lemma 2.10. (Chang et al. [20]) LetE be a real uniformly smooth and strictly convex Banach space, and
C be a nonempty closed convex subset of E. Let T : C → C be a closed and quasi−ϕ−asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1. Then F (T ) is a closed convex subset of
C.

Assumption 2.11. In solving the EP for a bifunction f : C × C → R, we assume that f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) for each x ∈ C, y → f(x, y) is convex and lower semicontinuous.

It is known (see [46]), that if f(x, y) satisfies (A1)-(A4) then the function
F (x, y) := f(x, y) + ⟨Px, y − x⟩ + ϕ(y) − ϕ(x) also satisfies (A1)-(A4) and GMEP (F, P, ϕ, C) is
closed and convex.

Lemma 2.12. (Zhang [46]) Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let B : C → E∗ be a continuous and monotone mapping, φ : C → R is convex and
lower semi-continuous, and let f : C×C → R be a bifunction satisfying (A1)-(A4). For r > 0 and x ∈ E,
there exists u ∈ C such that

f(u, y) + ⟨Bu, y − u⟩+ φ(y)− φ(u) +
1

r
⟨y − u, Ju− Jx⟩ ≥ 0, for all y ∈ C. (2.8)

Define a resolvent functionKf
r : C → C as follows:

Kf
r (x) =

{
u ∈ C : f(u, y) + ⟨Bu, y − u⟩+ φ(y)− φ(u) +

1

r
⟨y − u, Ju− Jx⟩ ≥ 0, for all y ∈ C

}
.

Then the following conclusions hold:

1. Kf
r is single-valued;

2. Kf
r is firmly nonexpansive, i.e. for all x, y ∈ E,

⟨Kf
r (x)−Kf

r (y), JK
f
r (x)− JKf

r (y)⟩ ≤ ⟨Kf
r (x)−Kf

r (y), Jx− Jy⟩;
3. F (Kf

r ) = GMEP (f,B, φ);
4. GMEP (f,B, φ) is closed and convex;
5. ϕ(p,Kf

r (z)) + ϕ(Kf
r (z), z) ≤ ϕ(p, z) , ∀ p ∈ F (Kf

r ) and z ∈ E.
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Lemma 2.13. (Wei and Zhou, [44]) Let E be a real reflexive, strictly convex and smooth Banach space,
A : E → 2E

∗
be amaximalmonotone operator withA−10 ̸= ∅, then for any x ∈ E, y ∈ A−10 and r > 0,

we have ϕ(y,QA
r x) + ϕ(QA

r x, x) ≤ ϕ(y, x), where QA
r : E → E is defined by QA

r x := (J + rA)−1Jx.

3. Main Results

In this section, we prove a strong convergence theorem for solving SEGMEP and SEFPP for two infinite
families of closed and uniformly quasi-ϕ-asymptotically nonexpansive mappings in Banach spaces.

Theorem 3.1. LetE1 andE2 be 2−uniformly convex and uniformly smooth real Banach spaces with dual
spacesE∗

1 andE
∗
2 , respectively, and letE3 be a real Banach space with dual spaceE∗

3 . Let f1 : E1×E1 →
R, f2 : E2 × E2 → R be two nonlinear bifunctions satisfying conditions (A1)-(A4), P1 : E1 → E∗

1 , P2 :
E2 → E∗

2 be continuous and monotone mappings and φ1 : E1 → R ∪ {+∞}, φ2 : E2 → R ∪ {+∞}
be proper lower semi-continuous and convex functions. Let {Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2

be two infinite families of closed uniformly Li−Lipschitz continuous and Ki−Lipschitz continuous and
uniformly quasi−ϕ−asymptotically nonexpansive mappings with sequences {ln} ⊂ [1,∞) and {kn} ⊂
[1,∞) respectively such that ln → 1 and kn → 1, and

⋂∞
i=1 F (Ti) ̸= ∅ and ∩∞

i=1F (Si) ̸= ∅. Let A :
E1 → E3 and B : E2 → E3 be bounded linear maps with adjoints A∗ : E∗

3 → E∗
1 and B∗ : E∗

3 → E∗
2 ,

respectively. Let {(xn, yn)} be a sequence in E1 × E2 generated as follows:

Algorithm 3.2.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +
∞∑
i=1

αn,iJ2S
n
i tn), (3.1)

f1(un, u) + ⟨P1un, u− un⟩+ φ1(u)− φ1(un) +
1

rn
⟨u− un, J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

f2(vn, v) + ⟨P2vn, v − vn⟩+ φ2(v)− φ2(vn) +
1

λn
⟨v − vn, J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that
0 < ρ < c2

(||A||2+||B||2) , where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn =

supq∈Ω2
(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEGMEP (f1, f2, P1, P2, φ1, φ2) ∩ SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.2)
is a nonempty and bounded subset inE1×E2. If

∑∞
i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >

0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

Proof. We divide the proof into four steps as follows:
Step 1: Cn and Qn are closed and convex for all n ≥ 1.
It is clear that C1 = E1 and Q1 = E2 are closed and convex. Now, we assume that Cn and Qn are
closed and convex for some n ≥ 1. Then, it can easily be seen that

Cn+1 = {s ∈ Cn : 2⟨s, Jxn − Jun⟩ ≤ ||xn||2 − ||un||2 + δn}, (3.3)
Qn+1 = {t ∈ Cn : 2⟨t, Jyn − Jvn⟩ ≤ ||yn||2 − ||vn||2 + βn}, (3.4)
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and thus, are closed and convex. Hence, Step 1 holds, and {xn} and {yn} are well-defined.
Step 2: Ω ⊂ Cn ×Qn for all n ≥ 1.
Clearly, Ω ⊂ C1 × Q1. Suppose Ω ⊂ Cn × Qn for some n ≥ 1. Let (p, q) ∈ Ω, then using (2.3) and
(2.4) we get that

ϕ(p, sn) = ϕ(p, J−1
1 (J1xn − ρA∗en))

= V (p, J1xn − ρA∗en)

≤ V (p, J1xn)− 2ρ⟨J−1
1 (J1xn − ρA∗en)− p,A∗en⟩

= ϕ(p, xn)− 2ρ⟨Asn −Ap, en⟩. (3.5)

Note thatun = Kf1
rnzn, then by Property (P2) of Lyapunov functional, applying the definition of {Ti}∞i=1

and substituting (3.5), we obtain
ϕ(p, un) = ϕ(p,Kf1

rnzn)

≤ ϕ(p, zn) (3.6)

= ϕ(p, J−1
1 (αn,0J1xn +

∞∑
i=1

αn,iJ1T
n
i sn))

