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Abstract. In this paper, a polyhedral conic functions based embedded feature selection method is pro-
posed. The original PCF algorithm developed for classification, is reformulated such that, both feature
selection and classification are performed simultaneously. The proposed algorithm is tested on some
currently available real world data sets and compared with other well known feature selection and clas-
sification algorithms. It is shown that classifiers obtained by the new method, have better test accuracies
on some test problems, exhibit comparable prediction performance on all data sets tested, and increase
the generalization performance.
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1. Introduction

Feature selection is an important machine learning task in the context of supervised learning. In
supervised learning framework, it refers to select a subset of attributes (features) that will maximize
the prediction accuracy (or generalization ability) and classify the data using selected subset. Due
to feature selection, higher learning performance (or prediction accuracy), lower computational cost,
lower storage cost and more interpretable models are obtained in classification problems.

Feature selection methods can be categorized into three main types; filter, wrapper and embedded
methods [11, 22, 15, 17]. In filter methods, feature selection and machine learning algorithm are done
separately. First, the most relevant subset of features is selected by using a statistical measure, then
learning algorithm is performed on the subset. Since there is no interaction between feature selection
and machine learning algorithm, filter methods can be seen as a data preprocessing step, which reduces
the dimensionality [11]. In literature, based on the chosen ranking criteria (statistical measures), many
methods have been developed, such as Relief, Fisher score and information gain based.

In wrapper methods, machine learning algorithm is used as a black box [11]. These methods only re-
quire prediction accuracy to evaluate the relevance of features. They can be combinedwith anymachine
learning algorithm, since they do not depend on the special structure of the learning algorithm [16].
The most common approaches for the wrapper methods are recursive feature elimination, sequential
feature selection and genetic algorithms.

In embedded methods, machine learning algorithm and feature selection parts can not be separated
from each other, since it is decided, which feature to be selected, when themodel is constructed. In other
words, feature selection and machine learning tasks are performed simultaneously. Thus, the machine
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learning algorithm plays a significant role in embedded methods [16]. The embedded methods are
usually developed by adding a sparsity term to the original problem with a trade-off parameter. For
example, Least Absolute Shrinkage and Selection Operator (LASSO) [23] and 1-norm SVM [24] use l1
norm as a sparsity term, while Bradley and Mangasarian use l0 norm in feature selection concave (FSV)
approach [5].

In this study, an embedded feature selection method, based on polyhedral conic functions (PCF)
algorithm [9] (see also [1]), is proposed. This algorithm is based on the nonlinear seoaration theorem
established by Kasimbeyli [13] (see also [14]).

Our goal is to achieve a more efficient classifier by adding a feature selection mechanism to the
original PCF algorithm and to improve the generalization ability. The objective function of the PCF
algorithm is extended with a sparsity term. This term is introduced as an approximation to zero norm
of the normal vector of optimal separating surface. Additionally, two penalty parameters are added to
balance the classification and the feature selection parts of the objective function. We also propose a
modified version of the new FSV method, where the modified version of the PCF algorithm, is used.
A comparison between the two approaches is presented. The successive linearization approach given
in [5] is adapted to solve the new extended feature selection problems. Both versions of the proposed
algorithm are tested on real world data sets. The obtained results are interpreted and a comparison
between the performances of different methods, is presented.

The rest of the paper is organized as follows. In Section 2, the new embedded feature selection
method is explained. In this section we also review the feature selection concave method (in subsection
2.1) and the polyhedral conic functions method (in subsection 2.2). In Section 3, computational results
and interpretations related to the proposed method, are given. Finally, some conclusions of this study
are discussed in Section 4.

2. Polyhedral Conic Functions (PCF) Based Embedded Feature Selection (FSV) Method

In this section, we introduce the embedded feature selection method and its modified version, by
using the idea of the PCF based classification algorithm. This is an iterative method which sequentially
generates polyhedral conic functions which separate some part of the given dataset from the other one,
and simultaneously performs the feature selection. The algorithm finishes, when the complete set of
PCFs are generated which separate the whole dataset, possibly with some allowed error tolerance.

