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Abstract. In this paper, we consider a class of stochastic inverse optimal value problems, in which the
forward problem is a linear programming problem (LP), and the data in its constraints are affected by a
random variable. The corresponding inverse optimal value problem can be reformulated as amathematical
program with stochastic linear complementarity constraints (MPSLCC). By employing the techniques of
sample average approximation (SAA), we construct a series of smooth SAA subproblems and transform
them into nonlinear programming problems by utilizing the smooth Fischer-Burmeister function for linear
complementarity constraints. In addition, we prove that the sequence of global minimizer (KKT point)
of these SAA subproblems converges with probability one (w.p.1) to a global minimizer (an S-stationary
point) of MPSLCC under mild conditions. Finally, some numerical experiments are presented to show the
availability of our method for solving the given stochastic inverse optimal value problems.
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1. Introduction

Inverse optimization is an emerging field that seeks to understand and predict the decision-making
processes underlying observed outcomes in real-world systems. Traditionally, optimization models fo-
cus on finding the best solution given a set of constraints and an objective function. In contrast, inverse
optimization aims to infer constraints or the objective function from observed solutions, providing in-
sight into the underlying decision-making processes. The genesis of systematic inquiry into inverse
problems can be traced back to the shortest path problems initially examined by Burton and Toint
[4]. Their pioneering efforts laid the groundwork for subsequent work on inverse network problems
[5, 25, 24, 2, 3, 6]. Subsequently, the literature has seen the emergence of several specialized inverse
continuous optimization models, including inverse linear programming problems [23, 22], inverse qua-
dratic programming problems [26], inverse second-order cone programming problems [27], inverse
positive semidefinite cone programming problems [16, 18, 19, 11, 12] and inverse conic programming
problems [8].

As a significant branch within the field of inverse optimization, inverse optimal value problems seek
to determine the parameters of an optimization model that makes the optimal objective value closest to
a given target value. This area has garnered substantial interest due to its wide applicability in various
domains, including transportation, healthcare, and power systems. The inverse optimal value problem
(IOVP) is defined as follows: given a linear program (LP) with modified cost coefficients, the goal is to
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adjust these coefficients such that the optimal objective value of the LP equals a specified value, which
has the following form

min
c

1

2
(Q(c)− v∗)2, s.t. c ∈ C := {c ∈ Rn : cLi ≤ ci ≤ cUi , i ∈ [n] := 1, 2, · · · , n}, (1.1)

where cL, cU ∈ Rn are respectively the lower and the upper bound of cost vectors, Q(c) and v∗ are
respectively the optimal value and the pre-specified objective value of the underline LP under the pa-
rameter c, i.e.,

min
x

cTx, s.t. Ax ≤ b,

where x ∈ Rn, A ∈ Rm×n and b ∈ Rm.
Some applications on inverse optimal value problems for combinatorial models include theminimum

spanning tree problem [9, 14, 20, 21] and the shortest paths problem [28]. For the field of continuous
optimization problems, Ahmed and Guan [1] proved that the above IOVP (1.1) under the given data
(A, b) is NP-hard and got the optimal parameter by solving a series of linear and bilinear program-
ming problems under some special assumptions. Nevertheless, when parameterizing linear programs
for practical applications, the coefficients are typically extracted from historical data or experimental
results, which carry inherent statistical characteristics. As far as we are aware, the literature lacks an
exploration of inverse optimal value problems under data uncertainty.

Assume that the data (A, b) are affected by a random variable ξ and consider the following stochastic
inverse optimal value problem (SIOVP)

min
c,x,y

1

2
(cTx− v∗)2,

s.t. cLi ≤ ci ≤ cUi , E[Ai(ξ)]
T y + ci = 0, i ∈ [n],

E[A(ξ)x− b(ξ)] ≤ 0, y ≥ 0, (E[A(ξ)x− b(ξ)])T y = 0,

(1.2)

whereAi(ξ) denotes the i-th column of coefficientmatrixA(ξ). However, it is often difficult to calculate
mathematical expectations, particularly in computing high-dimensional integrals. To tackle this issue,
an auxiliary approximate subproblem of (1.2) is constructed by using the sample average approxima-
tion (SAA). Suppose that a sample set {ξ1, · · · , ξN} of N realizations of random vector ξ is obtained,
and assume that each random vector ξi (i = 1, · · · , N) is independently identically distributed, the
corresponding SAA subproblems (SAA-SIOVP) of (1.2) are given by

min
c,x,y

1

2
(cTx− v∗)2

s.t. cLi ≤ ci ≤ cUi ,

[
1

N

N∑
k=1

Ai(ξk)

]T
y + ci = 0, i ∈ [n],

1

N

N∑
k=1

[A(ξk)x− b(ξk)] ≤ 0, y ≥ 0,

(
1

N

N∑
k=1

[A(ξk)x− b(ξk)]

)T

y = 0.

