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Abstract. From the first definitions of lower and upper type set order relations on the power set of
topological vector space introduced by Kuroiwa et al. in the end of the 20th century, research on set
optimization problem has developed over the last 20 years. By the definitions of equivalent classes with
respect to the above set relations and certain hull operations, Hamel et al. defined spaces of sets which
enjoy lattice structure. They called the above one complete lattice approach to set optimization. They also
pointed out that the subset or supset inclusions appears as a partial order. In this paper, we derive weak
duality theorems in the framework of set optimization problem with lattice structure, which are based on
the observation that a dual optimization problem is set-valued. In order to derive strong duality theorems,
we employ a nonlinear scalarizing technique for sets with lattice structure. Introducing certain family of
sets, we obtain representation results in set optimization problem. The above approach allows us to derive
strong duality statements. Applications to uncertain multi-objective optimization problem of the results
are also given.
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1. Introduction

From the first definitions of lower and upper type set order relations on the power set of topological
vector space introduced by Kuroiwa et al.[27, 28] in the end of the 20th century, research on set op-
timization problem has developed over the last 20 years. By the definitions of equivalent classes with
respect to the above set relations and certain hull operations, Hamel et al.[18] defined spaces of sets
which enjoy lattice structure. They called the above one complete lattice approach to set optimization.
They also pointed out that the subset or supset inclusions appears as a partial order. In this paper, we
introduce new concepts of complete lattice optimization problem.

We consider in this paper generalizing a conjugate theory to multi-objective case. Hamel[20] stated
in [20] that “looking into the references, for example [9], it should become clear that this can not be
achieved in generality using “vectorial” constructions only unless the image space satisfies restrictive
assumptions”. A similar observation can be seen in [25, 26]. To tackle this problem, Hamel[20] gave
appropriate definitions of convexity, closedness and properness for set-valued map with lattice struc-
ture and proves that every function having these properties is the pointwise supremum of its suitably
defined set-valued affine minorants. Based on this result, he introduced a notion of set-valued con-
vex conjugate of a function in such a way that the classical conjugation pattern of convex analysis is
essentially reproduced, including a famous Fenchel-Moreau theorem, see also [19].

In this paper, we derive weak duality theorems in the framework of set optimization problem with
lattice structure, which are based on the observation that a dual optimization problem is set-valued (see
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[25, 26, 31, 33]). In order to derive strong duality theorems, we employ a nonlinear scalarizing technique
for sets with lattice structure. Introducing certain family of sets, we obtain representation results in
set optimization problem. The above approach allows us to derive strong duality statements than [2].
This paper is organized as follows. In Section 2, preliminaries and fundamental concepts of vector
optimization are provided. In Section 3, we introduce set optimization problem with complete lattice
structure. In Section 4, we introduce nonlinear scalarization techniques for sets with lattice structure.
Then inherited properties of continuity and convexity for set-valued map and representation property
are provided. Section 5 is the main results. Applications to robust multi-objective optimization problem
are given in Section 6.

2. Preliminaries

We first recall some notations, definitions and well-known results, which will be used in this paper.
Let Rn be n-dimensional Euclidean space,

Rn
+ := {x = (x1, x2, . . . , xn) ∈ Rn | x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0}

be its nonnegative orthant and 0 be the origin of Rn, respectively.
For a setA ⊂ Rn, int(A), cl(A), cor(A) and conv(A) denote the topological interior, the topological

closure, algebraic interior and convex hull of A, respectively. The symbol P(Rn) denotes the family of
nonempty subsets of Rn including the empty set ∅ and V denotes the family of nonempty subsets of
Rn. The symbol L(X,Rn) denotes the set of linear continuous mappings from X to Rn. The sum of
two sets V1, V2 ∈ V and the product of α ∈ R and V ∈ V are defined by

(OP): V1 + V2 := {v1 + v2 |v1 ∈ V1, v2 ∈ V2 }, αV := {αv |v ∈ V }.
In this paper, we assume that C ⊂ Rn is a solid pointed closed convex cone, that is, intC ̸= ∅, C ∩
(−C) = {0}, clC = C , C + C ⊂ C and t · C ⊂ C for all t ∈ [0,∞). For a, b ∈ Rn and a solid convex
cone C ⊂ Rn, we define

a ≤C b by b− a ∈ C a ≤intC b by b− a ∈ int(C).

Proposition 2.1. For x ∈ Rn and y ∈ Rn, the following statements hold:
(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Rn,

(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is antisymmetric and hence a partial

order.

We next introduce the concept of minimal elements in vector optimization problem, which are also
known as Edgeworth-Pareto-minimal or efficient elements.

Definition 2.2 (Optimality notions in vector optimization [13]). Let Z denote a real vector space that
is pre-ordered by some convex cone C ⊂ Z and let A denote some nonempty subset of Z . We also
suppose that cor(C) ̸= ∅.

• An element z̄ ∈ A is called a minimal element of the set A, if
A ∩ (z̄ − C) ⊂ {z̄}+ C.

If C is pointed, then the above inclusions can be replaced by
A ∩ (z̄ − C) = {z̄}.

• An element z̄ ∈ A is called a weakly minimal element of the set A, if
A ∩ (z̄ − cor(C)) = ∅.

Lemma 2.3 ([13]). Let C have a nonempty algebraic interior and C ̸= Z . Then every minimal element
of the set A is also a weakly minimal element of the set A.
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3. Set Optimization With Complete Lattice Structure

Definition 3.1 (Kuroiwa-Tanaka-Ha [28]). For A, B ∈ V and a solid closed convex cone C ⊂ Rn, we
define

• (Lower type) A ≤l
C B by B ⊂ A+ C ;

• (Upper type) A ≤u
C B by A ⊂ B − C .