Themethod combines the classification and the feature selection algorithms, and consists of an outer
and an inner loops. The main focus of the work, is to combine the feature selection procedure and the
PCF algorithm by extending the objective function of PCF algorithm, with a penalizing term. To achieve
this, we examine the embedded feature selection methods and for this purpose, use the feature selection
concave approach of [5], which is combined with the PCF algorithm. We adapt the sparsity term and
the solution procedure that was used in FSV, to the new extended method.

For better understanding the new embedded method, we first briefly explain the original FSV algo-
rithm, and the original PCF based classification algorithm, give their important properties, advantages
and drawbacks, and explain how these features are taken into account in the new method.

2.1. Feature selection concave (FSV). Feature selection concave approach is based on the robust
linear programming (RLP) method given in [4]. The RLP approach serves to separate two (linearly non
separable) disjoint finite point sets A = {ai ∈ Rn : i ∈ I} and B = {bj ∈ Rn : j ∈ J} in Rn, where
I = {1, ...,m} and J = {1, ..., p}. This method aims to find an optimal separating surface in the form
of a hyperplane {x : wTx = γ}, by minimizing the number of miss-classified points. The problem
which generates such an hyperplane, is formulated as follows:

min
w,γ,y,z

eT y

m
+

eT z

p
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subject to

−wTai + γ + 1 ≤ yi, ∀i ∈ I,

wT bj − γ + 1 ≤ zj , ∀j ∈ J,

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn) ∈ Rn, γ ∈ R,

(2.1)

where e is the vector of ones in an appropriate size. The feature selection is applied to the normal
vector w of this hyperplane. For this, a penalizing term is added to the objective function of the above
problem, which suppresses as many of the components of the normal vector w, as possible. Then, the
corresponding components of w which are equal to zero, are removed. The penalizing term is defined
as an approximation to l0-norm (representing the number of non-zero elements of w), by a smooth
function whose gradient can be computed and can be used to perform a gradient descent direction
[16]. This approximation is described as a concave exponential function in [5]:

t(v, α) = e− e−αv, α > 0,

where v = (v1, ..., vn) ∈ Rn, e−αv = (e−αv1 , . . . , e−αvn) , e is the base of the natural logarithm and
the parameter α > 0 controls the steepness of the objective function [16]. Then the feature selection
model is formulated in the following form:

min
w,γ,y,z,v

(1− λ)
(eT y

m
+

eT z

p

)
+ λeT (e− e−αv)

subject to

−wTai + γ + 1 ≤ yi,∀i ∈ I,

wT bj − γ + 1 ≤ zj ,∀j ∈ J,

−vt ≤ wt ≤ vt, t = 1, . . . , n,

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn), v = (v1, ..., vn) ∈ Rn, γ ∈ R.

(2.2)

The obtained mathematical program (2.2) is known as Feature Selection Concave (FSV), which mini-
mizes the weighted sum of the classification error defined by the term

(
eT y
m + eT z

p

)
and the number of

non-zero elements of the normal vector w, defined by the term eT (e−e−αv). The parameter λ ∈ [0, 1)
balances these two objectives in the model and serves to maximize the generalization performance. For
λ = 0, the model (2.2) becomes robust linear programming problem (2.1). The case λ = 1 does not
lead to a significant result, because the components of the normal vector w are selected regardless to
classification. Therefore, the parameter λ is searched over the range [0, 1) using the cross-validation
method until some meaningful solution (w, γ) is obtained.

Since the problem (2.2) is known to be NP-hard [16], the successive linear approximation algorithm
proposed by [5] is used for solving this problem. The following section briefly explains this algorithm.