(1.3)

It is easy to see that the above SAA subproblems can be viewed as mathematical programs with linear
complementarity constraints (MPLCC).

In this study, we employ the smooth Fischer-Burmeister function to address the linear complemen-
tarity constraints in problem (1.3), thereby converting the corresponding smooth SAA subproblems
of the inverse optimal value problem into nonlinear programming problems (NLPs). Furthermore, we
demonstrate that, under mild assumptions, the sequence of global minimizers (Karush-Kuhn-Tucker
points) of these SAA subproblems converges with probability one to a global minimizer (an S-stationary
point) of the stochastic inverse optimal value problem (SIOVP) (1.2). We also present numerical exper-
iments to validate the efficacy of our approach in solving the specified stochastic inverse optimal value
problems.
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The rest of this paper is organized as follows. Section 2 outlines the necessary preliminaries con-
cerning stationary points in mathematical programs with linear complementarity constraints (MPLCC)
and the application of the smooth Fischer-Burmeister function to linear complementarity constraints
within MPLCC. Section 3 examines the relationship between the solutions of the smooth SAA sub-
problems defined as in (3.1), and those of problem (1.2), and establishes the associated convergence
results. Lastly, section 4 details the numerical experiments conducted to assess the performance of our
proposed method.

Before ending this section, we denote by z := (c, x, y) and introduce some notations as follows:

f(z) :=
1

2
(cTx− v∗)2, G(z) := y,

g1(z) := c− cL, g2(z) := c− cU ,

hi(z) := E[Ai(ξ)]
T y + ci, hNi (z) :=

[
1

N

N∑
k=1

Ai(ξk)

]T
y + ci,

H(z) := E[A(ξ)x− b(ξ)], HN (z) :=
1

N

N∑
k=1

[A(ξk)x− b(ξk)].

(1.4)

2. Preliminaries

In this section, we introduce some notions and results used in the sequel. For notional simplicity, we
rewrite problem (1.2) as

min f(z)

s.t. hi(z) = 0, i ∈ [n],

g1(z) ≥ 0, g2(z) ≤ 0,

G(z) ≥ 0, H(z) ≤ 0, G(z)TH(z) = 0,

(2.1)

where f, h, g1, g2, G,H are defined as in (1.4). Similarly, problem (1.3) can be rewritten as

min f(z)

s.t. hNi (z) = 0, i ∈ [n],

g1(z) ≥ 0, g2(z) ≤ 0,

G(z) ≥ 0, HN (z) ≤ 0, G(z)THN (z) = 0.

(2.2)

Now, we present some concepts in stationary points of (1.2) under the above model (2.1).

Definition 2.1. Let z∗ be a feasible point of problem (2.1).
(a) We say that z∗ is a W-stationary point of problem (2.1), if there exist λ∗

h ∈ Rn, λ∗
g1 ∈ Rn,

λ∗
g2 ∈ Rn, γ∗G ∈ Rm and γ∗H ∈ Rm such that

∇f(z∗) +∇h(z∗)λ∗
h +∇g1(z

∗)λ∗
g1 +∇g2(z

∗)λ∗
g2 −∇G(z∗)γ∗G +∇H(z∗)γ∗H = 0,

λ∗
g1 ≤ 0, g1(z

∗)Tλ∗
g1 = 0, λ∗

g2 ≥ 0, g2(z
∗)Tλ∗

g2 = 0,

(γ∗G)i = 0, i ∈ γ(z∗), (γ∗H)i = 0, i ∈ α(z∗),

(2.3)

where α(z∗), β(z∗) and γ(z∗) are given by

α(z∗) := {i ∈ [m] : Gi(z
∗) = 0, Hi(z

∗) < 0}; (2.4)
β(z∗) := {i ∈ [m] : Gi(z

∗) = 0, Hi(z
∗) = 0}; (2.5)

γ(z∗) := {i ∈ [m] : Gi(z
∗) > 0, Hi(z

∗) = 0}. (2.6)
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(b) We say that z∗ is a S-stationary point of problem (2.1), if there exist λ∗
h ∈ Rn, λ∗

g1 ∈ Rn,
λ∗
g2 ∈ Rn, γ∗G ∈ Rm and γ∗H ∈ Rm such that (2.3) holds and

(γ∗G)i > 0, (γ∗H)i > 0, i ∈ β(z∗).

