R-LINEAR CONVERGENCE ANALYSIS OF TWO GOLDEN RATIO PROJECTION ALGORITHMS FOR STRONGLY PSEUDO-MONOTONE VARIATIONAL INEQUALITIES

ZHAOYANG CHU\textsuperscript{1} AND CUIJIE ZHANG\textsuperscript{1,∗}

\textsuperscript{1} College of Science, Civil Aviation University of China, Tianjin, 300300, People’s Republic of China

\textbf{ABSTRACT.} In this paper, we combine the golden ratio method with the projection algorithm to obtain the golden ratio projection algorithm. In order to get better convergence speed, we also propose an alternating golden ratio projection algorithm. Unlike ordinary inertial extrapolation, golden ratio method is constructed based on a convex combined structure about the entire iterative trajectory. The advantages of the proposed algorithms require only one projection onto the feasible set and do not require knowledge of the Lipschitz constant for the operator since our algorithms use self-adaptive step-sizes. The R-linear convergence results of the two algorithms are established for strongly pseudo-monotone variational inequality. Finally, we present some numerical experiments to show the efficiency and advantages of the proposed algorithms.

\textbf{Keywords.} Strongly pseudo-monotone, Golden ratio algorithm, Variational inequality problem, Projection method, R-linear rate.

\textcopyright Optimization Eruditorum

1. \textsc{Introduction}

In this paper, $H$ is a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. $C$ is a nonempty closed convex subset of $H$ and $A : H \to H$ is a continuous mapping. The variational inequality problem (for short, VI($A, C$)) is of the form: find $x^* \in C$ such that

$$\langle Ax^*, y - x^* \rangle \geq 0, \quad \forall y \in C. \quad (1.1)$$

The problem VI($A, C$)(1.1) is equivalent to the fixed point problem:

$$x^* = P_C (x^* - \gamma Ax^*), \quad \gamma > 0.$$ 

Therefore we can solve VI($A, C$)(1.1) by the fixed point method (see, e.g. \cite{9, 12}). Variational inequalities have important applications in several fields and many algorithms have been analyzed and studied by many scholars. With the efforts of many scholars, there are rich research results for solving variational inequalities (see, e.g. \cite{6, 18, 24, 27, 31} and the references therein).

The following projection gradient algorithm is the simplest one:

$$x_{n+1} = P_C (x_n - \lambda Ax_n). \quad (1.2)$$

However, the convergence of this method requires slightly strong assumptions that $A$ is a $\eta$-strongly monotone and $L$-Lipschitz continuous mapping with $\eta > 0$, $L > 0$ and step-size $\lambda \in \left(0, \frac{2\eta}{L^2}\right)$. And yet projection gradient algorithm (1.2) fails when $A$ is monotone. This drawback was overcome by the so-called extragradient method (introduced by Korpelevich \cite{10} and Antipin \cite{1}, improved by Popov in \cite{16}), which consists of a two-step projection procedure. Censor et al. in \cite{37} introduced the subgradient extragradient algorithm and obtained weak convergence when $A$ is a strongly pseudo-monotone (monotone) and Lipschitz continuous mapping in VI($A, C$) (1.1).

\textsuperscript{∗}Corresponding author.

E-mail address: cuijie_zhang@126.com (C. Zhang) and 15530895082@163.com (Z. Chu)

2020 Mathematics Subject Classification: 47H05, 47J20, 47J25, 65K15, 90C25.

Accepted: April 17, 2024.
Above mentioned algorithms require, at each iteration, the first projection onto $C$ together with the second projection onto either $C$ or its intersection with some hyperplane, besides several evaluations of $A$. So, these methods turn to be computationally expensive in situations, where the projection onto $C$ is hard to compute and somewhat expensive.

Maingé and Gobinddass in [25] proposed a one-step projected gradient method based on (1.2) by adding inertial extrapolation steps. And they obtained weak convergence when $A$ is a monotone and Lipschitz continuous mapping.

