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ABSTRACT. In this paper, we combine the golden ratio method with the projection algorithm to obtain the
golden ratio projection algorithm. In order to get better convergence speed, we also propose an alternating
golden ratio projection algorithm. Unlike ordinary inertial extrapolation, golden ratio method is constructed
based on a convex combined structure about the entire iterative trajectory. The advantages of the proposed
algorithms require only one projection onto the feasible set and do not require knowledge of the Lipschitz
constant for the operator since our algorithms use self-adaptive step-sizes. The R-linear convergence results
of the two algorithms are established for strongly pseudo-monotone variational inequality. Finally, we
present some numerical experiments to show the efficiency and advantages of the proposed algorithms.
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1. INTRODUCTION

In this paper, H is a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥·∥, C is
a nonempty closed convex subset of H and A : H → H is a continuous mapping. The variational
inequality problem (for short, VI(A,C)) is of the form: find x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, ∀y ∈ C. (1.1)

The problem VI(A,C)(1.1) is equivalent to the fixed point problem:

x∗ = PC (x∗ − γAx∗) , γ > 0.

Therefore we can solve VI(A,C)(1.1) by the fixed point method (see, e.g. [9, 12]). Variational inequali-
ties have important applications in several fields and many algorithms have been analyzed and studiedby
many scholars. With the efforts of many scholars, there are rich research results for solving variational
inequalities (see, e.g. [6, 18, 24, 27, 31] and the references therein).

The following projection gradient algorithm is the simplest one :

xn+1 = PC (xn − λAxn) . (1.2)

However, the convergence of this method requires slightly strong assumptions that A is a η-strongly
monotone and L-Lipschitz continuous mapping with η > 0, L > 0 and step-size λ ∈

(
0, 2η

L2

)
. And

yet projection gradient algorithm (1.2) fails when A is monotone. This drawback was overcome by the
so-called extragradient method (introduced by Korpelevich [10] and Antipin [1], improved by Popov in
[16]), which consists of a two-step projection procedure. Censor et al. in [37] introduced the subgra-
dient extragradient algorithm and obtained weak convergence when A is a strongly pseudo-monotone
(monotone) and Lipschitz continuous mapping in VI(A,C) (1.1).
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Above mentioned algorithms require, at each iteration, the first projection onto C together with the
second projection onto either C or its intersection with some hyperplane, besides several evaluations of
A. So, these methods turn to be computationally expensive in situations, where the projection onto C is
hard to compute and somewhat expensive.

Maingé and Gobinddass in [25] proposed a one-step projected gradient method based on (1.2) by
adding inertial extrapolation steps. And they obtained weak convergence when A is a monotone and
Lipschitz continuous mapping.

We focus on the class of strongly pseudo-monotone VI(A,C) (1.1), which has been attracting a lot of
attention in recent years, see e.g.,[4, 6, 8, 13, 21]. The existence and uniqueness as well as stability of this
problem were studied in [4]. It was proved in [4] that if A is strongly pseudo-monotone and Lipschitz
continuous, then VI(A,C) (1.1) has a unique solution. Shehu and Iyiola in [35] proposed a projection
algorithm with alternating inertial:wn =

{
xn, n = even,
xn + α (xn − xn−1) , n = odd,

xn+1 = PC (wn − λAwn) ,
(1.3)

where 0 < λ < 2η
L2 . Shehu and Iyiola obtained R-linear convergence of (1.3) when A is a η-strongly

pseudo-monotone and Lipschitz continuous mapping in VI(A,C). A main drawback of the extragradient
algorithm (that is also valid for many related methods) is that requires the knowledge of an upper bound
for L. So, a great value of L can lead to very small step-sizes, which may give rise to a slow convergent
rate. Shehu et al. in [34] presented the following alternating inertial projection method with adaptive
step-sizes: wn =

{
xn, n = even,
xn + α (xn − xn−1) , n = odd,

xn+1 = PC (wn − λnAwn) ,
(1.4)

where

λn+1 =

{
min

{
µ∥wn−xn+1∥
∥Awn−Axn+1∥ , λn

}
, Awn ̸= Axn+1,

λn, otherwise.
Shehu et al. obtained R-linear convergence of (1.4) when A is a η-strongly pseudo-monotone and Lips-
chitz continuous mapping. The algorithm (1.4) uses self-adaptive step-sizes, so does not require knowl-
edge of the Lipschitz constant for the operator.