Addressing linear complementarity constraints within the framework of mathematical programs
with linear complementarity constraints (MPLCC), as defined in (2.1), typically involves their reformu-
lation into a singular or series of equations through the application of smooth nonlinear complemen-
tarity functions. For instance, Kanzow [10] has proposed multiple smooth nonlinear complementarity
functions to assess the optimality conditions of MPLCC. In this paper, we employ the smooth Fischer-
Burmeister (FB) function in the sequel, whose definition is given by

Φµ(x, y) = x− y −


(x21 + y21 + 2µ2)

1
2

(x22 + y22 + 2µ2)
1
2

...
(x2m + y2m + 2µ2)

1
2

 , (2.7)

where x ∈ Rm
+ , y ∈ Rm

− and µ > 0. In addition, for any µ > 0, the smooth FB function Φµ(x, y)
is differentiable, ∇xΦµ(x, y) and ∇yΦµ(x, y) are two m-dimensional diagonal matrices whose entries
are respectively

1− xi

(x2i + y2i + 2µ2)
1
2

, −1− yi

(x2i + y2i + 2µ2)
1
2

, i ∈ [m]. (2.8)

3. The SAA Method and Convergence Results

In this paper, we address the stochastic model (1.2) (or (2.1)), which incorporates mathematical ex-
pectations by employing the sample average approximation (SAA) method. This approach leverages
(quasi) Monte Carlo methods to convert expectation terms into deterministic summation structures
over a specified sample set. Subsequently, we construct the corresponding subproblems as defined in
(1.3) (or (2.2)) following the SAA approach. In light of the smooth FB function (2.7), we use the following
model to approximate the problem (1.3) (or (2.2))

min f(z)

s.t. hNi (z) = 0, i ∈ [n],

g1(z) ≥ 0, g2(z) ≤ 0,

ΦµN (G(z), HN (z)) = 0,

(3.1)

where f, hN , g1, g2, G,HN are defined as in (1.4) and µN is a sequence of positive scalars that depend
on monotonically decreasing in N such that µN → 0 as N → +∞.

Next, we present a technical lemma that describes the convergence properties of constraints function
in (3.1).
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Lemma 3.1. Let zN be a feasible point of problem (3.1), if zN converges with probability one (w.p.1) to
z∗ as N → +∞, then for any i ∈ [n],

hNi (zN ) → hi(z
∗), (w.p.1)

∇ch
N
i (zN ) → ∇chi(z

∗) = ei, (w.p.1)
∇xh

N
i (zN ) → ∇xhi(z

∗) = 0, (w.p.1)
∇yh

N
i (zN ) → ∇yhi(z

∗) = E[Ai(ξ)], (w.p.1)
HN (zN ) → H(z∗), (w.p.1)
∇cH

N (zN ) → ∇cH(z∗) = 0, (w.p.1)
∇xH

N (zN ) → ∇xH(z∗) = E[A(ξ)]T , (w.p.1)
∇yH

N (zN ) → ∇yH(z∗) = 0, (w.p.1)
ΦµN (G(zN ), HN (zN )) → 2(G(z∗)−ΠRm

+
(G(z∗) +H(z∗)), (w.p.1)

where ei ∈ Rn is the i-th column of entity matrix In andΠRm
+
is the projection ontoRm

+ , i.e., v = ΠRm
+
(w)

with vi = max{wi, 0}, i ∈ [m].

Proof. It follows from the definitions of hNi ,HN , ΦµN , and [17, Lemma 2.4] that the above conclusions
hold. □

Let Ω be the feasible set of problem (1.2) (or (2.1)) and ΩN be the feasible set of problem of (3.1). In
addition, we define

f̄(z) := f(z) + IΩ(z), f̄
N (z) := f(z) + IΩN

(z). (3.2)

where f is defined as in (1.4). The epigraph of f is denoted by epif , i.e.,

epif := {(z, w) : f(z) ≤ w}.

Before establishing the convergence results, we impose the following assumption on the perturbed
coefficient matrix A(ξ) and introduce a technical lemma on the relations between (ΩN , epif̄N ) and
(Ω, epif̄).

Assumption 3.2. The perturbed coefficient matrix A(ξ) is full column rank.

Lemma 3.3. Suppose that Assumption 3.2 holds. If N → +∞, then (ΩN , epif̄N ) → (Ω, epif̄) (w.p.1).

Proof. For any z∗ ∈ lim sup
N→+∞

ΩN , there exists zN ∈ ΩN such that zN → z∗ (w.p.1) as N → +∞.

Notice that the last three constraints in problem (1.3) (or (2.2)) can be reformulated as

G(z)−ΠRm
+
(G(z) +H(z)) = 0 (3.3)

due to the characterization of ΠRm
+
. It follows from Lemma 3.1 and (3.3) that

0 = hNi (zN ) → hi(z
∗), i ∈ [n],

0 ≤ g1(zN ) → g1(z
∗),

0 ≥ g2(zN ) → g2(z
∗),

0 = ΦµN (G(zN ), HN (zN )) → 2(G(z∗)−ΠRm
+
(G(z∗) +H(z∗)),

which imply that z∗ ∈ Ω. Therefore, we have lim sup
N→+∞

ΩN ⊆ Ω (w.p.1).
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On the other hand, for any z∗ ∈ Ω, there exist u∗N∗
L
∈ R|N∗