Proposition 3.2 (see also [2, 5, 18]). For A, B, D ∈ V and α ≥ 0, the following statements hold.
(i) ≤l

C and ≤u
C are reflexive and transitive.

(ii) A ≤l
C B ⇐⇒ −B ≤u

C −A ⇐⇒ B ≤l
−C −A.

(iii) A ≤l
C B ⇐⇒ B + C ⊂ A+ C and A ≤u

C B ⇐⇒ A− C ⊂ B − C .
(iv) A ≤l

C B andA ≤u
C B are not comparable, that is,A ≤l

C B does not implyA ≤u
C B andA ≤u

C B

does not imply A ≤l
C B.

(v) A ≤l
C B implies A+D ≤l

C B +D and A ≤u
C B implies A+D ≤u

C B +D.
(vi) A ≤l

C B implies αA ≤l
C αB and A ≤u

C B implies αA ≤u
C αB.

In this section, we introduce the concept of lattice which is an abstract structure studied in the
mathematical subdisciplines of order theory and abstract algebra.

3.1. Set optimization with complete lattice structure. Let P be a nonempty partially ordered set
and x, y ∈ P . We write x ∨ y (read as ‘x join y’) in place of sup{x, y} when it exists and x ∧ y (read
as ‘x meet y’) in place of inf{x, y} when it exists. Similarly, we write

∨
P S (the ‘join of S’) and

∧
P S

(the ‘meet of S’) instead of supS and inf S, when these exist.

Definition 3.3 (Lattice, complete lattice [11]). Let P be a nonempty partially ordered set.
(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called a lattice.

(ii) If
∨
S and

∧
S exist for all S ⊆ P , then P is called a complete lattice.

Let L be a lattice. Then ∨ and ∧ satisfy associative laws, commutative laws, idempotency laws and
absorption laws.

Next, we consider complete lattice-valued optimization problem on the power set of Rn. We recall
that the infimum of a subset V ⊆W of a partially ordered set (W,⪯) is an element w̄ ∈W satisfying
w̄ ⪯ v for all v ∈ V and w ⪯ w̄ whenever w ⪯ v for all v ∈ V . This means that the infimum is the
greatest lower bound of V inW . The infimum of V is denoted by inf V . Likewise, the supremum supV
is defined as the least upper bound of V (see also [18]). The property (iii) in Proposition 3.2 allows to
define the following set

L := {A ∈ P(Rn) |A = A+ C }, U := {A ∈ P(Rn) |A = A− C }.
We can confirm that (L,⊇) and (U ,⊆) are partially ordered set (that is, the above order relations

satisfy the antisymmetric property).

Proposition 3.4 ([18]). The pair (L,⊇) is a complete lattice. Moreover, for a subsetA ⊆ L, the infimum
and supremum of A are given by

inf A =
⋃
A∈A

A, supA =
⋂
A∈A

A

where it is understood that inf A = ∅ and supA = Rn whenever A = ∅. The greatest (top) element of L
with respect to ⊇ is ∅, the least (bottom) element is Rn.

By the definition of (L,⊇) and (U ,⊆), we obtain the following property.

Proposition 3.5. The following statement holds.
(⋆): A ⊃ B for any A,B ∈ L ⇐⇒ −A ⊃ −B for any −A,−B ∈ U .
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Proposition 3.6 ([18]). The following statements hold.
(i) For A,B,D,E ∈ L, A ⊇ B, D ⊇ E implies A+D ⊇ B + E.

(ii) For A,B ∈ L, A ⊇ B, s ≥ 0 implies sA ⊇ sB.
(iii) A ⊆ L, B ∈ L implies inf(A+B) = (inf A) +B and

A ⊆ L, B ∈ L implies sup(A+B) ⊇ (supA) +B,
where A+B = {A+B |A ∈ V }.

Inspired by [21] and [29], we introduce the following new concepts.

Definition 3.7 ([1]). It is said that A ∈ L (resp. B ∈ U ) is
(i) L-proper (resp. U-proper) if A ̸= Rn (resp. B ̸= Rn).

(ii) L-closed (resp. U-closed) if A (resp. B) is a closed set,
(iii) L-bounded (resp. U-bounded) if for each neighborhood U1 (resp. U2) of zero in Rn

U1 = U1 + C (resp. U2 = U2 − C),

there is some positive number t > 0 such that A ⊂ tU1 (resp. B ⊂ tU2),
(iv) L-compact (resp. U-compact) if any cover of A the form

{Uα| Uα are open and Uα + C = Uα}

(resp. {Uα| Uα are open and Uα − C = Uα})
admits a finite subcover,

(v) L-convex (resp. U-convex) if A (resp. B) is a convex set.
The symbol LC denotes the family of L-proper subsets of Y and U−C denotes the family of U-proper
subsets of Y , respectively.

Remark 3.8. We first note the following relationships:
(i) Every L-compact set is L-closed and L-bounded.

(ii) Every U-compact set is U-closed and U-bounded.

We also note that compactness in ordered space is an extension of topological compactness under a
certain situation (see [1]). We conclude this subsection by introducing the solution concept in complete
lattice-valued optimization problem. We set

cl(L) := {A ∈ P(Rn) |A = cl(A+ C)}, cl(U) := {B ∈ P(Rn) |B = cl(B − C)},

clconv(L) := {A ∈ P(Rn) |A = clconv(A+ C)},
clconv(U) := {B ∈ P(Rn) |B = clconv(B − C)}.

Definition 3.9 (see also [18]). Let A ⊆ cl(L) or A ⊆ clconv(L). An element Ā ∈ A is called l-minimal
for A if it satisfies

A ∈ A, A ⊇ Ā =⇒ A = Ā.