Nowadays, an interesting idea has been developed recently by Malitsky in [39], to solve mixed varia-
tional inequality problem: find x∗ ∈ H such that

⟨Fx∗, x− x∗⟩+ g (x)− g (x∗) ≥ 0, ∀x ∈ H, (1.5)

where F is monotone operator, g is a proper convex lower semicontinuous function. He has proposed a
new algorithm which named golden ratio algorithm:{

zn = (ϕ−1)zn+zn−1

ϕ ,

zn+1 = proxλg (zn − λFzn) ,
(1.6)

where ϕ is golden ratio, i.e. ϕ =
√
5+1
2 . When g = ιC , the problem (1.5) can be transformed into

(1.1). In algorithm (1.6), zn is actually a convex combination of all the previously generated iterates.
The golden ratio has also received some attention from other scholars, and has yielded good results and
suggested some future research directions (see, e.g. [32, 33]).

Our aim in this paper is to propose a golden ratio projection algorithm for solving the strongly pseudo-
monotone variational inequality problem (1.1) by combining the projection method and golden ratio
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technique. To speed up the convergence of the golden ratio projection algorithm, we also present an
alternating golden ratio projection algorithm. The convergent results of our proposed algorithms are
given. In summary,

• We propose a golden ratio projection algorithm and an alternating golden ratio projection algo-
rithm. And our algorithms differ from the ordinary inertial extrapolation step in [7, 19, 27], but
are based on a convex combined construction of the entire iterative trajectory.
• We get R-linear convergence results of two algorithms when A is η-strongly pseudo-monotone

and L-Lipschitz continuous. Unlike [8], our iteration format is more concise.
• Our algorithms all use self-adaptive step-sizes, so determining the step size does not require

know the Lipschitz constant. Unlike in [5] where the step size is determined by xn+1 and xn,
our algorithm determines the step size by xn+1 and wn.

The rest of this paper is organized as follows: In Section 2, we summarize some useful definitions
and results. In Section 3, we give a projection algorithm with golden ratio and the proofs of R-linear
convergence of the algorithm. And we also give a projection algorithm with alternating golden ratio and
R-linear convergence analysis of the algorithm in Section 4. In Section 5, we give numerical implemen-
tations.

2. PRELIMINARIES

LetH be a real Hilbert space and C be a nonempty closed convex subset ofH . The weak convergence
of {xn} to x is denoted by xn ⇀ x as n→∞, while the strong convergence of {xn} to x is written by
xn → x as n→∞.

Definition 2.1. A mapping A : H → H is called
(a) η-strongly pseudo-monotone on H if there exists η > 0 such that for all x, y ∈ H,

⟨Ay, x− y⟩ ≥ 0⇒ ⟨Ax, x− y⟩ ≥ η ∥x− y∥2 ,

(b) L-Lipschitz continuous on H if there exists a constant L > 0 such that

∥Ax−Ay∥ ≤ L ∥x− y∥ , ∀x, y ∈ H.

Definition 2.2. Let C be a nonempty closed convex subset of H . PC is called the metric projection of
H ontoC if, for any point u ∈ H , there exists a unique point PCu ∈ C such that

∥u− PCu∥ ≤ ∥u− y∥ , ∀y ∈ C. (2.1)

PC satisfies (see, e.g., [11])

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2 , ∀x, y ∈ H. (2.2)

Furthermore, PCx is characterized by the properties

PCx ∈ C and ⟨x− PCx, PCx− y⟩ ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.3. The following statement holds in H :

∥tx+ (1− t) y∥2 = t ∥x∥2 + (1− t) ∥y∥2 − t (1− t) ∥x− y∥2 , ∀t ∈ R, ∀x, y ∈ H. (2.4)

Lemma 2.4. ([14]) SupposeA is pseudo-monotone in VI(A,C)(1.1) and S is the solution set of VI(A,C)(1.1).
Then S is closed, convex and M(A,C) = S, where M (A,C) := {x ∈ C : ⟨Ay, y − x⟩ ≥ 0,∀y ∈ C}.