2.1.1. Successive linear approximation (SLA) algorithm for solving FSV. Choose some value for the bal-
ancing parameter λ ∈ [0, 1), set α = 5 (note that this value for αwas suggested by [5]), and start with a
random set of decision variables (w0, γ0, y0, z0, v0). Set k = 0 and determine (wk+1, γk+1, yk+1, zk+1,
vk+1) by solving the linear program:

min
w,γ,y,z,v

(1− λ)
(eT y

m
+

eT z

p

)
+ λα(e−αvk)T (v − vk)
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subject to

−wTai + γ + 1 ≤ yi,∀i ∈ I,

wT bj − γ + 1 ≤ zj ,∀j ∈ J,

−vt ≤ wt ≤ vt, t = 1, . . . , n

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn), v = (v1, ..., vn) ∈ Rn, γ ∈ R.

(2.3)

Stop if,

(1− λ)
(eT (yk+1 − yk)

m
+

eT (zk+1 − zk)

p

)
+ λα(e−αvk)T (vk+1 − vk) = 0. (2.4)

Remark 2.1. It is shown in [5] [6,Theorem 2.2] that, the SLA algorithm terminates finitely at a stationary
point which satisfies the minimum principle necessary optimality condition for problem (2.3) and leads
to a sparse w with good generalization properties.

2.2. Polyhedral conic functions (PCF) algorithm. This subsection gives brief description on the
background of the proposed method. The starting point for our investigation is the PCF algorithm
developed in [9]. This is a supervised classification algorithm developed for separating two disjoint
finite point sets in Rn.

We begin by recalling the definition of the polyhedral conic functions.

Definition 2.2. [9, Definition 2.2.] A function g : Rn → R is called polyhedral conic, if its graph is a
cone and for every α ∈ R, all its sublevel sets Sα = {x ∈ Rn : g(x) ≤ α} are polyhedrons.

The polyhedral conic functions g(w,ξ,γ,a) : Rn → R used in the PCF algorithm, are defined as follows:

g(w,ξ,γ,a)(x) = w′(x− a) + ξ∥x− a∥1 − γ, (2.5)

where w, a ∈ Rn, ξ, γ ∈ R, w′x = w1x1 + ... + wnxn is a scalar product of w and x, ∥x∥1 =| x1 |
+...+ | xn | is an l1-norm of the vector x ∈ Rn.

The graph of g(w,ξ,γ,a)(x), is a cone with vertex at (a,−γ) ∈ Rn×R. The PCF algorithm aims to sep-
arate data points by using the sublevel sets of the polyhedral conic functions sequentially constructed
at each iteration.

The PCF algorithm is explained below.
Let A and B be two given finite point sets in Rn:

A = {ai ∈ Rn : i ∈ I}, B = {bj ∈ Rn : j ∈ J}, I = {1, ...,m}, J = {1, ..., p}.

PCF Algorithm.
Initialization Step: Let l = 1, Il = I, Al = A, e ∈ Rm be the vector of ones and go to Step 1.
Step 1: Let al be an arbitrary points of Al. Solve subproblem (Pl):

(Pl) min
(eT y

m

)
subject to

wT (ai − al) + ξ∥ai − al∥1 − γ + 1 ≤ yi, ∀i ∈ Il, (2.6)

−wT (bj − al) + ξ∥bj − al∥1 + γ + 1 ≤ 0, ∀j ∈ J, (2.7)
y = (y1, ..., ym) ∈ Rm

+ , w ∈ Rn, ξ ∈ R+, γ ≥ 1. (2.8)
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Let wl, ξl, γl, yl be a solution of (Pl). Let

gl(x) = wl(x− al) + ξl∥x− al∥1 − γl (2.9)

and go to Step 2.
Step 2: Let Il+1 = {i ∈ Il : gl(a

i) + 1 > 0}, Al+1 = {ai ∈ Al : i ∈ Il+1}. If Al ̸= ∅ set l = l + 1 and
go to Step 1. Otherwise go to Step 3.
Step 3: Define the function g(x) as follows:

g(x) = min
l

gl(x) (2.10)

where L is the number of PCF’s generated, and stop.