Similarly, an element Ā ∈ A is called l-maximal for A if it satisfies

A ∈ A, A ⊆ Ā =⇒ A = Ā.

The family of all l-minimal elements and l-maximal elements of A are denoted by Min(A;L) and
Max(A;L), respectively. Let B ⊆ cl(U) or B ⊆ clconv(U). An element B̄ ∈ B is called u-minimal for
B if it satisfies

B ∈ B, B ⊆ B̄ =⇒ B = B̄.

Similarly, an element B̄ ∈ B is called u-maximal for B if it satisfies

B ∈ B, B ⊇ B̄ =⇒ B = B̄.
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The family of all u-minimal elements and u-maximal elements of B are denoted by Min(B;U) and
Max(B;U), respectively.

3.2. Uncertainmulti-objective optimizationproblem. We consider introducing robustness to multi-
objective optimization problems. To define an uncertain multi-objective optimization problem, we
adapt the idea of [7, 8]. We assume that uncertainties in the problem formulation are given as sce-
narios from a known uncertainty set R ⊆ Rm. We also assume f : X ×R → Rℓ, that is, the scenarios
in R influence the value of f . Moreover, we assume that the feasible set X is not due to uncertainties
and remains unchanged in the different scenarios.

Definition 3.10 ([24]). A robust multi-objective optimization problem

(RMOP) P(R) := (P(ξ), ξ ∈ R)

is defined as the family of parametrized problems

P(ξ) :

{
min f(x, ξ)

subject to x ∈ X ,

where f : X ×R → Rℓ and X ⊆ Rn.

We recall the minimality notions of uncertain multi-objective optimization problem.

Definition 3.11 ([12, 23]). For a robust multi-objective optimization problem P(R), a feasible solution
x0 ∈ X is called

(a): robust strictly efficient (set-based minimax robust efficient) if there is no x ∈ X \ {x0} such
that

∀ξ ∈ R,∃ξ′ ∈ R : f(x, ξ) ≤Rℓ
+
f(x0, ξ

′),

(b): robust efficient if there is no x ∈ X \ {x0} such that

∀ξ ∈ R,∃ξ′ ∈ R : f(x, ξ) ≤Rℓ
+
f(x0, ξ

′) and

∃ξ̄ ∈ R such that f(x0, ξ̄) ̸≤Rℓ
+
f(x, ξ), ∀ξ ∈ R,

(c): lower set less ordered efficient if there is no x′ ∈ X \ {x̄} such that

fR(x0) ⊆ fR(x
′) + Rℓ

+.

We consider the map of achievable objective values F : X → 2R
k defined by

F (x) := {f(x, ξ) | ξ ∈ R}, ∀x ∈ X .

Then, we can easily see that x0 ∈ X is robust strictly efficient if and only if

∀x ∈ X \ {x0}, F (x) ̸≤u
Rℓ
+
F (x0).

Moreover, x0 ∈ X is robust efficient if and only if F (x0) is upper type minimal element of ∪x∈XF (x),
that is,

x ∈ X , F (x) ≤u
Rℓ
+
F (x0) =⇒ F (x0) ≤u

Rℓ
+
F (x).

In [24], they explained that the concept of set-based minimax robust efficiency optimizes the worst
case of a given solution. On the other hand, lower set less ordered efficiency optimizes the best case of
a given solution. Therefore, Definition 3.11(c) is suitable for a risk affine decision maker who wants to
maximize the best possible outcome. The above fact shows that there are strong relationships between
set optimization problem and uncertain multi-objective optimization problem (see also [22]). We define

(⋄) L := {V ⊂ R|f(V ) = f(V ) + Rℓ
+}, U := {V ⊂ R|f(V ) = f(V )− Rℓ

+},
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where f(V ) :=
⋃

v∈V {f(v)}.
SettingP(L) := (P(ξ), ξ ∈ L) andP(U) := (P(ξ), ξ ∈ U), we can define robustL-type andU-type

multi-objective optimization problem in a similar way as Definition 3.10. Combining definition 3.9, 3.11
and [34], we introduce the following new concepts.

Definition 3.12. Let X ⊆ Rn, fL : X × L → Rℓ and gU : X × U → Rℓ. Given an uncertain
multi-objective optimization problem P(U) and P(L), a feasible solution x̄ ∈ X is called

(a): set-based minimax robust efficient if there is no x′ ∈ X \ {x̄} such that

gU (x
′) ⊆ gU (x̄),

(b): lower set less ordered efficient if there is no x′ ∈ X \ {x̄} such that

fL(x̄) ⊆ fL(x
′).

4. Nonlinear Scalarization For Sets With Lattice Structure

In 1980s, Gerstewitz [14] introduced a nonlinear scalarizing function for deriving separation theo-
rems for nonconvex sets and scalarization methods in vector optimization. We first recall the following
concepts.

Definition 4.1 (Scalarization directions of sets [6]). Let A be a nonempty subset in a real vector space
Y . A vector k ∈ Y \ {0} is called a scalarization direction of A if the following condition hold:

(a): ∀t ≥ 0, A+ tk ⊆ A, and
(b): ∀y ∈ Y , ∃t ∈ R, y + tk ̸∈ A.

The set of all scalarization direction of A is denoted by sd(A).

We remark that if A = C is a convex cone, then sd(C) = C \ (−C).

Definition 4.2 (Nonlinear scalarization functionals [6, 15, 16, 30]). LetA be a nonempty subset in a real
vector space Y and k ∈ sd(A) be a scalarization direction of A. The functional φA,k : Y → [−∞,∞]
defined by

φA,k(y) = inf{t ∈ R |y ∈ A+ tk}
with inf ∅ = ∞ is called Gerstewitz’s nonlinear (separating) scalarization functional generated by the
set A and the scalarization direction k.