We focus on the class of strongly pseudo-monotone VI($A, C$) (1.1), which has been attracting a lot of attention in recent years, see e.g.,[4, 6, 8, 13, 21]. The existence and uniqueness as well as stability of this problem were studied in [4]. It was proved in [4] that if $A$ is strongly pseudo-monotone and Lipschitz continuous, then VI($A, C$) (1.1) has a unique solution. Shehu and Iyiola in [35] proposed a projection algorithm with alternating inertial:

$$
\begin{align*}
& w_n = \begin{cases} 
  x_n, & n = \text{even}, \\
  x_n + \alpha (x_n - x_{n-1}), & n = \text{odd},
\end{cases} \\
& x_{n+1} = P_C (w_n - \lambda Aw_n),
\end{align*}
$$

(1.3)

where $0 < \lambda < \frac{2\eta}{L^2}$. Shehu and Iyiola obtained R-linear convergence of (1.3) when $A$ is a $\eta$-strongly pseudo-monotone and Lipschitz continuous mapping in VI($A, C$). A main drawback of the extragradient algorithm (that is also valid for many related methods) is that requires the knowledge of an upper bound for $L$. So, a great value of $L$ can lead to very small step-sizes, which may give rise to a slow convergent rate. Shehu et al. in [34] presented the following alternating inertial projection method with adaptive step-sizes:

$$
\begin{align*}
& w_n = \begin{cases} 
  x_n, & n = \text{even}, \\
  x_n + \alpha (x_n - x_{n-1}), & n = \text{odd},
\end{cases} \\
& x_{n+1} = P_C (w_n - \lambda_n Aw_n),
\end{align*}
$$

(1.4)

where

$$
\lambda_{n+1} = \min \left\{ \frac{\mu \|w_n - x_{n+1}\|}{\|Aw_n - Ax_{n+1}\|}, \lambda_n \right\}, \quad \text{otherwise},
$$

Shehu et al. obtained R-linear convergence of (1.4) when $A$ is a $\eta$-strongly pseudo-monotone and Lipschitz continuous mapping. The algorithm (1.4) uses self-adaptive step-sizes, so does not require knowledge of the Lipschitz constant for the operator.

Nowadays, an interesting idea has been developed recently by Malitsky in [39], to solve mixed variational inequality problem: find $x^* \in H$ such that

$$
(Fx^*, x - x^*) + g(x) - g(x^*) \geq 0, \forall x \in H,
$$

(1.5)

where $F$ is monotone operator, $g$ is a proper convex lower semicontinuous function. He has proposed a new algorithm which named golden ratio algorithm:

$$
\begin{align*}
& z_n = (\phi - 1) z_{n-1} + \frac{z_{n-1}}{\phi}, \\
& z_{n+1} = \text{prox}_{\lambda g} (z_n - \lambda Fz_n),
\end{align*}
$$

(1.6)

where $\phi$ is golden ratio, i.e. $\phi = \frac{\sqrt{5} + 1}{2}$. When $g = \iota_C$, the problem (1.5) can be transformed into (1.1). In algorithm (1.6), $z_n$ is actually a convex combination of all the previously generated iterates. The golden ratio has also received some attention from other scholars, and has yielded good results and suggested some future research directions (see, e.g. [32, 33]).

Our aim in this paper is to propose a golden ratio projection algorithm for solving the strongly pseudo-monotone variational inequality problem (1.1) by combining the projection method and golden ratio.
two conditions hold: (i) every sequential weak cluster point of \(\{x_n\}\) is in \(C\). Then \(\{x_n\}\) converges weakly to a point in \(C\).

2. Preliminaries

Let \(H\) be a real Hilbert space and \(C\) be a nonempty closed convex subset of \(H\). The weak convergence of \(\{x_n\}\) to \(x\) is denoted by \(x_n \rightharpoonup x\) as \(n \to \infty\), while the strong convergence of \(\{x_n\}\) to \(x\) is written by \(x_n \to x\) as \(n \to \infty\).