At each iteration l, the algorithm chooses an arbitrary element al from the set Al and calculates the
set (wl, ξl, γl), by solving subproblem (Pl). Due to the constraints (2.6)-(2.8), the algorithm generates
a polyhedral conic function gl whose sublevel set contains as many points from the set Al as possible,
and contains no points from the set B (due to constraint (2.7)).

It is proved in [9, Theorem 2.3] that, the PCF algorithm terminates in finite number of iterations and
the function g generated by the algorithm and defined in (2.10), separates the given two sets A and B
in the following sense:

g(a) ≤ 0, ∀a ∈ A, (2.11)
g(b) > 0, ∀b ∈ B. (2.12)

Remark 2.3. It is reported in different studies that the PCF algorithm gives competitive classification
accuracies [3, 2, 7, 19]. The advantage of this algorithm is that, it uses polyhedral sets, constructed in
an optimal way, as an intersection of 2n halfspaces at every iteration. These halfspaces are generated
by a single function called a polyhedral conic function. Because of this reason, the PCF algorithm
guarantees efficient, easy and exact separation for arbitrary two finite point sets. The main drawback
of the algorithm is the generalization property. The training accuracy of the PCF algorithm is always
100%,which is a result of the constraint (2.7), which prevents the entering of elements ofB to a sublevel
set of the separating PCF. Therefore the resulting classifier provides a 100% separation between the
sets A and B which leads to overfitting, and results in undesired gap between the training and the test
accuracies. To overcome this drawback, in the new algorithm, the right hand side of the constraint
(2.7) is changed. Like the constraint (2.6), we put a nonnegative decision variable zj for every j ∈ J
(instead of zero) at the right hand side, and add a new term to the objective function, which consists of
sums of these variables. By this way, the algorithm will not prevent the entering of elements of B to a
sublevel set of the separating PCF in optimal way. Moreover, this term has been assigned some “weight
coefficient” so that the decision maker can control the effect of this term to the resulting “classification
quality”.

Remark 2.4. The vertex of the separating polyhedral conic set, generated as a sublevel set of the PCF
at every iteration l of the PCF algorithm, is determined by a pair of elements al and γl. The element
al is chosen randomly from the set Al, and “optimal” value of the decision variable γl, is calculated by
the algorithm. As it was pointed out in the relevant paper [9], the choice of element al may affect the
number of separated elements, the total number of separating functions generated (and hence the total
number of subproblems solved), and the classification accuracy. A version of PCF algorithm, called “The
Modified PCF (M-PCF)”, is proposed in the same study [9], whose main advantages can be summarized
as follows:

• a more effective vertex selection,
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• a lesser number of subproblems solved and a lesser number of PCFs generated, and
• a higher classification accuracy result.

In this study, M-PCF algorithm is also utilized with a simple preprocessing step, and a detailed com-
parison between the two versions of the proposed feature selection method, is provided.

The following section presents the PCF based feature selection method.

2.3. The embedded feature selection method based on PCF (FS-PCF). This section presents the
embedded feature selection method and its modified version. The operation principle of the method
can be briefly summarized as follows: it generates at each iteration a polyhedral conic function by us-
ing the solutions of subproblems (2.13)-(2.14) below. Then the data sets are updated using the same
procedure as in PCF algorithm. In the new algorithm, the constraint related to the set B is changed by
letting some elements of B to be contained in the sublevel set of PCF generated (in an optimal way).
This situation increases the generalization performance of the algorithm.

Assume that A and B are two given sets in Rn;

A = {ai ∈ Rn : i ∈ I}, I = {1, ...,m}, B = {bj ∈ Rn : j ∈ J}, J = {1, ..., p}.

Then the proposed algorithm operates as follows.

FS-PCF Algorithm
Initial Step: Let l = 1, Il = I, Al = A, Jl = J,Bl = B and let e be a vector of ones in appropriate
size. Select the values of the parameters L and C from the set P = {10i : i = −4,−3, ..., 0, ..., 3, 4},
and go to Step 1.
Step 1: Select an arbitrary point c from Al and set k = 1. Solve the following subproblem (Pl):

(Pl) min eT y

m
+

eT z

p

subject to

wT (ai − c) + ξ∥ai − c∥1 − γ + 1 ≤ yi, ∀i ∈ Il,

−wT (bj − c)− ξ∥bj − c∥1 + γ + 1 ≤ zj , ∀j ∈ Jl,

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn) ∈ Rn, ξ ∈ [0,∞), γ ∈ [1,∞).