≤ αn,0ϕ(p, xn) +

∞∑
i=1

αn,iϕ(p, T
n
i sn)

≤ αn,0lnϕ(p, xn) +

∞∑
i=1

αn,ilnϕ(p, sn)

≤ αn,0lnϕ(p, xn) +

∞∑
i=1

αn,ilnϕ(p, xn)− 2ρln

∞∑
i=1

αn,i⟨Asn −Ap, en⟩

= lnϕ(p, xn)− 2ρln

∞∑
i=1

αn,i⟨Asn −Ap, en⟩. (3.7)

Following similar argument, we also get that

ϕ(q, vn) ≤ knϕ(q, yn) + 2ρkn

∞∑
i=1

αn,i⟨Btn −Bq, en⟩. (3.8)

Adding inequality (3.7) and inequality (3.8), and using the fact that Ap = Bq, we obtain

ϕ(p, un) + ϕ(q, vn) ≤ lnϕ(p, xn) + knϕ(q, yn)− 2ρ(ln + kn)

∞∑
i=1

αn,i⟨Asn −Btn, en⟩. (3.9)

Moreover, observing that en ∈ J3(Axn −Byn) and applying Lemma 2.6, we get

− 2ρ(ln + kn)
∞∑
i=1

αn,i⟨Asn −Btn, en⟩

=− 2ρ(ln + kn)
∞∑
i=1

αn,i(ln + kn)||Axn −Byn||2 − 2ρ(ln + kn)
∞∑
i=1

αn,i⟨Asn −Btn, en⟩

+ 2ρ(ln + kn)

∞∑
i=1

αn,i⟨Axn −Byn, en⟩

=− 2ρ(ln + kn)
∞∑
i=1

αn,i(ln + kn)||Axn −Byn||2 + 2ρ(ln + kn)
∞∑
i=1

αn,i⟨A(xn − sn), en⟩
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+ 2ρ(ln + kn)

∞∑
i=1

αn,i⟨B(tn − yn), en⟩

≤ − 2ρ(ln + kn)

∞∑
i=1

αn,i(ln + kn)||Axn −Byn||2

+ 2ρ(ln + kn)

∞∑
i=1

αn,i||A||||J−1
1 (J1xn)− J−1

1 (J1xn − ρA∗en)||

× ||Axn −Byn||+ 2ρ(ln + kn)

∞∑
i=1

αn,i||B||||J−1
2 (J2yn + ρB∗en)

− J−1
2 J2(yn)||||Axn −Byn||

≤ − 2ρ(ln + kn)

∞∑
i=1

αn,i(ln + kn)||Axn −Byn||2

+ 2ρ2(ln + kn)

∞∑
i=1

αn,i
||A||2

c2
||Axn −Byn||2

+ 2ρ2(ln + kn)

∞∑
i=1

αn,i
||B||2

c2
||Axn −Byn||2

=− (ln + kn)
{
2ρ

∞∑
i=1

αn,i − 2ρ2
∞∑
i=1

αn,i

( ||A||2 + ||B||2

c2

)}
||Axn −Byn||2. (3.10)

Substituting (3.10) into (3.9) and using the condition on ρ, we obtain

ϕ(p, un) + ϕ(q, vn)

≤ lnϕ(p, xn) + knϕ(q, yn)− (ln + kn)
{
2ρ

∞∑
i=1

αn,i − 2ρ2
∞∑
i=1

αn,i

( ||A||2 + ||B||2

c2

)}
× ||Axn −Byn||2

≤ ϕ(p, xn) + sup
p∈Ω1

(ln − 1)ϕ(p, xn)ϕ(q, yn) + sup
q∈Ω2

(kn − 1)ϕ(q, yn)

− (ln + kn)
{
2ρ

∞∑
i=1

αn,i − 2ρ2
∞∑
i=1

αn,i

( ||A||2 + ||B||2

c2

)}
× ||Axn −Byn||2 (3.11)

≤ ϕ(p, xn) + sup
p∈Ω1

(ln − 1)ϕ(p, xn)ϕ(q, yn) + sup
q∈Ω2

(kn − 1)ϕ(q, yn)

= ϕ(p, xn) + δn + ϕ(q, yn) + βn.

This shows that (p, q) ∈ Cn+1 ×Qn+1. Hence, Ω ⊂ Cn ×Qn for all n ≥ 1.
Step 3: (xn, yn) → (x∗, y∗) ∈ E1 × E2 as n → ∞.
Since xn = ΠCnx0 and Cn+1 ⊂ Cn for all n ≥ 1, then it follows that ϕ(xn, x0) ≤ ϕ(xn+1, x0), and
this implies that {ϕ(xn, x0)} is non-decreasing. Moreover, since Ω ⊂ Cn×Qn, then by Lemma 2.9 we
have that

ϕ(xn, x0) = ϕ(ΠCnx0, x0) ≤ ϕ(p, x0)− ϕ(p, xn) ≤ ϕ(p, x0),

for all n ≥ 1. Hence, {ϕ(xn, x0)} is bounded, and therefore convergent. Consequently, by Property
(P1) of the Lyapunov functional, we have that {xn} is bounded. Let m > n, then applying Lemma 2.9,
we have that

ϕ(xm, xn) = ϕ(xm,ΠCnx0) ≤ ϕ(xm, x0)− ϕ(xn, x0) → 0 as m,n → ∞.
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Hence, by Lemma 2.8 we get that ||xm − xn|| → 0 as m,n → ∞, which implies that

xn → x∗ ∈ E1 as n → ∞. (3.12)

Following similar argument, we also have that

yn → y∗ ∈ E2 as n → ∞. (3.13)

Step 4: (x∗, y∗) ∈ Ω.
(a) First, we show that (x∗, y∗) ∈ SEFPP (∩∞

i=1Ti, ∩∞
i=1Si).

Since {xn} and {yn} are bounded, denote

K1 = sup
n≥0

{||xn||} < ∞ and K2 = sup
n≥0

{||yn||} < ∞. (3.14)

Moreover, by the definitions of {δn} and {βn}, and applying (3.14), it follows that

δn → 0 and βn → 0 as n → ∞. (3.15)

Since (xn+1, yn+1) ∈ Cn+1 × Qn+1, we have that ϕ(xn+1, un) ≤ ϕ(xn+1, xn) + δn → 0 as n → ∞
and ϕ(yn+1, vn) ≤ ϕ(yn+1, yn) + βn → 0 as n → ∞. Hence, ϕ(xn+1, un) → 0 and ϕ(yn+1, vn) → 0
as n → ∞. Thus, by Lemma 2.8 we have that ||xn+1 − un|| → 0 and ||yn+1 − vn|| → 0 as n → ∞.
Hence,

un → x∗ and vn → y∗ as n → ∞. (3.16)
From inequality (3.11), we have that

(ln + kn)
{
2ρ

∞∑
i=1

αn,i − 2ρ2
∞∑
i=1

αn,i

( ||A||2 + ||B||2

c2

)}
||Axn −Byn||2

≤ ϕ(p, xn) + sup
p∈Ω1

(ln − 1)ϕ(p, xn) + ϕ(q, yn)

+ sup
q∈Ω2

(kn − 1)ϕ(q, yn)− ϕ(p, un)− ϕ(q, vn).