L| and v∗N∗
U
∈ R|N∗

U | that (z∗, u∗N∗
L
, v∗N∗

U
)

is also a feasible point of the following problem

min
z,uN∗

L
,vN∗

U

f(z)

s.t. hi(z) = 0, i ∈ [n],
g1j(z) = 0, j ∈ I∗L,
g1k(z)− u2k = 0, k ∈ N∗

L,
g2p(z) = 0, p ∈ I∗U ,
g2q(z) + v2q = 0, q ∈ N∗

U ,

2(G(z)−ΠRm
+
(G(z) +H(z))) = 0,

where hi, g1i, g2i are respectively the i-th entry of hi, g1, g2 and

I∗L := {j ∈ [n] : g1j(z
∗) = 0}, N∗

L := [n] \ I∗L,
I∗U := {p ∈ [n] : g2p(z

∗) = 0}, N∗
U := [n] \ I∗U .

(3.4)

For notional simplicity, we define

(s∗h)i := hi(z
∗), i ∈ [n]; (s∗g1)j := g1j(z

∗), j ∈ I∗L; (s
∗
g1)k := g1k(z

∗)− (u∗k)
2, k ∈ N∗

L,

(s∗g2)p := g2p(z
∗), p ∈ I∗U ; (s

∗
g2)q := g2q(z

∗)− (u∗q)
2, q ∈ N∗

U ; s
∗
G := G(z∗); s∗H := H(z∗).

In light of the continuity of h, hN , g1, g2, G,HN , H , there exist (sNh )i (i ∈ [n]), (sNg1)j (j ∈ I∗L),
(sNg1)k (k ∈ N∗

L), (sNg2)p (p ∈ I∗U ), (sNg2)q (q ∈ N∗
U ), SN

G and SN
H satisfying

(sNh )i = 0, i ∈ [n]; (sNg1)j = 0, j ∈ I∗L; (s
N
g1)k = 0, k ∈ N∗

L;

(sNg2)p = 0, p ∈ I∗U ; (s
N
g2)q = 0, q ∈ N∗

U ; ΦµN (sNG , sNH) = 0
(3.5)

and (sNh , sNg1, s
N
g2, s

N
G , sNH) → (s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) as N → +∞. Next, we introduce the following

function

P(z, uN∗
L
, vN∗

U
, sh, sg1, sg2, sG, sH) =


h(z)

g̃1(z, uN∗
L
)

g̃2(z, vN∗
U
)

H(z)
G(z)

−


sh
sg1
sg2
sG
sH

 (3.6)

where g̃1(z, uN∗
L
) and g̃2(z, vN∗

U
) are given by

g̃1(z, uN∗
L
) :=

(
g1j(z)

g1k(z)− u2k

)
, j ∈ I∗L, k ∈ N∗

L, (3.7)

g̃2(z, vN∗
U
) :=

(
g2p(z)

g2q(z) + v2q

)
, p ∈ I∗U , q ∈ N∗

U . (3.8)

From (3.6), (3.7) and (3.8), we have

P(z∗, u∗N∗
L
, v∗N∗

U
, s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) = 0.

For any given perturbation pair (∆z,∆uN∗
L
,∆vN∗

U
), we set

M := J(z,uN∗
L
,vN∗

U
)P(z∗, u∗N∗

L
, v∗N∗

U
, s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H), M(∆z,∆uN∗

L
,∆vN∗

U
) = 0,
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where J(z,uN∗
L
,vN∗

U
)P(z∗, u∗N∗

L
, v∗N∗

U
, s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) denotes the partial Jacobian of P with respect

to (z, uN∗
L
, vN∗

U
) at (z∗, u∗N∗

L
, v∗N∗

U
, s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H), which implies that

∆ci + E(Ai(ξ))
T (∆y) = 0, i ∈ [n],

∆cj = 0, j ∈ I∗L,
∆ck − 2u∗k(∆uk) = 0, k ∈ N∗

L,
∆cp = 0, p ∈ I∗U ,

∆cq + 2v∗q (∆vq) = 0, q ∈ N∗
U ,

E[A(ξ)(∆x)] = 0,
∆y = 0.

where I∗L, N∗
L, I∗U and N∗

U are defined as in (3.4). It follows from these equations and Assumption 3.2
that the given perturbation pair (∆z,∆uN∗

L
,∆vN∗

U
) are all equal to zero, whichmeans that the operator

M is onto. In addition, from Clarke’s implicit function theory, there exist ϵ > 0, δ > 0 and a Lipschitz
continuous function η(·) : Bδ(s

∗
h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) → Bϵ(z

∗, u∗N∗
L
, v∗N∗

U
) with Lipschitz constant c > 0

such that
η(s∗h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) = (z∗, u∗N∗