Lemma 2.5. ([40]) Let C be a nonempty set of H and {xn} be a sequence in H such that the following
two conditions hold:

(i) for any x ∈ C , limn→∞ ∥xn − x∥ exists;
(ii) every sequential weak cluster point of {xn} is in C. Then {xn} converges weakly to a point in C.
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Definition 2.6. Suppose a sequence {xn} in H converges in norm to x∗ ∈ H . We say that {xn}
converges to x∗ R-linearly if limn→∞ ∥xn − x∗∥

1
n < 1.

Lemma 2.7. Let {an} and {bn} be two nonnegative real sequences. If there exists an integer N > 0
such that an+1 ≤ an − bn for all n > N , then limn→∞ an exists and limn→∞ bn = 0.

3. GOLDEN RATIO PROJECTION ALGORITHM

In this section, we introduce a golden ratio projection algorithm for solving the variational inequality
problem (1.1) and give the corresponding convergence analysis. In this section and the next, we make
the following assumptions.

Assumption 1.
(i) The solution set S of VI(A,C)(1.1) is nonempty.
(ii) A: H → H is η-strongly pseudo-monotone.
(iii) A is an L-Lipschitz continuous mapping.

Algorithm 1 Golden ratio projection algorithm

Choose the iterative parameters µ ∈
(
0,min

{√
2λ1η,

2η
L

})
, ψ ∈

(
1,

√
5+1
2

]
and λ1 > 0. Let x1 ∈ H ,

w0 ∈ H be given starting points. Set n := 1.
1. Compute

wn =
ψ − 1

ψ
xn +

1

ψ
wn−1. (3.1)

2. Compute

xn+1 = PC (wn − λnAwn) , (3.2)

where

λn+1 =

{
min

{
µ∥wn−xn+1∥
∥Awn−Axn+1∥ , λn

}
, Awn ̸= Axn+1,

λn, otherwise.
(3.3)

if wn = xn+1, STOP.
3. Set n← n+ 1, and go to 1.

Remark 3.1. Note that by (3.3), λn+1 ≤ λn, ∀n ≥ 1. Also, observe in Algorithm 1 that if Awn ̸=
Axn+1, then

µ ∥wn − xn+1∥
∥Awn −Axn+1∥

≥ µ

L

∥wn − xn+1∥
∥wn − xn+1∥

=
µ

L
,

which implies that 0 < min
{
λ1,

µ
L

}
≤ λn, ∀n ≥ 1. This means that limn→∞ λn exists. Thus, there

exists λ > 0 such that limn→∞ λn = λ.

Theorem 3.2. Suppose the Assumption 1 holds. Then {xn} generated by Algorithm 1 converges
strongly to the unique solution x∗ of VI(A,C) (1.1) with R-linear rate.

Proof. By the definition of xn+1 in Algorithm 1 and (2.3), we have

⟨wn − λnAwn − xn+1, u− xn+1⟩ ≤ 0, ∀u ∈ C. (3.4)

Because x∗ ∈ S ⊂ C, we have ⟨wn − λnAwn − xn+1, x
∗ − xn+1⟩ ≤ 0, thus,

2 ⟨wn − xn+1, x
∗ − xn+1⟩ ≤ 2λn ⟨Awn, x∗ − xn+1⟩ . (3.5)
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Since x∗ ∈ S, and xn+1 ∈ C we have ⟨Ax∗, xn+1 − x∗⟩ ≥ 0. Using the η-strong pseudo-
monotonicity of A, we have ⟨Axn+1, xn+1 − x∗⟩ ≥ η ∥xn+1 − x∗∥2. Using Cauchy–Schwarz inequal-
ity and the Lipschitz continuity of A, we get

2λn ⟨Awn, x∗ − xn+1⟩ = −2λn ⟨Axn+1, xn+1 − x∗⟩+ 2λn ⟨Awn −Axn+1, x
∗ − xn+1⟩

≤ −2λnη ∥xn+1 − x∗∥2 + 2λn ∥Awn −Axn+1∥ ∥x∗ − xn+1∥

≤ −2λnη ∥xn+1 − x∗∥2 + 2
λnµ

λn+1
∥wn − xn+1∥ ∥x∗ − xn+1∥

≤ −2λnη ∥xn+1 − x∗∥2 + ∥wn − xn+1∥2 +
(
λnµ

λn+1

)2

∥x∗ − xn+1∥2 .