The readers can check a short history of Gerstewitz’s scalarizing functions in Section 4.15 of [30].
In this paper, we simply discuss that C ⊂ Rn a solid closed convex cone. Moreover, the scalarizing
function φA,k has a dual form. Agreeing sup ∅ = −∞, we define ψA,k : Y → [−∞,∞]

ψA,k(y) = sup{t ∈ R |y ∈ −A+ tk}
(
φA,k(y) = −ψA,k(−y)

)
.

From the 2010s, many researchers discussed generalizing Gerstewitz’s scalarization functionals to
set-valued version: for more details, see [2, 5, 17] and their references therein. Let k0 ∈ intC . Agreeing
inf ∅ = ∞ and sup ∅ = −∞, we defined hlinf(·; k0), huinf(·; k0), hlsup(·; k0), husup(·; k0) : V → [−∞,∞]
by

hlinf(V ; k0) = inf{t ∈ R
∣∣∣V ≤l

C {tk0}} = inf{t ∈ R
∣∣tk0 ∈ V + C },

huinf(V ; k0) = inf{t ∈ R
∣∣V ≤u

C {tk0}} = inf{t ∈ R
∣∣V ⊂ tk0 − C },

hlsup(V ; k0) = sup{t ∈ R
∣∣∣{tk0} ≤l

C V } = sup{t ∈ R
∣∣V ⊂ tk0 + C },

husup(V ; k0) = sup{t ∈ R
∣∣{tk0} ≤u

C V } = sup{t ∈ R
∣∣tk0 ∈ V − C },

The functions hlinf(·; k0), huinf(·; k0), hlsup(·; k0) and husup(·; k0) play the role of utility functions.
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4.1. Nonlinear scalarization for sets with lattice structure. We consider nonlinear scalarizing
functions in complete lattices. Replacing V ∈ V with V ∈ L or V ∈ U , that is, hlinf(·; k0), hlsup(·; k0) :
L → [−∞,∞] and huinf(·; k0), husup(·; k0) : U → [−∞,∞], we obtain the following form:

hlinf(V ; k0) := inf{t ∈ R
∣∣tk0 ∈ V },

huinf(V ; k0) := inf{t ∈ R
∣∣V ⊂ tk0 − C },

hlsup(V ; k0) := sup{t ∈ R
∣∣V ⊂ tk0 + C },

husup(V ; k0) := sup{t ∈ R
∣∣tk0 ∈ V }.

We can confirm that the functions hlinf and husup are very similar to Minkowski functional.

Proposition 4.3 ([2, 5]). The following statements hold:

hlsup(V ; k0) = −huinf(−V ; k0) and husup(V ; k0) = −hlinf(−V ; k0).

Definition 4.4. We say that the function
(i): f1 : L → [−∞,∞] is L-increasing if V1 ⊃ V2 implies f1(V1) ≤ f1(V2),
(ii): f2 : cl(L) → [−∞,∞] is strictly L-increasing if int(V1) ⊃ V2 implies f2(V1) < f2(V2),
(iii): g1 : U → [−∞,∞] is U -increasing if V1 ⊂ V2 implies g1(V1) ≤ g1(V2),
(iv): g2 : cl(U) → [−∞,∞] is strictly U -increasing if V1 ⊂ int(V2) implies g2(V1) < g2(V2).

Replacing V ∈ VC with V ∈ LC and using [4], we obtained the following properties.

Lemma 4.5 (l-infimum type : see [1]). Let k0 ∈ intC . The function hlinf(·; k0) : LC → (−∞,∞] has
the following properties:

(i): hlinf(V ; k0) ≤ t ⇐⇒ tk0 ∈ cl(V );
(ii): hlinf(·; k0) is L-increasing;
(iii): hlinf(V + λk0; k0) = hlinf(V ; k0) + λ for every λ ∈ R;
(iv): hlinf(·; k0) is sublinear;
(v): hlinf(·; k0) is bounded from below;
(vi): hlinf(V ; k0) < t ⇐⇒ tk0 ∈ int(V );
(vii): hlinf(·; k0) is strictly L-increasing.

We will prove the following new property:
(v’): If k0 ∈ intC and V ∈ LC ∩ U is U-bounded then hlinf(·; k0) achieves a real value.

Proof. Since V ∈ LC ∩U is U-bounded, for the neighborhood of zero U = k0− intC there exists t ∈ R
such that

V ⊂ t(k0 − intC)− C

and hence
0 ∈ V − V ⊂ tk0 − V − intC.

Then we obtain
tk0 ∈ V + intC ⊂ V + C = V,

that is, hlinf(V ; k0) ≤ t.
□

The proofs of the following results are similar to Lemma 3.4 in [4], however, we give their proofs
here for the sake of completeness and the reader’s convenience.

Lemma 4.6 (u-infimum type). Let k0 ∈ intC . The function huinf(·; k0) : U → (−∞,∞] has the
following properties:

(i) huinf(V ; k0) ≤ t ⇐⇒ V ⊂ tk0 − C ;
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(ii) huinf(·; k0) is U-increasing;
(iii) huinf(V + λk0; k0) = huinf(V ; k0) + λ for every λ ∈ R;
(iv) huinf(·; k0) is sublinear;
(v) huinf(V ; k0) < t =⇒ V ⊂ tk0 − intC .

Moreover, if k0 ∈ intC and V is U-bounded then huinf has the following property:
(vi) huinf achieves a real value.

Furthermore, if k0 ∈ intC and V is U-compact then huinf(·; k0) has the following properties:
(vii) V ⊂ tk0 − intC =⇒ huinf(V ; k0) < t;

(viii) huinf(·; k0) is strictly U-increasing.