(2.13)

Let (w, ξ, γ, y, z) be an optimal solution of (Pl). Assign (wlk, ξlk, γlk, ylk, zlk, al) = (w, ξ, γ, y, z, c)
and determine the vector vlk = (vlk1 , ..., vlkn ) ∈ Rn randomly.

Step 2: Solve the subproblem (Plk) given below:

(Plk) min eT y

m
+ L

(eT z
p

)
+ Cα(e−αvlk)(v − vlk)
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subject to

wT (ai − al) + ξ∥ai − al∥1 − γ + 1 ≤ yi, ∀i ∈ Il,

−wT (bj − al)− ξ∥bj − al∥1 + γ + 1 ≤ zj , ∀j ∈ Jl,

−vt ≤ wt ≤ vt, t = 1, . . . , n,

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn), v = (v1, ..., vn) ∈ Rn, ξ ∈ [0,∞), γ ∈ [1,∞).

(2.14)

Let (wl,k+1, ξl,k+1, γl,k+1, yl,k+1, zl,k+1, vl,k+1) be an optimal solution of subproblem (2.14). If

eT (yl,k+1 − ylk)

m
+ L

(eT (zl,k+1 − zlk)

p

)
+ Cα(e−αvlk)(vl,k+1 − vlk) = 0 (2.15)

let

gl(x) = wl,k+1(x− al) + ξl,k+1∥x− al∥1 − γl,k+1 (2.16)

and go to Step 3, otherwise assign k = k + 1 and repeat Step 2.
Step 3: Update the sets Al and Bl as follows:

Il+1 = {i ∈ Il : gl(a
i) + 1 > 0}, Al+1 = {ai ∈ Al : i ∈ Il+1},

Jl+1 = {j ∈ Jl : gl(b
j) + 1 > 0}, Bl+1 = {bj ∈ Bl : j ∈ Jl+1}.

Set l = l + 1. If Al ̸= ∅ go to Step 1, otherwise go to Step 4.
Step 4: Define the function g(x) as follows:

g(x) = min
l

gl(x) (2.17)

and stop.

2.4. Discussion on the FS-PCF algorithm. Steps 1-3 of the FS-PCF algorithm, can be considered
as an outer loop, where the sets Al and Bl are updated and the new initial solution and the resulting
polyhedral conic classifier for the new updated sets (of iteration l) is calculated. The algorithm ter-
minates if the current set Al becomes empty. By [9, Theorem 2.3], the number of iterations required
for termination, is finite. Step 2 of the FS-PCF algorithm can be considered as an inner loop, where
the optimal classifier, that is function gl is generated by updating the index k and iteratively solving
the subproblem (Plk) (see (2.14)) till the stop criteria (2.15) is satisfied. The subproblem (2.14) and the
stop criteria (2.15) are very similar (almost the same) to the problem (2.3) and the stop criteria (2.4),
respectively. Hence, based on the analysis given in Remark 2.1, we can conclude that, the sequence of
solutions {(wl,k, ξl,k, γl,k, yl,k, zl,k, vl,k)}, k = 1, 2, ..., generated in this step (for every l), converges
(even the number of iterations required for satisfying the stop criteria, is finite), and leads to the desired
solution for a sparse w with good generalization property.

Any point of setAl,misclassified in a current iteration, will be correctly classified in some other iter-
ation. In other words, the point remains outside of the sublevel set of the function generated according
to the selected vertex point al in some iteration, will fall into the sublevel set of a function generated in
one of further iterations. Therefore, in the objective function of the problem Plk, the error term related
to the set Al, is not penalized.