(3.6)

On the other hand, observe that

2 ⟨wn − xn+1, x
∗ − xn+1⟩

= ∥wn − xn+1∥2 + ∥x∗ − xn+1∥2 − ∥(wn − xn+1)− (x∗ − xn+1)∥2

= ∥wn − xn+1∥2 + ∥x∗ − xn+1∥2 − ∥wn − x∗∥2 .
(3.7)

Putting (3.6) and (3.7) into (3.5), we get

∥wn − xn+1∥2 + ∥x∗ − xn+1∥2 − ∥wn − x∗∥2

≤ −2λnη ∥xn+1 − x∗∥2 + ∥wn − xn+1∥2 +
(
λnµ

λn+1

)2

∥x∗ − xn+1∥2 .

So, (
1 + 2λnη −

λ2n
λ2n+1

µ2
)
∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 , for all n ≥ 1. (3.8)

We know 0 < µ < min
{√

2ηλ1,
2η
L

}
, so µ2 < 2ηλ1, and µ2 < 2µη

L . Thus, we have µ2 <

2ηmin
{
λ1,

µ
L

}
, that is, µ2

2ηmin{λ1, µL}
< 1. Let ε ∈ (0, 1) be fixed such that µ2

2ηmin{λ1, µL}
< ε < 1. Let

τ = εηmin
{
λ1,

µ
L

}
, then 2τ > µ2. So,

lim
n→∞

(
2λnη −

λ2n
λ2n+1

µ2
)

= 2λη − µ2

≥ 2ηmin
{
λ1,

µ

L

}
− µ2

> 2εηmin
{
λ1,

µ

L

}
− µ2

= 2τ − µ2 > 0.

(3.9)

Thus, there exists n0 ≥ 1 such that for all n ≥ n0, we have 2λnη − λ2n
λ2n+1

µ2 > 2τ − µ2.
From (3.8), for n ≥ n0, we get

∥xn+1 − x∗∥2 ≤
1

1 + 2τ − µ2
∥wn − x∗∥2 = q2 ∥wn − x∗∥2 , (3.10)

where q2 = 1
1+2τ−µ2 . By the definition of wn, we have xn = ψ

ψ−1wn −
1

ψ−1wn−1. So,

∥xn+1 − x∗∥2 =
ψ

ψ − 1
∥wn+1 − x∗∥2 −

1

ψ − 1
∥wn − x∗∥2 +

ψ

(ψ − 1)2
∥wn+1 − wn∥2

=
ψ

ψ − 1
∥wn+1 − x∗∥2 −

1

ψ − 1
∥wn − x∗∥2 +

1

ψ
∥xn+1 − wn∥2 .

(3.11)
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Putting (3.11) into (3.10), we have

ψ

ψ − 1
∥wn+1 − x∗∥2 −

1

ψ − 1
∥wn − x∗∥2 ≤ q2 ∥wn − x∗∥2 −

1

ψ
∥xn+1 − wn∥2 , ∀n ≥ n0.

After collation, we get

ψ

ψ − 1
∥wn+1 − x∗∥2 ≤

(
q2 +

1

ψ − 1

)
∥wn − x∗∥2 , ∀n ≥ n0. (3.12)

Since 2τ − µ2 > 0, we have 0 < q2 < 1. So,

q2 +
1

ψ − 1
< 1 +

1

ψ − 1
=

ψ

ψ − 1
,

which implies that 0 <
q2+ 1

ψ−1
ψ
ψ−1

< 1. Then, ∥wn+1 − x∗∥2 ≤ r2 ∥wn − x∗∥2 , where r2 =
q2+ 1

ψ−1
ψ
ψ−1

. By

induction, we get
∥wn+1 − x∗∥2 ≤ r2(n−n0) ∥wn0+1 − x∗∥2 , ∀n ≥ n0.