Proof. (i) We define
Λu(V ) := {t ∈ R

∣∣V ⊂ tk0 − C }.
We assume huinf(V ; k0) ≤ t and let t ∈ R be fixed. Then by the definitions of huinf and Λu being of
epigraphical type, we have

v −
(
t+

1

n

)
k0 ∈ −C

for all v ∈ V and n ∈ N. Taking the limit when n→ ∞, we obtain

v − tk0 ∈ −clC = −C

for all v ∈ V , that is, V ⊂ tk0 − C . The converse is clear from the definition of huinf .
(ii) Let V1, V2 ∈ U be such that V1 ⊂ V2. If huinf(V2; k0) = ∞, we have that condition (ii) clearly

holds. Taking huinf(V2; k0) ∈ R, we obtain

V2 ⊂ huinf(V2; k
0)k0 − C

and hence
V1 ⊂ V2 ⊂ huinf(V2; k

0)k0 − C

that is, huinf(V1; k0) ≤ huinf(V2; k
0).

(iii) and (iv) are similar as Lemma 4.5.
(v) Let huinf(V ; k0) < t. Then there exists t̂ ∈ R such that huinf(V ; k0) ≤ t̂ < t. By using (i), we have

V ⊂ t̂k0 − C = tk0 − (t− t̂)k0 − C ⊂ tk0 − intC.

(vi) First, we show huinf(V ; k0) > −∞ for V ∈ U . Indeed, let V ⊂ tk0 − C for all t ∈ R. Taking
t = −n, we have y ∈ −nk0 − C for all y ∈ V and n ∈ N. Hence, we have

y

n
+ k0 ∈ −C.

Taking the limit when n→ ∞, we obtain k0 ∈ −C , which is a contradiction.
Since V ∈ U is U-bounded and k0 ∈ intC , for the neighborhood of zero U = k0 − intC there exists

s > 0 such that V ⊂ s(k0 − intC)− C and hence

V ⊂ sk0 − (intC + C) ⊂ sk0 − C.

that is, huinf(V ; k0) ≤ s <∞.
(vii) Let V ⊂ tk0 − intC . For k0 ∈ intC , it is known that

intC =
⋃
ε>0

(
(εk0 + intC) + C

)
.

Therefore, we have

V ⊂ tk0 − intC = tk0 −
⋃
ε>0

(εk0 + intC + C) =
⋃
ε>0

(
{(t− ε)k0 − intC} − C

)
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and {(t − ε)k0 − intC − C}ε>0 is an open cover of V . Since V ∈ U is U-compact, we can find
ε1, ε2, · · · , εm > 0 such that

V ⊂
m⋃
i=1

(
(t− εi)k

0 − intC − C
)
= (t− ε0)k

0 − intC ⊂ (t− ε0)k
0 − C

where ε0 := min{εi|i = 1, 2 · · ·m} > 0. Then we have V ⊂ (t− ε0)k
0 − C and therefore

huinf(V ; k0) ≤ t− ε0 < t.

(viii) In a similar way as (ii) by using (v) and (vii) instead of (i), remarking intC + C = intC , we
obtain the conclusion. □

Using Proposition 4.3, we obtain the following properties.

Lemma 4.7 (l-supremum type). Let k0 ∈ intC . The function hlsup(·; k0) : L → [−∞,∞) has the
following properties:

(i) hlsup(V ; k0) ≥ t ⇐⇒ V ⊂ tk0 + C ;
(ii) hlsup(·; k0) is ≤l

C-increasing;
(iii) hlsup(V + λk0; k0) = hlsup(V ; k0) + λ for every λ ∈ R;
(iv) hlsup(V ; k0) is super-additive and positively homogeneous (that is, for V1, V2 ∈ V and α ≥ 0,

hlsup(V1 + V2; k
0) ≥ hlsup(V1; k

0) + hlsup(V2; k
0) and hlsup(αV1; k

0) = αhlsup(V1; k
0));

(v) hlsup(V ; k0) > t =⇒ V ⊂ tk0 + intC .
Moreover, if k0 ∈ intC and V is L-bounded then hlsup has the following property:

(vi) hlsup(·; k0) achieves a real value.
Furthermore, if k0 ∈ intC and V is L-compact then hlsup(·; k0) has the following properties:

(vii) V ⊂ tk0 + intC =⇒ hlsup(V ; k0) > t;
(viii) hlsup(·; k0) is strictly L-increasing.

Lemma 4.8 (u-supremum type). Let k0 ∈ intC . The function husup(·; k0) : U−C → [−∞,∞) has the
following properties:

(i) husup(V ; k0) ≥ t ⇐⇒ tk0 ∈ cl(V );
(ii) husup(·; k0) is U-increasing;

(iii) husup(V + λk0; k0) = husup(V ; k0) + λ for every λ ∈ R;
(iv) husup(·; k0) is super-additive and positively homogeneous;
(v) husup(·; k0) is bounded from above. Moreover, if V ∈ L ∩ U−C is L-bounded then husup(·; k0)

achieves a real value.
(vi) husup(V ; k0) > t ⇐⇒ tk0 ∈ int(V );

(vii) husup(·; k0) is strictly U-increasing.

4.2. Inherited properties of continuity and convexity for set-valued map.

Definition 4.9. Let K be a convex set in a real vector space X . Set-valued maps F : X → L and
G : X → U are said to be

(i): L-convex on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that

F (λx1 + (1− λ)x2) ⊃ λF (x1) + (1− λ)F (x2),

(ii): L-concave on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that

λF (x1) + (1− λ)F (x2) ⊃ F (λx1 + (1− λ)x2),
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(iii): U-convex on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that
G(λx1 + (1− λ)x2) ⊂ λG(x1) + (1− λ)G(x2),

(iv): U-concave on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that
λG(x1) + (1− λ)G(x2) ⊂ G(λx1 + (1− λ)x2).