We now describe another version of the proposed feature selectionmethod, using the so-calledmod-
ified PCF approach (FS-MPCF) with the following preprocessing step.
Vertex Evaluation Procedure: Solve the subproblem (Pl) given below for every l ∈ I = {1, ...,m}
and every al ∈ A.
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(Pl) min eT y

m
+

eT z

p
(2.18)

subject to

wT (ai − al) + ξ∥ai − al∥1 − γ + 1 ≤ yi,∀i ∈ I,

−wT (bj − al)− ξ∥bj − al∥1 + γ + 1 ≤ zj , ∀j ∈ J,

y =(y1, ..., ym) ∈ Rm
+ , z = (z1, ..., zp) ∈ Rp

+,

w =(w1, ..., wn) ∈ Rn, ξ ∈ [0,∞), γ ∈ [1,∞).

(2.19)

Let (wl, ξl, γl, yl, zl) be an optimal solution of (Pl), corresponding to the element al ∈ Al, and let Nl

be the number of elements of set Al, which fall into the sublevel set of the polyhedral conic function
gl(x) = wl(x− al) + ξl∥x− al∥1 − γl generated for this optimal solution. Sort all the elements al of
set A in descending order with respect to the numbers Nl. After this preprocessing step, the element
of Al which corresponds to the maximal numberNl over all elements of Al, will be selected as a point
c in the initial step of FS-PCF algorithm. By this way, in the initial solution, the element c will not be
selected arbitrarily, but the element with maximum performance, will be selected.

3. Computational Results and Comparisons

In this section, the FS-PCF Algorithm is tested on real world data. For this purpose, some currently
available moderate sized and relatively large scale data sets from the UCI [8] machine learning repos-
itory, are used. The moderate sized data sets are used to compare the results obtained by FS-PCF and
FS-MPCF, with the results obtained using RLP and FSV. The relatively large scale data sets are used
to compare the proposed algorithm with other classifiers. The moderate sized data sets are the BUPA
Liver Disorders (BUPA Liver), the Wisconsin Breast Cancer Diagnosis (WBCD), the Wisconsin Breast
Cancer Prognosis (WBCP), the Ionosphere, the Cleveland Heart Disease (Cleveland Heart), the Pima
Indians Diabetes (Pima Diabetes). Stratified tenfold cross-validation is applied to these data sets, and
the relatively large scale data sets are divided into train and test parts using the values given in Table
1.

We chose the values of the weighting parameters L and C from set P = {10i : i = −4,−3, ..., 0,
..., 3, 4}, which led to the best predictive accuracy on each data set by using grid search technique
[12]. We started the parameter selection with the set P ′ = {10i : i = −7,−6, ..., 0, ..., 6, 7}. Since
no meaningful results were obtained in the two extremes of this set, we decided to narrow the range.
Besides, we set the parameter α = 5 as it is suggested by [5].

RLP, FSV, FS-PCF and FS-MPCF methods are implemented by using [10] tool and Python program-
ming language [21]. All the reported results of these methods are performed on a computer with pro-
cessor 3.5 GHz and 16 GB of RAM. In addition, stratified tenfold cross-validation technique is utilized
from the scikit-learn machine learning package [20].

The results for test and train accuracies, obtained by these methods are presented in Table 2. Bold
numbers refer to the best predictive accuracy of each row. As can be seen from the results presented
in Table 2, the FS-PCF and FS-MPCF algorithms achieve the best test accuracy in four of the six used
data sets. Their results are also acceptable in comparison with other algorithms for all data sets. Both
versions of the proposed algorithms overcome the problem of overfitting, when we compare with the
results obtained using PCF algorithm [9].