Hence,

lim
n→∞

(ln + kn)
{
2ρ

∞∑
i=1

αn,i − 2ρ2
∞∑
i=1

αn,i

( ||A||2 + ||B||2

c2

)}
||Axn −Byn||2

≤ lim
n→∞

(
ϕ(p, xn) + sup

p∈Ω1

(ln − 1)ϕ(p, xn) + ϕ(q, yn)

+ sup
q∈Ω2

(kn − 1)ϕ(q, yn)− ϕ(p, un)− ϕ(q, vn)
)

= ϕ(p, x∗) + ϕ(q, y∗)− ϕ(p, x∗)− ϕ(q, y∗) = 0.

Therefore, by the condition on ρ, we have that 0 = limn→∞ ||Axn − Byn|| = ||Ax∗ − By∗||. This
implies that

Ax∗ = By∗ (3.17)
Applying Lemma 2.6, we have that

||sn − x∗|| = ||J−1
1 (J1xn − ρA∗en)− x∗||

≤ 1

c2
||J1xn − ρA∗en − J1x

∗||

≤ 1

c2
(||J1xn − J1x

∗||+ ρ||A||||Axn −Byn||) → 0 as n → ∞.

This implies that
lim
n→∞

sn = x∗. (3.18)
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Similarly, we have that

||tn − y∗|| = ||J−1
2 (J2yn + ρB∗en)− y∗||

≤ 1

d2
||J2yn + ρB∗en − J2y

∗||

≤ 1

d2
(||J2yn − J2y

∗||+ ρ||B||||Axn −Byn||) → 0 as n → ∞,

which implies that
lim
n→∞

tn = y∗. (3.19)

By the definition of ϕ, Lemma 2.7 and uniformly quasi-ϕ-asymptotically nonexpansive of Sn, for each
(p, q) ∈ Ω, we observe that

ϕ(p, zn) = ϕ(p, J−1(αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn))

= ||p||2 − 2⟨p, αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn⟩||αn,0J1xn +

∞∑
i=1

αn,iJ1T
n
i sn||2

= ||p||2 − 2αn,0⟨p, J1xn⟩ − 2
∞∑
i=1

αn,i⟨p, J1Tn
i sn⟩||αn,0J1xn +

∞∑
i=1

αn,iJ1T
n
i sn||2

≤ ||p||2 − 2αn,0⟨p, J1xn⟩ − 2
∞∑
i=1

αn,i⟨p, J1Tn
i sn⟩

+ αn,0||J1xn||2 +
∞∑
i=1

αn,i||J1Tn
i sn||2 − αn,0αn,jg1(||J1xn − J1T

n
i sn||)

≤ ||p||2 − 2αn,0⟨p, J1xn⟩+ αn,0||J1xn||2

− 2
∞∑
i=1

αn,i⟨p, J1Tn
i sn⟩+

∞∑
i=1

αn,i||J1Tn
i sn||2 − αn,0αn,jg1(||J1xn − J1T

n
i sn||)

= αn,0ϕ(p, xn) +
∞∑
i=1

αn,iϕ(p, T
n
i sn)− αn,0αn,jg1(||J1xn − J1T

n
i sn||)

≤ αn,0lnϕ(p, xn) +
∞∑
i=1

αn,ilnϕ(p, sn)− αn,0αn,jg1(||J1xn − J1T
n
i sn||). (3.20)

Following similar argument, we obtain

ϕ(q, wn) ≤ αn,0knϕ(q, yn) +

∞∑
i=1

αn,iknϕ(q, tn)− αn,0αn,jg2(||J2yn − J2S
n
i tn||). (3.21)

For any j ≥ 1, (p, q) ∈ Ω, and applying the fact that en ∈ J3(Axn − Byn), it follows from (3.5), (3.6)
and (3.20) that

ϕ(p, un) ≤ αn,0lnϕ(p, xn) +
∞∑
i=1

αn,iln
(
ϕ(p, xn)− 2ρ⟨Asn −Ap, en⟩

)
− αn,0αn,jg1(||J1xn − J1T

n
i sn||)

= lnϕ(p, xn) + 2ρ
∞∑
i=1

αn,iln⟨Ap−Asn, en⟩ − αn,0αn,jg1(||J1xn − J1T
n
i sn||)
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≤ ϕ(p, xn) + sup
p∈Ω1

(ln − 1)ϕ(p, xn) + 2ρ

∞∑
i=1

αn,iln||A||||p− sn||||Axn −Byn||

− αn,0αn,jg1(||J1xn − J1T
n
i sn||)

= ϕ(p, xn) + δn + 2ρ
∞∑
i=1

αn,iln||A||||p− sn||||Axn −Byn||

− αn,0αn,jg1(||J1xn − J1T
n
i sn||).

This implies that

αn,0αn,jg1(||J1xn − J1T
n
i sn||) ≤ ϕ(p, xn)− ϕ(p, un) + δn

+ 2ρ

∞∑
i=1

αn,iln||A||||p− sn||||Axn −Byn||.

Hence,

lim
n→∞

αn,0αn,jg1(||J1xn − J1T
n
i sn||) ≤ lim

n→∞

(
ϕ(p, xn)− ϕ(p, un) + δn

+ 2ρ
∞∑
i=1

αn,iln||A||||p− sn||||Axn −Byn||
)

= ϕ(p, x∗)− ϕ(p, x∗)

+ 2ρ

∞∑
i=1

αn,i||A||||p− x∗||||Ax∗ −By∗|| = 0.

From the condition that lim infn→∞ αn,0αn,i > 0, we observe that

g1||J1xn − J1T
n
i sn|| → 0 as n → ∞.

It follows from the property of g1 that

lim
n→∞

||J1xn − J1T
n
i sn|| = 0 ∀ i ≥ 1. (3.22)

Since xn → x∗ and J1 is uniformly continuous on bounded subsets of E1, it yields J1xn → J1x
∗. Thus

from (3.22), we have
J1T

n
i sn → J1x

∗, ∀ i ≥ 1. (3.23)
Since J−1

1 : E∗
1 → E1 is norm-weak∗-continuous, we also have that

Tn
i sn ⇀ x∗, ∀ i ≥ 1. (3.24)

On the other hand, for each i ≥ 1, we have that

|||Tn
i sn|| − ||x∗||| = |||J1Tn

i sn|| − ||J1x∗||| ≤ ||J1Tn
i sn − J1x

∗||.