L
, v∗N∗

U
)

and for any (sh, sg1, sg2, sG, sH) ∈ Bδ(s
∗
h, s

∗
g1, s

∗
g2, s

∗
G, s

∗
H) satisfies the following equation

P(η(sh, sg1, sg2, sG, sH), sh, sg1, sg2, sG, sH) = 0. (3.9)

When N is sufficiently large, we have

max
(z,uN∗

L
,vN∗

U
)∈Bϵ(z∗,u∗

N∗
L
,v∗

N∗
U
)
∥DN (z, uN∗

L
, vN∗

U
)− (s∗h, s

∗
g1, s

∗
g2, s

∗
H , s∗G)∥ ≤ δ′, (3.10)

where δ′ := min{δ, (2c)−1ϵ} and DN (z, uN∗
L
, vN∗

U
) is given by

DN (z, uN∗
L
, vN∗

U
) :=


h(z)− hN (z) + sNh

sNg1
sNg2

H(z)−HN (z) + sNH
sNG

 .

From the relationship (3.10) and the Lipschitz property of η, for any (z, uN∗
L
, vN∗

U
) ∈ Bϵ(z

∗, u∗N∗
L
, v∗N∗

U
),

we obtain
∥η(DN (z, uN∗

L
), vN∗

U
))− η(s∗h, s

∗
g1, s

∗
g2, s

∗
H , s∗G)∥

≤ c∥DN (z, uN∗
L
), vN∗

U
)− (s∗h, s

∗
g1, s

∗
g2, s

∗
H , s∗G)∥

≤ cδ′

<
ϵ

2
,

which shows that η(DN (·)) is a continuous function from the convex set Bϵ(z
∗, u∗N∗

L
, v∗N∗

U
) to itself. It

follows from Brouwer’s fixed point theory that there exists a fixed point
(zN , uNN∗

L
, vNN∗

U
) ∈ Bϵ(z

∗, u∗N∗
L
, v∗N∗

U
) such that η(DN (zN , uNN∗

L
, vNN∗

U
)) = DN (zN , uNN∗

L
, vNN∗

U
).

and (zN , uNN∗
L
, vNN∗

U
) → (z∗, u∗N∗

L
, v∗N∗

U
) as N → +∞. In addition, from (3.9) and (3.10) , we also obtain

that

DN (zN , uNN∗
L
), vNN∗

U
) ∈ Bϵ((s

∗
h, s

∗
g1, s

∗
g2, s

∗
H , s∗G))

and
P(η(DN (zN , uNN∗

L
, vNN∗

U
)),DN (zN , uNN∗

L
, vNN∗

U
)) = 0,
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i.e.,
h(zN )− (h(zN )− hN (zN ) + sNh ) = 0,

g1(zN )− (sNg1)j = 0, j ∈ I∗L,

g1k(zN )− (uNk )2 − (sNg1)k = 0, k ∈ N∗
L,

g2p(zN )− (sNg2)p = 0, p ∈ I∗U ,

g2q(zN ) + (vNq )2 − (sNg2)q = 0, q ∈ N∗
U ,

H(zN )− (H(zN )−HN (zN ) + sNH) = 0,
G(zN )− sNG = 0,

which show that (zN , uNN∗
L
, vNN∗

U
) is a feasible point of the following problem

min
z,uN∗

L
,vN∗

U

f(z)

s.t. hNi (z) = 0, i ∈ [n],
g1j(z) = 0, j ∈ I∗L,
g1k(z)− u2k = 0, k ∈ N∗

L,
g2p(z) = 0, p ∈ I∗U ,
g2q(z) + v2q = 0, q ∈ N∗

U ,

ΦµN (G(z), HN (z)) = 0,

where the last equation follows from (3.5). Therefore, zN ∈ ΩN . Because zN → z∗ as N → +∞, we
have z∗ ∈ lim supN→+∞ΩN . The proof of the first part of the conclusion is completed.

Now, we turn to show the second part of the conclusion. It is easy to see that problem (1.2) (or
(2.1)) and problem (3.1) are respectively equivalent tominz f̄(z) andminz f̄N (z), where f̄ and f̄N are
defined as in (3.2). It follows from [13, Theorem 7.1] and ΩN → Ω (w.p.1) that epif̄N → epif̄ (w.p.1)
as N → +∞. □

The next theorem shows that the sequence of global optimal solutions of problem (3.1) converges
with probability one (w.p.1) to a global optimal solution of problem (1.2) (or (2.1)).

Theorem 3.4. Suppose that Assumption 3.2 holds. Let zN be a global optimal solution of problem (3.1)
and zN → z∗ as N → +∞, then z∗ is a global optimal solution of problem (1.2) (or (2.1)) (w.p.1).