**Definition 2.1.** A mapping \(A : H \to H\) is called

(a) \(\eta\)-strongly pseudo-monotone on \(H\) if there exists \(\eta > 0\) such that for all \(x, y \in H\),
\[
\langle Ay, x - y \rangle \geq 0 \Rightarrow \langle Ax, x - y \rangle \geq \eta \|x - y\|^2,
\]

(b) \(L\)-Lipschitz continuous on \(H\) if there exists a constant \(L > 0\) such that
\[
\|Ax - Ay\| \leq L \|x - y\|, \forall x, y \in H.
\]

**Definition 2.2.** Let \(C\) be a nonempty closed convex subset of \(H\). \(P_C\) is called the metric projection of \(H\) onto \(C\) if, for any point \(u \in H\), there exists a unique point \(P_C u \in C\) such that
\[
\|u - P_C u\| \leq \|u - y\|, \forall y \in C. \tag{2.1}
\]

\(P_C\) satisfies (see, e.g., [11])
\[
\langle x - y, PCx - PCy \rangle \geq \|PCx - PCy\|^2, \forall x, y \in H. \tag{2.2}
\]
Furthermore, \(PCx\) is characterized by the properties
\[
PCx \in C \quad \text{and} \quad \langle x - PCx, PCx - y \rangle \geq 0, \forall y \in C. \tag{2.3}
\]

**Lemma 2.3.** The following statement holds in \(H\):
\[
\|tx + (1 - t) y\|^2 = t \|x\|^2 + (1 - t) \|y\|^2 - t(1 - t) \|x - y\|^2, \forall t \in \mathbb{R}, \forall x, y \in H. \tag{2.4}
\]

**Lemma 2.4.** ([14]) Suppose \(A\) is pseudo-monotone in \(VI(A, C)(1.1)\) and \(S\) is the solution set of \(VI(A, C)(1.1)\). Then \(S\) is closed, convex and \(M(A, C) = S\), where \(M(A, C) := \{x \in C : \langle Ay, y - x \rangle \geq 0, \forall y \in C\}\).

**Lemma 2.5.** ([40]) Let \(C\) be a nonempty set of \(H\) and \(\{x_n\}\) be a sequence in \(H\) such that the following two conditions hold:

(i) for any \(x \in C\), \(\lim_{n \to \infty} \|x_n - x\|\) exists;

(ii) every sequential weak cluster point of \(\{x_n\}\) is in \(C\). Then \(\{x_n\}\) converges weakly to a point in \(C\).
Definition 2.6. Suppose a sequence \( \{ x_n \} \) in \( H \) converges in norm to \( x^* \in H \). We say that \( \{ x_n \} \) converges to \( x^* \) R-linearly if \( \lim_{n \to \infty} \| x_n - x^* \|^\frac{1}{2} < 1 \).

Lemma 2.7. Let \( \{ a_n \} \) and \( \{ b_n \} \) be two nonnegative real sequences. If there exists an integer \( N > 0 \) such that \( a_{n+1} \leq a_n - b_n \) for all \( n > N \), then \( \lim_{n \to \infty} a_n \) exists and \( \lim_{n \to \infty} b_n = 0 \).

3. Golden Ratio Projection Algorithm

In this section, we introduce a golden ratio projection algorithm for solving the variational inequality problem (1.1) and give the corresponding convergence analysis. In this section and the next, we make the following assumptions.

Assumption 1.
(i) The solution set \( S \) of VI(\( A, C \))(1.1) is nonempty.
(ii) \( A : H \to H \) is \( \eta \)-strongly pseudo-monotone.
(iii) \( A \) is an \( L \)-Lipschitz continuous mapping.

Algorithm 1

Golden ratio projection algorithm

Choose the iterative parameters \( \mu \in \left( 0, \min \left\{ \sqrt{2 \lambda_1 \eta}, \frac{2 \eta}{L} \right\} \right), \psi \in \left( 1, \sqrt{\frac{L+1}{2}} \right) \) and \( \lambda_1 > 0 \). Let \( x_1 \in H \), \( w_0 \in H \) be given starting points. Set \( n := 1 \).