Test set accuracy results on relatively large scale data sets using different classification algorithms are
presented in Table 3. The results of all classifiers except the FS-PCF are gathered from the article [18].
We tried to choose different types of machine learning algorithms such as: a probability based classifier
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Table 1. Description of data sets

Data sets Train/test No. of No. of No. of
features classes samples

BUPA liver Tenfold 6 2 345
WBCD Tenfold 9 2 683
WBCP Tenfold 32 2 194
Ionosphere Tenfold 34 2 351
Cleveland heart Tenfold 13 2 297
Pima diabetes Tenfold 8 2 768

Spambase (SB) 3682/919 57 2 4601
Landsat satellite 4435/2000 36 6 6435
image (LSI)
DNA 2000/1186 180 3 3186
Isolet (ISO) 6238/1559 617 26 7797
Optical recognition of 3823/1797 64 10 5620
handwritten digits (HD)

Table 2. Tenfold cross-validation results obtained using the proposed feature selec-
tion algorithms and the other algorithms (average training accuracy [%], average test
accuracy [%]).

RLP FSV FS-MPCF FS-PCF
Data sets Train Test Train Test Train Test Train Test
1 BUPA Liver 68.5 66.4 ± 5.61 66.6 64.6 ± 5.29 81.2 69.0 ± 6.73 81.2 68.4 ± 4
2 WBCD 97.5 97.2 ± 1.90 97.2 96.2 ± 2.68 100 97.5 ± 4.11 99.7 97.1 ± 2
3 WBCP 89.4 77.5 ± 8.91 69.4 67.9 ± 8.99 89.5 81.1 ± 5.25 85.2 80.9 ± 4
4 Ionosphere 94.8 87.3 ± 7.28 86.5 83.5 ± 4.50 93.0 92.6 ± 6.36 93.3 92.9 ± 6
5 Cleveland Heart 85.1 82.5 ± 5.95 83.2 80.2 ± 6.36 92.4 80.7 ± 6.11 91.8 80.8 ± 5
6 Pima Diabetes 76.6 75.5 ± 5.13 76.5 75.7 ± 3.56 80.8 73.4 ± 4.96 81.4 74.2 ± 4

Naive Bayes (with kernel) (NB), a rule based classifier PART, a support vector machine classifier Linear
LibSVM, a decision tree classifier J48 and Logistic Regression (Logistic). Weighting parametersL andC
are determined on relatively large scale data sets for the FS-PCF algorithm by applying the grid search
technique in the same set P with moderate sized data sets. The results of other classifiers are reported
applying WEKA with the default parameter values in the relevant study [18].

Based on the results presented in Table 3, we can conclude that, the FS-PCF algorithm achieved
the best predictive accuracy on Landsat Satellite Image data set than all other classifiers compared.
Moreover, the test accuracies of the FS-PCF algorithm on Spambase and DNA data sets are close to the
results of classifiers that achieved the best accuracy.
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Table 3. Test set accuracies obtained using different classifiers for large scale data sets.

Data sets SB LSI DNA ISO OD
Classifiers
NB (kernel) 76.17 82.10 93.34 84.22 90.32
PART 91.40 85.25 91.06 82.81 89.54
LibSVM (LIN) 90.97 85.05 93.09 96.02 96.55
J48 92.93 85.35 92.50 83.45 85.75
Logistic 92.06 83.75 88.36 - 92.21
FS-PCF 92.06 90.50 93.17 90.19 92.49

3.1. Finiteness of the number of iterations, and the number of selected features. This subsec-
tion presents the computational results obtained on 6moderate sized data sets, which are related to the
number of iterations performed in Step 2 of the FS-PCF algorithm, and the average number of features
selected during these iterations. The convergence of the Successive Linear Approximation Algorithm
used in Step 2 of the FS-PCF algorithm, has been emphasized in section 2.4. The computational results
showed that, Step 2 terminates in 2 to 5 iterations for all test problems used. Table 4 summarizes the
average number of iterations performed in Step 2, and the average number original problem features
selected by the classifiers generated by the algorithm. All numbers presented are average numbers over
10−folds. It is remarkable that all the features were suppressed by the algorithm for the ”Ionosphere”
data set.

We have also collected the obtained results for every-fold and every PCF generated (for every itera-
tion of the outer loop), related to WBCP data set in Table 5.

Table 4. Average number of iterations in the inner loop of the FS-PCF algorithm and
the average number of selected features.