In view of (3.23), we get ||Tn
i sn|| → ||x∗|| for each i ≥ 1. By the Kadec-Klee property of E1, we have

that
Tn
i sn → x∗ for each i ≥ 1.

Following the assumption that for each i ≥ 1, Ti is uniformly Li-Lipschitz continuous, we obtain

||Tn+1
i sn − Tn

i sn|| ≤ ||Tn+1
i sn − Tn+1

i sn+1||

+ ||Tn+1
i sn+1 − xn+1||+ ||xn+1 − xn||+ ||xn − Tn

i sn||

≤ Li||sn+1 − sn||+ ||Tn+1
i sn+1 − xn+1||

+ ||xn+1 − xn||+ ||xn − Tn
i sn||. (3.25)
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Since limn→∞ sn = limn→∞ xn = x∗ and Tn
i sn → x∗ for all i ≥ 1, then it follows that

||Tn+1
i sn − Tn

i sn|| → 0.

From Tn
i sn → x∗, we get that Tn+1

i sn → x∗, that is TiT
n
i sn → x∗. Using the closeness of Ti, we get

Tix
∗ = x∗, ∀ i ≥ 1.

This implies that
x∗ ∈ ∩∞

i=1F (Ti).

By following similar argument, we also have that
y∗ ∈ ∩∞

i=1F (Si).

Hence, it follows that
(x∗, y∗) ∈ SEFPP

(
∩∞
i=1 Ti,∩∞

i=1Si

)
. (3.26)

(b) Next we show that (x∗, y∗) ∈ SEGMEP (f1, f2, P1, P2, φ1, φ2).
Let

F (a, b) = f(a, b) + ⟨Pa, b− a⟩+ φ(b)− φ(a), a, b ∈ E1

and

Kf1
r (c) = {a ∈ E1 : F (a, b) +

1

r
⟨b− a, J1a− J1c⟩ ≥ 0 ∀ b, c ∈ E1}.

Hence, we have

Kf1
rn(zn) = {un ∈ E1 : F1(un, u) +

1

rn
⟨u− un, J1un − J1zn ≥ 0, ∀u ∈ E1⟩},

and (3.27)

T f2
λn
(wn) = {vn ∈ E2 : F2(vn, v) +

1

λn
⟨v − vn, J2vn − J2wn ≥ 0, ∀v ∈ E2⟩}.

From (3.7) we obtain

ϕ(p, zn) ≤ lnϕ(p, xn)− 2ρln

∞∑
i=1

αn,i⟨Asn −Ap, en⟩

= lnϕ(p, xn) + 2ρln

∞∑
i=1

αn,i⟨Ap−Asn, en⟩

≤ ϕ(p, xn) + sup
p∈Ω1

(ln − 1)ϕ(p, xn)

+ 2ρln

∞∑
i=1

αn,i⟨||A||||p− sn||||Axn −Byn||⟩

= ϕ(p, xn) + δn + 2ρln

∞∑
i=1

αn,i⟨||A||||p− sn||||Axn −Byn||⟩. (3.28)

Applying (3.15), (3.28), Lemma 2.12 and the fact that limn→∞ xn = limn→∞ un = x∗ and un = Kf1
rnzn,

we have
ϕ(un, zn) = ϕ(Kf1

rnzn, zn)

= ϕ(p, zn)− ϕ(p,Kf1
rnzn)

≤ ϕ(p, xn) + δn + 2ρln

∞∑
i=1

αn,i⟨||A||||p− sn||||Axn −Byn||⟩
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− ϕ(p, un) → 0 as n → ∞.

Hence, ϕ(un, zn) → 0 as n → ∞. By Lemma 2.8, we have

lim
n→∞

||un − zn|| = 0. (3.29)

Since un → x∗, then we have zn → x∗. Since J1 is uniformly norm-to-norm continuous on bounded
sets, we have

lim
n→∞

||J1un − J1zn|| = 0.

From the assumption that rn ≥ a, we obtain

lim
n→∞

||J1un − J1zn||
rn

= 0.

Since
F1(un, u) +

1

rn
⟨u− un, J1un − J1zn ≥ 0, ∀u ∈ E1.

Then by applying (A2), we note that

||u− un||
||J1un − J1zn||

rn
≥ 1

rn
⟨u− un, J1un − J1zn⟩

≥ −F1(un,−u) ≥ F1(u, un), ∀u ∈ E1.

Taking the limit as n → ∞ in the above inequality and applying (A4) and un → x∗, we have

F1(u, x
∗) ≤ 0, ∀u ∈ E1.

For t ∈ (0, 1) and u ∈ E1, define ut = tu + (1 − t)x∗. Observing that u, x∗ ∈ E1, then we have
ut ∈ E1, and this yields

F1(ut, x
∗) ≤ 0.

It follows from (A1) that

0 = F1(ut, ut) ≤ tF1(ut, u) + (1− t)F1(ut, x
∗) ≤ tF1(ut, u),

which implies that
F1(ut, u) ≥ 0, ∀u ∈ E1.

Letting t ↓ 0, from (A3) we obtain

F1(x
∗, u) ≥ 0, ∀u ∈ E1.

This implies that
x∗ ∈ GMEP (f1, P1, φ1).

Following similar argument as above, we also have that

y∗ ∈ GMEP (f2, P2, φ2).

Hence, we have
(x∗, y∗) ∈ SEGMEP (f1, f2, P1, P2, φ1, φ2). (3.30)

Therefore, it follows from (3.17), (3.26) and (3.30) that (x∗, y∗) ∈ Ω as required. □

By taking P1 = 0 and P2 = 0 in Theorem 3.1, we obtain the following consequent result for approx-
imating a common solution of SEMEP and SEFPP for two infinite families of closed and uniformly
quasi-ϕ- asymptotically nonexpansive mappings.
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Corollary 3.3. Let E1 and E2 be 2−uniformly convex and uniformly smooth real Banach spaces with
dual spaces E∗