Remark 4.10. The reader find that (i)–(iv) and (ii)–(iii) are the same inclusions each other, however, the
family of sets are different.

Using (ii) and (iv) of Lemma 4.5 and 4.6, we obtain the following properties.

Lemma 4.11. LetK be a convex set in a real vector space X and k0 ∈ intC .
(i): If a set-valued map F : X → L is L-convex, then hlinf(F (·); k0) is convex onK .
(ii): If a set-valued map G : X → U is U-convex, then huinf(G(·); k0) is convex onK .

Definition 4.12. Let X be a topological space. Set-valued maps F : X → L and G : X → U are said
to be

(i): L-lower semi-continuous at X if the set {x ∈ X|F (x) ⊃ V } is closed for all V ∈ L,
(ii): U-lower semi-continuous at X if the set {x ∈ X|G(x) ⊂ V } is closed for all V ∈ U .

Using (ii) of Lemma 4.5 and 4.6, we obtain the following properties.

Lemma 4.13. Let X be a topological space and k0 ∈ intC .
(i): If a set-valued map F : X → L is L-lower semi-continuous, then hlinf(F (·); k0) is lower semi-

continuous.
(ii): If a set-valued map G : X → U is U-lower semi-continuous, then huinf(G(·); k0) is lower semi-

continuous.

4.3. Representation results for sets. Let k0 ∈ intC . We define

Ltk0 := {V ∈ V
∣∣V = tk0 + C for some t ∈ R},

Usk0 := {V ∈ V
∣∣V = sk0 − C for some s ∈ R}.

It is clear by the definition that Ltk0 ⊂ L and Usk0 ⊂ U .

Lemma 4.14. Let k0 ∈ intC , V1, V2 ∈ Ltk0 and V3, V4 ∈ Usk0 . Then the following statements hold:
(1): hlinf(V1; k

0) = hlinf(V2; k
0) implies V1 = V2;

(2): huinf(V3; k
0) = huinf(V3; k

0) implies V3 = V4.

Proof. We prove the case of l-type since the proof of u-type is similar. We first consider the case of
hlinf(V1; k

0) ≤ hlinf(V2; k
0). Then, by (i) of Lemma 4.5, we have

hlinf(V2; k
0)k0 ∈ cl(V1).

Since V1, V2 ∈ Ltk0 , there exists s, t ∈ R such that
V1 = tk0 + C and V2 = sk0 + C.

Then we obtain
hlinf(sk

0 + C; k0)k0 ∈ cl(tk0 + C) = tk0 + C.

By (iii) of Lemma 4.5, we have
hlinf(sk

0 + C; k0) = hlinf(C; k
0) + s = s

and hence sk0 ∈ tk0 + C . With a similar discussion, we obtain
hlinf(V1; k

0) ≥ hlinf(V2; k
0) implies tk0 ∈ sk0 + C.
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Then we have that

sk0 + C ⊂ tk0 + C + C = tk0 + C ⊂ sk0 + C + C = sk0 + C

and hence sk0 + C = tk0 + C , that is, the desired conclusion holds. □

5. Conjugate Duality in Complete Lattice Optimization Problem

5.1. Weak duality. In a similar way to [2, 4], we give new definitions of set-valued conjugate maps
in infinite dimensional space as a natural extension of [3, 31, 32, 33].

Definition 5.1. Let X be a Hilbert space and F : X → V a set-valued map. Then the conjugate maps
of F , F ∗

l : L(X,Rn) → cl(L) and G∗
u : L(X,Rn) → cl(U), are defined by the following form

F ∗
l (T ) := Max

( ⋃
x∈X

[Tx− F (x)];L
)

,

G∗
u(T ) := Max

( ⋃
x∈X

[Tx− F (x)];U
)

.

Definition 5.2. For F ∗
l (T ) ̸= ∅ and G∗

u(T ) ̸= ∅, we define F ∗∗
ll , F

∗∗
lu : X → cl(L) and G∗∗

ul , G
∗∗
uu :

X → cl(U) by

F ∗∗
ll (x) := Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
l (T )];L

)
,

F ∗∗
lu (x) := Max

( ⋃
T∈L(X,Y )

[Tx−G∗
u(T )];L

)
,

G∗∗
ul (x) := Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
l (T )];U

)
,

G∗∗
uu(x) := Max

( ⋃
T∈L(X,Y )

[Tx−G∗
u(T )];U

)
.

Theorem 5.3. Let X be a Hilbert space, F : X → cl(L) and G : X → cl(U) be set-valued maps. Then
the biconjugates of F and G have the following properties.

(a): F ∗∗
lu (x) ⊃ F (x) for all x ∈ X .

(b): G∗∗
ul (x) ⊂ G(x) for all x ∈ X .

Proof. (a) By the definition of F ∗
u , we have for −F (x), G∗

u(T ) ∈ cl(U)

Tx− F (x) ⊂ G∗
u(T ) ∀x ∈ X, ∀T ∈ L(X,Y ),

and hence −F (x) ⊂ −Tx+G∗
u(T ). Using Proposition 3.5, we obtain

F (x) ⊂ Tx−G∗
u(T )

for any F (x),−G∗
u(T ) ∈ cl(L). By the definition of F ∗∗

lu , we obtain the conclusion.
(b) By the definition of G∗

l , we have for −G(x), F ∗
l (T ) ∈ cl(L)

F ∗
l (T ) ⊂ Tx−G(x) ∀x ∈ X, ∀T ∈ L(X,Y ).