Proof. From Lemma 3.3, whenN → +∞, we have epif̄N → epif̄ (w.p.1). It follows from [13,Theorem
7.31] and Lemma 3.1 that

lim sup
N→+∞

argmin f̄N ⊆ argmin f̄ , (w.p.1)

which shows that z∗ is a global optimal solution of problem (1.2) (or (2.1)) (w.p.1). □

We turn to analyze the behavior of stationary points of problem (3.1). The Lagrange function of
problem (3.1) is defined as

L(z, λh, λg1, λg2, γ) := f(z) + hN (z)Tλh − g1(z)
Tλg1 + g2(z)

Tλg2 + γTΦµN (G(z), HN (z)).

(3.11)
Given a feasible point zN ∈ ΩN , we say it to be stationary point of problem (3.1) if there exist λN

h ∈ Rn,
λN
g1 ∈ Rn, λN

g2 ∈ Rn and γN ∈ Rm such that

∇zL(zN , λN
h , λN

g1, λ
N
g2, γ

N ) = 0, hN (zN ) = 0,

g1(zN ) ≥ 0, λN
g1 ≥ 0, g1(zN )TλN

g1 = 0,

g2(zN ) ≤ 0, λN
g2 ≥ 0, g2(zN )TλN

g2 = 0,

ΦµN (G(zN ), HN (zN )) = 0.

(3.12)
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Any point (zN , λN
h , λN

g1, λ
N
g2, γ

N ) satisfying the above system (3.12) is called a Karush-Kuhn-Tucker
(KKT) point of problem (3.1) and the pair (λN

h , λN
g1, λ

N
g2, γ

N )) is the Lagrangian multiplier associated
with zN .

Before ending this section, we need the following technical lemma used in the sequel.

Lemma 3.5. Suppose that Assumption 3.2 holds. Let zN be a feasible solution of problem (3.1) and zN →
z∗ asN → +∞. Assume that I∗L∪ I∗U = ∅ and β(z∗) = ∅, where I∗L, I∗U are defined as in (3.4) and β(z∗)
are given by (2.5). Then the linear independent constraint qualification (LICQ) of problem (3.1) holds at a
neighborhood of zN when N is sufficiently large.

Proof. It follows from zN → z∗ and I∗L ∪ I∗U = ∅ that when N is sufficiently large,

g1(zN ) > 0, g2(zN ) < 0.

In order to show the conclusion, we only need to prove that

∇hN (zN )λ+∇ΦµN (G(zN ), HN (zN ))γ = 0 ⇒ λ = 0, γ = 0. (3.13)

In light of the definitions of hN ,ΦµN and (2.8), the left-hand side of (3.13) is equivalent to the following
system

λ = 0, (3.14)(
1

N

N∑
k=1

A(ξk)

)T

Λ2(µ)γ = 0, (3.15)

(
1

N

N∑
k=1

A(ξk)

)
λ+ Λ1(µ)γ = 0, (3.16)

where Λ1(µ) and Λ2(µ) are two m-dimensional diagonal matrices whose entries are respectively

1− Gi(zN )

(G2
i (zN ) + (HN

i (zN ))2 + 2µ2)
1
2

, −1− HN
i (zN )

(G2
i (zN ) + (HN

i (zN ))2 + 2µ2)
1
2

, i ∈ [m].

From (3.14), we obtain that λ = 0. Due to Assumption 3.2, (3.15), (3.16) and β(z∗) = ∅, whenN → +∞,
we obtain

Λ1γ = 0, Λ2γ = 0, (3.17)
where Λ1 and Λ2 are twom-dimensional diagonal matrices whose entries are respectively

1− Gi(z
∗)

(G2
i (z

∗) + (HN
i (z∗))2)

1
2

, −1− HN
i (z∗)

(G2
i (z

∗) + (HN
i (z∗))2)

1
2

, i ∈ [m]. (3.18)

It follow from the relations (3.17), (3.18) and β(z∗) = 0 that γ = 0. □

Remark 3.6. From the definitions of g1 and g2 defined in (1.4), we can always set the lower bound cL

and the upper bound cU of the cost vectors that makes the condition I∗L∪I∗U = ∅ satisfied. On the other
hand, the condition β = ∅ means that the strict complementarity condition holds at z∗ with respect to
the system G(z) ∈ Rm

+ , H(z) ∈ Rm
− , G(z)TH(z) = 0.

To close this section, the next theorem shows that the sequence of KKT solutions of problem (3.1)
converges with probability one (w.p.1) to an S-stationary point of problem (1.2) (or (2.1)) under mild
conditions.