By (3.10),
∥xn+1 − x∗∥2 ≤ q2r2(n−n0−1) ∥wn0+1 − x∗∥2 , ∀n ≥ n0.

Therefore, {xn} converges strongly with R-linear rate to the unique solution x∗. □

4. ALTERNATING GOLDEN RATIO PROJECTION ALGORITHM

In this section, we introduce an alternating golden ratio projection algorithm for solving the variational
inequality problem (1.1) and give the corresponding convergence analysis.

Algorithm 2 Alternating golden ratio projection algorithm

Choose the iterative parameters µ ∈
(
0,min

{√
2λ1η,

2η
L

})
, ψ ∈

(
1,

√
5+1
2

]
and λ1 > 0. Let x1 ∈ H ,

w0 ∈ H be given starting points. Set n := 1.
1. Compute

wn =

{
ψ−1
ψ xn +

1
ψwn−1, n = odd,

xn, n = even.
(4.1)

2. Compute

xn+1 = PC (wn − λnAwn) , (4.2)

where

λn+1 =

{
min

{
µ∥wn−xn+1∥
∥Awn−Axn+1∥ , λn

}
, Awn ̸= Axn+1,

λn, otherwise.
(4.3)

if wn − xn+1 = 0, STOP.
3. Set n← n+ 1, and go to 1.

Theorem 4.1. Suppose the Assumption 1 holds. Then {xn} generated by Algorithm 2 converges
strongly to the unique solution x∗ of VI(A,C) (1.1) with R-linear rate.

Proof. The preceding proof follows the same procedure as (3.4) to (3.10) in Theorem 3.1, so we will
omit the preceding proof.
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From (3.10) we get

∥xn+1 − x∗∥2 ≤ q2 ∥wn − x∗∥2 , (4.4)

where q2 = 1
1+2τ−µ2 . Using (4.4) we have

∥x2n+1 − x∗∥2 ≤ q2 ∥w2n − x∗∥2 = q2 ∥x2n − x∗∥2 , (4.5)

and

∥x2n+2 − x∗∥2 ≤ q2 ∥w2n+1 − x∗∥2 . (4.6)

By the definition of wn, we can get

∥w2n+1 − x∗∥2 =
ψ − 1

ψ
∥x2n+1 − x∗∥2 +

1

ψ
∥w2n − x∗∥2 −

ψ − 1

ψ2
∥w2n − x2n+1∥2 . (4.7)

Combining (4.6) and (4.7),

∥x2n+2 − x∗∥2 ≤ q2
(
ψ − 1

ψ
∥x2n+1 − x∗∥2 +

1

ψ
∥w2n − x∗∥2 −

ψ − 1

ψ2
∥w2n − x2n+1∥2

)
= q2

(
ψ − 1

ψ
∥x2n+1 − x∗∥2 +

1

ψ
∥x2n − x∗∥2 −

ψ − 1

ψ2
∥w2n − x2n+1∥2

)
.

(4.8)

Puting (4.5) in (4.8), we have

∥x2n+2 − x∗∥2 ≤ q2
(
ψ − 1

ψ
q2 ∥x2n − x∗∥2 +

1

ψ
∥x2n − x∗∥2 −

ψ − 1

ψ2
∥w2n − x2n+1∥2

)
≤ q2

(
ψ − 1

ψ
q2 +

1

ψ

)
∥x2n − x∗∥2

≤ q2 ∥x2n − x∗∥2 .

(4.9)

So,
∥x2n+2 − x∗∥2 ≤ q2 ∥x2n − x∗∥2 . (4.10)

By induction, we have

∥x2n+2 − x∗∥2 ≤ q2(n−n0+1) ∥x2n0 − x∗∥
2 , ∀n ≥ n0.

Thus,
∥x2n+3 − x∗∥2 ≤ q2 ∥x2n+2 − x∗∥2

≤ ∥x2n+2 − x∗∥2

≤ q2(n−n0+1) ∥x2n0 − x∗∥
2 .

(4.11)

Therefore, {xn} converges strongly with R-linear rate to the unique solution x∗. □

5. NUMERICAL EXAMPLES

In this section, we provide some computational experiments and compare our Algorithm 1 and Algo-
rithm 2 with Algorithm 2 in [34]. All codes were written in MATLAB R2016b and performed on a PC
Desktop AMD Ryzen R7-5600U CPU @ 3.00 GHz, RAM 16.00 GB.