1 and E∗
2 , respectively, and let E3 be a real Banach space with dual space E∗

3 . Let f1 :
E1 × E1 → R, f2 : E2 × E2 → R be two nonlinear bifunctions satisfying conditions (A1)-(A4) and
φ1 : E1 → R ∪ {+∞}, φ2 : E2 → R ∪ {+∞} be proper lower semi-continuous and convex func-
tions. Let {Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2 be two infinite families of closed uniformly
Li−Lipschitz continuous and Ki−Lipschitz continuous and uniformly quasi−ϕ−asymptotically nonex-
pansive mappings with sequences {ln} ⊂ [1,∞) and {kn} ⊂ [1,∞) respectively such that ln → 1 and
kn → 1, and ∩∞

i=1F (Ti) ̸= ∅ and ∩∞
i=1F (Si) ̸= ∅. Let A : E1 → E3 and B : E2 → E3 be bounded

linear maps with adjoints A∗ : E∗
3 → E∗

1 and B∗ : E∗
3 → E∗

2 , respectively. Let {(xn, yn)} be a sequence
in E1 × E2 generated as follows:

Algorithm 3.4.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +
∞∑
i=1

αn,iJ2S
n
i tn), (3.31)

f1(un, u) + φ1(u)− φ1(un) +
1

rn
⟨u− un, J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

f2(vn, v) + φ2(v)− φ2(vn) +
1

λn
⟨v − vn, J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that
0 < ρ < c2

(||A||2+||B||2) , where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn =

supq∈Ω2
(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEMEP (f1, f2, φ1, φ2) ∩ SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.32)

is a nonempty and bounded subset inE1×E2. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >
0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

Takingφ1 = 0 andφ2 = 0 in Theorem 3.1, we obtain the following consequent result for approximating
a common solution of SEGEP and SEFPP for two infinite families of closed and uniformly quasi-ϕ-
asymptotically nonexpansive mappings.

Corollary 3.5. LetE1 andE2 be 2−uniformly convex and uniformly smooth real Banach spaces with dual
spacesE∗

1 andE
∗
2 , respectively, and letE3 be a real Banach space with dual spaceE∗

3 . Let f1 : E1×E1 →
R, f2 : E2×E2 → R be two nonlinear bifunctions satisfying conditions (A1)-(A4) andP1 : E1 → E∗

1 , P2 :
E2 → E∗

2 be continuous andmonotonemappings. Let {Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2 be two
infinite families of closed uniformlyLi−Lipschitz continuous andKi−Lipschitz continuous and uniformly
quasi−ϕ−asymptotically nonexpansive mappings with sequences {ln} ⊂ [1,∞) and {kn} ⊂ [1,∞)
respectively such that ln → 1 and kn → 1, and ∩∞

i=1F (Ti) ̸= ∅ and ∩∞
i=1F (Si) ̸= ∅. Let A : E1 → E3

andB : E2 → E3 be bounded linear maps with adjointsA∗ : E∗
3 → E∗

1 andB
∗ : E∗

3 → E∗
2 , respectively.

Let {(xn, yn)} be a sequence in E1 × E2 generated as follows:
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Algorithm 3.6.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +

∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +

∞∑
i=1

αn,iJ2S
n
i tn), (3.33)

f1(un, u) + ⟨P1un, u− un⟩+
1

rn
⟨u− un, J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

f2(vn, v) + ⟨P2vn, v − vn⟩+
1

λn
⟨v − vn, J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that
0 < ρ < c2

(||A||2+||B||2) , where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn =

supq∈Ω2
(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEGEP (f1, f2, P1, P2) ∩ SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.34)
is a nonempty and bounded subset inE1×E2. If

∑∞
i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >

0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

If P1 = 0 and P2 = 0 in Corollary 3.5, then we obtain the following corollary for finding a common
solution of split equality equilibrium problem and split equality fixed point problem for two infinite
families of closed and uniformly quasi-ϕ- asymptotically nonexpansive mappings.

Corollary 3.7. Let E1 and E2 be 2−uniformly convex and uniformly smooth real Banach spaces with
dual spaces E∗

1 and E∗
2 , respectively, and let E3 be a real Banach space with dual space E∗

3 . Let f1 :
E1 × E1 → R, f2 : E2 × E2 → R be two nonlinear bifunctions satisfying conditions (A1)-(A4). Let
{Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2 be two infinite families of closed uniformly Li−Lipschitz
continuous and Ki−Lipschitz continuous and uniformly quasi−ϕ−asymptotically nonexpansive map-
pings with sequences {ln} ⊂ [1,∞) and {kn} ⊂ [1,∞) respectively such that ln → 1 and kn → 1, and
∩∞
i=1F (Ti) ̸= ∅ and ∩∞

i=1F (Si) ̸= ∅. Let A : E1 → E3 and B : E2 → E3 be bounded linear maps
with adjoints A∗ : E∗

3 → E∗
1 and B∗ : E∗

3 → E∗
2 , respectively. Let {(xn, yn)} be a sequence in E1 × E2

generated as follows:

Algorithm 3.8.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +

∞∑
i=1

αn,iJ2S
n
i tn), (3.35)

f1(un, u) +
1

rn
⟨u− un, J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

f2(vn, v) +
1

λn
⟨v − vn, J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,
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Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that
0 < ρ < c2

(||A||2+||B||2) , where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn =

supq∈Ω2
(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEEP (f1, f2) ∩ SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.36)

is a nonempty and bounded subset inE1×E2. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >
0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

Remark 3.9. Corollary 3.7 improves, extends and generalises the corresponding result in [30] (Theorem
1) in the following senses:

(i) We obtain strong convergence result without imposing any compactness-type condition on the
mappings involved.

(ii) We extend and generalise the mappings from two nonexpansive mappings to two infinite fam-
ilies of closed and uniformly quasi-ϕ-asymptotically nonexpansive mappings.

Taking f1 = 0 and f2 = 0 in Corollary 3.7, then we obtain the following consequent result for solving
SEFPP for two infinite families of closed and uniformly quasi-ϕ-asymptotically nonexpansive mappings.

Corollary 3.10. Let E1 and E2 be 2-uniformly convex and uniformly smooth real Banach spaces with
dual spaces E∗

1 and E∗
2 , respectively, and let E3 be a real Banach space with dual space E∗

3 . Let {Ti}∞i=1 :
E1 → E1 and {Si}∞i=1 : E2 → E2 be two infinite families of closed uniformly Li−Lipschitz con-
tinuous and Ki−Lipschitz continuous and uniformly quasi−ϕ−asymptotically nonexpansive mappings
with sequences {ln} ⊂ [1,∞) and {kn} ⊂ [1,∞) respectively such that ln → 1 and kn → 1, and
∩∞
i=1F (Ti) ̸= ∅ and ∩∞

i=1F (Si) ̸= ∅. Let A : E1 → E3 and B : E2 → E3 be bounded linear maps
with adjoints A∗ : E∗

3 → E∗
1 and B∗ : E∗

3 → E∗
2 , respectively. Let {(xn, yn)} be a sequence in E1 × E2

generated as follows:

Algorithm 3.11.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +
∞∑
i=1

αn,iJ2S
n
i tn), (3.37)

⟨u− un,J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

⟨v − vn,J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], ρ such that 0 < ρ < c2
(||A||2+||B||2) , where c2 is the constant in Lemma

2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn = supq∈Ω2

(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.38)



SPLIT EQUALITY EQUILIBRIUM AND FIXED POINT PROBLEMS 35

is a nonempty and bounded subset inE1×E2. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >
0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

Corollary 3.12. Let E1 and E2 be 2-uniformly convex and uniformly smooth real Banach spaces with
dual spaces E∗

1 and E∗
2 , respectively, and let E3 be a real Banach space with dual space E∗

3 . Let {Ti}∞i=1 :
E1 → E1 and {Si}∞i=1 : E2 → E2 be two infinite families of closed quasi−ϕ−nonexpansive mappings
such that ∩∞

i=1F (Ti) ̸= ∅ and ∩∞
i=1F (Si) ̸= ∅. Let A : E1 → E3 and B : E2 → E3 be bounded linear

maps with adjoints A∗ : E∗
3 → E∗

1 and B∗ : E∗
3 → E∗

2 , respectively. Let {(xn, yn)} be a sequence in
E1 × E2 generated as follows:

Algorithm 3.13.

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +
∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +
∞∑
i=1

αn,iJ2S
n
i tn), (3.39)

⟨u− un,J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

⟨v − vn,J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], ρ such that 0 < ρ < c2
(||A||2+||B||2) , where c2 is the constant in Lemma

2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn = supq∈Ω2

(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω := SEFPP ({Ti}∞i=1, {Si}∞i=1) (3.40)

is nonempty. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i > 0 for all i ≥ 1, then {(xn, yn)}
converges strongly to some point (x∗, y∗) ∈ Ω.

Proof. Since {Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2 are two infinite families of closed quasi-ϕ-
nonexpansive mappings, then they are infinite families of closed and uniformly quasi-ϕ-asymptotically
nonexpansive mappings with ln = kn = 1. Hence, the conditions in Corollary 3.10 that Ω is a bounded
subset in E1×E1 and for each i ≥ 1, Ti and Si are uniformly Li-Lipschitz and Ki-Lipschitz continuous
respectively are irrelevant here. By the closeness of Ti and Si for each i ≥ 1, it yields (x∗, y∗) ∈
SEFPP ({Ti}∞i=1, {Si}∞i=1). Hence, all other conditions in Corollary 3.10 are satisfied. Therefore, the
result is obtained directly from Corollary 3.10. □

Remark 3.14. Corollary 3.12 extends the result in [18] (Theorem 3.1) by extending the mappings from
two closed quasi−ϕ− nonexpansive mappings to two infinite families of closed quasi-ϕ-nonexpansive
mappings.

4. Applications

In this section, we present some applications of our results to solve related problems in nonlinear
analysis and optimisation. In what follows, we assume that H1, H2 and H3 are real Hilbert spaces, C
and Q are nonempty, closed and convex subsets of H1 and H2, respectively, and A : H1 → H3, B :
H2 → H3 are bounded linear maps.
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4.1. Split equality convex minimisation problem.
Taking f1 = 0 and f2 = 0 in the SEMEP, then the SEMEP reduces to the SECMP (1.15). The solution
set of SECMP is denoted by SECMP (φ1, φ2), that is,

SECMP (φ1, φ2) = {(x∗, y∗) ∈ E1 × E2 : φ1(x) ≥ φ1(x
∗),

φ2(y) ≥ φ2(y
∗), x ∈ E1, y ∈ E2, Ax

∗ = By∗}.
Hence, Corollary 3.3 can be used to solve the SECMP and the following result can be deduced directly
from Corollary 3.3.

Theorem 4.1. Let E1 and E2 be 2−uniformly convex and uniformly smooth real Banach spaces with
dual spaces E∗

1 and E∗
2 , respectively, and let E3 be a real Banach space with dual space E∗

3 . Let φ1 :
E1 → R ∪ {+∞}, φ2 : E2 → R ∪ {+∞} be proper lower semi-continuous and convex functions. Let
{Ti}∞i=1 : E1 → E1 and {Si}∞i=1 : E2 → E2 be two infinite families of closed uniformly Li−Lipschitz
continuous and Ki−Lipschitz continuous and uniformly quasi−ϕ−asymptotically nonexpansive map-
pings with sequences {ln} ⊂ [1,∞) and {kn} ⊂ [1,∞) respectively such that ln → 1 and kn → 1, and
∩∞
i=1F (Ti) ̸= ∅ and ∩∞

i=1F (Si) ̸= ∅. Let A : E1 → E3 and B : E2 → E3 be bounded linear maps
with adjoints A∗ : E∗

3 → E∗
1 and B∗ : E∗

3 → E∗
2 , respectively. Let {(xn, yn)} be a sequence in E1 × E2

generated as follows:

x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ J3(Axn −Byn),

sn = J1
−1(J1xn − ρA∗en), zn = J−1

1 (αn,0J1xn +

∞∑
i=1

αn,iJ1T
n
i sn),

tn = J2
−1(J2yn + ρB∗en), wn = J−1

2 = (αn,0J2yn +

∞∑
i=1

αn,iJ2S
n
i tn), (4.1)

φ1(u)− φ1(un) +
1

rn
⟨u− un, J1un − J1zn⟩ ≥ 0, ∀u ∈ E1,

φ2(v)− φ2(vn) +
1

λn
⟨v − vn, J2vn − J2wn⟩ ≥ 0, ∀v ∈ E2,

Cn+1 ={s ∈ Cn : ϕ(s, un) ≤ ϕ(s, xn) + δn},
Qn+1 ={t ∈ Qn : ϕ(t, vn) ≤ ϕ(t, yn) + βn},
xn+1 =ΠCn+1x1, yn+1 = ΠQn+1y1, ∀n ≥ 1,

where {αn,i} are sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that
0 < ρ < c2

(||A||2+||B||2) , where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln − 1)ϕ(p, xn), βn =

supq∈Ω2
(kn − 1)ϕ(q, yn), where the solution set

Ω1 × Ω2 = Ω

:= SECMP (φ1, φ2) ∩ SEFPP ({Ti}∞i=1, {Si}∞i=1)

is a nonempty and bounded subset inE1×E2. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i >
0 for all i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

4.2. Split equality variational inclusion problem. Let M : H1 → 2H1 and N : H2 → 2H2 be
maximal monotone maps. The Split Equality Variational Inclusion Problem (shortly, SEVIP) is defined as
follows:

Find x ∈ M−1(0), y ∈ N−1(0) such that Ax = By,
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where M−1(0) = {x ∈ H1 : 0 ∈ M(x)} and N−1(0) = {y ∈ H2 : 0 ∈ N(y)} are called the set of
zeros of M and N, respectively, see [41].
We apply Theorem 3.1 to approximate a solution of the SEVIP in Banach spaces as follows:

Theorem 4.2. LetE1 andE2 be 2−uniformly convex and uniformly smooth real Banach spaces with dual
spacesE∗

1 andE
∗
2 , respectively, and letE3 be a real Banach space with dual spaceE∗

3 . Let f1 : E1×E1 →
R, f2 : E2 × E2 → R be two nonlinear bifunctions satisfying conditions (A1)-(A4), P1 : E1 → E∗

1 , P2 :
E2 → E∗

2 be continuous and monotone mappings and φ1 : E1 → R ∪ {+∞}, φ2 : E2 → R ∪ {+∞} be
proper lower semi-continuous and convex functions. Let {Mi}∞i=1 : E1 → 2E

∗
1 and {Ni}∞i=1 : E2 → 2E

∗
2

be two infinite families of maximal monotonemaps such that∩∞
i=1M

−1
i (0) ̸= ∅ and∩∞

i=1N
−1
i (0) ̸= ∅. Let

A : E1 → E3 and B : E2 → E3 be bounded linear maps with adjoints A∗ : E∗
3 → E∗

1 and B∗ : E∗
3 →

E∗
2 , respectively. Let {(xn, yn)} be a sequence in E1 × E2 generated by Algorithm 3.4, where {αn,i} are

sequences in [0, 1], {rn} ⊂ [a,∞), {λn} ⊂ [b,∞) for some a, b > 0, ρ such that 0 < ρ < c2
(||A||2+||B||2) ,

where c2 is the constant in Lemma 2.6, and δn = supp∈Ω1
(ln−1)ϕ(p, xn), βn = supq∈Ω2

(kn−1)ϕ(q, yn),
where the solution set

Ω1 × Ω2 = Ω

:= SEGMEP (f1, f2, P1, P2, φ1, φ2) ∩ SEFPP ({M−1
i (0)}∞i=1, {N−1

i (0)}∞i=1)

is a nonempty subset of E1 × E2. If
∑∞

i=0 αn,i = 1 for all n ≥ 1 and lim infn→∞ αn,0αn,i > 0 for all
i ≥ 1, then {(xn, yn)} converges strongly to some point (x∗, y∗) ∈ Ω.

Proof. Set Ti = QMi
r := (J1 + rMi)

−1J1 and Si = QNi
r := (J2 + rNi)

−1J2, r > 0, i = 1, 2, . . . It
is known that a point x is a fixed point of QMi

r if and only if x is a zero of Mi for each i = 1, 2, . . ..
Also, y is a fixed point of QNi

r if and only if y is a zero of Ni for each i = 1, 2, . . .. Moreover, from
Lemma 2.13, we obtain that QMi

r and QNi
r are quasi-ϕ-nonexpansive for each i = 1, 2, . . .. Therefore,

the conclusion follows from Theorem 3.1. □

5. Numerical Examples

In this section, we present some numerical examples to demonstrate the implementability and efficiency
of our algorithm in comparison with related method in the literature.
In the numerical computations, for i = 1, 2, . . . , 10, we choose αn,0 = 2n

5n+1 , αn,i = 3n+1
10(5n+1) , ρ =

0.4, rn = λn = n
n+1 , r = 0.8, ρn = n

4n+3 and αn = n+1
2n+1 in Appendix 6.1.

Example 5.1. Let E1 = E2 = E3 = R and C = Q = [0, 10]. Let the mappings A,B : R → R be
defined by Ax = 2x

7 and Bx = x
3 . Then, A and B are bounded linear operators. Also, let Ti(x) =

2
3ix

and Si(x) =
3
5ix, for all i ∈ N. Then, Ti and Si are quasi-ϕ-nonexpansive, for each i ∈ N and hence

are quasi-ϕ- asymptotically nonexpansive. Let T1 = T2 = T = F = 2
3x and S1 = S2 = S = G = 3

5x.

Let the bifunctions f1 : E1×E1 → R and f2 : E2×E2 → R be defined by f1(x, y) = y2+3xy− 4x2

and f2(x, y) = 2y2 + xy − 3x2 ∀(x, y) ∈ R × R. Also, we define φ1 : E1 → R ∪ {+∞} and
φ2 : E2 → R ∪ {+∞} by φ1(x) = x2 and φ2(x) = x, and we take P1 = 3x, P2 = 5x ∀x ∈ R. It can
easily be verified that all the conditions of Theorem 3.1 are satisfied. Next, we find u ∈ C such that for
all z ∈ C

0 ≤ f1(u, z) + ⟨P1u, z − u⟩+ φ1(z)− φ1(u) +
1

r
⟨z − u, u− x⟩

= 2z2 + 3uz − 5u2 + 3u(z − u) +
1

r
⟨z − u, u− x⟩

⇔
0 ≤ 2rz2 + 3ruz − 5ru2 + 3ur(z − u) + (z − u)(u− x)
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= 2rz2 + 3ruz − 5ru2 + 3ur(z − u) + uz − xz − u2 + ux

= 2rz2 + (6ru+ u− x)z + (−8ru2 − u2 + ux).

Suppose h(z) = 2rz2 + (6ru + u − x)z + (−8ru2 − u2 + ux). Then, h(z) is a quadratic function
of z with coefficients a = 2r, b = (6ru + u − x), and c = (−8ru2 − u2 + ux). We determine the
discriminant △ of h(z) as follows:

△ = (6ru+ u− x)2 − 4(2r)(−8ru2 − u2 + ux)

= 100r2u2 + 20ru2 − 20rux+ u2 − 2ux+ x2

= ((10r + 1)u− x)2. (5.1)

According to Lemma 2.12, Kf1
r is single-valued. Therefore, it follows that h(z) has at most one solution

in R. Thus, from (5.1), we have that u = x
7r+1 . This implies that Kf1

r (x) = x
7r+1 . Similarly, we compute

Kf2
λ (y). Find w ∈ Q such that for all d ∈ Q

Kf2
λ (y) =

{
w ∈ Q : F2(w, d) + φ2(d)− φ2(w) +

1

λ
⟨d− w,w − y⟩ ≥ 0, ∀ d ∈ Q

}
.

By following similar procedure as above, we get w = y−λ
10λ+1 . This implies that Kf2

λ (y) = y−λ
10λ+1 .