1. Compute
\[
 w_n = \frac{\psi - 1}{\psi} x_n + \frac{1}{\psi} w_{n-1} .
\] (3.1)

2. Compute
\[
 x_{n+1} = P_C (w_n - \lambda_n A w_n) ,
\] (3.2)
where
\[
 \lambda_{n+1} = \begin{cases} 
 \min \left\{ \lambda_n, \frac{\mu \| w_n - x_{n+1} \|}{\| A w_n - A x_{n+1} \|} \right\}, & A w_n \neq A x_{n+1}, \\
 \lambda_n, & \text{otherwise.}
\end{cases}
\] (3.3)

if \( w_n = x_{n+1} \), STOP.

3. Set \( n \leftarrow n + 1 \), and go to 1.

Remark 3.1. Note that by (3.3), \( \lambda_{n+1} \leq \lambda_n, \forall n \geq 1 \). Also, observe in Algorithm 1 that if \( A w_n \neq A x_{n+1} \), then
\[
 \lambda_{n+1} \leq \frac{\mu \| w_n - x_{n+1} \|}{\| A w_n - A x_{n+1} \|} \leq \lambda_n,
\] (3.4)
which implies that \( 0 < \min \left\{ \lambda_n, \frac{\mu}{L} \right\} \leq \lambda_n, \forall n \geq 1 \). This means that \( \lim_{n \to \infty} \lambda_n \) exists. Thus, there exists \( \lambda > 0 \) such that \( \lim_{n \to \infty} \lambda_n = \lambda \).

Theorem 3.2. Suppose the Assumption 1 holds. Then \( \{ x_n \} \) generated by Algorithm 1 converges strongly to the unique solution \( x^* \) of VI(\( A, C \))(1.1) with R-linear rate.

Proof. By the definition of \( x_{n+1} \) in Algorithm 1 and (2.3), we have
\[
 \langle w_n - \lambda_n A w_n - x_{n+1}, u - x_{n+1} \rangle \leq 0, \forall u \in C .
\] (3.5)
Because \( x^* \in S \subset C \), we have
\[
 \langle w_n - \lambda_n A w_n - x_{n+1}, x^* - x_{n+1} \rangle \leq 0 ,
\] (3.6)
thus,
\[
 2 \langle w_n - x_{n+1}, x^* - x_{n+1} \rangle \leq 2 \lambda_n \langle A w_n, x^* - x_{n+1} \rangle .
\] (3.7)
Since $x^* \in S$, and $x_{n+1} \in C$ we have $\langle Ax^*, x_{n+1} - x^* \rangle \geq 0$. Using the $\eta$-strong pseudomonotonicity of $A$, we have $\langle Ax_{n+1}, x_{n+1} - x^* \rangle \geq \eta \|x_{n+1} - x^*\|^2$. Using Cauchy–Schwarz inequality and the Lipschitz continuity of $A$, we get

$$2\lambda_n \langle Aw_n, x^* - x_{n+1} \rangle = -2\lambda_n \langle Ax_{n+1}, x_{n+1} - x^* \rangle + 2\lambda_n \langle Aw_n - Ax_{n+1}, x^* - x_{n+1} \rangle$$

$$\leq -2\lambda_n \eta \|x_{n+1} - x^*\|^2 + 2\lambda_n \|Aw_n - Ax_{n+1}\| \|x^* - x_{n+1}\|$$

$$\leq -2\lambda_n \eta \|x_{n+1} - x^*\|^2 + 2\frac{\lambda_n \mu}{\lambda_{n+1}} \|w_n - x_{n+1}\| \|x^* - x_{n+1}\|$$

$$\leq -2\lambda_n \eta \|x_{n+1} - x^*\|^2 + \|w_n - x_{n+1}\|^2 + \left(\frac{\lambda_n \mu}{\lambda_{n+1}}\right)^2 \|x^* - x_{n+1}\|^2.$$  

(3.6)

On the other hand, observe that

$$2 \langle w_n - x_{n+1}, x^* - x_{n+1} \rangle$$

$$= \|w_n - x_{n+1}\|^2 + \|x^* - x_{n+1}\|^2 - \|w_n - x_{n+1} - (x^* - x_{n+1})\|^2$$

$$\leq \|w_n - x_{n+1}\|^2 + \|x^* - x_{n+1}\|^2 - \|w_n - x^*\|^2.$$  

(3.7)