Example 5.1. Define A : Rm → Rm by

Ax =
(
e−x

⊤Qx + β
)
(Px+ q) ,

where P is a positive semi-definite matrix,Q is a positive definite matrix i.e x⊤Qx ≥ θ ∥x∥2 , ∀x ∈ Rm,
q = 0 and β > 0. A is differentiable and there exists M > 0 such that ∥∇Ax∥ ≤ M, x ∈ Rm.
So, by the Mean Value Theorem, A is Lipschitz continuous. And A is η-strongly pseudo-monotone
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but not monotone (see, e.g., Example in [28]). Take C = {x ∈ Rm | Bx ≤ b}, where B is a matrix
of size l∗ × m and b ∈ Rl∗+ with l∗ = 10. Let us take x0 = (1, 1, . . . , 1)⊤ and w1 is generated
randomly in Rm. In this example, we use the stopping criterion ∥wn − xn+1∥ < 10−3. We choose
ψ =

√
5+1
2 , µ = ζmin

{√
2λ1η,

2η
L

}
, in Algorithm 1 and Algorithm 2 where 0 < ζ < 1.

TABLE 1. Example 5.1 for different values of m with λ1 = 0.01.

Problem size Alg 1 Alg 2 Alg 2 in [34]
l∗ m Iter CPU Time Iter CPU Time Iter CPU Time

10

15 33 0.0056 20 0.0030 687 0.0657
30 135 0.0131 68 0.0071 184 0.0657
50 148 0.0147 76 0.0077 366 0.345
60 183 0.0175 96 0.0093 480 0.0470
100 692 0.0683 382 0.0381 1305 0.1266

FIGURE 1. Example 5.1 Comparison: m = 15.

Example 5.2. ([20]) Define Ax = Mx + q, where M = B⊤B + S + D, q = 0, S,D ∈ Rm×m are
randomly generated matrices such that S is skew-symmetric (hence it does not arise from an optimization
problem), D is a positive definite diagonal matrix (hence the variational inequality problem has a unique
solution). Suppose the feasible set C := {x ∈ Rm | Bx ≤ b}, for some random matrix B ∈ Rk×m and
random vector b ∈ Rk with non-negative entries. The unique solution of VI(A,C) (1.1) here is x∗ = 0.
We use the stopping criterion ∥wn − xn+1∥ ≤ 10−3. Set ψ =

√
5+1
2 , µ = ζmin

{√
2λ1η,

2η
L

}
in

Algorithm 1 and Algorithm 2 where 0 < ζ < 1.
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TABLE 2. Example 5.2 for different values of m with γ = 1, λ = 0.2.

Problem size Alg 1 Alg 2 Alg 2 in [34]
k m Iter CPU Time Iter CPU Time Iter CPU Time

30

45 302 0.0640 167 0.0352 439 0.0936
50 327 0.0711 180 0.0398 463 0.1013
100 797 0.1890 440 0.1053 1051 0.2481
150 1145 0.2945 633 0.1640 1428 0.3728
200 1638 0.4640 906 0.2573 2012 0.5756

50

45 287 0.0991 158 0.0562 377 0.1313
50 446 0.1654 246 0.0893 630 0.2256
100 782 0.3002 432 0.1654 1007 0.3880
150 1184 0.4922 654 0.2723 1495 0.6189
200 1644 0.7481 908 0.4126 1998 0.9169

FIGURE 2. The value of error versus the iteration numbers for Example 5.2 with λ1 =
0.5, k = 30,m = 45

Remark 5.3. In practice, the selection of λ1 is greater than µ
L , otherwise the step-size λn always be a

fixed value.

6. CONCLUSION

In this paper, we present a golden ratio projection algorithm and an alternating golden ratio projection
algorithm for solving strongly pseudo-monotone variational inequality problem in real Hilbert spaces.
We obtain R-linear convergence when the operator A is strongly pseudo-monotone and Lipschitz con-
tinuous mapping. We give numerical examples of two algorithms and illustrate the superiority of our
algorithms.
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