Theorem 3.7. Suppose that Assumption 3.2 holds. Let zN be a KKT point of problem (3.1) and zN → z∗

as N → +∞. Assume that I∗L ∪ I∗U = ∅, where I∗L, I∗U are defined as in (3.4), and β(z∗) = ∅. Then z∗ is
an S-stationary point of problem (1.2) (or (2.1)) (w.p.1).
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Proof. It follows from the KKT condition of problem (3.1) that the system (3.12) holds, i.e.,
∇zL(zN , λN

h , λN
g1, λ

N
g2, γ

N ) = 0, hN (zN ) = 0,

g1(zN ) ≥ 0, λN
g1 ≥ 0, g1(zN )TλN

g1 = 0,

g2(zN ) ≤ 0, λN
g2 ≥ 0, g2(zN )TλN

g2 = 0,

ΦµN (G(zN ), HN (zN )) = 0,

where the Lagrangian function L(·) is defined as in (3.11), λN
h , λN

g1, λ
N
g2, γ

N are the Lagrangian multi-
pliers of problem (3.1) associated with zN . From Lemma 3.5, when N is sufficiently large, g1(zN ) > 0
and g2(zN ) < 0, which imply that λN

g1 = 0 and λN
g2 = 0. The above system reduces to

∇f(zN ) +∇hN (zN )λN
h +∇ΦµN (G(zN ), HN (zN ))γN = 0,

hN (zN ) = 0, ΦµN (G(zN ), HN (zN )) = 0.
(3.19)

Because the LICQ condition holds at zN where N is sufficiently large, then λN
h and γN are the unique

multiplies that satisfy the relation (3.19). Therefore, the sequence {λN
h , λN

g1, λ
N
g2, γ

N} is convergent.
Assume that λN

h → λ∗
h, λN

g1 → λ∗
g1 = 0, λN

g2 → λ∗
g2 = 0 and γN → γ∗ as N → +∞. From the

relations (3.19) and (2.8) with Lemma 3.1, when N → +∞, we obtain

∇f(z∗) +∇h(z∗)λ∗ +∇G(z∗)Λ1γ
∗ +∇H(z∗)Λ2γ

∗ = 0, (3.20)
h(z∗) = 0, 2(G(z∗)−ΠRm

+
(G(z∗) +H(z∗)) = 0. (3.21)

From (3.21), we deduce that h(z∗) = 0, G(z∗) ∈ Rm
+ , H(z∗) ∈ Rm

− and G(z∗)TH(z∗) = 0, which
means that z∗ is a feasible point of problem (1.2) (or (2.1)) and

(G(z∗)2 +H(z∗)2)1/2 = G(z∗)−H(z∗). (3.22)

For notional simplicity, we denote
γ∗G := −Λ1γ

∗, γ∗H := Λ2γ
∗ (3.23)

where Λ1 and Λ2 are two m-dimensional diagonal matrices whose entries are respectively defined as
in (3.18). It follows from (3.22) and (3.23) that the relation (3.20) becomes

∇f(z∗) +∇h(z∗)λ∗
h +∇g1(z

∗)λ∗
g1 +∇g2(z

∗)λ∗
g2 −∇G(z∗)γ∗G +∇H(z∗)γ∗H = 0,

where we use the facts that λ∗
g1 = 0 and λ∗

g2 = 0. In light of the assumption I∗L ∪ I∗U = ∅, where I∗L, I∗U
are defined as in (3.4), then g1(z

∗) > 0 and g2(z
∗) < 0. Moreover, due to the assumption β(z∗) = ∅,

we only need to deduce that z∗ is a W-stationary point of problem (1.2) (or (2.1)). Combining with the
above discussion, the remaining work is to show the last two relations in (2.3) satisfied, i.e.,

(γ∗G)i = 0, i ∈ γ(z∗), (γ∗H)i = 0, i ∈ α(z∗), (3.24)

where α(z∗) and γ(z∗) are defined as in (2.4) and (2.6). It follows from the relations (3.23), (3.18), the
definitions of α(z∗), γ(z∗) and β(z∗) = ∅ that the relation (3.24) holds. □

4. Numerical Experiments

In order to verify the availability of our method for solving the given stochastic inverse optimal
value problems, some numerical experiments are conducted in this section. All experiments are run on
a 64-bit PC with an Intel (R) Core(TM) i9-12900 of 2.40 GHz CPU and 32.00 GB of RAM equipped with
Windows 11 operating system.

Experiment 1. Consider the following linear programming problem

min
x∈R2

2x1 + 3x2

s.t. 3x1 + x2 ≤ 20, −x1 + x2 ≤ −8.
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The corresponding optimal objective value is 11with the global optimal solution x∗ = [7;−1]. Let ξ be
a 2-dimensional random column vector that obeys a multivariate standard normal distribution, A(ξ)
and b(ξ) are defined as

A(ξ) :=

[
3 1
−1 1

]
+ diag(ξ), b(ξ) :=

[
20
−8

]
+ ξ

and v∗ = 11, cL = [1.9; 2.9], cU = [2.1; 3.1], then the corresponding stochastic inverse optimal value
problem has the form of

min
c,x,y

1

2
(cTx− 11)2,

s.t. cL ≤ c ≤ cU , E[A(ξ)]T y + c = 0,
E[A(ξ)x− b(ξ)] ≤ 0, y ≥ 0, (E[A(ξ)x− b(ξ)])T y = 0.