Putting (3.6) and (3.7) into (3.5), we get

$$\|w_n - x_{n+1}\|^2 + \|x^* - x_{n+1}\|^2 - \|w_n - x^*\|^2$$

$$\leq -2\lambda_n \eta \|x_{n+1} - x^*\|^2 + \|w_n - x_{n+1}\|^2 + \left(\frac{\lambda_n \mu}{\lambda_{n+1}}\right)^2 \|x^* - x_{n+1}\|^2.$$  

So,

$$\left(1 + 2\lambda_n \eta - \frac{\lambda_n^2 \mu^2}{\lambda_{n+1}^2}\right) \|x_{n+1} - x^*\|^2 \leq \|w_n - x^*\|^2,$$

for all $n \geq 1$.  

(3.8)

We know $0 < \mu < \min\left\{\sqrt{2\eta \lambda_1}, \frac{2\eta}{L}\right\}$, so $\mu^2 < 2\eta \lambda_1$, and $\mu^2 < \frac{2\mu^2}{\lambda_{n+1}}$. Thus, we have $\mu^2 < \frac{\mu^2}{2\eta \min\left\{\lambda_1, \frac{\mu}{L}\right\}} < 1$. Let $\varepsilon \in (0, 1)$ be fixed such that

$$\frac{\mu^2}{2\eta \min\left\{\lambda_1, \frac{\mu}{L}\right\}} < \varepsilon < 1.$$  

Let $\tau = \varepsilon \eta \min\left\{\lambda_1, \frac{\mu}{L}\right\}$, then $2\tau > \mu^2$. So,

$$\lim_{n \to \infty} \left(2\lambda_n \eta - \frac{\lambda_n^2 \mu^2}{\lambda_{n+1}^2}\right) = 2\lambda_n \eta - \mu^2$$

$$\geq 2\eta \min\left\{\frac{\lambda_1}{L}, \frac{\mu}{L}\right\} - \mu^2$$

$$> 2\varepsilon \eta \min\left\{\lambda_1, \frac{\mu}{L}\right\} - \mu^2$$

$$= 2\tau - \mu^2 > 0.$$  

(3.9)

Thus, there exists $n_0 \geq 1$ such that for all $n \geq n_0$, we have $2\lambda_n \eta - \frac{\lambda_n^2 \mu^2}{\lambda_{n+1}^2} > 2\tau - \mu^2$.

From (3.8), for $n \geq n_0$, we get

$$\|x_{n+1} - x^*\|^2 \leq \frac{1}{1 + 2\tau - \mu^2} \|w_n - x^*\|^2 = q^2 \|w_n - x^*\|^2,$$

(3.10)

where $q^2 = \frac{1}{1 + 2\tau - \mu^2}$. By the definition of $w_n$, we have $x_n = \frac{\psi}{\psi - 1} w_n - \frac{1}{\psi - 1} w_{n-1}$. So,

$$\|x_{n+1} - x^*\|^2 = \frac{\psi}{\psi - 1} \|w_{n+1} - x^*\|^2 - \frac{1}{\psi - 1} \|w_n - x^*\|^2 + \frac{\psi}{(\psi - 1)^2} \|w_{n+1} - w_n\|^2$$

$$= \frac{\psi}{\psi - 1} \|w_{n+1} - x^*\|^2 - \frac{1}{\psi - 1} \|w_n - x^*\|^2 + \frac{1}{\psi} \|x_{n+1} - w_n\|^2.$$  

(3.11)
Putting (3.11) into (3.10), we have
\[ \psi \left\| w_{n+1} - x^* \right\|^2 - \frac{1}{\psi - 1} \left\| w_n - x^* \right\|^2 \leq q^2 \left\| w_n - x^* \right\|^2 - \frac{1}{\psi} \left\| x_{n+1} - w_n \right\|^2, \forall n \geq n_0. \]