Data sets Average number of iterations performed Average number of
in the inner loop features selected by the classifier

1 BUPA Liver (6) 2.01 5.97
2 WBCD (9) 4.05 0.75
3 WBCP (32) 4.31 13.10
4 Ionosphere (34) 2.00 0.00
5 Cleveland Heart (13) 2.08 12.66
6 Pima Diabetes (8) 2.81 7.84

3.2. Detailed comparison between two versions of the proposed method. It is reported in [9]
that, on some data sets, M-PCF algorithm gives better prediction accuracy than the PCF algorithm.
However, as it can be seen in Tables 4 and 5, no significant improvement is observed applying this
algorithm, except for two data sets. Note that the use of M-PCF algorithm may become more expen-
sive especially in the cases, if the data set under consideration contains a huge number of samples.
Because the implementation of this algorithm requires to perform the vertex evaluation procedure, by
solving the problem (2.18)-(2.19) for every sample of the set, in order to determine the element al with
maximum performance. Instead, the PCF algorithm chooses this element randomly. Since, the mod-
ified procedure requires dramatically more training time without any guarantee on the improvement
of other performance metrics, we can conclude that it may be not reasonable to apply the modified
procedure for data sets with huge number of samples.
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Table 5. The number of iterations performed in the inner loop and the number of
selected features for every fold obtained on WBCP data set.

1. PCF 2. PCF 3. PCF 4. PCF 5. PCF 6. PCF
Folds Iter Features Iter Features Iter Features Iter Features Iter Features Iter Features
1. Fold 4 17 4 17 4 17 6 9 3 5 - -
2. Fold 4 15 4 15 4 17 6 16 2 0 - -
3. Fold 4 19 4 16 5 18 3 14 4 2 - -
4. Fold 5 13 4 14 4 17 7 15 5 8 3 4
5. Fold 5 16 6 17 6 19 4 17 4 6 3 3
6. Fold 3 17 4 16 4 16 3 14 4 4 2 0
7. Fold 5 15 4 20 4 15 8 14 3 4 - -
8. Fold 7 19 4 17 4 17 8 9 3 3 - -
9. Fold 4 17 3 16 4 18 5 15 2 1 - -
10. Fold 4 19 3 18 4 20 4 17 8 4 - -

Table 6. Average tenfold training accuracy [%], average tenfold test accuracy [%]

FS-MPCF FS-PCF
Training Test Training Test

Data sets accuracy accuracy accuracy accuracy
1 BUPA Liver 81.19 69.00 81.19 68.40
2 WBCD 100.00 97.52 99.70 97.09
3 WBCP 89.46 81.12 85.23 80.93
4 Ionosphere 93.00 92.58 93.32 92.85
5 Cleveland Heart 92.39 80.74 91.81 80.76
6 Pima Diabetes 80.84 73.44 81.40 74.20

Table 7. Training times and average number of PCF generated

FS-MPCF FS-PCF
Training Average number Training Average number

Data sets time (sec) of PCFs generated time (sec) of PCFs generated
1 BUPA Liver 22.41 111 6.00 154
2 WBCD 109.41 40 4.68 39
3 WBCP 32.73 6 3.16 8
4 Ionosphere 109.47 200 34.73 201
5 Cleveland Heart 22.04 34 3.67 61
6 Pima Diabetes 146.73 191 75.19 338

4. Conclusion

The paper presents a new feature selection method which is based on the combination of polyhedral
conic functions algorithm with feature selection concave approach. The new method uses polyhe-
dral conic surfaces, instead of hyperplanes used in FSV approach. The modified PCF algorithm is also
adapted to the proposedmethod with a simple preliminary step. It is shown that the newmethod allows
to diminish the problem of overfitting, which is characteristic for the PCF algorithm, and increases the
generalization performance. Classifiers obtained by the new methods exhibit feature suppression and
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have better test accuracies on four from six moderate sized test problems, and on one from six relatively
large scale data sets.

Future work may include further analysis of the benefits of separation, using polyhedral conic sur-
faces.
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