Using Proposition 3.5, we obtain
−F ∗

l (T ) ⊂ −Tx+G(x)

for any G(x),−F ∗
l (T ) ∈ cl(U) and hence Tx − F ∗

l (T ) ⊂ G(x). By the definition of G∗∗
ul , we obtain

the conclusion. □



CONJUGATE DUALITY IN SET OPTIMIZATION WITH LATTICE STRUCTURE VIA SCALARIZATION 27

Inspired by [10], we give new definitions of conjugate and biconjugate for set-valued map with re-
spect to a direction k0 ∈ intC . The new definitions are convenient for deriving strong duality theorems
in section 5.2.

Definition 5.4. Let X be a Hilbert space, F : X → V a set-valued map and k0 ∈ intC . Then the
conjugate maps of F , F ∗

k0,l : X → cl(L) and G∗
k0,u : X → cl(U), are defined by the following form

F ∗
k0,l(x

∗) := Max
( ⋃

x∈X
[⟨x, x∗⟩k0 − F (x)];L

)
,

G∗
k0,u(x

∗) := Max
( ⋃

x∈X
[⟨x, x∗⟩k0 − F (x)];U

)
.

Definition 5.5. Let k0 ∈ intC . For F ∗
k0,l(x

∗) ̸= ∅ and G∗
k0,u(x

∗) ̸= ∅, we define F ∗∗
k0,ll, F

∗∗
k0,lu : X →

cl(L) and G∗∗
k0,ul, G

∗∗
k0,uu : X → cl(U) by

F ∗∗
k0,ll(x) := Max

( ⋃
x∗∈X∗

[⟨x, x∗⟩k0 − F ∗
k0,l(x

∗)];L
)

,

F ∗∗
k0,lu(x) := Max

( ⋃
x∗∈X∗

[⟨x, x∗⟩k0 −G∗
k0,u(x

∗)];L
)

,

G∗∗
k0,ul(x) := Max

( ⋃
x∗∈X∗

[⟨x, x∗⟩k0 − F ∗
k0,l(x

∗)];U
)

,

G∗∗
k0,uu(x) := Max

( ⋃
x∗∈X∗

[⟨x, x∗⟩k0 −G∗
k0,u(x

∗)];U
)

.

In a similar way as Theorem 5.3, we obtain the following weak duality theorem.

Theorem 5.6. Let X be a Hilbert space, F : X → cl(L) and G : X → cl(U) be set-valued maps,
C ⊂ Rn a solid pointed closed convex cone and k0 ∈ intC . Then the biconjugates of F and G have the
following properties.

(a): F ∗∗
k0,lu(x) ⊃ F (x) for all x ∈ X .

(b): G∗∗
k0,ul(x) ⊂ G(x) for all x ∈ X .

5.2. Strong duality.

Theorem 5.7 (F ∗∗
k0,ul-infimum type). LetX be a Hilbert space, F : X → Ltk0∩Usk0 a U-bounded valued

map, C ⊂ Rn a solid pointed closed convex cone and k0 ∈ intC . We assume the following conditions:

(i): F is U-lower semicontinuous,
(ii): F is U-convex.

Then we have F ∗∗
k0,ul(x) = F (x) for all x ∈ X .

Proof. By (b) of Theorem 5.6 and (ii) of Lemma 4.6, we obtain
(weak duality): huinf(F

∗∗
k0,ul(x); k

0) ≤ huinf(F (x); k
0) for all x ∈ X .

By the assumption of F and (vi) of Lemma 4.6, we have huinf(F (x); k0) ∈ R. Moreover, since by the
assumption and (ii), (iii), (vi) of Lemma 4.5, we have

huinf(−F ∗
k0,l(x

∗); k0) = inf
x∈X

{−⟨x, x∗⟩+ huinf(F (x); k
0)} ∈ R

and hence
huinf(F

∗∗
k0,ul(x); k

0) = sup
x∗∈X

{⟨x, x∗⟩+ huinf(−F ∗
k0,l(x

∗); k0)} ∈ R
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for all x, x∗ ∈ X . Since F (x) ∈ Ltk0 ∩ Usk0 , there exist ŝ ∈ R such that

F (x) ⊃ ŝk0 − C and F (x) ⊂ ŝk0 − C.

Moreover, by the definition of F ∗
k0,l, we have F ∗

k0,l(x
∗) ∈ Ltk0 ∩ Usk0 . Then there exists t̂ ∈ R such

that
F ∗
k0,l(x

∗) ⊃ t̂k0 + C and F ∗
k0,l(x

∗) ⊂ t̂k0 + C.

Using the monotonicity of the scalarizing function for sets, we have

huinf(F (x); k
0) ≤ ŝ ≤ husup(F (x); k

0) = −hlinf(−F (x); k0) ∀x ∈ X,

−huinf(−F ∗
k0,l(x

∗); k0) = hlsup(F
∗
k0,l(x

∗); k0) ≤ t̂ ≤ hlinf(F
∗
k0,l(x

∗); k0) ∀x∗ ∈ X.

We suppose contrary that huinf(F ∗∗
k0,ul(z); k

0) < huinf(F (z); k
0) for some z ∈ X . We set

Epi(huinf ◦ F ) := {(x, t) ∈ X × R | huinf(F (x); k0) ≤ t}.

Then we have by the assumption and Lemma 4.11, 4.13 that Epi(huinf◦F ) is closed and convex. Moreover,
we have

(z, huinf ◦ F ∗∗
k0,ul(z)) /∈ Epi(huinf ◦ F ).