After collation, we get
\[ \psi \left\| w_{n+1} - x^* \right\|^2 \leq \left( q^2 + \frac{1}{\psi - 1} \right) \left\| w_n - x^* \right\|^2, \forall n \geq n_0. \] (3.12)

Since \( 2\tau - \mu^2 > 0 \), we have \( 0 < q^2 \). So,
\[ \frac{q^2 + 1}{\psi - 1} < 1 + \frac{1}{\psi - 1} = \frac{\psi}{\psi - 1}, \]
which implies that \( 0 < \frac{q^2 + 1}{\psi - 1} < 1 \). Then, \( \left\| w_{n+1} - x^* \right\|^2 \leq r^2 \left\| w_n - x^* \right\|^2 \), where \( r^2 = \frac{q^2 + 1}{\psi - 1} \). By induction, we get
\[ \left\| w_{n+1} - x^* \right\|^2 \leq r^{2(n-n_0)} \left\| w_{n_0+1} - x^* \right\|^2, \forall n \geq n_0. \]

By (3.10),
\[ \left\| x_{n+1} - x^* \right\|^2 \leq q^2 r^{2(n-n_0)-1} \left\| w_{n_0+1} - x^* \right\|^2, \forall n \geq n_0. \]

Therefore, \( \{ x_n \} \) converges strongly with R-linear rate to the unique solution \( x^* \). \( \square \)

4. ALTERNATING GOLDEN RATIO PROJECTION ALGORITHM

In this section, we introduce an alternating golden ratio projection algorithm for solving the variational inequality problem (1.1) and give the corresponding convergence analysis.

**Algorithm 2** Alternating golden ratio projection algorithm

Choose the iterative parameters \( \mu \in \left( 0, \min \left\{ \sqrt{2\lambda_1 \eta}, \frac{2\eta}{2\eta} \right\} \right) \), \( \psi \in \left( 1, \frac{\sqrt{5}+1}{2} \right) \) and \( \lambda_1 > 0 \). Let \( x_1 \in H \), \( w_0 \in H \) be given starting points. Set \( n := 1 \).
1. Compute
\[ w_n = \begin{cases} \frac{\psi - 1}{\psi} x_n + \frac{1}{\psi} w_{n-1}, & n \text{ odd}, \\ x_n, & n \text{ even}. \end{cases} \] (4.1)

2. Compute
\[ x_{n+1} = P_C \left( w_n - \lambda_n Aw_n \right), \] (4.2)

where
\[ \lambda_{n+1} = \begin{cases} \min \left\{ \frac{\mu \left\| w_n - x_{n+1} \right\|}{\left\| Aw_n - Ax_{n+1} \right\|}, \lambda_n \right\}, & Aw_n \neq Ax_{n+1}, \\ \lambda_n, & \text{otherwise}. \end{cases} \] (4.3)

if \( w_n - x_{n+1} = 0 \), STOP.
3. Set \( n \leftarrow n + 1 \), and go to 1.

**Theorem 4.1.** Suppose the Assumption 1 holds. Then \( \{ x_n \} \) generated by Algorithm 2 converges strongly to the unique solution \( x^* \) of VI(\( A, C \)) (1.1) with R-linear rate.