We choose different initial values as follows:
Case Ia: x1 = −5.8, y1 = 200;
Case Ib: x1 = 65, y1 = −78;
Case Ic: x1 = 23

87 , y1 = −289;
Case Id: x1 = −119, y1 = 267.

We compare the performance of our Algorithm 3.2 with Appendix (6.1) (Old Alg.) using MATLAB
R2021b installed in Windows 10 on an HP Laptop with Intel(R) Core(TM) i5 CPU and 4GB RAM. The
stopping criterion used for our computation is Toln = |xn+1−xn|+|yn+1−yn|

2 < 10−4. We plot the
graphs of errors against the number of iterations in each case. The figures and numerical results we
have obtained are shown in Figure 1 and Table 1, respectively.

Table 1. Numerical results.

Algorithm 3.1 Old Alg.
Case Ia CPU time (sec) 0.0148 0.0203

No of Iter. 22 35
Case Ib CPU time (sec) 0.1974 0.5268

No. of Iter. 21 34
Case Ic CPU time (sec) 0.0011 0.0020

No of Iter. 23 36
Case Id CPU time (sec) 0.0015 0.0018

No of Iter. 23 37

Example 5.2. Let E1 = E2 = E3 = L2([0, 1]) be endowed with inner product

⟨x, y⟩ =
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ L2([0, 1])

and norm
||x|| :=

(∫ 1

0
|x(t)|2

) 1
2 ∀x, y ∈ L2([0, 1]).
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Figure 1. Top left: Case Ia; Top right: Case Ib; Bottom left: Case Ic; Bottom right: Case
Id.

We define f1 : E1 × E1 → R and f2 : E2 × E2 → R by f1(x, y) = ⟨L1x, y − x⟩ and f2(x, y) =

⟨L2x, y − x⟩, where L1x(t) =
x(t)
2 and L2x(t) =

x(t)
5 . It can easily be verified that f1 and f2 satisfy

conditions (A1)-(A4). Also, take P1x = x(t)
3 , P2x = x(t)

2 and φ1x = φ2x = x(t) ∀x ∈ L2([0, 1]).

Moreover, let A,B : L2([0, 1]) → L2([0, 1]) be defined by Ax(t) = 2x(t)
5 and Bx(t) = x(t)

2 . Then,
A and B are bounded linear operators. Also, let (Tix)(t) = 1

8ix(t) and (Six)(t) = 1
2ix(t), for all

i = 1, 2, . . . Then, Ti and Si are quasi-ϕ-nonexpansive, for all i = 1, 2, . . . . and hence are quasi-ϕ-
asymptotically nonexpansive. Let T1 = T2 = T = F = 1

8x and S1 = S2 = S = G = 1
2x. Next, we

find x ∈ E1 such that for all u ∈ E1

f1(x, u) + ⟨P1x, u− x⟩+ φ1(u)− φ1(x) +
1

r
⟨u− x, x− z⟩ ≥ 0

⇐⇒⟨x
2
, u− x⟩+ ⟨x

3
, (u− x)⟩+ u− x+

1

r
⟨u− x, x− z⟩ ≥ 0

⇐⇒x

2
(u− x) +

x

3
(u− x) +

1

r
(u− x)(x− z) ≥ 0

⇐⇒(u− x)[5rx+ 6r + 6(x− z)] ≥ 0

⇐⇒(u− x)[(5r + 6)x+ 6r − 6z] ≥ 0. (5.2)

According to Lemma 2.12,

Kf1
r (z) = {x ∈ E1 : f1(x, u) + ⟨P1x, u− x⟩+ φ1(u)− φ1(x) +

1
r ⟨u− x, x− z⟩ ≥ 0, ∀ u ∈ E1}

is single-valued. Hence, from (5.2) we have that x = 6z−6r
5r+6 . Similarly, we find y ∈ E1 such that for

all v ∈ E1

f2(y, v) + ⟨P2y, v − y⟩+ φ2(v)− φ2(y) +
1

λ
⟨v − y, y − w⟩ ≥ 0.

Following similar procedure as above, we obtain y = 10w−10λ
7λ+10 .

We choose different initial values as follows:
Case IIa: x1 = t2 + 3t− 5, y1 = 2t+ 3;
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Figure 2. Top left: Case IIa; Top right: Case IIb; Bottom left: Case IIc; Bottom right:
Case IId.

Case IIb: x1 = t2 + 1, y1 = sin t;
Case IIc: x1 = t cos t, y1 =

t2

10 ;
Case IId: x1 = t3 − 6, y1 = exp(2t).
We compare the performance of our Algorithm 3.2 with Appendix (6.1) (Old Alg.) using MATLAB
R2021b installed in Windows 10 on an HP Laptop with Intel(R) Core(TM) i5 CPU and 4GB RAM. The
stopping criterion used for our computation is Toln = ∥xn+1−xn∥2+∥yn+1−yn∥2 < 10−4. We plot
the graphs of errors against the number of iterations in each case. The figures and numerical results
are shown in Figure 2 and Table 2, respectively.

Table 2. Numerical results.

Algorithm 3.1 Old Alg.
Case IIa CPU time (sec) 0.4351 0.6266

No of Iter. 13 18
Case IIb CPU time (sec) 0.4813 0.7947

No. of Iter. 11 14
Case IIc CPU time (sec) 0.3047 0.3558

No of Iter. 13 18
Case IId CPU time (sec) 0.4218 0.6499

No of Iter. 13 18

6. Conclusion

In this work, we introduce a new iterative scheme in the framework of Banach spaces to find a common
solution of SEGMEP and SEFPP for two infinite families of closed uniformly Li-Lipschitz continuous
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and Ki-Lipschitz continuous and uniformly quasi-ϕ- asymptotically nonexpansive mappings. We es-
tablish strong convergence theorem for the problem considered without imposing any compactness-
type conditions on the operators involved. Moreover, We obtain some consequent results and also
apply our theorem to solve SECMP and SEVIM.

Appendix 6.1. [30] (Old Alg.)
f1(un, u) + ⟨P1un, u− un⟩+ φ1(u)− φ1(un) +

1
r ⟨u− un, J1un − J1xn⟩ ≥ 0, ∀u ∈ E1;

f2(vn, v) + ⟨P2vn, v − vn⟩+ φ2(v)− φ2(vn) +
1
r ⟨v − vn, J2vn − J2yn⟩ ≥ 0, ∀v ∈ E2;

xn+1 = αnxn + (1− αn)T (un − ρJ−1
1 A∗J3(Aun −Bvn));

yn+1 = αnyn + (1− αn)S(vn + ρJ−1
2 B∗J3(Aun −Bvn)), ∀n ≥ 1;

where T : E1 → E1 and S : E2 → E2 are non expansive mappings.
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