From classical Hahn-Banach theorem there exists (z∗, α) ∈ X × R such that (z∗, α) ̸= (0, 0) and

⟨z, z∗⟩+ α · huinf ◦ F ∗∗
k0,ul(z) > sup{⟨x, z∗⟩+ αt | (x, t) ∈ Epi(huinf ◦ F )}. (5.1)

It is clear that α ≤ 0. We can show α < 0 in a similar way as Theorem 4.9 in [2]. Again, following the
same line as Theorem 4.9 in [2], we obtain huinf(F ∗∗

k0,ul(x); k
0) = huinf(F (x); k

0) for all x ∈ X . Using
(2) of Lemma 4.14, we obtain the conclusion. □

Theorem 5.8 (F ∗∗
k0,lu-infimum type). LetX be a Hilbert space, F : X → Ltk0∩Usk0 a U-bounded valued

map, C ⊂ Rn a solid pointed closed convex cone and k0 ∈ intC . We assume the following conditions:
(i): F is L-lower semicontinuous,
(ii): F is L-convex.

Then we have F ∗∗
k0,lu(x) = F (x) for all x ∈ X .

6. Applications

As an application of the previous section, we consider a duality theory of uncertain multi-objective
optimization problem (see [23, 24]). We assume that uncertainties in the problem formulation are given
as scenarios from a known uncertainty set R ⊆ Rm.

We define fR : X × R → Rℓ as fR(x) := F (x). Using (⋄), Definition 5.1 and 5.2, we also define
(f∗l )L : L(X × L,Rℓ) → Rℓ and (g∗u)U : L(X × U ,Rℓ) → Rℓ

(f∗l )L := F ∗
l (T ), (g∗u)U := G∗

u(T ).

Moreover, for (f∗l )U ̸= ∅ and (g∗u)U ̸= ∅, we define (f∗∗lu )L : X × L → Rℓ and (g∗∗ul )U : X × U → Rℓ

by
(f∗∗lu )L := F ∗∗

lu (x), (g∗∗ul )U := G∗∗
ul (x).

Theorem 6.1. LetX be a Hilbert space, fL : X ×L → Rℓ and gU : X ×U → Rℓ. Then the biconjugates
of fL and gU have the following properties.

(a): (f∗∗lu )L(x) ⊃ fL(x) for all x ∈ X .
(b): (g∗∗ul )U (x) ⊂ gU (x) for all x ∈ X .

Definition 6.2. Let K be a convex set in a real vector space X . Set-valued maps fL : X × L → Rℓ

and gU : X × U → Rℓ are said to be
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(i): L-convex on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that

fL(λx1 + (1− λ)x2) ⊃ λfL(x1) + (1− λ)fL(x2),

(ii): U-convex on K if for each x1, x2 ∈ K and λ ∈ [0, 1], we have that

gU (λx1 + (1− λ)x2) ⊂ λgU (x1) + (1− λ)gU (x2).

Definition 6.3. LetX be a topological space. Set-valued maps fL : X×L → Rℓ and gU : X×U → Rℓ

are said to be
(i): L-lower semi-continuous at X if the set {x ∈ X|fL(x) ⊃ V } is closed for all V ∈ L,
(ii): U-lower semi-continuous at X if the set {x ∈ X|gU (x) ⊂ V } is closed for all V ∈ U .

Let k0 ∈ int(Rℓ
+). We define

Ltk0 := {V ⊂ R
∣∣∣f(V ) = tk0 + Rℓ

+ for some t ∈ R},

Usk0 := {V ⊂ R
∣∣∣f(V ) = sk0 − Rℓ

+ for some s ∈ R},

where f(V ) :=
⋃

v∈V {f(v)}.

Theorem 6.4. Let X be a Hilbert space and fL : X × Ltk0 ∩ Usk0 → Rℓ a U-bounded valued map. We
assume the following conditions:

(i): fL is L-lower semicontinuous,
(ii): fL is L-convex.

Then (f∗∗lu )L(x) = fL(x) for all x ∈ X .

Theorem 6.5. Let X be a Hilbert space and gU : X × Ltk0 ∩ Usk0 → Rℓ a U-bounded valued map. We
assume the following conditions:

(i): gU is U-lower semicontinuous,
(ii): gU is U-convex.

Then (g∗∗ul )U (x) = gU (x) for all x ∈ X .

Remark 6.6. Since the lower type set relation is regarded as the best case, (a) of Theorem 6.1 guarantees
the existence of a best-case lower bound for robust multi-objective optimization problems. The upper
type set relation is regarded as the worst case, (b) of Theorem 6.1 guarantees the existence of a worst-
case lower bound for robust multi-objective optimization problems. Furthermore, Theorem 6.4 and 6.5
show that for a given robust multi-objective problem, it is possible to calculate optimal values using a
biconjugate mapping.

For example, suppose that we want to travel between two specified points A and B with three
possible paths x1, x2 and x3. We are interested in a short travel time and in low costs (see example 3
in [24]). Then, (b) of Theorem 6.5 means that it is possible to calculate worst-case optimal values gU for
every scenario (for instance, festival, traffic jam, bad weather, etc.) using (g∗∗ul )U .

7. Conclusion

In this paper, we presented weak duality theorems in set optimization problem with lattice structure,
which are based on the observation that a dual optimization problem is set-valued with lattice structure.
In order to derive strong duality theorems, we employ a nonlinear scalarizing technique for sets with
lattice structure. Introducing Ltk0 and Usk0 in Section 4.3, we obtain representation results in set
optimization problem. The above approach enables us to derive statements F ∗∗

k0,lu = F and F ∗∗
k0,ul = F .

Applications to robust multi-objective optimization problem are also provided.
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A natural question arises that why the assumptions in our theorem are stronger (intC ̸= ∅, k0 ∈
intC) than Hamel’s results [19, 20]? The answer to this question is that we can probably relax the
assumptions of the scalarizing functions for sets with lattice structure, and this is a subject for future
research.
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