**Proof.** The preceding proof follows the same procedure as (3.4) to (3.10) in Theorem 3.1, so we will omit the preceding proof.
From (3.10) we get
\[
\|x_{n+1} - x^*\|^2 \leq q^2 \|w_n - x^*\|^2,
\] (4.4)
where \( q^2 = \frac{1}{1+2\tau-\mu^2} \). Using (4.4) we have
\[
\|x_{n+1} - x^*\|^2 \leq q^2 \|w_{2n} - x^*\|^2 = q^2 \|x_{2n} - x^*\|^2,
\] (4.5)
and
\[
\|x_{n+2} - x^*\|^2 \leq q^2 \|w_{2n+1} - x^*\|^2.
\] (4.6)
By the definition of \( w_n \), we can get
\[
\|w_{2n+1} - x^*\|^2 = \frac{\psi - 1}{\psi} \|x_{2n+1} - x^*\|^2 + \frac{1}{\psi} \|w_{2n} - x^*\|^2 - \frac{\psi - 1}{\psi^2} \|w_{2n} - x_{2n+1}\|^2.
\] (4.7)
Combining (4.6) and (4.7),
\[
\|x_{n+2} - x^*\|^2 \leq q^2 \left( \frac{\psi - 1}{\psi} \|x_{n+1} - x^*\|^2 + \frac{1}{\psi} \|w_{n} - x^*\|^2 - \frac{\psi - 1}{\psi^2} \|w_{n} - x_{n+1}\|^2 \right).
\] (4.8)
Puting (4.5) in (4.8), we have
\[
\|x_{n+2} - x^*\|^2 \leq q^2 \left( \frac{\psi - 1}{\psi} q^2 \|x_{n} - x^*\|^2 + \frac{1}{\psi} \|x_{n} - x^*\|^2 - \frac{\psi - 1}{\psi^2} \|w_{n} - x_{n+1}\|^2 \right)
\leq q^2 \left( \frac{\psi - 1}{\psi} q^2 + \frac{1}{\psi} \right) \|x_{n} - x^*\|^2
\leq q^2 \|x_{n} - x^*\|^2.
\] (4.9)
So,
\[
\|x_{n+2} - x^*\|^2 \leq q^2 \|x_{n} - x^*\|^2.
\] (4.10)
By induction, we have
\[
\|x_{n+2} - x^*\|^2 \leq q^{2(n-n_0)+1} \|x_{2n_0} - x^*\|^2, \forall n \geq n_0.
\]
Thus,
\[
\|x_{n+3} - x^*\|^2 \leq q^2 \|x_{n+2} - x^*\|^2
\leq \|x_{n+2} - x^*\|^2
\leq q^{2(n-n_0)+1} \|x_{2n_0} - x^*\|^2.
\] (4.11)
Therefore, \( \{x_n\} \) converges strongly with R-linear rate to the unique solution \( x^* \).

\[ \square \]

5. NUMERICAL EXAMPLES

In this section, we provide some computational experiments and compare our Algorithm 1 and Algorithm 2 with Algorithm 2 in [34]. All codes were written in MATLAB R2016b and performed on a PC Desktop AMD Ryzen R7-5600U CPU @ 3.00 GHz, RAM 16.00 GB.

Example 5.1. Define \( A : \mathbb{R}^m \to \mathbb{R}^m \) by
\[
Ax = \left( e^{-x^\top Qx + \beta} \right) (Px + q),
\]
where \( P \) is a positive semi-definite matrix, \( Q \) is a positive definite matrix i.e \( x^\top Qx \geq \theta \|x\|^2, \forall x \in \mathbb{R}^m \), \( q = 0 \) and \( \beta > 0 \). \( A \) is differentiable and there exists \( M > 0 \) such that \( \|\nabla Ax\| \leq M, \ x \in \mathbb{R}^m \). So, by the Mean Value Theorem, \( A \) is Lipschitz continuous. And \( A \) is \( \eta \)-strongly pseudo-monotone
but not monotone (see, e.g., Example in [28]). Take \( C = \{ x \in \mathbb{R}^m \mid Bx \leq b \} \), where \( B \) is a matrix of size \( l^* \times m \) and \( b \in \mathbb{R}^{l^*} \) with \( l^* = 10 \). Let us take \( x_0 = (1, 1, \ldots, 1)^T \) and \( w_1 \) is generated randomly in \( \mathbb{R}^m \). In this example, we use the stopping criterion \( \| w_n - x_{n+1} \| < 10^{-3} \). We choose \( \psi = \frac{\sqrt{5}+1}{2} \), \( \mu = \zeta \min \left\{ \sqrt{2\lambda_1 \eta}, \frac{2n}{L} \right\} \) in Algorithm 1 and Algorithm 2 where \( 0 < \zeta < 1 \).