Next, we use JuMP and Ipopt packages [15] in Julia (Version 1.9) as the solver of the associated smooth
SAA subproblems.

Table 1 shows that the solvability of our method under the different values of µ and N , where “obj”
denotes the objective value of the smooth SAA subproblems, “res” denotes the residual that is the
difference between the c-part solution of the smooth SAA subproblems and the original cost vector
[2; 3] under the Euclidean norm.

Table 1. Numerical results with different parameters µ and N .

µ N obj res time
0.1 10 2.331e-19 3.515e-2 0.013s

100 5.915e-19 2.157e-2 0.014s
1000 5.564e-19 2.095e-2 0.014s
10000 5.316e-19 2.038e-2 0.015s

0.05 10 2.773e-19 1.095e-2 0.012s
100 1.175e-19 8.238e-3 0.012s
1000 1.076e-19 8.137e-3 0.013s
10000 1.056e-19 7.976e-3 0.014s

0.01 10 1.763e-20 4.128e-3 0.012s
100 7.965e-20 3.133e-3 0.013s
1000 2.121e-21 3.201e-3 0.014s
10000 4.054e-22 3.143e-3 0.015s

From Table 1, the overall residual is decreasing as N increases and µ tends to zero. In addition, by
fixing µ = 0.1 and the number of samples N = 1000, we also investigates the effect of our method
with different initial point x0 and bound vectors cL, cU , which can be seen in Table 2 and Table 3.

Table 2. Numerical results with different initial point x0.

x0 obj res time
[−1;−9] 1.821e-20 7.618e-3 0.010s
[1;−7] 1.820e-20 7.985e-3 0.010s
[3;−5] 1.821e-20 2.734e-2 0.009s
[5;−3] 1.815e-20 1.586e-2 0.010s
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Table 3. Numerical results with different bound vectors cL and cU .

cL cU obj res time
[1.50; 2.90] [2.50; 3.10] 3.118e-24 3.014e-3 0.018s
[1.70; 2.90] [2.30; 3.10] 2.436e-23 8.703e-2 0.018s
[1.90; 2.90] [2.10; 3.10] 1.921e-21 2.506e-2 0.017s
[1.90; 2.70] [2.10; 3.30] 9.772e-22 5.460e-2 0.012s
[1.90; 2.50] [2.10; 3.50] 6.067e-22 6.399e-2 0.009s
[1.50; 2.50] [2.50; 3.50] 4.405e-24 4.301e-2 0.017s

Numerical results in Table 2 and Table 3 show that our method is relatively stable for different initial
values and has a better performance for the given stochastic inverse optimal value problem.

Experiment 2. Next, we conduct further numerical experiments for some stochastic inverse optimal
value problems under different size (n,m) by fixing µ = 0.1 and the number of samples N = 10000,
in which we first set a randomm×nmatrixA and a randomm×1 vector bwith entries in [−100, 100]
and use the package HiGHS [7] to achieve the corresponding optimal value of LP problem with a given
random n × 1 vector c and set it to be the value of v∗ in the subproblem (1.3). Moreover, we also set
ξ to be a n-dimensional random column vector that obeys a multivariate standard normal distribution,
A(ξ) := A+ diag(ξ)(i ∈ [n]), b(ξ) := b+ ξ, cL := c− 0.1 ∗ l and cU := c+0.1 ∗ u, where l and u are
random n× 1 vectors with entries in [0, 1].

Table 4. Numerical results with different size (n,m).

n m obj res time
5 10 8.101e-20 2.230e-2 0.012s
10 20 2.427e-20 1.757e-2 0.034s
20 40 7.174e-20 3.439e-2 0.351s
30 60 3.050e-20 8.954e-2 2.030s
40 80 1.291e-19 7.409e-2 12.929s
50 100 1.124e-19 2.508e-2 41.108s
60 120 1.178e-19 8.679e-2 78.412s
70 140 4.807e-19 2.080e-2 96.218s
80 160 6.696e-19 2.472e-2 135.664s
90 180 5.032e-19 2.366e-2 166.073s
100 200 1.895e-19 2.508e-2 251.868s

Numerical results in Table 4 show that our algorithm can solve the high-dimensional stochastic
inverse optimal value problems efficiently.

5. Conclusion

This article investigates a sample average approximation (SAA) approach to address a class of sto-
chastic inverse optimal value problems. Under mild assumptions, we prove that the sequence of global
minimizers (Karush-Kuhn-Tucker points) generated by the proposed approach converges with proba-
bility one to a global minimizer (an S-stationary point) of the original inverse optimal value problem.
Numerical experiments are conducted to validate the efficacy of our method in solving the specified
stochastic inverse optimal value problems. We believe that the framework of our algorithm can be
adapted to solve stochastic inverse optimal value problems with other types of conic constraints. We
leave these further discussions as our future work.
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