### Table 1. Example 5.1 for different values of \( m \) with \( \lambda_1 = 0.01 \).

<table>
<thead>
<tr>
<th>Problem size</th>
<th>Alg 1 Iter</th>
<th>Alg 1 CPU Time</th>
<th>Alg 2 Iter</th>
<th>Alg 2 CPU Time</th>
<th>Alg 2 in [34] Iter</th>
<th>Alg 2 in [34] CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>( l^* )</td>
<td>( m )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>33</td>
<td>0.0056</td>
<td>20</td>
<td>0.0030</td>
<td>687</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>135</td>
<td>0.0131</td>
<td>68</td>
<td>0.0071</td>
<td>184</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>148</td>
<td>0.0147</td>
<td>76</td>
<td>0.0077</td>
<td>366</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>183</td>
<td>0.0175</td>
<td>96</td>
<td>0.0093</td>
<td>480</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>692</td>
<td>0.0683</td>
<td>382</td>
<td>0.0381</td>
<td>1305</td>
</tr>
</tbody>
</table>

![Figure 1. Example 5.1 Comparison: \( m = 15 \).](image)

**Example 5.2.** ([20]) Define \( Ax = Mx + q \), where \( M = B^TB + S + D \), \( q = 0 \), \( S, D \in \mathbb{R}^{m \times m} \) are randomly generated matrices such that \( S \) is skew-symmetric (hence it does not arise from an optimization problem), \( D \) is a positive definite diagonal matrix (hence the variational inequality problem has a unique solution). Suppose the feasible set \( C := \{ x \in \mathbb{R}^m \mid Bx \leq b \} \), for some random matrix \( B \in \mathbb{R}^{k \times m} \) and random vector \( b \in \mathbb{R}^k \) with non-negative entries. The unique solution of \( \text{VI}(A, C) \) (1.1) here is \( x^* = 0 \).

We use the stopping criterion \( \| w_n - x_{n+1} \| \leq 10^{-3} \). Set \( \psi = \frac{\sqrt{5}+1}{2} \), \( \mu = \zeta \min \left\{ \sqrt{2\lambda_1 \eta}, \frac{2n}{L} \right\} \) in Algorithm 1 and Algorithm 2 where \( 0 < \zeta < 1 \).
TABLE 2. Example 5.2 for different values of \( m \) with \( \gamma = 1, \lambda = 0.2 \).

<table>
<thead>
<tr>
<th>Problem size</th>
<th>( k )</th>
<th>( m )</th>
<th>( \text{Alg 1} )</th>
<th>( \text{Alg 2} )</th>
<th>( \text{Alg 2 in [34]} )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Iter</td>
<td>CPU Time</td>
<td>Iter</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td>302</td>
<td>0.0640</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>327</td>
<td>0.0711</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>797</td>
<td>0.1890</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
<td>1145</td>
<td>0.2945</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td>1638</td>
<td>0.4640</td>
<td>906</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>45</td>
<td>287</td>
<td>0.0991</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>446</td>
<td>0.1654</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>782</td>
<td>0.3002</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
<td>1184</td>
<td>0.4922</td>
<td>654</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td>1644</td>
<td>0.7481</td>
<td>908</td>
</tr>
</tbody>
</table>

FIGURE 2. The value of error versus the iteration numbers for Example 5.2 with \( \lambda_1 = 0.5, k = 30, m = 45 \)

Remark 5.3. In practice, the selection of \( \lambda_1 \) is greater than \( \frac{\mu}{\bar{\tau}} \), otherwise the step-size \( \lambda_n \) always be a fixed value.

6. CONCLUSION

In this paper, we present a golden ratio projection algorithm and an alternating golden ratio projection algorithm for solving strongly pseudo-monotone variational inequality problem in real Hilbert spaces. We obtain R-linear convergence when the operator \( A \) is strongly pseudo-monotone and Lipschitz continuous mapping. We give numerical examples of two algorithms and illustrate the superiority of our algorithms.

STATEMENTS AND DECLARATIONS

The authors declare that they have no conflict of interest, and the manuscript has no associated data.
ACKNOWLEDGEMENT

The corresponding author is supported by the Fundamental Science Research Funds for the Central Universities (Program No. 3122018L004).

REFERENCES


